-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLogistic-Regression-model-of-students-pass-rate.html
1406 lines (872 loc) · 41.9 KB
/
Logistic-Regression-model-of-students-pass-rate.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html class="theme-next gemini use-motion" lang="zh-Hans">
<head>
<!-- hexo-inject:begin --><!-- hexo-inject:end --><meta charset="UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta name="theme-color" content="#222">
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="google-site-verification" content="OaOptqIG3ZJOdDOGsT490ldkY_TIkqVEiLfTi7O4Lhc" />
<link href="/lib/fancybox/source/jquery.fancybox.css?v=2.1.5" rel="stylesheet" type="text/css" />
<link href="/lib/font-awesome/css/font-awesome.min.css?v=4.6.2" rel="stylesheet" type="text/css" />
<link href="/css/main.css?v=5.1.4" rel="stylesheet" type="text/css" />
<link rel="apple-touch-icon" sizes="180x180" href="/images/apple-touch-icon-next.png?v=5.1.4">
<link rel="icon" type="image/png" sizes="32x32" href="/images/favicon-32x32-next.png?v=5.1.4">
<link rel="icon" type="image/png" sizes="16x16" href="/images/favicon-16x16-next.png?v=5.1.4">
<link rel="mask-icon" href="/images/logo.svg?v=5.1.4" color="#222">
<meta name="keywords" content="Logistic," />
<meta name="description" content="引言目前APP端已经有学员的知识点得分,知识点得分反映了学生对知识点的掌握情况,但据此来推测学生最终的通过率还略有不足,仍然有许多因素影响学员的成绩。举个例子,有的学员是属于大赛型的选手,平常表现一般,但考试的时候就比较好,相反的,有的学员平时不错,但到真正考试的时候就发挥的不太好。据此,我重新收集数据,建立学员通过率模型。">
<meta name="keywords" content="Logistic">
<meta property="og:type" content="article">
<meta property="og:title" content="学员通过率的逻辑回归(Logistic Regression)模型">
<meta property="og:url" content="https://niro8.github.io/Logistic-Regression-model-of-students-pass-rate.html">
<meta property="og:site_name" content="Shuyue">
<meta property="og:description" content="引言目前APP端已经有学员的知识点得分,知识点得分反映了学生对知识点的掌握情况,但据此来推测学生最终的通过率还略有不足,仍然有许多因素影响学员的成绩。举个例子,有的学员是属于大赛型的选手,平常表现一般,但考试的时候就比较好,相反的,有的学员平时不错,但到真正考试的时候就发挥的不太好。据此,我重新收集数据,建立学员通过率模型。">
<meta property="og:locale" content="zh-Hans">
<meta property="og:image" content="https://niro8.github.io/images/logistic-auc.svg">
<meta property="og:updated_time" content="2018-12-12T05:36:28.692Z">
<meta name="twitter:card" content="summary">
<meta name="twitter:title" content="学员通过率的逻辑回归(Logistic Regression)模型">
<meta name="twitter:description" content="引言目前APP端已经有学员的知识点得分,知识点得分反映了学生对知识点的掌握情况,但据此来推测学生最终的通过率还略有不足,仍然有许多因素影响学员的成绩。举个例子,有的学员是属于大赛型的选手,平常表现一般,但考试的时候就比较好,相反的,有的学员平时不错,但到真正考试的时候就发挥的不太好。据此,我重新收集数据,建立学员通过率模型。">
<meta name="twitter:image" content="https://niro8.github.io/images/logistic-auc.svg">
<script type="text/javascript" id="hexo.configurations">
var NexT = window.NexT || {};
var CONFIG = {
root: '/',
scheme: 'Gemini',
version: '5.1.4',
sidebar: {"position":"left","display":"hide","offset":12,"b2t":false,"scrollpercent":true,"onmobile":false},
fancybox: true,
tabs: true,
motion: {"enable":true,"async":false,"transition":{"post_block":"fadeIn","post_header":"slideDownIn","post_body":"slideDownIn","coll_header":"slideLeftIn","sidebar":"slideUpIn"}},
duoshuo: {
userId: '0',
author: '博主'
},
algolia: {
applicationID: '',
apiKey: '',
indexName: '',
hits: {"per_page":10},
labels: {"input_placeholder":"Search for Posts","hits_empty":"We didn't find any results for the search: ${query}","hits_stats":"${hits} results found in ${time} ms"}
}
};
</script>
<link rel="canonical" href="https://niro8.github.io/Logistic-Regression-model-of-students-pass-rate.html"/>
<title>学员通过率的逻辑回归(Logistic Regression)模型 | Shuyue</title><!-- hexo-inject:begin --><!-- hexo-inject:end -->
</head>
<body itemscope itemtype="http://schema.org/WebPage" lang="zh-Hans">
<!-- hexo-inject:begin --><!-- hexo-inject:end --><div class="container sidebar-position-left page-post-detail">
<div class="headband"></div>
<header id="header" class="header" itemscope itemtype="http://schema.org/WPHeader">
<div class="header-inner"><div class="site-brand-wrapper">
<div class="site-meta ">
<div class="custom-logo-site-title">
<a href="/" class="brand" rel="start">
<span class="logo-line-before"><i></i></span>
<span class="site-title">Shuyue</span>
<span class="logo-line-after"><i></i></span>
</a>
</div>
<p class="site-subtitle">「书剑」</p>
</div>
<div class="site-nav-toggle">
<button>
<span class="btn-bar"></span>
<span class="btn-bar"></span>
<span class="btn-bar"></span>
</button>
</div>
</div>
<nav class="site-nav">
<ul id="menu" class="menu">
<li class="menu-item menu-item-home">
<a href="/" rel="section">
<i class="menu-item-icon fa fa-fw fa-home"></i> <br />
首页
</a>
</li>
<li class="menu-item menu-item-about">
<a href="/about/" rel="section">
<i class="menu-item-icon fa fa-fw fa-user"></i> <br />
关于
</a>
</li>
<li class="menu-item menu-item-tags">
<a href="/tags/" rel="section">
<i class="menu-item-icon fa fa-fw fa-tags"></i> <br />
标签
</a>
</li>
<li class="menu-item menu-item-categories">
<a href="/categories/" rel="section">
<i class="menu-item-icon fa fa-fw fa-th"></i> <br />
分类
</a>
</li>
<li class="menu-item menu-item-archives">
<a href="/archives/" rel="section">
<i class="menu-item-icon fa fa-fw fa-archive"></i> <br />
归档
</a>
</li>
<li class="menu-item menu-item-search">
<a href="javascript:;" class="popup-trigger">
<i class="menu-item-icon fa fa-search fa-fw"></i> <br />
搜索
</a>
</li>
</ul>
<div class="site-search">
<div class="popup search-popup local-search-popup">
<div class="local-search-header clearfix">
<span class="search-icon">
<i class="fa fa-search"></i>
</span>
<span class="popup-btn-close">
<i class="fa fa-times-circle"></i>
</span>
<div class="local-search-input-wrapper">
<input autocomplete="off"
placeholder="搜索..." spellcheck="false"
type="text" id="local-search-input">
</div>
</div>
<div id="local-search-result"></div>
</div>
</div>
</nav>
</div>
</header>
<main id="main" class="main">
<div class="main-inner">
<div class="content-wrap">
<div id="content" class="content">
<div id="posts" class="posts-expand">
<article class="post post-type-normal" itemscope itemtype="http://schema.org/Article">
<div class="post-block">
<link itemprop="mainEntityOfPage" href="https://niro8.github.io/Logistic-Regression-model-of-students-pass-rate.html">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="name" content="shuyue">
<meta itemprop="description" content="">
<meta itemprop="image" content="/images/taiji.jpg">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="Shuyue">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">学员通过率的逻辑回归(Logistic Regression)模型</h1>
<div class="post-meta">
<span class="post-time">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建于" itemprop="dateCreated datePublished" datetime="2018-06-13T19:12:03+08:00">
2018-06-13
</time>
</span>
<span class="post-comments-count">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-comment-o"></i>
</span>
<a href="/Logistic-Regression-model-of-students-pass-rate.html#comments" itemprop="discussionUrl">
<span class="post-comments-count disqus-comment-count"
data-disqus-identifier="Logistic-Regression-model-of-students-pass-rate.html" itemprop="commentCount"></span>
</a>
</span>
<div class="post-wordcount">
<span class="post-meta-item-icon">
<i class="fa fa-file-word-o"></i>
</span>
<span class="post-meta-item-text">字数统计:</span>
<span title="字数统计">
1,406
</span>
</div>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/hint.css/2.4.1/hint.min.css"><h2 id="引言"><a href="#引言" class="headerlink" title="引言"></a>引言</h2><p>目前APP端已经有学员的知识点得分,知识点得分反映了学生对知识点的掌握情况,但据此来推测学生最终的通过率还略有不足,仍然有许多因素影响学员的成绩。举个例子,有的学员是属于大赛型的选手,平常表现一般,但考试的时候就比较好,相反的,有的学员平时不错,但到真正考试的时候就发挥的不太好。据此,我重新收集数据,建立学员通过率模型。<br><a id="more"></a></p>
<h2 id="Logistic-Regression"><a href="#Logistic-Regression" class="headerlink" title="Logistic Regression"></a>Logistic Regression</h2><p>学员通过与否是一个二分变量,故选择逻辑回归(Logistic Regression)模型。逻辑回归虽然名字里有回归,但不是一个回归模型,是一个分类模型。</p>
<p>逻辑回归(英语:Logistic regression 或logit regression),即逻辑模型(英语:Logit model,也译作“评定模型”、“分类评定模型”)是离散选择法模型之一,属于多重变量分析范畴,是社会学、生物统计学、临床、数量心理学、计量经济学、市场营销等统计实证分析的常用方法。(摘自维基百科)</p>
<p>逻辑回归实际上是用sigmoid函数将线性回归进行了归一化,把输出值压缩到0-1之间,这个值代表的是发生的概率。这里不过多说明模型的原理。</p>
<h2 id="数据处理"><a href="#数据处理" class="headerlink" title="数据处理"></a>数据处理</h2><p>由于现有数据的限制,我选取了<strong>思想道德修养与法律基础</strong>这门科目的1804考期的数据,共18437个样本。</p>
<p>选取字段:学员ID,分数,直播出勤时长,重播出勤时长,出勤次数,观看重播次数,学生总时长,随堂考配置题数,随堂考完成题数,随堂考正确题数,作业配置题数,作业完成题数,作业正确题数,刷题完成题数,刷题正确题数,考试次数,通过次数,试卷总分,总得分。</p>
<p>其中,分数是指学员1804的考试成绩,百分制。删除其中的缺失值,共有9191个样本。</p>
<p>增加衍生变量</p>
<ul>
<li>随堂考完成率 = 随堂考完成题数/随堂考配置题数</li>
<li>随堂考正确率 = 随堂考正确题数/随堂考完成题数</li>
<li>作业完成率 = 作业完成题数/作业配置题数</li>
<li>作业正确率 = 作业正确题数/作业完成题数</li>
<li>刷题正确率 = 刷题正确题数/刷题完成题数</li>
</ul>
<p>增加分类变量</p>
<ul>
<li>最终通过:将百分制的分数变量,按分数小于60为0,大于等于60为1,变换成二分变量</li>
<li>模考通过:按试卷总分和总得分转换成百分制的模考成绩,按相同逻辑,转换成二分变量。</li>
</ul>
<p>处理时间单位</p>
<ul>
<li>直播时长h=直播出勤时长/60</li>
<li>重播时长h=重播出勤时长/60</li>
</ul>
<p>最后再次删除缺失值,共有8851个样本。</p>
<h2 id="数据变量选取"><a href="#数据变量选取" class="headerlink" title="数据变量选取"></a>数据变量选取</h2><p>经过数据处理,变量增多,如何选取变量是个问题。筛选特征变量方法很多,我选择了递归特征消除(Recursive Feature Elimination, RFE)方法。</p>
<p>递归特征消除 (RFE)通过递归减少考察的特征集规模来选择特征。 首先,预测模型在原始特征上训练,每项特征指定一个权重。之后,那些拥有最小绝对值权重的特征被踢出特征集。如此往复递归,直至剩余的特征数量达到所需的特征数量。</p>
<p>利用调用<code>sklearn</code>中的<code>RFE</code>方法,并结合经验,最后共选取了8个变量。变量如下:直播时长h,重播时长h,随堂考完成率,随堂考正确率,作业完成率,作业正确率,刷题正确率,模考通过。</p>
<h2 id="模型结果与评估"><a href="#模型结果与评估" class="headerlink" title="模型结果与评估"></a>模型结果与评估</h2><p>选取70%作为训练集,30%作为测试集。利用<code>GridSearchCV()</code>选取模型合适的超参。</p>
<p>模型的变量系数如下:</p>
<table>
<thead>
<tr>
<th>intercept</th>
<th>直播时长h</th>
<th>重播时长h</th>
<th>随堂考完成率</th>
<th>随堂考正确率</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.68592042</td>
<td>0.01512291</td>
<td>0.01101413</td>
<td>-0.48080453</td>
<td>2.03324583</td>
</tr>
</tbody>
</table>
<table>
<thead>
<tr>
<th>作业完成率</th>
<th>作业正确率</th>
<th>刷题正确率</th>
<th>模考通过</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.86103971</td>
<td>3.58450959</td>
<td>3.0435501</td>
<td>0.13064</td>
</tr>
</tbody>
</table>
<p>模型在训练集上的评价指标如下:</p>
<table>
<thead>
<tr>
<th>准确率score</th>
<th>精确率precision</th>
<th>召回率recall</th>
<th>综合评价指标f1-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8447</td>
<td>0.8538</td>
<td>0.9835</td>
<td>0.9140</td>
</tr>
</tbody>
</table>
<p>以0.5为阀值,模型在测试集上的混淆矩阵如下:</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>真实情况</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>模型预测</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>41</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>2189</td>
</tr>
</tbody>
</table>
<p>测试集上的评价指标为:</p>
<table>
<thead>
<tr>
<th></th>
<th>precision</th>
<th>recall</th>
<th>f1-score</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.55</td>
<td>0.09</td>
<td>0.16</td>
<td>434</td>
</tr>
<tr>
<td>1</td>
<td>0.85</td>
<td>0.99</td>
<td>0.91</td>
<td>2222</td>
</tr>
<tr>
<td>avg</td>
<td>0.80</td>
<td>0.84</td>
<td>0.79</td>
<td>2656</td>
</tr>
</tbody>
</table>
<p>模型在测试集上的准确度为(41+2189)/2656=0.8396。模型的准确率还是非常高的(混淆矩阵对角线代表预测正确的数量),接近84%。可是单看混淆矩阵还不够,因为当数据不平衡时,计算的准确率也同样会高,并不代表模型就会好,所以我们进一步的借助于ROC曲线下的面积来衡量模型时候合理。</p>
<p><img src="/images/logistic-auc.svg" alt="image" title="ROC Curve"></p>
<p>AUC值为0.76,说明模型预测效果不错。</p>
<h2 id="后续改进"><a href="#后续改进" class="headerlink" title="后续改进"></a>后续改进</h2><p>虽然模型的准确性达到84%,但是仍然有不少改进空间。</p>
<ol>
<li>数据完善:本次收集数据中,仍有不少缺失值和缺失字段,有不少字段没能收集到,例如学生知识点得分情况,性别,基础学历,是否拥有密训和模考五套卷等等。</li>
<li>模型改进:后续得到现实数据再次验证,进行模型参数的修改,或者寻找其他更为适合的模型进行替代。</li>
</ol>
</div>
<div>
<div>
<div style="text-align:center;color: #ccc;font-size:14px;">-------------本文结束<i class="fa fa-paw"></i>感谢您的阅读-------------</div>
</div>
</div>
<div>
<ul class="post-copyright">
<li class="post-copyright-author">
<strong>本文作者:</strong>
shuyue
</li>
<li class="post-copyright-link">
<strong>本文链接:</strong>
<a href="https://niro8.github.io/Logistic-Regression-model-of-students-pass-rate.html" title="学员通过率的逻辑回归(Logistic Regression)模型">https://niro8.github.io/Logistic-Regression-model-of-students-pass-rate.html</a>
</li>
<li class="post-copyright-license">
<strong>版权声明: </strong>
本博客所有文章除特别声明外,均采用 <a href="https://creativecommons.org/licenses/by-nc-sa/3.0/" rel="external nofollow" target="_blank">CC BY-NC-SA 3.0</a> 许可协议。转载请注明出处!
</li>
</ul>
</div>
<footer class="post-footer">
<div class="post-tags">
<a href="/tags/Logistic/" rel="tag"><i class="fa fa-tag"></i> Logistic</a>
</div>
<div class="post-nav">
<div class="post-nav-next post-nav-item">
<a href="/datetime-process-in-pandas.html" rel="next" title="pandas中的时间处理">
<i class="fa fa-chevron-left"></i> pandas中的时间处理
</a>
</div>
<span class="post-nav-divider"></span>
<div class="post-nav-prev post-nav-item">
<a href="/how-to-get-steamcard-using-ASF-in-cloud-server.html" rel="prev" title="利用Vultr进行云挂卡">
利用Vultr进行云挂卡 <i class="fa fa-chevron-right"></i>
</a>
</div>
</div>
</footer>
</div>
</article>
<div class="post-spread">
</div>
</div>
</div>
<div class="comments" id="comments">
<div id="disqus_thread">
<noscript>
Please enable JavaScript to view the
<a href="https://disqus.com/?ref_noscript">comments powered by Disqus.</a>
</noscript>
</div>
</div>
</div>
<div class="sidebar-toggle">
<div class="sidebar-toggle-line-wrap">
<span class="sidebar-toggle-line sidebar-toggle-line-first"></span>
<span class="sidebar-toggle-line sidebar-toggle-line-middle"></span>
<span class="sidebar-toggle-line sidebar-toggle-line-last"></span>
</div>
</div>
<aside id="sidebar" class="sidebar">
<div class="sidebar-inner">
<ul class="sidebar-nav motion-element">
<li class="sidebar-nav-toc sidebar-nav-active" data-target="post-toc-wrap">
文章目录
</li>
<li class="sidebar-nav-overview" data-target="site-overview-wrap">
站点概览
</li>
</ul>
<section class="site-overview-wrap sidebar-panel">
<div class="site-overview">
<div class="site-author motion-element" itemprop="author" itemscope itemtype="http://schema.org/Person">
<img class="site-author-image" itemprop="image"
src="/images/taiji.jpg"
alt="shuyue" />
<p class="site-author-name" itemprop="name">shuyue</p>
<p class="site-description motion-element" itemprop="description"></p>
</div>
<nav class="site-state motion-element">
<div class="site-state-item site-state-posts">
<a href="/archives/">
<span class="site-state-item-count">23</span>
<span class="site-state-item-name">日志</span>
</a>
</div>
<div class="site-state-item site-state-tags">
<a href="/tags/index.html">
<span class="site-state-item-count">37</span>
<span class="site-state-item-name">标签</span>
</a>
</div>
</nav>
<div class="links-of-author motion-element">
<span class="links-of-author-item">
<a href="https://github.com/niro8" target="_blank" title="GitHub">
<i class="fa fa-fw fa-github"></i>GitHub</a>
</span>
<span class="links-of-author-item">
<a href="mailto:[email protected]" target="_blank" title="E-Mail">
<i class="fa fa-fw fa-envelope"></i>E-Mail</a>
</span>
</div>
<div class="cc-license motion-element" itemprop="license">
<a href="https://creativecommons.org/licenses/by-nc-sa/4.0/" class="cc-opacity" target="_blank">
<img src="/images/cc-by-nc-sa.svg" alt="Creative Commons" />
</a>
</div>
</div>
</section>
<!--noindex-->
<section class="post-toc-wrap motion-element sidebar-panel sidebar-panel-active">
<div class="post-toc">
<div class="post-toc-content"><ol class="nav"><li class="nav-item nav-level-2"><a class="nav-link" href="#引言"><span class="nav-number">1.</span> <span class="nav-text">引言</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#Logistic-Regression"><span class="nav-number">2.</span> <span class="nav-text">Logistic Regression</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#数据处理"><span class="nav-number">3.</span> <span class="nav-text">数据处理</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#数据变量选取"><span class="nav-number">4.</span> <span class="nav-text">数据变量选取</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#模型结果与评估"><span class="nav-number">5.</span> <span class="nav-text">模型结果与评估</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#后续改进"><span class="nav-number">6.</span> <span class="nav-text">后续改进</span></a></li></ol></div>
</div>
</section>
<!--/noindex-->
</div>
</aside>
</div>
</main>
<footer id="footer" class="footer">
<div class="footer-inner">
<script async src="https://busuanzi.ibruce.info/busuanzi/2.3/busuanzi.pure.mini.js"></script>
<div class="copyright">© <span itemprop="copyrightYear">2020</span>
<span class="with-love">
<i class="fa fa-heart"></i>
</span>
<span class="author" itemprop="copyrightHolder">shuyue</span>
<span class="post-meta-divider">|</span>
<div class="powered-by">
</div>
<span>Hosted by <a href="https://pages.github.com" style="font-weight: bold" rel="external nofollow">Github Pages</a></span>
</div>
<div class="powered-by">
<i class="fa fa-user-md"></i><span id="busuanzi_container_site_uv">
本站访客数:<span id="busuanzi_value_site_uv"></span>
</span>
</div>
<span class="post-meta-divider">|</span>
<div class="powered-by">
<i class="fa fa-eye"></i><span id="busuanzi_container_site_pv">
本站访问量:<span id="busuanzi_value_site_pv"></span>
</span>
</div>
</div>
</footer>
<div class="back-to-top">
<i class="fa fa-arrow-up"></i>
<span id="scrollpercent"><span>0</span>%</span>
</div>
</div>
<script type="text/javascript">
if (Object.prototype.toString.call(window.Promise) !== '[object Function]') {
window.Promise = null;
}
</script>
<script type="text/javascript" src="/lib/jquery/index.js?v=2.1.3"></script>
<script type="text/javascript" src="/lib/fastclick/lib/fastclick.min.js?v=1.0.6"></script>
<script type="text/javascript" src="/lib/jquery_lazyload/jquery.lazyload.js?v=1.9.7"></script>
<script type="text/javascript" src="/lib/velocity/velocity.min.js?v=1.2.1"></script>
<script type="text/javascript" src="/lib/velocity/velocity.ui.min.js?v=1.2.1"></script>
<script type="text/javascript" src="/lib/fancybox/source/jquery.fancybox.pack.js?v=2.1.5"></script>
<script type="text/javascript" src="/js/src/utils.js?v=5.1.4"></script>
<script type="text/javascript" src="/js/src/motion.js?v=5.1.4"></script>
<script type="text/javascript" src="/js/src/affix.js?v=5.1.4"></script>
<script type="text/javascript" src="/js/src/schemes/pisces.js?v=5.1.4"></script>
<script type="text/javascript" src="/js/src/scrollspy.js?v=5.1.4"></script>
<script type="text/javascript" src="/js/src/post-details.js?v=5.1.4"></script>
<script type="text/javascript" src="/js/src/bootstrap.js?v=5.1.4"></script>
<script id="dsq-count-scr" src="https://shuyue.disqus.com/count.js" async></script>
<script type="text/javascript">
var disqus_config = function () {
this.page.url = 'https://niro8.github.io/Logistic-Regression-model-of-students-pass-rate.html';
this.page.identifier = 'Logistic-Regression-model-of-students-pass-rate.html';
this.page.title = '学员通过率的逻辑回归(Logistic Regression)模型';
};
var d = document, s = d.createElement('script');
s.src = 'https://shuyue.disqus.com/embed.js';
s.setAttribute('data-timestamp', '' + +new Date());
(d.head || d.body).appendChild(s);
</script>