-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdissertation-chapter-x-analysis-barnett-salomon-replication.do
1636 lines (1246 loc) · 56.6 KB
/
dissertation-chapter-x-analysis-barnett-salomon-replication.do
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
***===================================================***
* NARROW REPLICATION 1 *
* SAME DESIGN, SAME POPULATION, SAME SAMPLE *
***===================================================***
/*** Variables from Barnett and Salomon 2012
Performance
- ROA = Net Income / Total Assets ($millions)
- Net Income = Earnings after interest, taxes, depreciation, amortization ($millions)
Social Responsibility (proxy for what they call "stakeholder influence capacity"
- Net KLD Score = KLD strengths - KLD concerns
Controls
- Firm size = Number of employees (1000s)
- Debt ratio = Long-term debt / Total assets
- R&D intensity = R&D expenditures / sales
- Advertising intensity = Advertising expenditures / sales
- Industry =
*/
*** LOAD DATA
use data/kld-cstat-bs2012.dta, clear
*** DATA DECISIONS
* Barnett & Salomon assume missing advertising data = 0
keep if in_bs2012==1
replace ad=0 if ad==.
*** BS TABLE 1: CORRELATION TABLE
corr roa lroa ni lni net_kld_adj net_kld_adj_sq emp debt rd ad, means
pwcorr roa lroa ni lni net_kld_adj net_kld_adj_sq emp debt rd ad, st(.05) list
*** KEEP OBSERVATIONS WITH ALL NEEDED VARIABLES
gen comp=(net_kld_adj!=. & net_kld_adj!=. & lroa!=. & emp!=. & debt!=. & rd!=. & ad!=.)
keep if comp==1
*** BS TABLE 2: ROA REGRESSION
est clear
qui reg roa lroa emp debt rd ad
est sto t21
qui reg roa net_kld_adj lroa emp debt rd ad
est sto t22
qui reg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad
est sto t23
qui reg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad i.year
est sto t24
qui reg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad i.year i.naics_n
est sto t25
qui xtreg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad i.year, fe
est sto t26
estout *, cells(b(star fmt(%9.3f)) z(par)) ///
stats(N N_g r2_a, fmt(%9.0g %9.0g %9.0g %9.4g) ///
labels("N" "Firms" "Adj. R^2")) ///
legend collabels(none) ///
keep(net_kld_adj net_kld_adj_sq lroa emp debt rd ad _cons) ///
order(net_kld_adj net_kld_adj_sq lroa emp debt rd ad _cons) ///
starlevels(* .1 ** .05 *** .01)
outreg2 [t21 t22 t23 t24 t25 t26] using "tables-and-figures/barnett-salomon-replicated-figures/bs2012-table-2-roa-regression", excel ///
stats(coef tstat) ///
keep(net_kld_adj net_kld_adj_sq lroa emp debt rd ad) ///
sortvar(net_kld_adj net_kld_adj_sq lroa emp debt rd ad) ///
e(N_g r2_a r2_o r2_b r2_w) ///
dec(2) fmt(f) ///
replace
*** BS TABLE 3: NI REGRESSION
est clear
qui reg ni lni emp debt rd ad
est sto t31
qui reg ni net_kld_adj lni emp debt rd ad
est sto t32
qui reg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad
est sto t33
qui reg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad i.year
est sto t34
qui reg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad i.year i.naics_n
est sto t35
qui xtreg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad i.year, fe
est sto t36
estout *, cells(b(star fmt(%9.3f)) t(par)) ///
stats(N N_g r2_a, fmt(%9.0g %9.0g %9.0g %9.4g) ///
labels("N" "Firms" "Adj. R^2")) ///
legend collabels(none) ///
keep(net_kld_adj net_kld_adj_sq lni emp debt rd ad _cons) ///
order(net_kld_adj net_kld_adj_sq lni emp debt rd ad _cons) ///
starlevels(* .1 ** .05 *** .01)
outreg2 [t31 t32 t33 t34 t35 t36] using "tables-and-figures/barnett-salomon-replicated-figures/bs2012-table-3-ni-regression", excel ///
stats(coef tstat) ///
keep(net_kld_adj net_kld_adj_sq lni emp debt rd ad) ///
sortvar(net_kld_adj net_kld_adj_sq lni emp debt rd ad) ///
e(N_g r2_a r2_o r2_b r2_w) ///
dec(2) fmt(f) ///
replace
*** BS FIGURE 1
/* B&S2012: "We use the models with the most explanatory power to graph these relationships.
For ROA, we base Figure 1 on Model 5 from Table 3.
NOTE: B&S are wrong in the above quote. Table 3 reports regressions of NI, not ROA.
I assume they mean Model 5 from Table 2, which reports regressions of ROA.
*/
reg roa i.net_kld_adj i.net_kld_adj_sq lroa emp debt rd ad i.year i.naics_n
margins net_kld_adj
/* Margins not estimable. I'm guessing what they did is take the point estimates from
the regression and plot them against a y-axis labeled as the DV
But margins works when I exclude net_kld_adj_sq from the model.
Is that what they did, simply drop one of the independent variables?!*/
reg roa i.net_kld_adj lroa emp debt rd ad i.year i.naics_n
margins net_kld_adj
marginsplot, xti("Adjusted Net KLD Score") yti("ROA Impact") ///
xlab(0(1)26) ///
scheme(s1mono) ///
scale(.8) ///
yline(0,lp(dot)) ///
xline(11,lp(dot)) ///
note("Vertical line at x = 11 indicates unadjusted net KLD score of 0")
*** BS FIGURE 2
/* B&S2012: "For net income, we use Model 4 from Table 4.
NOTE: B&S are wrong in the above quote. There is no Table 4 in the paper.
I assume they mean Model 4 from Table 3, which reports regressions of NI.
*/
reg ni i.net_kld_adj net_kld_adj_sq lni emp debt rd ad i.year
margins net_kld_adj, cont
/* Margins not estimable. I'm guessing what they did is take the point estimates from
the regression and plot them against a y-axis labeled as the DV
But margins works when I exclude net_kld_adj_sq from the model.
Is that what they did, simply drop one of the independent variables?!
*/
* Set net_kld_adj base to 11, which is 0 prior to adjustment
fvset base 11 net_kld_adj
reg ni i.net_kld_adj lni emp debt rd ad i.year
margins net_kld_adj
*see https://www.ssc.wisc.edu/sscc/pubs/stata_margins.htm
marginsplot, xti("Adjusted Net KLD Score") yti("Net Income Impact") ///
xlab(0(1)26) ///
scheme(s1mono) ///
scale(.8) ///
yline(0,lp(dot)) ///
xline(11,lp(dot)) ///
note("Vertical line at x = 11 indicates unadjusted net KLD score of 0") ///
plotopts(connect(none)) ///
saving(predictive-margins-net_kld_adj, replace)
margins, dydx(net_kld_adj) base
marginsplot, xti("Adjusted Net KLD Score") yti("Net Income Impact") ///
xlab(,angle(90)) ///
scheme(s1mono) ///
scale(.8) ///
yline(0,lp(dot)) ///
xline(11,lp(dot)) ///
note("Vertical line at x = 11 indicates unadjusted net KLD score of 0") ///
plotopts(connect(none)) ///
saving(marginal-effects-net_kld_adj, replace)
graph combine predictive-margins-net_kld_adj.gph marginal-effects-net_kld_adj.gph, cols(1) ycommon xcommon
***===================================================***
* NARROW REPLICATION 2 *
* SAME DESIGN, SAME POPULATION, NEW SAMPLE *
***===================================================***
*** LOAD DATA
use data/kld-cstat-bs2012.dta, clear
*** DATA DECISIONS
* Barnett & Salomon assume missing advertising data = 0
replace ad=0 if ad==.
* Post 1998 to align with Barnett & Salomon's claim that KLD reporting changed in 1998
drop if year<1998
*** CORRELATION TABLE
corr roa lroa ni lni net_kld_adj net_kld_adj_sq emp debt rd ad, means
pwcorr roa lroa ni lni net_kld_adj net_kld_adj_sq emp debt rd ad, st(.05) list
*** ROA REGRESSION
est clear
qui reg roa lroa emp debt rd ad
est sto m1
qui reg roa net_kld_adj lroa emp debt rd ad
est sto m2
qui reg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad
est sto m3
qui reg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad i.year
est sto m4
set matsize 800
qui reg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad i.year i.naics_n
est sto m5
qui xtreg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad i.year, fe
est sto m6
estout *, cells(b(star fmt(%9.3f)) z(par)) ///
stats(N N_g r2_a r2_o r2_b r2_w, fmt(%9.0g %9.0g %9.0g %9.4g) ///
labels("N" "Firms" "Adj. R^2" "R^2 Overall" "R^2 Between" "R^2 Within")) ///
legend collabels(none) ///
keep(net_kld_adj net_kld_adj_sq lroa emp debt rd ad _cons) ///
order(net_kld_adj net_kld_adj_sq lroa emp debt rd ad _cons) ///
title("Regressions of ROA using KLD data from 1998 - 2015.") ///
starlevels(* .1 ** .05 *** .01)
outreg2 [m1 m2 m3 m4 m5 m6] using "tables-and-figures/barnett-salomon-replicated-figures/rep2-roa-regression", excel ///
stats(coef tstat) ///
keep(net_kld_adj net_kld_adj_sq lroa emp debt rd ad) ///
sortvar(net_kld_adj net_kld_adj_sq lroa emp debt rd ad) ///
dec(3) fmt(f) ///
e(N_g r2_a r2_o r2_b r2_w) ///
replace
*** NET INCOME REGRESSION
est clear
qui reg ni lni emp debt rd ad
est sto ni1
qui reg ni net_kld_adj lni emp debt rd ad
est sto ni2
qui reg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad
est sto ni3
qui reg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad i.year
est sto ni4
qui reg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad i.year i.naics_n
est sto ni5
qui xtreg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad i.year, fe
est sto ni6
estout *, cells(b(star fmt(%9.3f)) z(par)) ///
stats(N N_g r2_a r2_o r2_b r2_w, fmt(%9.0g %9.0g %9.0g %9.4g) ///
labels("N" "Firms" "Adj. R^2" "R^2 Overall" "R^2 Between" "R^2 Within")) ///
legend collabels(none) ///
keep(net_kld_adj net_kld_adj_sq lni emp debt rd ad _cons) ///
order(net_kld_adj net_kld_adj_sq lni emp debt rd ad _cons) ///
title("Regressions of NET INCOME using KLD data from 1998 - 2015.") ///
starlevels(* .1 ** .05 *** .01)
outreg2 [ni1 ni2 ni3 ni4 ni5 ni6] using "tables-and-figures/barnett-salomon-replicated-figures/rep2-ni-regression", excel ///
stats(coef tstat) ///
keep(net_kld_adj net_kld_adj_sq lni emp debt rd ad) ///
sortvar(net_kld_adj net_kld_adj_sq lni emp debt rd ad) ///
dec(3) fmt(f) ///
e(N_g r2_a r2_o r2_b r2_w) ///
replace
***===================================================***
* QUASI-REPLICATION 3 *
* SAME DESIGN, NEW POPULATION, NEW SAMPLE *
***===================================================***
*** LOAD DATA TO CREATE SAMPLE FROM NEW POPULATION
/*
use data/csrhub-all.dta, clear
* Randomly sample 4,000 firms
drop if ticker==""
drop if ticker=="NA" & firm!="National Bank of Canada"
bysort ticker: gen n=_n
keep if n==1
drop n
set seed 61047
gen rngstate=c(rngstate)
label var rngstate "Stata rngstate from set seed 61047
sample 4000, count
gen in_rando=1
label var in_rando "=1 if a firm in the random sample of CSRHub firms"
compress
save data-csrhub/random-4000-csrhub-firms.dta
*/
*** MATCH THE SAMPLE WITH KLD
use data/random-4000-csrhub-firms.dta, clear
keep firm ticker tic_csrhub year in_csrhub
gen firm_csrhub=upper(firm)
rename year year_csrhub
drop if strpos(firm_csrhub,"FUND")>0
merge 1:m ticker using data/kld-cstat-bs2012.dta
/*
Result # of obs.
-----------------------------------------
not matched 38,073
from master 1,943 (_merge==1)
from using 36,130 (_merge==2)
matched 13,539 (_merge==3)
-----------------------------------------
*/
replace firm_kld=upper(firm_kld)
foreach v in "," "." {
replace firm_kld=subinstr(firm_kld,"`v'","",.)
replace firm_csrhub=subinstr(firm_csrhub,"`v'","",.)
}
ustrdist firm_kld firm_csrhub if _merge==3
stem strdist
/*Stem-and-leaf plot for strdist
0* | 0000000000000000000000000000000000000000000000000000000000000 ... (8700)
0* | 11111111111111111111111111111111111111111111111111111111111111 ... (135)
0* | 2222222222222222222222222222222
0* | 333333333333333333333333333333333333333333333333333333333333333 ... (94)
0* | 44444444444444444444444444444444444444444444444444444444444444 ... (576)
0* | 55555555555555555555555555555555555555555555555555555555555555 ... (141)
0* | 66666666666666666666666666666666666666666666666666666666666666 ... (125)
0* | 77777777777777777777777777777777777777777777777777777777777777 ... (379)
0* | 88888888888888888888888888888888888888888888888888888888888888 ... (137)
0* | 99999999999999999999999999999999999999999999999999999999999999 ... (344)
1* | 00000000000000000000000000000000000000000000000000000000000000 ... (277)
1* | 11111111111111111111111111111111111111111111111111111111111111 ... (171)
1* | 22222222222222222222222222222222222222222222222222222222222222 ... (236)
1* | 33333333333333333333333333333333333333333333333333333333333333 ... (244)
1* | 44444444444444444444444444444444444444444444444444444444444444 ... (109)
1* | 55555555555555555555555555555555555555555555555555555555555555 ... (243)
1* | 66666666666666666666666666666666666666666666666666666666666666 ... (222)
1* | 77777777777777777777777777777777777777777777777777777777777777 ... (206)
1* | 88888888888888888888888888888888888888888888888888888888888888 ... (163)
1* | 99999999999999999999999999999999999999999999999999999999999999 ... (147)
2* | 00000000000000000000000000000000000000000000000000000000000000 ... (150)
2* | 11111111111111111111111111111111111111111111111111111111111111 ... (142)
2* | 22222222222222222222222222222222222222222222222222222222222222 ... (136)
2* | 33333333333333333333333333333333333333333333333333333333333333 ... (105)
2* | 44444444444444444444444444444444444444444444444444444444444444444444444
2* | 555555555555555555555555555
2* | 666666666666666666666666666666666666666666666666666666
2* | 77777777777777777777777777777777777777777
2* | 88888888888888888888888888
2* | 99999999999999
3* | 00000000000
3* | 1111111111111111111111
3* | 2222222222222222222
3* | 33333333333333
3* | 44
3* | 55555555555
3* | 66666
3* | 7777
3* | 8
3* | 999
4* |
4* |
4* |
4* |
4* |
4* |
4* |
4* |
4* |
4* |
5* | 0
*/
*** SAVE
compress
capt save data/replication3.dta
*** DATA DECISIONS
* Barnett & Salomon assume missing advertising data = 0
replace ad=0 if ad==.
* Post 1998 to align with Barnett & Salomon's claim that KLD reporting changed in 1998
drop if year<1998
* Keep firms merged from CSRHub population
keep if _merge==3
xtset firm_n year, y
*** CORRELATION TABLE
corr roa lroa ni lni net_kld_adj net_kld_adj_sq emp debt rd ad, means
pwcorr roa lroa ni lni net_kld_adj net_kld_adj_sq emp debt rd ad, st(.05) list
/*
(obs=5,336)
Variable | Mean Std. Dev. Min Max
-------------+----------------------------------------------------
roa | .0125124 .1845652 -2.435433 1.625642
lroa | .0095886 .214167 -6.783386 1.625642
ni | 408.5504 2132.727 -16198 53394
lni | 379.3568 1979.551 -16198 41733
net_kld_adj | 11.49569 2.614856 1 29
net_kld_ad~q | 138.9871 70.17546 1 841
emp | 21.87611 114.2367 0 2300
debt | .1830017 .2154874 0 2.444689
rd | 9.624451 395.491 0 25684.4
ad | .0122439 .0499207 0 2.821317
| roa lroa ni lni net_kl~j net_kl~q emp debt rd ad
-------------+------------------------------------------------------------------------------------------
roa | 1.0000
lroa | 0.6022 1.0000
ni | 0.1405 0.0991 1.0000
lni | 0.1195 0.1334 0.8933 1.0000
net_kld_adj | 0.0675 0.0665 0.1019 0.1010 1.0000
net_kld_ad~q | 0.0780 0.0755 0.1382 0.1402 0.9751 1.0000
emp | 0.0525 0.0492 0.4173 0.4301 -0.0571 -0.0050 1.0000
debt | -0.0516 -0.0373 -0.0193 -0.0155 -0.0648 -0.0507 0.0430 1.0000
rd | -0.0924 -0.0585 -0.0075 -0.0073 0.0021 -0.0003 -0.0045 0.0272 1.0000
ad | -0.0562 -0.0403 -0.0001 -0.0012 0.0529 0.0540 -0.0037 0.0026 -0.0037 1.0000
*/
* Generate rep3 flag
gen in_rep3=(roa!=. & lroa!=. & ni!=. & lni!=. & net_kld_adj!=. & net_kld_adj_sq!=. & emp!=. & debt!=. & rd!=. & ad!=.)
*** ID MIN/MAX VALUES
replace firm=upper(firm)
keep if in_rep3==1
sort roa
list firm year roa ni at in 1/5
/* MINIMUM 5 OBS ON ROA
+------------------------------------------------------------------------------------+
| firm year roa ni at |
|------------------------------------------------------------------------------------|
1. | NEOPROBE CORP. 2012 -2.435433 -29.157 11.972 |
2. | VERISIGN, INC. 2002 -2.074712 -4961.297 2391.318 |
3. | OPKO HEALTH, INC. 2008 -1.83027 -39.834 21.764 |
4. | CELL THERAPEUTICS, INC 2010 -1.542058 -82.642 53.592 |
5. | INTEGRATED DEVICE TECHNOLOGY, INC. (IDT) 2008 -1.54071 -1045.167 678.367 |
+------------------------------------------------------------------------------------+
*/
gsort -roa
list firm year roa ni at in 1/5
/* MAX 5 OBS ON ROA
+-------------------------------------------------------------------------------------+
| firm year roa ni at |
|-------------------------------------------------------------------------------------|
1. | LIGAND PHARMACEUTICALS INCORPORATED 2007 1.625642 281.688 173.278 |
2. | SYNTA PHARMACEUTICALS CORP. 2009 1.617011 79.08799999999999 48.91 |
3. | QUESTCOR PHARMACEUTICALS, INC. 2012 .7830853 197.675 252.431 |
4. | ZIX CORPORATION 2010 .6164812 41.213 66.852 |
5. | CAMBREX CORPORATION 2007 .5602926 209.248 373.462 |
+-------------------------------------------------------------------------------------+
*/
sort ni
list firm year roa ni at in 1/5
/* MINIMUM 5 OBS ON NI
+---------------------------------------------------------------+
| firm year roa ni at |
|---------------------------------------------------------------|
1. | LUCENT TECHNOLOGIES INC. 2001 -.4811668 -16198 33664 |
2. | FORD MOTOR COMPANY 2008 -.0672016 -14672 218328 |
3. | FORD MOTOR COMPANY 2006 -.0452803 -12613 278554 |
4. | LUCENT TECHNOLOGIES INC. 2002 -.6606149 -11753 17791 |
5. | CORNING INCORPORATED 2001 -.4297663 -5498 12793 |
+---------------------------------------------------------------+
*/
gsort -ni
list firm year roa ni at in 1/5
/* MAX 5 OBS ON NI
+--------------------------------------------------+
| firm year roa ni at |
|--------------------------------------------------|
1. | APPLE INC. 2015 .1838136 53394 290479 |
2. | APPLE INC. 2012 .2370331 41733 176064 |
3. | APPLE INC. 2014 .17042 39510 231839 |
4. | APPLE INC. 2013 .1789227 37037 207000 |
5. | CHEVRON CORP. 2011 .128393 26895 209474 |
+--------------------------------------------------+
*/
compress
save data/mergefile-csrhub-kld-random-sample
*** REPLICATION 3
* Load CSRHub sample data
use data/mergefile-csrhub-kld-random-sample, clear
* ROA regression
est clear
qui reg roa lroa emp debt rd ad
est sto m1
qui reg roa net_kld_adj lroa emp debt rd ad
est sto m2
qui reg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad
est sto m3
qui reg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad i.year
est sto m4
set matsize 800
qui reg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad i.year i.naics_n
est sto m5
qui xtreg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad i.year, fe
est sto m6
estout *, cells(b(star fmt(%9.3f)) z(par)) ///
stats(N N_g r2_a r2_o r2_b r2_w, fmt(%9.0g %9.0g %9.0g %9.4g) ///
labels("N" "Firms" "Adj. R^2" "R^2 Overall" "R^2 Between" "R^2 Within")) ///
legend collabels(none) ///
keep(net_kld_adj net_kld_adj_sq lroa emp debt rd ad _cons) ///
order(net_kld_adj net_kld_adj_sq lroa emp debt rd ad _cons) ///
title("Regressions of ROA using CSRHub population.") ///
starlevels(* .1 ** .05 *** .01)
outreg2 [m1 m2 m3 m4 m5 m6] using "tables-and-figures/barnett-salomon-replicated-figures/rep3-roa-regression", excel ///
stats(coef tstat) ///
keep(net_kld_adj net_kld_adj_sq lroa emp debt rd ad) ///
sortvar(net_kld_adj net_kld_adj_sq lroa emp debt rd ad) ///
dec(2) fmt(f) ///
e(N_g r2_a r2_o r2_b r2_w) ///
replace
* Net income regression
est clear
qui reg ni lni emp debt rd ad
est sto ni1
qui reg ni net_kld_adj lni emp debt rd ad
est sto ni2
qui reg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad
est sto ni3
qui reg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad i.year
est sto ni4
qui reg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad i.year i.naics_n
est sto ni5
qui xtreg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad i.year, fe
est sto ni6
estout *, cells(b(star fmt(%9.3f)) z(par)) ///
stats(N N_g r2_a r2_o r2_b r2_w, fmt(%9.0g %9.0g %9.0g %9.4g) ///
labels("N" "Firms" "Adj. R^2" "R^2 Overall" "R^2 Between" "R^2 Within")) ///
legend collabels(none) ///
keep(net_kld_adj net_kld_adj_sq lni emp debt rd ad _cons) ///
order(net_kld_adj net_kld_adj_sq lni emp debt rd ad _cons) ///
title("Regressions of NET INCOME using CSRHub population.") ///
starlevels(* .1 ** .05 *** .01)
outreg2 [ni1 ni2 ni3 ni4 ni5 ni6] using "tables-and-figures/barnett-salomon-replicated-figures/rep3-ni-regression", excel ///
stats(coef tstat) ///
keep(net_kld_adj net_kld_adj_sq lni emp debt rd ad) ///
sortvar(net_kld_adj net_kld_adj_sq lni emp debt rd ad) ///
dec(2) fmt(f) ///
e(N_g r2_a r2_o r2_b r2_w) ///
replace
***===================================================***
* QUASI-REPLICATION 4 *
* NEW DESIGN, SAME POPULATION, SAME SAMPLE *
***===================================================***
*** LOAD DATA
use data/kld-cstat-bs2012.dta, clear
*** DATA DECISIONS
* Barnett & Salomon assume missing advertising data = 0
keep if in_bs2012==1
replace ad=0 if ad==.
*** CORRELATION TABLE
corr roa lroa ni lni net_kld_adj net_kld_adj_sq emp debt rd ad, means
pwcorr roa lroa ni lni net_kld_adj net_kld_adj_sq emp debt rd ad, st(.05) list
*** 4.1 CLUSTERED STANDARD ERRORS // 4.1
* ROA
est clear
qui reg roa lroa emp debt rd ad, cluster(firm_n)
est sto m1
qui reg roa net_kld_adj lroa emp debt rd ad, cluster(firm_n)
est sto m2
qui reg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad, cluster(firm_n)
est sto m3
qui reg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad i.year, cluster(firm_n)
est sto m4
set matsize 800
qui reg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad i.year i.naics_n, cluster(firm_n)
est sto m5
qui xtreg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad i.year, fe cluster(firm_n)
est sto m6
estout *, cells(b(star fmt(2)) t(par)) ///
stats(N N_g r2_a r2_o r2_b r2_w, fmt(%9.0g %9.0g %9.0g %9.4g) ///
labels("N" "Firms" "Adj. R^2" "R^2 Overall" "R^2 Between" "R^2 Within")) ///
legend collabels(none) ///
keep(net_kld_adj net_kld_adj_sq lroa emp debt rd ad _cons) ///
order(net_kld_adj net_kld_adj_sq lroa emp debt rd ad _cons) ///
starlevels(* .1 ** .05 *** .01)
outreg2 [m1 m2 m3 m4 m5 m6] using "tables-and-figures/barnett-salomon-replicated-figures/rep4-roa-clustered-errors", excel ///
stats(coef tstat) ///
keep(net_kld_adj net_kld_adj_sq lroa emp debt rd ad) ///
sortvar(net_kld_adj net_kld_adj_sq lroa emp debt rd ad) ///
dec(2) fmt(f) ///
e(N_g r2_a r2_o r2_b r2_w) ///
replace
* Net income
est clear
qui reg ni lni emp debt rd ad, cluster(firm_n)
est sto ni1
qui reg ni net_kld_adj lni emp debt rd ad, cluster(firm_n)
est sto ni2
qui reg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad, cluster(firm_n)
est sto ni3
qui reg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad i.year, cluster(firm_n)
est sto ni4
qui reg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad i.year i.naics_n, cluster(firm_n)
est sto ni5
qui xtreg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad i.year, fe cluster(firm_n)
est sto ni6
estout *, cells(b(star fmt(2)) t(par)) ///
stats(N N_g r2_a r2_o r2_b r2_w, fmt(%9.0g %9.0g %9.0g %9.4g) ///
labels("N" "Firms" "Adj. R^2" "R^2 Overall" "R^2 Between" "R^2 Within")) ///
legend collabels(none) ///
keep(net_kld_adj net_kld_adj_sq lni emp debt rd ad _cons) ///
order(net_kld_adj net_kld_adj_sq lni emp debt rd ad _cons) ///
starlevels(* .1 ** .05 *** .01)
outreg2 [ni1 ni2 ni3 ni4 ni5 ni6] using "tables-and-figures/barnett-salomon-replicated-figures/rep4-ni-clustered-errors", excel ///
stats(coef tstat) ///
keep(net_kld_adj net_kld_adj_sq lni emp debt rd ad) ///
sortvar(net_kld_adj net_kld_adj_sq lni emp debt rd ad) ///
dec(2) fmt(f) ///
e(N_g r2_a r2_o r2_b r2_w) ///
replace
*** 4.2 HYBRID FIXED AND RANDOM EFFECTS MODELS // 4.2
* Generate firm means
sort firm_n
foreach v of varlist net_kld_adj net_kld_adj_sq lroa lni emp debt rd ad {
by firm_n: egen m_`v'=mean(`v')
gen dm_`v'=`v'-m_`v'
}
* ROA and NI hybrid regressions
qui xtreg roa dm_net_kld_adj dm_net_kld_adj_sq dm_lroa dm_emp dm_debt dm_rd dm_ad ///
m_net_kld_adj m_net_kld_adj_sq m_lroa m_emp m_debt m_rd m_ad i.year, re
est sto hyb_roa
qui xtreg ni dm_net_kld_adj dm_net_kld_adj_sq dm_lni dm_emp dm_debt dm_rd dm_ad ///
m_net_kld_adj m_net_kld_adj_sq m_lni m_emp m_debt m_rd m_ad i.year, re
est sto hyb_ni
testparm dm_net_kld_adj m_net_kld_adj, equal /// Test coefficient equality
test dm_net_kld_adj_sq = m_net_kld_adj_sq
estout hyb_roa hyb_ni, cells(b(star fmt(3)) z(par)) ///
stats(N N_g r2_a r2_o r2_b r2_w, fmt(%9.0g %9.0g %9.0g %9.4g) ///
labels("N" "Firms" "Adj. R^2" "R^2 Overall" "R^2 Between" "R^2 Within")) ///
legend collabels(none) ///
keep(dm_* m_* _cons) ///
order(dm_net_kld_adj dm_net_kld_adj_sq dm_lroa dm_lni dm_* m_* _cons) ///
starlevels(* .1 ** .05 *** .01)
outreg2 [hyb_roa hyb_ni] using "tables-and-figures/barnett-salomon-replicated-figures/rep4-hybrid-models", excel ///
stats(coef tstat) ///
keep(dm_* m_*) ///
sortvar(dm_net_kld_adj dm_net_kld_adj_sq dm_lroa dm_lni dm_* m_*) ///
dec(2) fmt(f) ///
e(N_g r2_a r2_o r2_b r2_w) ///
replace
*** 4.2 HYBRID FIXED AND RANDOM EFFECTS MODELS WITH CLUSTERED ERRORS // 4.2 continued
* ROA and NI hybrid regressions
qui xtreg roa dm_net_kld_adj dm_net_kld_adj_sq dm_lroa dm_emp dm_debt dm_rd dm_ad ///
m_net_kld_adj m_net_kld_adj_sq m_lroa m_emp m_debt m_rd m_ad i.year, re cluster(firm_n)
est sto hybc_roa
qui xtreg ni dm_net_kld_adj dm_net_kld_adj_sq dm_lni dm_emp dm_debt dm_rd dm_ad ///
m_net_kld_adj m_net_kld_adj_sq m_lni m_emp m_debt m_rd m_ad i.year, re cluster(firm_n)
est sto hybc_ni
estout hybc_roa hybc_ni, cells(b(star fmt(2)) z(par)) ///
stats(N N_g r2_a r2_o r2_b r2_w, fmt(%9.0g %9.0g %9.0g %9.4g) ///
labels("N" "Firms" "Adj. R^2" "R^2 Overall" "R^2 Between" "R^2 Within")) ///
legend collabels(none) ///
keep(dm_* m_* _cons) ///
order(dm_net_kld_adj dm_net_kld_adj_sq dm_lroa dm_lni dm_* m_* _cons) ///
starlevels(* .1 ** .05 *** .01)
outreg2 [hybc_roa hybc_ni] using "tables-and-figures/barnett-salomon-replicated-figures/rep4-hybrid-models-clustered-errors", excel ///
stats(coef tstat) ///
keep(dm_* m_*) ///
sortvar(dm_net_kld_adj dm_net_kld_adj_sq dm_lroa dm_lni dm_* m_*) ///
dec(2) fmt(f) ///
e(N_g r2_a r2_o r2_b r2_w) ///
replace
/*
*** 4.3 CORRELATED RANDOM EFFECTS MODELS WITH AND WITHOUT CLUSTERED ERRORS /// 4.3
* ROA and NI CRE regressions
qui xtreg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad ///
m_net_kld_adj m_net_kld_adj_sq m_lroa m_emp m_debt m_rd m_ad i.year, re
est sto cre_roa
qui xtreg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad ///
m_net_kld_adj m_net_kld_adj_sq m_lni m_emp m_debt m_rd m_ad i.year, re
est sto cre_ni
qui xtreg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad ///
m_net_kld_adj m_net_kld_adj_sq m_lroa m_emp m_debt m_rd m_ad i.year, re cluster(firm_n)
est sto crec_roa
qui xtreg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad ///
m_net_kld_adj m_net_kld_adj_sq m_lni m_emp m_debt m_rd m_ad i.year, re cluster(firm_n)
est sto crec_ni
estout cre_roa crec_roa cre_ni crec_ni, cells(b(star fmt(2)) z(par)) ///
stats(N N_g r2_a r2_o r2_b r2_w, fmt(%9.0g %9.0g %9.0g %9.4g) ///
labels("N" "Firms" "Adj. R^2" "R^2 Overall" "R^2 Between" "R^2 Within")) ///
legend collabels(none) ///
keep(net_kld_adj net_kld_adj_sq lroa lni emp debt rd ad m_* _cons) ///
order(net_kld_adj net_kld_adj_sq lroa lni emp debt rd ad m_* _cons) ///
starlevels(* .1 ** .05 *** .01)
outreg2 [cre_roa crec_roa cre_ni crec_ni] using "tables-and-figures/barnett-salomon-replicated-figures/rep4-cre", excel ///
stats(coef tstat) ///
keep(net_kld_adj net_kld_adj_sq lroa lni emp debt rd ad m_*) ///
sortvar(net_kld_adj net_kld_adj_sq lroa lni emp debt rd ad m_*) ///
dec(2) fmt(f) ///
e(r2_a r2_o r2_b r2_w) ///
replace
*/
* COMPARATIVE TABLES /// 4.4
* ROA, no clustered errors
qui xtreg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad i.year, re
est sto re_roa
qui xtreg roa net_kld_adj net_kld_adj_sq lroa emp debt rd ad i.year, fe
est sto fe_roa
hausman fe_roa re_roa // Clear rejection of coefficient equivalence. RE model differs from FE model.
estout re_roa fe_roa hyb_roa cre_roa, cells(b(star fmt(2)) z(par)) ///
stats(N N_g r2_a r2_o r2_b r2_w, fmt(%9.0g %9.0g %9.0g %9.4g) ///
labels("N" "Firms" "Adj. R^2" "R^2 Overall" "R^2 Between" "R^2 Within")) ///
legend collabels(none) ///
keep(net_kld_adj net_kld_adj_sq lroa emp debt rd ad dm_* m_*) ///
order(net_kld_adj net_kld_adj_sq lroa emp debt rd ad dm_* m_*) ///
starlevels(* .1 ** .05 *** .01)
outreg2 [re_roa fe_roa hyb_roa cre_roa] using "tables-and-figures/barnett-salomon-replicated-figures/rep4-roa-comparative-tables", excel ///
stats(coef tstat) ///
keep(net_kld_adj net_kld_adj_sq lroa emp debt rd ad dm_* m_*) ///
sortvar(net_kld_adj net_kld_adj_sq lroa emp debt rd ad dm_* m_*) ///
dec(2) fmt(f) ///
e(r2_a r2_o r2_b r2_w) ///
replace
* Net Income, no clustered errors
qui xtreg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad i.year, re
est sto re_ni
qui xtreg ni net_kld_adj net_kld_adj_sq lni emp debt rd ad i.year, fe
est sto fe_ni
estout re_ni fe_ni hyb_ni cre_ni, cells(b(star fmt(2)) z(par)) ///
stats(N N_g r2_a r2_o r2_b r2_w, fmt(%9.0g %9.0g %9.0g %9.4g) ///
labels("N" "Firms" "Adj. R^2" "R^2 Overall" "R^2 Between" "R^2 Within")) ///
legend collabels(none) ///
keep(net_kld_adj net_kld_adj_sq lni emp debt rd ad dm_* m_*) ///
order(net_kld_adj net_kld_adj_sq lni emp debt rd ad dm_* m_*) ///
starlevels(* .1 ** .05 *** .01)
outreg2 [re_ni fe_ni hyb_ni cre_ni] using "tables-and-figures/barnett-salomon-replicated-figures/rep4-ni-comparative-tables", excel ///
stats(coef tstat) ///
keep(net_kld_adj net_kld_adj_sq lni emp debt rd ad dm_* m_*) ///
sortvar(net_kld_adj net_kld_adj_sq lni emp debt rd ad dm_* m_*) ///
dec(2) fmt(f) ///
e(r2_a r2_o r2_b r2_w) ///
replace
*** 4.6 Controlling for industry and firm in the same model
* Assume missing industry is the same as industry in next non-missing year
sort firm year
forvalues v = 1/10 {
by firm: replace naics_n=naics_n[_n+1] if naics_n==.
}
forvalues v = 1/10 {
by firm: replace naics_n=naics_n[_n-1] if naics_n==. & _n!=1
}
sort firm year
by firm: gen ind=naics_n!=naics_n[_n-1] & _n!=1
tab ind
/* ind | Freq. Percent Cum.
------------+-----------------------------------
0 | 16,164 99.99 99.99
1 | 2 0.01 100.00
------------+-----------------------------------
Total | 16,166 100.00
*/
by firm: egen ind2=max(ind)
tab ind2
list firm year naics ind ind2 if ind2==1
/* TWO FIRMS CHANGE NAICS IN THE DATA
+---------------------------------------------------+
| firm year naics ind ind2 |
|---------------------------------------------------|
7885. | ITT INDUSTRIES, INC. 1998 334510 0 1 |
7886. | ITT INDUSTRIES, INC. 1999 334510 0 1 |
7887. | ITT INDUSTRIES, INC. 2000 333911 1 1 |
7888. | ITT INDUSTRIES, INC. 2001 333911 0 1 |
7889. | ITT INDUSTRIES, INC. 2002 333911 0 1 |
|---------------------------------------------------|
7890. | ITT INDUSTRIES, INC. 2003 333911 0 1 |
7891. | ITT INDUSTRIES, INC. 2004 333911 0 1 |
7892. | ITT INDUSTRIES, INC. 2005 333911 0 1 |
9012. | MANOR CARE, INC. 1998 531120 0 1 |
9013. | MANOR CARE, INC. 2000 623110 1 1 |
|---------------------------------------------------|
9014. | MANOR CARE, INC. 2001 623110 0 1 |
9015. | MANOR CARE, INC. 2002 623110 0 1 |
9016. | MANOR CARE, INC. 2003 623110 0 1 |
9017. | MANOR CARE, INC. 2004 623110 0 1 |
9018. | MANOR CARE, INC. 2005 623110 0 1 |
|---------------------------------------------------|
9019. | MANOR CARE, INC. 2006 623110 0 1 |
+---------------------------------------------------+
*/
* Generate firm means
sort firm_n
foreach v of varlist net_kld_adj net_kld_adj_sq lroa lni emp debt rd ad naics_n {
by firm_n: egen m_`v'=mean(`v')
gen dm_`v'=`v'-m_`v'
}
* Check industry variable to see if demeaning worked
tab dm_naics_n
/* APPEARS TO WORK
dm_naics_n | Freq. Percent Cum.
------------+-----------------------------------
-91.875 | 1 0.01 0.01
-7.25 | 6 0.06 0.07
0 | 10,064 99.84 99.91
13.125 | 7 0.07 99.98
21.75 | 2 0.02 100.00
------------+-----------------------------------
Total | 10,080 100.00
ONLY TWO FIRMS CHANGE INDUSTRY IN THE PANEL, GIVEN ASSUMPTION THAT MISSING NAICS
IS EQUAL TO THE NEXT YEAR IN WHICH NAICS IS NOT MISSING
*/
drop ind ind2
* ROA and NI hybrid regressions
est clear
qui xtreg roa dm_net_kld_adj dm_net_kld_adj_sq dm_lroa dm_emp dm_debt dm_rd dm_ad dm_naics_n ///
m_net_kld_adj m_net_kld_adj_sq m_lroa m_emp m_debt m_rd m_ad m_naics_n i.year, re
est sto hyb_roa_ind
qui xtreg ni dm_net_kld_adj dm_net_kld_adj_sq dm_lni dm_emp dm_debt dm_rd dm_ad dm_naics_n ///
m_net_kld_adj m_net_kld_adj_sq m_lni m_emp m_debt m_rd m_ad m_naics_n i.year, re
est sto hyb_ni_ind
* ROA and NI hybrid regressions with clustered errors at firm level
qui xtreg roa dm_net_kld_adj dm_net_kld_adj_sq dm_lroa dm_emp dm_debt dm_rd dm_ad dm_naics_n ///
m_net_kld_adj m_net_kld_adj_sq m_lroa m_emp m_debt m_rd m_ad m_naics_n i.year, re cluster(firm_n)
est sto hybc_roa_ind
qui xtreg ni dm_net_kld_adj dm_net_kld_adj_sq dm_lni dm_emp dm_debt dm_rd dm_ad dm_naics_n ///
m_net_kld_adj m_net_kld_adj_sq m_lni m_emp m_debt m_rd m_ad m_naics_n i.year, re cluster(firm_n)
est sto hybc_ni_ind
estout hyb_roa hybc_roa hyb_roa_ind hybc_roa_ind hyb_ni hybc_ni hyb_ni_ind hybc_ni_ind, cells(b(star fmt(3)) z(par)) ///
stats(N N_g r2_a r2_o r2_b r2_w, fmt(%9.0g %9.0g %9.0g %9.4g) ///
labels("N" "Firms" "Adj. R^2" "R^2 Overall" "R^2 Between" "R^2 Within")) ///
legend collabels(none) ///
keep(dm_* m_* _cons) ///
order(dm_net_kld_adj dm_net_kld_adj_sq dm_lroa dm_lni dm_* m_net_kld_adj m_net_kld_adj_sq m_lroa m_lni m_* _cons) ///
starlevels(+ .1 * .05 ** .01 *** .001)
estout hyb_roa hybc_roa hyb_roa_ind hybc_roa_ind hyb_ni hybc_ni hyb_ni_ind hybc_ni_ind, cells(b(star fmt(3)) p(par)) ///
stats(N N_g r2_a r2_o r2_b r2_w, fmt(%9.0g %9.0g %9.0g %9.4g) ///
labels("N" "Firms" "Adj. R^2" "R^2 Overall" "R^2 Between" "R^2 Within")) ///
legend collabels(none) ///
keep(dm_* m_* _cons) ///
order(dm_net_kld_adj dm_net_kld_adj_sq dm_lroa dm_lni dm_* m_net_kld_adj m_net_kld_adj_sq m_lroa m_lni m_* _cons) ///
starlevels(+ .1 * .05 ** .01 *** .001)
outreg2 [hyb_roa hybc_roa hyb_roa_ind hybc_roa_ind hyb_ni hybc_ni hyb_ni_ind hybc_ni_ind] using "tables-and-figures/rep4-all-models-comparison-zstats", excel ///
stats(coef tstat) ///
keep(dm_* m_*) ///
sortvar(dm_net_kld_adj dm_net_kld_adj_sq dm_lroa dm_lni dm_* m_net_kld_adj m_net_kld_adj_sq m_lroa m_lni m_* _cons) ///
dec(2) fmt(f) ///
e(N_g r2_a r2_o r2_b r2_w) ///
replace
outreg2 [hyb_roa hybc_roa hyb_roa_ind hybc_roa_ind hyb_ni hybc_ni hyb_ni_ind hybc_ni_ind] using "tables-and-figures/rep4-all-models-comparison-pvalues", excel ///
stats(coef pval) ///
keep(dm_* m_*) ///
sortvar(dm_net_kld_adj dm_net_kld_adj_sq dm_lroa dm_lni dm_* m_net_kld_adj m_net_kld_adj_sq m_lroa m_lni m_* _cons) ///
dec(3) fmt(f) ///
e(N_g r2_a r2_o r2_b r2_w) ///
alpha(0.001,0.01,0.05,0.1) symbol(***,**,*,+) ///
replace
*/
***===================================================***
* QUASI-REPLICATION 5 *
* NEW DESIGN, SAME POPULATION, NEW SAMPLE *
***===================================================***
/* New sample: 1998 - 2015