-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPJ_healpix.c
675 lines (654 loc) · 20.2 KB
/
PJ_healpix.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
/******************************************************************************
* $Id: PJ_healpix.c 1504 2011-10-18 14:58:57Z landcare $
*
* Project: PROJ.4
* Purpose: Implementation of the healpix projection.
* Definition: http://code.scenzgrid.org/index.php/p/scenzgrid-py/source/tree/master/docs/scenzgrid.pdf
* Author: Alex Raichev & Michael Speth , [email protected]
*
******************************************************************************
* Copyright (c) 2001, Thomas Flemming, [email protected]
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*****************************************************************************/
#define PROJ_PARMS__ \
int npole;\
int spole;
#define PJ_LIB__
# include <projects.h>
PROJ_HEAD(healpix, "HEALPix") "\n\tSph., Ellps.";
PROJ_HEAD(rhealpix, "rHEALPix") "\n\tSph., Ellps.\n\tnpole= spole=";
# include <stdio.h>
# define R1 {{ 0,-1},{ 1, 0}} /** Matrix for anticlockwise rotation by pi/2 **/
# define R2 {{-1, 0},{ 0,-1}} /** Matrix for anticlockwise rotation by pi (R1 X R1) X = dot product **/
# define R3 {{ 0, 1},{-1, 0}} /** Matrix for anticlockwise rotation by 3*pi/2 (R2 X R1) **/
# define IDENT {{1,0},{0,1}}
/**
* 0 - Identity matrix<br>
* 1 - Counter-clockwise rotation by PI/2<br>
* 2 - Counter-clockwise rotation by PI<br>
* 3 - Counter-clockwise rotation by 3*PI/2<br>
* 4 - Counter-clockwise rotation by 3*PI/2<br>
* 5 - Counter-clockwise rotation by PI<br>
* 6 - Counter-clockwise rotation by PI/2<br>
**/
# define ROT { IDENT, R1, R2, R3, R3, R2, R1}
# define RFACTOR 3 /** Used for returning the rotation matrix **/
/** Used for calculating if a point is within the HEALPix projection for sphere. **/
# define EPS 1e-12
typedef struct {
int cn; // the number 0 -> 4 indicating the position of the polar cap.
double x,y; // the coordinates of the pole points (point of most extreme latitude on the polar caps).
enum Region { north, south, equatorial } region;
} CapMap;
typedef struct {
double x,y;
} Point;
double rot[7][2][2] = ROT;
/**
NOTES: Alex Raichev implemented the math in python and this is a port of his work.
The healpix projection is a Lambert cylindrical equal-area projection for
equaltorial latitudes and an interrupted Colignon projection for polar
latitudes.
**/
/**
* Returns the sign of the double.
* @param v the parameter whose sign is returned.
* @return 1 for positive number, -1 for negative, and 0 for zero.
**/
double sign (double v) {
return v > 0 ? 1 : (v < 0 ? -1 : 0);
}
/**
* Scales the number by a factor.
* @param num the number to be scaled.
* @param factor the factor to scale the number by.
* @param isInverse 1 for scaling the number by 1 / factor and 0 for scaling by the factor.
* @return the scaled number.
**/
double scale_number(double num, double factor, int isInverse){
if(isInverse == 1){
return num * 1.0/factor;
}
return num * factor;
}
/**
* Scales all the items of the array by a factor.
* @param xy
**/
void scale_array(XY *array, double k, int inverse){
double c = 0;
if (inverse == 1) {
c = 1.0/k;
}else{
c = k;
}
array->x *= c;
array->y *= c;
}
/**
* Given an angle return its equivalent angle.
* @param x the angle to convert
* @return the equivalent angle such that -PI <= the angle returend <= PI
**/
double standardize_lon(double x){
if(x < -1*PI || x >= PI){
x = x - 2*PI*floor(x/(2*PI));
if(x >= PI){
x = x - 2*PI;
}
}
return x;
}
/**
* Given an angle, return its unit-circle equivalent angle.
* @param x the angel to convert.
* @return the equivalent angle such that -PI/2 <= the angle returned <= PI/2.
**/
double standardize_lat(double x){
if( x < -PI/2.0 || x > PI/2){
x = x-2.0*PI*floor(x/(2.0*PI));
if(x > PI/2.0 && x <= 3.0*PI/2){
x = PI - x;
}else{
x = x - 2*PI;
}
}
return x;
}
/**
* Calculates if the point lies on or within the polygon.
* Very good explination of how this works: http://paulbourke.net/geometry/insidepoly/
* @param nvert the number of vertices in the polygon.
* @param vert the x,y-coordinates of the polygon's vertices
* @param testx the x-coordinate of the test point.
* @param testy the y-coordinate of the test point.
* @return 1 if on or within the bounds of the polygon, and 0 otherwise.
**/
static
int pnpoly(int nvert, double vert[][2], double testx, double testy){
int i,j,c = 0;
int counter = 0;
double xinters;
Point p1,p2;
// check for boundrary cases
for(i = 0; i < nvert; i++){
if(testx == vert[i][0] && testy == vert[i][1]){
return 1;
}
}
// initialize p1
p1.x = vert[0][0];
p1.y = vert[0][1];
for(i = 1; i < nvert; i++){
p2.x = vert[i % nvert][0];
p2.y = vert[i % nvert][1];
if(testy > MIN(p1.y,p2.y)){
if (testy <= MAX(p1.y,p2.y)) {
if (testx <= MAX(p1.x,p2.x)) {
if (p1.y != p2.y) {
xinters = (testy-p1.y)*(p2.x-p1.x)/(p2.y-p1.y)+p1.x;
if (p1.x == p2.x || testx <= xinters){
counter++;
}
}
}
}
}
p1 = p2;
}
if(counter % 2 == 0){
return 0;
}else{
return 1;
}
return c;
}
/**
* Calculates if the coordinates are within the image of projection.
* @param x the x-coordinate to check.
* @param y the y-coordinate to check.
* @param proj 0 for healpix and 1 for rhealpix.
* @param npole the positions of the polar squares, only used for rhealpix.
* @param spole the positions of the polar squares, only used for rhealpix.
* @return 1 if the coordinate is within the projection and 0 otherwise.
**/
int in_image(double x, double y, int proj, int npole, int spole){
if(proj == 0){
double healpixVertsJit[][2] = {
{-1.0*PI-EPS ,PI/4.0},
{-3.0*PI/4.0 ,PI/2.0+EPS},
{-1.0*PI/2.0 ,PI/4.0+EPS},
{-1.0*PI/4.0 ,PI/2.0+EPS},
{0.0 ,PI/4.0+EPS},
{PI/4.0 ,PI/2.0+EPS},
{PI/2.0 ,PI/4.0+EPS},
{3.0*PI/4.0 ,PI/2.0+EPS},
{PI+EPS ,PI/4.0},
{PI+EPS ,-1.0*PI/4.0},
{3.0*PI/4.0 ,-1.0*PI/2.0-EPS},
{PI/2.0 ,-1.0*PI/4.0-EPS},
{PI/4.0 ,-1.0*PI/2.0-EPS},
{0.0 ,-1.0*PI/4.0-EPS},
{-1.0*PI/4.0 ,-1.0*PI/2.0-EPS},
{-1.0*PI/2.0 ,-1.0*PI/4.0-EPS},
{-3.0*PI/4.0 ,-1.0*PI/2.0-EPS},
{-1.0*PI-EPS ,-1.0*PI/4.0}};
return pnpoly((int)sizeof(healpixVertsJit)/sizeof(healpixVertsJit[0]),
healpixVertsJit,x,y);
}else{
// Used for calculating if a point is within the rHEALPix projection for sphere.
double rhealpixVertsJit[][2] = {
{-1.0*PI-EPS ,PI/4.0+EPS},
{-1.0*PI + npole*PI/2.0-EPS ,PI/4.0+EPS},
{-1.0*PI + npole*PI/2.0-EPS ,3*PI/4.0+EPS},
{-1.0*PI + (npole + 1.0)*PI/2.0+EPS ,3*PI/4.0+EPS},
{-1.0*PI + (npole + 1.0)*PI/2.0+EPS ,PI/4.0+EPS},
{PI+EPS ,PI/4.0+EPS},
{PI+EPS ,-1.0*PI/4.0-EPS},
{-1.0*PI + (spole + 1.0)*PI/2.0+EPS ,-1.0*PI/4.0-EPS},
{-1.0*PI + (spole + 1.0)*PI/2.0+EPS ,-3.0*PI/4.0-EPS},
{-1.0*PI + spole*PI/2.0-EPS ,-3.0*PI/4.0-EPS},
{-1.0*PI + spole*PI/2.0-EPS ,-1.0*PI/4.0-EPS},
{-1.0*PI-EPS ,-1.0*PI/4.0-EPS}};
return pnpoly((int)sizeof(rhealpixVertsJit)/sizeof(rhealpixVertsJit[0]),
rhealpixVertsJit,x,y);
}
}
/**
* Returns an authalic latitude of the point given a point of geographic
* latitude phi on an ellipse of eccentricity e.
* pj_authlat is the inverse of the alex's auth_lat.
* @param phi
* @param e
* @param inverse 1 for inverse or 0 otherwise.
* @return the authalic latitude of the point.
**/
double auth_lat(double phi, double e, int inverse){
if(inverse == 0){
double q_numerator = ((1.0 - pow(e,2.0)) * sin(phi));
double q_demonitor = (1.0 - (pow(e*sin(phi),2.0)));
double q_subtractor = - (1.0 - pow(e,2.0)) / (2.0*e) * log((1.0 - e*sin(phi)) / (1.0+e*sin(phi)));
double q = ((1.0 - pow(e,2.0)) * sin(phi)) / (1.0 - (pow(e*sin(phi),2.0))) -
(1.0 - pow(e,2.0)) / (2.0*e) * log((1.0 - e*sin(phi)) / (1.0+e*sin(phi)));
double qp = 1.0 - (1.0-pow(e,2.0)) / (2.0*e)*log((1.0 - e) / (1.0 + e));
double ratio = q/qp;
// Rounding errors
if( fabsl(ratio) > 1){
ratio = sign(ratio);
}
return asin(ratio);
}
return phi + (pow(e,2) / 3.0 + 31*pow(e,4) / 180.0 + 517.0*pow(e,6)/5040.0) * sin(2.0*phi)
+ (23.0*pow(e,4)/360.0 + 251.0*pow(e,6)/3780.0)*sin(4.0*phi)
+ 761.0*pow(e,6)/45360.0 * sin(6.0*phi);
}
/**
* Compute the forward signature functions of the HEALPix
* projection of a sphere with radius `R` and central meridian `lon0`.
**/
XY healpix_sphere(LP lp, PJ *P){
double lam = standardize_lon(lp.lam);
double phi = standardize_lat(lp.phi);
double phi0 = aasin(P->ctx, 2.0/3.0);
XY xy;
// equatorial region
if( fabsl(phi) <= phi0) {
xy.x = lam;
xy.y = 3.0*PI/8.0*sin(phi);
} else {
double lamc;
double sigma = sqrt(3.0 * (1 - fabsl(sin(phi))));
double cn = floor(2 * lam / PI + 2);
if (cn >= 4) {
cn = 3;
}
lamc = -3*PI/4 + (PI/2)*cn;
xy.x = lamc + (lam - lamc) * sigma;
xy.y = sign(phi)*PI/4 * (2 - sigma);
}
xy.x = scale_number(xy.x,P->a,0);
xy.y = scale_number(xy.y,P->a,0);
return xy;
}
/**
* Compute the inverse signature functions of the HEALPix
* projection of a sphere with radius `R` and central meridian `lon0`.
**/
LP healpix_sphere_inv(XY xy, PJ *P){
double x,y,y0;
double cn;
double xc;
double tau;
LP lp;
// Scale down to radius 1 sphere
x = scale_number(xy.x,P->a,1);
y = scale_number(xy.y,P->a,1);
y0 = PI/4.0;
// Equatorial region.
if(fabsl(y) <= y0){
lp.lam = x;
lp.phi = asin(8.0*y/(3.0*PI));
} else if(fabsl(y) < PI/2.0){
cn = floor(2.0 * x/PI + 2.0);
if(cn >= 4){
cn = 3;
}
xc = -3.0 * PI/4.0 + (PI/2.0)*cn;
tau = 2.0 - 4.0*fabsl(y)/PI;
lp.lam = xc + (x - xc)/tau;
lp.phi = sign(y)*asin(1.0 - pow(tau , 2.0)/3.0);
} else {
lp.lam = -1.0*PI - P->lam0;
lp.phi = sign(y)*PI/2.0;
}
return (lp);
}
/**
* Adds one vector to another of length 2.
* @param a the first term.
* @param b the second term.
* @param ret holds the summation of the vectors.
**/
static void vector_add(double a[], double b[],double * ret){
int i;
for(i = 0; i < 2; i++){
ret[i] = a[i] + b[i];
}
}
/**
* Subs tracts one vector from another of length 2.
* @param a the minuend.
* @param b the subtrahend.
* @param ret the difference of the vectors where the difference is the result of a minus b.
**/
static void vector_sub(double a[], double b[], double * ret){
int i;
for(i = 0; i < 2; i++){
ret[i] = a[i] - b[i];
}
}
/**
* Calculates the dot product of the arrays.
* @param a the array that will be used to calculate the dot product.
* Must contain the same number of columns as b's rows. Must be a matrix with equal lengthed rows and columns.
* @param b the array that will be used to calculate the dot product; must contain the same number of rows as a's columns.
* @param length the size of the b array. Note, a's column size must equal b's length.
* @param ret the dot product of a and b.
**/
static void dot_product(double a[2][2], double b[], double * ret){
int i,j;
int length = 2;
for(i = 0; i < length; i++){
ret[i] = 0;
for(j = 0; j < length; j++){
ret[i] += a[i][j]*b[i];
}
}
}
/**
* Returns the polar cap number, pole point coordinates, and region
* for x,y in the HEALPix projection of the sphere of radius R.
* @param x coordinate in the HEALPix or rHEALPix.
* @param y coordinate in the HEALPix or rHEALPix.
* @param npole integer between 0 and 3 indicating the position of the north pole.
* @param spole integer between 0 and 3 indicating teh position of the south pole.
* @param inverse 1 computes the rHEALPix projection and 0 computes forward.
* @return a structure containing the cap poles.
**/
static CapMap get_cap(double x, double y, double R, int npole, int spole, int inverse){
CapMap capmap;
double c;
capmap.x = x;
capmap.y = y;
if(inverse == 0){
if(y > R*PI/4.0){
capmap.region = north;
c = R*PI/2.0;
}else if(y < -1*R*PI/4.0){
capmap.region = south;
c = -1*R*PI/2.0;
}else{
capmap.region = equatorial;
capmap.cn = 0;
return capmap;
}
// polar region
if(x < -1*R*PI/2.0){
capmap.cn = 0;
capmap.x = (-1*R*3.0*PI/4.0);
capmap.y = c;
}else if(x >= -1*R*PI/2.0 && x < 0){
capmap.cn = 1;
capmap.x = -1*R*PI/4.0;
capmap.y = c;
}else if(x >= 0 && x < R*PI/2.0){
capmap.cn = 2;
capmap.x = R*PI/4.0;
capmap.y = c;
}else{
capmap.cn = 3;
capmap.x = R*3.0*PI/4.0;
capmap.y = c;
}
return capmap;
}else{
double c;
double eps;
if(y > R*PI/4.0){
capmap.region = north;
capmap.x = -1*R*3.0*PI/4.0 + npole*R*PI/2.0;
capmap.y = R*PI/2.0;
x = x - npole*R*PI/2.0;
}else if(y < -1*R*PI/4.0){
capmap.region = south;
capmap.x = -1*R*3.0*PI/4.0 + spole*R*PI/2;
capmap.y = -1*R*PI/2.0;
x = x - spole*R*PI/2.0;
}else{
capmap.region = equatorial;
capmap.cn = 0;
return capmap;
}
// Polar Region, find # of HEALPix polar cap number that
// x,y moves to when rHEALPix polar square is disassembled.
eps = R*1e-15; // Kludge. Fuzz to avoid some rounding errors.
if(capmap.region == north){
if(y >= -1*x - R*PI/4.0 - eps && y < x + R*5.0*PI/4.0 - eps){
capmap.cn = 1;
}else if(y > -1*x -1*R*PI/4.0 + eps && y >= x + R*5.0*PI/4.0 - eps){
capmap.cn = 2;
}else if(y <= -1*x -1*R*PI/4.0 + eps && y > x + R*5.0*PI/4.0 + eps){
capmap.cn = 3;
}else{
capmap.cn = 0;
}
}else if(capmap.region == south){
if(y <= x + R*PI/4.0 + eps && y > -1*x - R*5.0*PI/4 + eps){
capmap.cn = 1;
}else if(y < x + R*PI/4.0 - eps && y <= -1*x - R*5.0*PI/4.0 + eps){
capmap.cn = 2;
}else if(y >= x + R*PI/4.0 - eps && y < -1*x - R*5.0*PI/4.0 - eps){
capmap.cn = 3;
}else {
capmap.cn = 0;
}
}
return capmap;
}
}
/**
* Rearrange point x,y in the HEALPix projection by
* combining the polar caps into two polar squares.
* Put the north polar square in position npole and
* the south polar square in position spole.
* @param x coordinate in the HEALPix projection of the sphere.
* @param y coordinate in the HEALPix projection of the sphere.
* @param R - the Sphere's radius.
* @param npole integer between 0 and 3 indicating the position
* of the north polar square.
* @param spole integer between 0 and 3 indicating the position
* of the south polar square.
* @param inverse 1 to uncombine the polar caps and 0 to combine.
**/
static XY combine_caps(double x, double y, double R, int npole, int spole, int inverse){
XY xy;
double v[2];
double a[2];
double vector[2];
double tmpVect[2];
double v_min_c[2];
double ret_dot[2];
double ret_add[2];
CapMap capmap = get_cap(x,y,R,npole,spole,inverse);
if(capmap.region == equatorial){
xy.x = capmap.x;
xy.y = capmap.y;
return xy;
}
v[0] = x;
v[1] = y;
if(inverse == 0){
// compute forward function by rotating, translating, and shifting xy.
int pole = 0;
double (*tmpRot)[2];
double c[2] = {capmap.x,capmap.y};
if(capmap.region == north){
pole = npole;
tmpRot = rot[capmap.cn];
a[0] = R*-3.0*PI/4.0;
a[1] = PI/2.0;
}else {
pole = spole;
tmpRot = rot[capmap.cn+RFACTOR];
a[0] = R*-3.0*PI/4.0;
a[1] = PI/-2.0;
}
tmpVect[0] = R*pole*PI/2.0;
tmpVect[1] = 0;
// translate, rotate, then shift
vector_sub(v,c,v_min_c);
dot_product(tmpRot,v_min_c,ret_dot);
vector_add(a,tmpVect,ret_add);
vector_add(ret_dot, ret_add, vector);
xy.x = vector[0];
xy.y = vector[1];
return xy;
}else{
// compute inverse function.
// get the current position of rHEALPix polar squares
int pole = floor( (capmap.x + R*3.0*PI/4.0) / (R*PI/2.0));
double tmpVect[2] = {R*pole*PI/2.0,0};
double coord[2] = {x,y};
double (*tmpRot)[2];
int cn;
// translate polar square to position 0
vector_sub(coord,tmpVect,v);
// disassemble
if(capmap.region == north){
cn = capmap.cn + RFACTOR;
a[0] = R*-3*PI/4.0;
a[1] = PI/2.0;
}else{
cn = capmap.cn;
a[0] = R*-3*PI/4.0;
a[1] = PI/-2.0;
}
tmpVect[0] = R*capmap.cn*PI/2.0;
tmpVect[1] = 0;
// Math: Rotate Matrix * v-a + a + R*CN*{PI/2,0}
vector_sub(v,a,v_min_c);
dot_product(rot[cn],v_min_c,ret_dot);
vector_add(ret_dot,a,ret_add);
vector_add(ret_add,tmpVect,vector);
xy.x = vector[0];
xy.y = vector[1];
return xy;
}
}
FORWARD(e_healpix_forward); /* ellipsoidal */
//int r1[][2] = R1;
double bet = auth_lat(lp.phi, P->e, 0);
lp.phi = bet;
P->a = P->ra;
return healpix_sphere(lp,P);
}
FORWARD(s_healpix_forward); /* spheroid */
return healpix_sphere(lp, P);
}
INVERSE(e_healpix_inverse); /* ellipsoidal */
double bet, x, y;
P->a = P->ra;
// Scale down to radius 1 sphere before checking x,y
x = scale_number(xy.x,P->a,1);
y = scale_number(xy.y,P->a,1);
// check if the point is in the image
if(in_image(x,y,0,0,0) == 0){
lp.lam = HUGE_VAL;
lp.phi = HUGE_VAL;
pj_ctx_set_errno( P->ctx, -15);
return lp;
}
lp = healpix_sphere_inv(xy, P);
lp.phi = auth_lat(lp.phi,P->e,1);
return (lp);
}
INVERSE(s_healpix_inverse); /* spheroid */
double x = xy.x;
double y = xy.y;
// Scale down to radius 1 sphere before checking x,y
x = scale_number(x,P->a,1);
y = scale_number(y,P->a,1);
// check if the point is in the image
if(in_image(x,y,0,0,0) == 0){
lp.lam = HUGE_VAL;
lp.phi = HUGE_VAL;
pj_ctx_set_errno( P->ctx, -15);
return lp;
}
return healpix_sphere_inv(xy, P);
}
FORWARD(e_rhealpix_forward); /* ellipsoidal */
double bet = auth_lat(lp.phi,P->e,0);
lp.phi = bet;
xy = healpix_sphere(lp,P);
return combine_caps(xy.x, xy.y, P->a, P->npole, P->spole, 0);
}
FORWARD(s_rhealpix_forward); /* spheroid */
// Compute forward function.
xy = healpix_sphere(lp,P);
return combine_caps(xy.x, xy.y, P->a, P->npole, P->spole, 0);
}
INVERSE(e_rhealpix_inverse); /* ellipsoidal */
double x = scale_number(xy.x,P->a,1);
double y = scale_number(xy.y,P->a,1);
// check for out of bounds coordinates
if(in_image(x,y,1,P->npole,P->spole) == 0){
lp.lam = HUGE_VAL;
lp.phi = HUGE_VAL;
pj_ctx_set_errno( P->ctx, -15);
return lp;
}
xy = combine_caps(xy.x,xy.y,P->a,P->npole,P->spole,1);
lp = healpix_sphere_inv(xy, P);
lp.phi = auth_lat(lp.phi,P->e,1);
return lp;
}
INVERSE(s_rhealpix_inverse); /* spheroid */
double x = scale_number(xy.x,P->a,1);
double y = scale_number(xy.y,P->a,1);
// check for out of bounds coordinates
if(in_image(x,y,1,P->npole,P->spole) == 0){
lp.lam = HUGE_VAL;
lp.phi = HUGE_VAL;
pj_ctx_set_errno( P->ctx, -15);
return lp;
}
xy = combine_caps(xy.x,xy.y,P->a,P->npole,P->spole,1);
return healpix_sphere_inv(xy, P);
}
FREEUP;
if (P) {
pj_dalloc(P);
}
}
ENTRY0(healpix)
if(P->es){
P->inv = e_healpix_inverse; P->fwd = e_healpix_forward;
}else{
P->inv = s_healpix_inverse; P->fwd = s_healpix_forward;
}
ENDENTRY(P)
ENTRY0(rhealpix)
P->npole = pj_param(P->ctx, P->params,"inpole").i;
P->spole = pj_param(P->ctx,P->params,"ispole").i;
// check for valid npole and spole inputs
if(P->npole < 0 || P->npole > 3){
E_ERROR(-47);
}
if(P->spole < 0 || P->spole > 3){
E_ERROR(-47);
}
if(P->es){
P->inv = e_rhealpix_inverse; P->fwd = e_rhealpix_forward;
}else{
P->inv = s_rhealpix_inverse; P->fwd = s_rhealpix_forward;
}
ENDENTRY(P)