forked from gastruc/osv5m
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
40 lines (30 loc) · 1.16 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import os
import argparse
from os.path import join
import PIL
import torch
from models.utils import load_model
def operate(transform, fp):
return transform(PIL.Image.open(fp))
@torch.no_grad()
def inference(model, x):
features = model.model.backbone({"img": x.to(model.device)})
x = model.model.mid(features)
x = model.model.head(x, None)
return torch.rad2deg(x["gps"]).squeeze(0).cpu().tolist()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", help="Path to the model")
parser.add_argument("--input_dir", help="Path to the input directory")
parser.add_argument("--output_file", help="Path to the output file")
args = parser.parse_args()
model, transform = load_model(args.model_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
model = model.eval()
file = open(args.output_file, "w")
for f in os.listdir(args.input_dir):
if not f.endswith(".jpg"):
continue
gps = inference(model, operate(transform, join(args.input_dir, f)).unsqueeze(0))
print(f"{f},{gps[0]},{gps[1]}", file=file)