-
Notifications
You must be signed in to change notification settings - Fork 0
/
Physics 142 Probset 2.nb
1459 lines (1438 loc) · 69 KB
/
Physics 142 Probset 2.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 70462, 1451]
NotebookOptionsPosition[ 35734, 766]
NotebookOutlinePosition[ 69480, 1434]
CellTagsIndexPosition[ 69437, 1431]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"-", "eF"}], " ", "x", " ",
SqrtBox[
FractionBox["2", "a"]], " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox[
RowBox[{"m", " ", "\[Pi]"}], "a"], "x"}], "]"}], " ",
SqrtBox[
FractionBox["2", "a"]],
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "a"], " ", "x"}], "]"}]}], " ", ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-",
FractionBox["a", "2"]}], ",",
FractionBox["a", "2"]}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.88757017193655*^9, 3.8875702947758284`*^9}, {
3.887570344442195*^9, 3.887570404608761*^9}, {3.88757153625373*^9,
3.8875715374940643`*^9}, {3.887571786177109*^9, 3.8875717875876355`*^9}, {
3.887571869679179*^9, 3.8875718966119003`*^9}, {3.8875731378034*^9,
3.8875731632338276`*^9}, {3.8875731988378234`*^9, 3.8875732808897014`*^9}, {
3.8875733118825407`*^9, 3.887573327720455*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"5d577b65-f43b-4fe9-86bf-68bbf85f1e0a"],
Cell[BoxData[
FractionBox[
RowBox[{"2", " ", "a", " ", "eF", " ",
RowBox[{"(",
RowBox[{
RowBox[{"4", " ", "m", " ",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"m", " ", "\[Pi]"}], "2"], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["m", "2"]}], ")"}], " ", "\[Pi]", " ",
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"m", " ", "\[Pi]"}], "2"], "]"}]}]}], ")"}]}],
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["m", "2"]}], ")"}], "2"], " ",
SuperscriptBox["\[Pi]", "2"]}]]], "Output",
CellChangeTimes->{{3.8875732582264037`*^9, 3.887573283238472*^9}, {
3.887573321703179*^9, 3.8875733288802505`*^9}, 3.8875817259039125`*^9,
3.8875933509095955`*^9, 3.8876136743820305`*^9, 3.887815982587061*^9},
CellLabel->"Out[1]=",ExpressionUUID->"f26df74d-bd1d-401f-bd20-556cde9767c5"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"-", "eF"}], " ", "x", " ",
SqrtBox[
FractionBox["2", "a"]], " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox[
RowBox[{"m", " ", "\[Pi]"}], "a"], "x"}], "]"}], " ",
SqrtBox[
FractionBox["2", "a"]],
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "a"], " ", "x"}], "]"}]}], " ", ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-",
FractionBox["a", "2"]}], ",",
FractionBox["a", "2"]}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.887586255842901*^9, 3.887586261264632*^9}, {
3.887586350272391*^9, 3.887586351974619*^9}, {3.887586394617425*^9,
3.887586396374504*^9}, {3.8876045303170023`*^9, 3.8876045442138233`*^9}},
CellLabel->"In[2]:=",ExpressionUUID->"ac2746ca-9440-4354-a437-2452c7d3357b"],
Cell[BoxData[
RowBox[{"-",
FractionBox[
RowBox[{"2", " ", "a", " ", "eF", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["m", "2"]}], ")"}], " ",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"m", " ", "\[Pi]"}], "2"], "]"}]}], "+",
RowBox[{"m", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["m", "2"]}], ")"}], " ", "\[Pi]", " ",
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"m", " ", "\[Pi]"}], "2"], "]"}]}]}], ")"}]}],
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "m"}], ")"}], "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+", "m"}], ")"}], "2"], " ",
SuperscriptBox["\[Pi]", "2"]}]]}]], "Output",
CellChangeTimes->{
3.8875862642260284`*^9, 3.887586355528597*^9, 3.8875863979740825`*^9,
3.887593352675679*^9, {3.8876045399800425`*^9, 3.8876045451306067`*^9},
3.887815984215294*^9},
CellLabel->"Out[2]=",ExpressionUUID->"c9738e59-2f89-43ad-83af-838bb349ad89"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"psi1", " ", "=", " ",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
SqrtBox[
FractionBox["2", "100"]], " ",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"\[Pi]", " ", "x"}], "100"], "]"}]}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ",
RowBox[{"-", "50"}], ",", " ", "50"}], "}"}], ",", " ",
RowBox[{"AxesLabel", " ", "\[Rule]",
RowBox[{"{",
RowBox[{"x", ",", " ", "E"}], "}"}]}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.8878285126847544`*^9, 3.8878285424771805`*^9}, {
3.887828615527458*^9, 3.887828617093734*^9}, {3.887829036382146*^9,
3.887829039508046*^9}, {3.8878291601018867`*^9, 3.8878291623381257`*^9}, {
3.887829252922383*^9, 3.8878292833801775`*^9}},
CellLabel->"In[19]:=",ExpressionUUID->"46ddcb73-3d5a-4c7b-99ca-07d4ca88995f"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJw12Hk0Vd37AHC56BpCSEhcY4YmFank2aZcvZKQEIWoTJUhopLpJbOoN4lS
IkVEqbzS2efyKi4NQhmizFGUaya+x1q/319nfdbZZ++99j77eZ61FVxPW7lz
c3Fx0ZZxcS09HV2+jSwuMvHZNlNa6Tkj/S4ZxzGxeSa2uSN4OKxDAVybWiZU
ppm4yzCp065DC06a1s//9YuJw5+d32HUYQD+G54LpH+lfKeAvbnjAMTNJKhu
Jpn4mtq7dfwdLlB+RfeIcwQTn2OU5Zxv9wVJVnID5mHiOelaLYvWcDDVbw09
Or4HX6vQqzqWnArSFlPLBSdN8Fiap+jz8zdBLSD85ZN5YzyTEupwSPQuFJXl
Ge0cMcLuSmd9+gvzoDku+27Db0Ms1fGfelnPQ/A/r92k/9UA2xi7H+y2LQaL
CB2tRx8RLn9kGyVWWwJXd0jVW5YCtn90jffvx08gOHemjTttN7YM1Y0PKyiD
bN2oG2+v78LlPCuzr596DobT/UVX83bgIsv3icZi5dA4cslDMn47DugJMkt4
9S/cE2J9LEnTxrplgYmqW1/CMZedPXS/rXj7ea3snvuVkNUdZ+bgoIU5Df/p
vhh/BVsl+Ym4ho1476//WlX4MNCbT2p/vqKBz/HZhlslYNDPInQFIjTwnpUn
rJWTMPi7S+rp+Wngh9uMGBPJGDonqgyzrTSwMAw9SEvD8ERS3vKkuAaO290c
XJ2B4Yhds+f0VXXsWujKGc/H8LTdIFsqXQ37/aiLS6nG4NwtI2h/SxWbF+d5
FU5j2Od4c1g3URXLZEsEOM1i2Nmypl7qgioWbJ83WDGPQbxONvGzvSruZBIb
PBYx1JTIiditUsW4NM9AjI+EDeGK4ocSVPCb5QykLk7CrLzGmoMhylh21en/
PNaTcNVph+YBW0Wsscfz4cbDJPSmn+kMM1HEZZ+lKmMdSdBuun/l8TZFHDBL
3uhxIqFlr+S0iLgi1gzPeZzmTIK0Lqf67TsFHHaK16rPnYRbYo+OmJsp4Fi/
DAuLMyQ8eM1INdVj4Lrr6kk6UdT43HYmQZoMrCkm+sTzbxL26idP58kwcKzy
6ttZ0SR88pirFBqTx95RWvWLl0lwNC47FOclj3+vNTlXlkjCiRm1+L+PyGHP
llu8/f+QcOGY6Nh5Y1k8FGx14nA+CanewRxZFVn8S7LX1PYBCffPdo9X8spi
wZK5VZYPSWiMeTq1WLMG7zcOC0GFJKwrtPsTabYGbzm285jEY+r9eDY9wUIG
F8r/nXf5OQnq0VrymXZSGDkHptz9jwT95AzG7h1S2GjXA97zNSTYpNMUO6Wl
sJxa1nGr1ySEPmxWZrSvxk5zacN/3pDQ9DZY457Tanwo2ZqLWU9C2GqWdqGr
JA56uWxvfiO1nvlW5i+9JfCmrhr6jU4SHFaJ0Mv3SuCrAxsUjnSR0BnOripT
k8CPysU5Cl9JGHAw3lXcK46HfyhV5X4jYVpIR+Ouozj24GsWu9VLgoyvNP2y
uRiOQf+6HRii9uNLc1WUhhi24HkqzD1MguLe1EvhdDE8OHTIt4SyppLgVEj1
Svxunbez0E8S9Jrn+3z0VuKbxT69paMkHNnxtcp6vSjeouIYzBonoTs385Kl
gCgust6Xf2SChAbl0sCM9yK4314zeYZyZ0uOeyJTBOc1hEdpTpHAtSvGyF9X
GMelnhQKmyHBhGaxqC8lhJX9fsQM/yHhbVp7YMun5VjUS/w7m5cFxBUzZev0
5Zh+87rHdj4WPE5+/uGd3XIsG7mSfYfylfi09bWtfLhPon6z/3IW2ET+1V3R
zotd7O5H0/lZ0OZXse9OFw3/fh1r+0eQBewz6nNrs2k4zzuwx1aIBS9PXc/P
cKZhGdMpy2LKWZ7+tKvfuLFu0e0GxxUscHbVLI/uWYaDcyfMHwpT3+fomH1+
u0hsHjI6KrKSBYW3xe592L9IbBzl49hSTro5slD3foEouyx8IouyZVre08rG
P8QhWtuoqhgLWiIkGTktc4TO6+HI9eIseBE6FpJ5aI64kOMo7UX5Rsjb5muf
Z4lnM7+S8ik7+kXHX26bIQbbAmQYEizodpmc9OmcIqLYEaXLVrGg2qnxwImj
U4TxwXzmdsq59kWFzl8nidMvml55UT554LirdfcEISmi/dcHyiOopUG3n0ME
8Fb2JEmy4L1eqdqWExziRy8ZXEG5RDcpUnNwjKgJKhvtpxywec8OuaHfxKoZ
p/M7V7OAA95myztGiVp5n5VNlMf3pWhMdY8QinJRk5NLPvxUcOD7T8K9/WGN
lBTloPmGmqlhQihRXs1+yX8zip8tDBH8+R7lQZQn0oxT8niHCIV3FdrXKE8W
J1hFiw8Sc8a+o/VLrny8NVBmgHin/2H9AOUpdpPEcYV+ojdjy0EuaRZMD8h+
MtnUSyhFc45vWvIEeqGt00N0GFtamlCeobnfUNndTUxV5ys7UJ6Vf3SY96+v
xC05ZlIY5YnDd4OHcjqJXYUJSqmUJ4OGdtWVdBD2x97k3KU8lbZl4QHRRpw0
nRUuXeq/OATHNnwmPLwV3PFS/2xWhEd7CzEyqZfXsNT/gICJ2fcmYrWseWMr
5Tma9XL1qUbiuoLF917K8/I3a+m8H4gSJ8PhkaX2QTWrP6i8JXS2q32eWnpf
bJuZYlBHJKgsFi9SXhjoZ1g61RC5j2v8+GRYsCgflCsSzCL4fUMZQpS5Hwvb
3FKvJOpEVMtFKfMyNjmtdSkjUvdU6klQXsm4Xa+rVUBc7TIqkKS8mQtX+qDr
xM2ych4pyjyL04F20Zdg4Ymc2ZJb4dZ8fXgO5LX4nVtN+XvxxrMnYktghcaz
1FWU+0DYe/BAOeizB6+LUf49EFiyLRFD04DAZWHKo8X968/6VsN8pewxfso/
g2zzyw6+Ab9MOXUa5WGoUZrcUQ+R3aJtc0vrT7u5f43Ie1jBNX6WQ3l8wCpx
17JGuHT2zfx3yhy2APsw5yO0fUw61UV5rJhFv9DXDIUvTdkfKf9OC9mT+ekT
SHZzxF5T/hW0JeplbSvU8l01Kac8AncX5x99gdsFT7wyKP9Ucti9NrsLpmja
R2OX9psWWylX+xUWBIt2By15AM3pV3RDxZX4iv1LbpWV2f+0B1S8xxx2Ls2X
Pa179FEvFBQf7FNamm/x48BLt/vh3jfJCs7S/30n4Vpy+gDsKwnia6PMSTv5
9PaVQbhQ2KZHUB4LYowRkUPAfeuRZzTlX5Diw3VyBNTsX9Qtp3xO8kP5lsBR
kNbSDeqmzlPYJD1yi+Ev4Hdnf6mgzN9g9s7N8jdINOu0elKWCWGfqPXmgHGM
f2w5dV6P9A0ndnM4IGbZxRdHOcdS6OlcyDj4lgTq21Nev24f18bYCWCL6HRw
qHiwu+ltemruFOyfd2yUphwBo68K1k9DwMM4ha9UvKl5KNJX/WQahL4v08yl
bBFuqTVFzoDQ6y/empSdNzbWHu6cg1fN1YVqVLwyqPa8mCrIhawGPRT6RVnQ
OxMiKr+fCzlm2axOpxy9KT6nIJULeXC3vGZSrssoqK2WXoak9jyxyxNhgZXv
j1VT67hRZXrwTisq3rrJnSo6bMyD6h8l03yo+M1nE2owGMODYlTKcgUo58cm
NQWweVCEVTP3fQEW/Bgvmk204kXMEYWRdir+n2WP7sHOfEhW9lmsDp0a/5xv
l/JFOjrOdmsv4mEBik3Q2/iSjhp7dNUQ5dkb929sn6Ojumovh/c0Fpyq+GK9
N5gfadvzn/7JzQLbBbM3p88KoOqeAXuZZSxQiVIs+ddHCGUJJOgBlb+6X3sY
qG0SRbUatV5lVH4Ey6nRQgtR5Fot6K9EOfNz1C2tU6IoZeCBcwqHBNvvt+d2
PhJFoYOyo8fHSKgTaCnbp7kS3fPqbOX7RULpPkMN/3Vi6EWN0OhKKj9HfJQR
fyUvgUp545wOUvn/zLTN8gEDCbThtxf9ClUfHFmbPCfiJoGedHA82FT9sPME
rdcln2pfsvGA3hcSOLPDT3m1ViEL/94S4TYS3BQrbfcZSqIkQag9+5HKx75H
MzrcpJCDG9fLfVR9s+2fG0m8MVJI/vS8nXM1VS9UfIzY+EAKxUekFflWkbDA
w/QK+ymFAlM/RaaQJDxL36ynHCiNKtbd+vyqkgRVvKzTK0YGzY3k7+wsI4Eu
ck9h7oEsYh7LdVHLJWFjyZkzUWxZVMdPN199j4SD1ruJFT9l0deDa/7w5JBw
93qLI2PzWlQlnv2kI5uEXQz+dJNna1GvvV7AxUwSTmmdEk5hySH1gc82UWkk
DKlnXkz1YaDRV22M/DASDpgf91wXrYgy0wqvmh8iQcNmvzH7miLibprw5bUl
gcdRV+50riLiO3LMqNKGmr+XQOOzakU0f2OWpW5F1U/xRTv20JTQT1Pm9klz
qh6unaS7hymhZhUBPidDEgJNY+7fDVFGMoyqeleqfr5pmN+79rQqKo5OemH9
BwM/+6JEVqEGGvwcs2VXLIZxnmV9g3c2ou2qlakDghgmxr7Tsg20UHN2nacx
jYCI9Wt/JTtuRbOeW6W7yirhrf799cettdHw83pU6/wS1svMVYUFbEfnUzJb
mt/9C8y3uQXhvjvQnTx5etHucvh+8JzeZbddKL/qEm0k4zlk5kmofQzfjS7O
R0urVpSB8PvlbjznAflKVPJu6nsCTBfXP3rvEKIpZdC/fCgB82qbrNl2AxSn
dump88liKE7zcy9oMUT8ytIcTdsCuGk64RDab4RKrIRMLd7mQf+JnHPGvcYo
/vje0MHzd2Hct89zxRcT5OgS+bvFIRPinRPipof2oLTLRKNubyqEVxxpbOk3
RRmlLq1R05EgVfM+cNewKTqcVB3Oyo+Ex+8N12SPmqKS5tKHC3aR0Nmn6uYx
bYp4xcL/8SuPAD3R0Yk5fiZaZS8ZZhYSDtNul6QVNjDRM5Z0m+/URTglnO3s
5c9E3749jroy5w980mK874OYyOrN/OXqw/6QpRT1YNsFJhr4VCI+WeEH9bon
x/5EMZFkheBPmwu+oHFsc1TKP0y0baSXzjfrA33P8f2yciZSGh1rt50/BhdY
W8xlXjHRWcYh2RsvXUGi4d6vUBYTfZE2GW294AKG3Zd3MNlMZHzd1bF41gmy
hQ6w2zqYaHPQYEDCvDXorq46Dd+YiO/rLb/FCwfgnYK2xL0+JmI0+up0z+6D
BR1pJ58RJqqt53G+O28E/xjEL2sco/o/lDW5OLsbNpj/ydWZYiKu/V69L+a3
QrXt6b0355godKEy/eu8Evzf/QD6//uB/wFX7unK
"]]},
Annotation[#, "Charting`Private`Tag$26157#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
TagBox["x", HoldForm], TraditionalForm],
FormBox["\[ExponentialE]", TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-50, 50}, {0., 0.1414213521033218}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.8878285451110964`*^9, 3.8878290403812113`*^9, 3.887829171076782*^9, {
3.887829254417075*^9, 3.88782928403345*^9}},
CellLabel->"Out[19]=",ExpressionUUID->"d1122d9a-29b2-41d1-bcc0-982fae641b15"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"psi2", " ", "=", " ",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{
SqrtBox[
FractionBox["2", "100"]], " ",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"\[Pi]", " ", "x"}], "100"], "]"}]}], "+",
RowBox[{
FractionBox["16",
RowBox[{"\[Pi]", "^", "4"}]],
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox["2",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", "^", "2"}], "-", "1"}], ")"}], "^", "3"}]],
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"2", "\[Pi]", " ", "x"}], "100"], "]"}]}], "-",
RowBox[{
FractionBox["4",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"4", "^", "2"}], "-", "1"}], ")"}], "^", "3"}]], " ",
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"4", "\[Pi]", " ", "x"}], "100"], "]"}]}], " ", "+", " ",
RowBox[{
FractionBox["6",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"6", "^", "2"}], "-", "1"}], ")"}], "^", "3"}]], " ",
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"6", "\[Pi]", " ", "x"}], "100"], "]"}]}]}], ")"}]}]}],
",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ",
RowBox[{"-", "50"}], ",", " ", "50"}], "}"}], ",", " ",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Dashed", ",", " ", "Red"}], "}"}]}], ",", " ",
RowBox[{"AxesLabel", " ", "\[Rule]",
RowBox[{"{",
RowBox[{"x", ",", " ", "E"}], "}"}]}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.887828565602322*^9, 3.887828665551835*^9}, {
3.8878287014262004`*^9, 3.8878288879940877`*^9}, {3.8878289542336445`*^9,
3.887828955478855*^9}, {3.8878290003839426`*^9, 3.887829073491619*^9}, {
3.887829165526359*^9, 3.887829167735877*^9}, {3.8878292388934097`*^9,
3.8878292467340703`*^9}},
CellLabel->"In[18]:=",ExpressionUUID->"b2e183aa-32ad-4e18-bc7e-654917ed3ea5"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.],
Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwt2Hc8V98fB3BCSbL3iOyQUSoy3m8SH7KiIqkoSSXS0PjKKFEyMgoVETIS
maWMe2/TFtJECaWBEIr4nR6P31/38XycO84597xf9zzu0l1+jnvmsbGxcbOz
sf07unl8HJqbY1H6SdKzrn/BpEfKbVRohkUZuYiULXORhV0dnb+Up1jUarPv
YYPOy8HbsnFmwwiLOvWkrvy5szEcWX6PJ/kDi4poH/Mrd7aFyN9RKjo0i+Iv
WuqU7rwdKuP0d7ifYVE5j6Ja9jofBDEmtoniZFGmTz71xG85DZYmb4J2jltQ
MT/uCUfFxICk3eSCRRPrKX6xHGW7wiugdjS0qnTGnIpxCPHx+poKheW31q0d
WkcFRUxY8XfdhJeR6TebfppRcQZcJZqBt+DIf6s6TD6YUl/41X9ruOeD3ZnV
unfakTrUatydpFIIiQYSjQ4lQOUpas3PaLkLJ7N/v52XYEx5h0ix9+SWQLp+
WEpzkiHl9jn4G8fWMjCbGihMvGVAPSzYoM8+UQ5tQ8H7xC6uoc660REWufcg
i5dpL05YRfXbioznaVXCbo+1n7gPr6RCjq7oiHj0AFJ7I61cXXUpW220tjCq
gpViC2sjm7QotWKPFuWIauB+6b3qdZw6xZJhPENe1oB7r9SirWkq1NiF7ePx
47WQuN1AY+MWBWrmy4SraAQFgbsFRv8zl6EYkZ6Vduw0xPucHJNRlqFSVeO6
JubRkHOsd7yaS4YS+zXvWhonDW0RZZNzT6UpzxIrh28LaFAtcPl71kqakuf3
SDvJR9rH07mj7KQop+VVyfukaVgWrit33UWC6nozGXFZj4bOXEebKh8RKi/P
5z9BTxpcRfm5K61FKImFo/Ou76GhO7ThUbmaCPWQvcdTeS8Nn13NDYv6hCnp
qt4Kvf00TPGuVr/pJkx1uBpErT9Eg5S/JPd5GyHKY3c8rR1Iww6DD4+cNAWo
wv1+55QSaOjNvh7swCNAOVYXvL6QSEOTUknA1VZ+6nUk1+yPy+R5nZl7oln8
lJ4IZ01JMg1shhHrjujzUeptgrxaaTSs57CbM5HgpVzbonK+5dLQnPAuoPPV
Aopd1UEitJqG2jgrJafkBZRzkY7A7Roa7sbee9HisoDqz+z/3V5LQ9zFBM26
N/MphzezGQoMDZvObuh9+I6LGsizh9KnNLw9/NA2o4eDWvk9IzSjhYaGzNVW
r5vnal3tbtF3P9BQcEMo64X9XO1VPZe4+x9piLk2NFvfOlt7KeeCTW0vDQ4J
t8qq2/7W/vHOCqvrI/N7Rkw+s3O61ljOdqL1Cxm/x8TEwe7J2h0FhmW3R2gY
Ax+rBe+Hax/omJrHztEwbntJfbJ3qFZe+22uHxsD49vKFn0e/FFb7f36rx07
8fGZpqeT32rPFzmc4OFgYKIoyjFc+Ettezsr/+h8Bv7I3dnGteFDrdkpm3ei
ixnQYaOqD2JSrWrbGaNISQY456YCXMKDYfeOemeWFANvIG2mMTQTqpZNbOeS
ZqAf+Hy+bKyEu8l26oEyDHyDp4oTBo3wSd+pxk2OgSG4OTdzpwuGM/cUDiox
MAKXDrJ5D0Ewz1yErjYDJ8ReVK4IGIaLX4fr3xCHTHCfXWE2Anb6sXSIDgML
m6xaPB1+Quo97rp6XQakTjXsrfMZA6VRA0N7PQaMO5qT47Mn4brw6WBJAwbO
wHDNbc0pGH0u019A/DSfv/9x6RRQlXrTJmsZsAt10J2kf4OsEYf+TkMG3LXa
6rZ1T0PsSMpQrDEDpo/3n45fxIaDMzOKJaYM9P0+JSBnT6yTe1LHjIFw7YuZ
t+PZ8JhmUeAd4vqrt+seS7Jj7G/eyMx1DDj6fxedVJ2HfeblVcHrGfBc4lu4
zZwTe9gCnadYDMzfFGT6JYITP3mv8PGwYiD3QkzH0QZOVOk006gj/j5e+Cfa
kQt/8ZbnJFozcKxh2IJyn4+molWJ0jbk+Sf8e5ROc+O7wBSxQTsG8EKUkVYV
N26Jc9VeY0/eZ0pOypppblxpIygTRuz7sMvJ+uRCvDy/8ZCUAwNbZq2e+x3j
QY4L/hwGGxkQ4N+jfLKMB6303t47TVwvF3LmzBgPvt4hDDSxiWmF0WX/RfjU
2OuJuSMDymEKxQ8O8uJq1vU7xk4MdCca8z0u4MXKk1fGTxAnZ7scaPrGi24h
potLiXmfxSh/2LcY3bukSxU3kfW4cDqFy4sPbx3gaJogLpQSm+TL5sM/kJ2q
tpkBbw3dTRJ9fCjY2mWylfi9zV4+jV38KMtEjFYQ9z7bZ6qmLYBX1oxLeW5h
ABwmhwvsBJB1JcQnivj667A0XV8BfGgYG11KvGXwxvTaOwK47UW+8Sxxqf/y
/NpGARSsONK41JmM/88DF/PvAlhUv1rdnLiep7PcVkMQ0/YpOZ4jVk3Y7dlm
LYjp6YtksojDpH8KOe8XxAl3rzKa2EST95B7niBGvxyx/018rSxlSf9zQWwY
7nIUdmFgyki1ad8XQfTbWamoSVxia6Z+RFUIBRfd03Il5u9seT1pIYSRe5O8
/Yh9dmyPCPQSwkOuvX5niesGvq5iDxfCy1rHza8Qq/id6DuXLYRmFqsGcojP
TnIl8DwRQlvpmU33iT8EJ5jG9gmhONy+9IzYmHvpiDCnMKa5KqS8JL56qTAt
WVEYg7RMfXuJJyWMbGXXCSNHwmf+IeJNGXXTGbuEUePEr9NTxMXLnPNVzghj
Sb/1ffatDPCV9LnczhBGqelnNQuJD6w9vECHFsayYZs4AeLnzFx52QdhLBB6
oC1GrLwh2tOATQQXNwynSBGfaZcSrpETwaak5hZZ4kNTmxZ8NhXBN7sNh+SI
d8jGTvN7iiBjoH5TntjGrG5YP1wEnbcf+favfe1ejj6PXBFMXDlc9+96tSjj
15H1IvjQLMD43/3Fio83ln4n56/4uF6UmLOzmHrPJ4o2Ddyf+IjH/nwr49IV
xcHJJyILiHvlVPK0nERx5NHPt3/JeFvN3VOdj4niTbc9q8aIa/ZdjQtJEsUW
gT+Kn4kLYjrO5VWK4ieHC7fe/JvPUr5Tbe9E8Wfh96p64vOvWb7Tf0WR7v7r
9YDYU6F6i62ZGKZoxB27TOxoOWkd4CmG6lufvQkhRh9duBEuhvknhV/sJ5ap
yFb9WS+GhcucT6wl5nnXIy31Qwy3v+FQk/+3nuYkBdbxi+P+Kp39nMQdVjFT
iU7iiB0B2c/J+mN8n3+vPiaOXmst0nKJ7ybM+ziQJI7Vq+ctiyCO6gqo038v
jqrNd8aAeL3/zqvvPSUwh+v91nRSH3pXUmK4IiRw6oF491FihYftZ7TyJDAL
5MYsiWc5WQdCfkigVz9HyyCpx4pkHSOlAEl8GWZtLUOcVb1fxzZZEgOyeDb2
k/qO781SCnggicypoM8FxL6akoufz0rix1eTzBpiFYq9+0CEFP7pCtAxInkh
0m/YlpgnhV6WksW/Sd7M4wl4Wt0ghZdF3Kly4m6nr4X8AtIY2ro5chlx0ue2
4NJkaTzmYPF8juQbN3/W0uk8GfS71NHiRfJRq/jQobAGGYysKXvBR7zZybh2
8Q8ZdD2QfbDcloGbSZ1u8jqyKNZhdmSW5Kuh/MLk9RWy+MAMSoI3kP7q+vJd
YpbgvF36AyYkvxPb126X7FuCjZGZ/7VaMvDw2IKCm1xyKNHkkudOzP0g3aqc
JYfL8/WaAi0YyDBrD3vbLIehV2pWZpkz8HXZ9dPxB+VRfPeoZxEy8PfUPGXn
IHkUjg89rE4s0OjdKB0rj3evVYhlAQNrfFdJZ9+Vx1+f7ygkmJD8KWm+f29M
Hp1vSFm4GzGwxJB9/P3Jpdhal5tdsYaBjTZe+1XDFVBlNl/JaTkD6pvszRsu
K6Cu6spPBZqkHtz0l/hlKyBPXbcnF3HFAZ62iscK2M7aXlyiTr6vFwsNLDgU
8X23ysFZVfL9q5vg3hOiiLvOMR6uCgwEWEbk3DylhBsGPdoVxRiwtz8UahGp
hKKfW15tFiX16Lx129cUJQxr/C81XISBt14a/CsqlbD6ubNPnxDJ6/CWAHpS
CT2/FonF8ZP5eiJu8eGoMvrRFfGF3CQ/zXL7ZP1U8LZ/SMfv3zRUJe/9KByi
gj8+u4gOT5H93pBK98I4FUweTerqnaRB4Vr2q18lKui+TZzz6S8acsdu1jdN
qOBj8Uc5p37SUJGVevd0kCqeHIuEVLKfapufENgVrYazm594PXtJ9k9ujifb
09RwrexAUHQHDWKlggF1RWpok6kk69hOw9adl/zKX5B2ifffOltp+HAvele0
6DJcF7TnRXMDDUPe51nGqcuwouZrxXGahoUNp0VSC9Qxnlvp8Z3bNIy8ql13
uEodXx3ozXbLp+F1H/sRy0Z1PBXNGPPkkf7Onnvx85s6bhboifW4RYPFipgY
Cw0N7Ox0qGbLoCEsJY17JE8DFZUqDdmv0DC7t3bGLEcTldW/0DzBpP+c7P1f
MrSwpd16BdrScMIhytS3WAu180/2ZW2gYeaaeNoYpYXnw+a5clvTwLlSy3m2
Rwvl01bHNljQIOyxrU54iTbG81UrrEMaVlSX3zG5qo1U2fqxiRU03F+7ytDa
SgczLq/29hen4dfoIEe6qS5Kyo/6lr6n4Iym7Eis20ocydxYutWGgmaTHE0v
p1VYcMz1o8auWtCUmn4UcnQN7i1eYRnbXw2s5uzbof4GqHbK125iaxUMbj5h
dN7TEMWaLG9VFz+A67dE1NpDjfHu42apGzX3ga91gSfnf4Dav6dSFeorgOWx
669RC+Jyq82yIefLwObxptQ/70zRJnp8U5xOCRQlHN5zu9MMNbfJNg81FsE1
y1+uQQPrMPFGxg/ezHwY2Jt5wrzPHAOa1+cJ5GbDuH///sVd69HhaLl/5a10
uOgeFTn11QIrfnT94Da8AqEPd7R1Dlii448Z54bwCJB42hpg+M0Sd7iJxw+q
RcDdVjPp9GFL3PrihxhXQzh096t47puyRHoySVOPPxyMBIZ/TS9k4b3G8w+O
JIXBlGew5NLlLNxw1HoqNCcUfPnS3Q8cYaGfpXaBfdRxmC8pxNV6nIUfz8s6
LmwNgFTFsDy9QBam9uy0oYQDoFHfe/RvGAs/W8xcVrl2FNR364RdusLCNNlT
A515/tB/j8opr2ThZRmvi6XReyGQWWEjVcNCG/4nPAMiXiDSlDUSxLAwqVt7
XPS6J5j1njdgNbAw0P5muW++B6Tzbmx4+56F6oveRgnGOIO++CM/+MhCnj06
7Vuub4KWpatEsvpZuEYqvSglfyPMrpbcfnCIhSV6leIrYyzhiulF9rZRFqKf
14nCfFNYbvM3e/UkC6Vj38bYx6yBx1v8rK9Ns1Dcds/LoBhV+P//BrQbDI2o
GLUw+R+jbcq7
"]]},
Annotation[#, "Charting`Private`Tag$25781#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
TagBox["x", HoldForm], TraditionalForm],
FormBox["\[ExponentialE]", TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-50, 50}, {0., 0.14334495466432712`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.887828845668586*^9, 3.8878288893899636`*^9,
3.8878289569827223`*^9, 3.8878290319078617`*^9, 3.887829074254572*^9,
3.8878291734878635`*^9, 3.887829262945908*^9},
CellLabel->"Out[18]=",ExpressionUUID->"51dea0da-8d4a-459a-a75b-0d47f8cfcf0d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{"psi1", ",", " ", "psi2"}], "]"}]], "Input",
CellChangeTimes->{{3.88782907694137*^9, 3.887829115258024*^9}, {
3.887829148278263*^9, 3.887829180066563*^9}},
CellLabel->"In[20]:=",ExpressionUUID->"9c816a97-bbb8-4341-9bec-f04f24993857"],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJw12Hk0Vd37AHC56BpCSEhcY4YmFank2aZcvZKQEIWoTJUhopLpJbOoN4lS
IkVEqbzS2efyKi4NQhmizFGUaya+x1q/319nfdbZZ++99j77eZ61FVxPW7lz
c3Fx0ZZxcS09HV2+jSwuMvHZNlNa6Tkj/S4ZxzGxeSa2uSN4OKxDAVybWiZU
ppm4yzCp065DC06a1s//9YuJw5+d32HUYQD+G54LpH+lfKeAvbnjAMTNJKhu
Jpn4mtq7dfwdLlB+RfeIcwQTn2OU5Zxv9wVJVnID5mHiOelaLYvWcDDVbw09
Or4HX6vQqzqWnArSFlPLBSdN8Fiap+jz8zdBLSD85ZN5YzyTEupwSPQuFJXl
Ge0cMcLuSmd9+gvzoDku+27Db0Ms1fGfelnPQ/A/r92k/9UA2xi7H+y2LQaL
CB2tRx8RLn9kGyVWWwJXd0jVW5YCtn90jffvx08gOHemjTttN7YM1Y0PKyiD
bN2oG2+v78LlPCuzr596DobT/UVX83bgIsv3icZi5dA4cslDMn47DugJMkt4
9S/cE2J9LEnTxrplgYmqW1/CMZedPXS/rXj7ea3snvuVkNUdZ+bgoIU5Df/p
vhh/BVsl+Ym4ho1476//WlX4MNCbT2p/vqKBz/HZhlslYNDPInQFIjTwnpUn
rJWTMPi7S+rp+Wngh9uMGBPJGDonqgyzrTSwMAw9SEvD8ERS3vKkuAaO290c
XJ2B4Yhds+f0VXXsWujKGc/H8LTdIFsqXQ37/aiLS6nG4NwtI2h/SxWbF+d5
FU5j2Od4c1g3URXLZEsEOM1i2Nmypl7qgioWbJ83WDGPQbxONvGzvSruZBIb
PBYx1JTIiditUsW4NM9AjI+EDeGK4ocSVPCb5QykLk7CrLzGmoMhylh21en/
PNaTcNVph+YBW0Wsscfz4cbDJPSmn+kMM1HEZZ+lKmMdSdBuun/l8TZFHDBL
3uhxIqFlr+S0iLgi1gzPeZzmTIK0Lqf67TsFHHaK16rPnYRbYo+OmJsp4Fi/
DAuLMyQ8eM1INdVj4Lrr6kk6UdT43HYmQZoMrCkm+sTzbxL26idP58kwcKzy
6ttZ0SR88pirFBqTx95RWvWLl0lwNC47FOclj3+vNTlXlkjCiRm1+L+PyGHP
llu8/f+QcOGY6Nh5Y1k8FGx14nA+CanewRxZFVn8S7LX1PYBCffPdo9X8spi
wZK5VZYPSWiMeTq1WLMG7zcOC0GFJKwrtPsTabYGbzm285jEY+r9eDY9wUIG
F8r/nXf5OQnq0VrymXZSGDkHptz9jwT95AzG7h1S2GjXA97zNSTYpNMUO6Wl
sJxa1nGr1ySEPmxWZrSvxk5zacN/3pDQ9DZY457Tanwo2ZqLWU9C2GqWdqGr
JA56uWxvfiO1nvlW5i+9JfCmrhr6jU4SHFaJ0Mv3SuCrAxsUjnSR0BnOripT
k8CPysU5Cl9JGHAw3lXcK46HfyhV5X4jYVpIR+Ouozj24GsWu9VLgoyvNP2y
uRiOQf+6HRii9uNLc1WUhhi24HkqzD1MguLe1EvhdDE8OHTIt4SyppLgVEj1
Svxunbez0E8S9Jrn+3z0VuKbxT69paMkHNnxtcp6vSjeouIYzBonoTs385Kl
gCgust6Xf2SChAbl0sCM9yK4314zeYZyZ0uOeyJTBOc1hEdpTpHAtSvGyF9X
GMelnhQKmyHBhGaxqC8lhJX9fsQM/yHhbVp7YMun5VjUS/w7m5cFxBUzZev0
5Zh+87rHdj4WPE5+/uGd3XIsG7mSfYfylfi09bWtfLhPon6z/3IW2ET+1V3R
zotd7O5H0/lZ0OZXse9OFw3/fh1r+0eQBewz6nNrs2k4zzuwx1aIBS9PXc/P
cKZhGdMpy2LKWZ7+tKvfuLFu0e0GxxUscHbVLI/uWYaDcyfMHwpT3+fomH1+
u0hsHjI6KrKSBYW3xe592L9IbBzl49hSTro5slD3foEouyx8IouyZVre08rG
P8QhWtuoqhgLWiIkGTktc4TO6+HI9eIseBE6FpJ5aI64kOMo7UX5Rsjb5muf
Z4lnM7+S8ik7+kXHX26bIQbbAmQYEizodpmc9OmcIqLYEaXLVrGg2qnxwImj
U4TxwXzmdsq59kWFzl8nidMvml55UT554LirdfcEISmi/dcHyiOopUG3n0ME
8Fb2JEmy4L1eqdqWExziRy8ZXEG5RDcpUnNwjKgJKhvtpxywec8OuaHfxKoZ
p/M7V7OAA95myztGiVp5n5VNlMf3pWhMdY8QinJRk5NLPvxUcOD7T8K9/WGN
lBTloPmGmqlhQihRXs1+yX8zip8tDBH8+R7lQZQn0oxT8niHCIV3FdrXKE8W
J1hFiw8Sc8a+o/VLrny8NVBmgHin/2H9AOUpdpPEcYV+ojdjy0EuaRZMD8h+
MtnUSyhFc45vWvIEeqGt00N0GFtamlCeobnfUNndTUxV5ys7UJ6Vf3SY96+v
xC05ZlIY5YnDd4OHcjqJXYUJSqmUJ4OGdtWVdBD2x97k3KU8lbZl4QHRRpw0
nRUuXeq/OATHNnwmPLwV3PFS/2xWhEd7CzEyqZfXsNT/gICJ2fcmYrWseWMr
5Tma9XL1qUbiuoLF917K8/I3a+m8H4gSJ8PhkaX2QTWrP6i8JXS2q32eWnpf
bJuZYlBHJKgsFi9SXhjoZ1g61RC5j2v8+GRYsCgflCsSzCL4fUMZQpS5Hwvb
3FKvJOpEVMtFKfMyNjmtdSkjUvdU6klQXsm4Xa+rVUBc7TIqkKS8mQtX+qDr
xM2ych4pyjyL04F20Zdg4Ymc2ZJb4dZ8fXgO5LX4nVtN+XvxxrMnYktghcaz
1FWU+0DYe/BAOeizB6+LUf49EFiyLRFD04DAZWHKo8X968/6VsN8pewxfso/
g2zzyw6+Ab9MOXUa5WGoUZrcUQ+R3aJtc0vrT7u5f43Ie1jBNX6WQ3l8wCpx
17JGuHT2zfx3yhy2APsw5yO0fUw61UV5rJhFv9DXDIUvTdkfKf9OC9mT+ekT
SHZzxF5T/hW0JeplbSvU8l01Kac8AncX5x99gdsFT7wyKP9Ucti9NrsLpmja
R2OX9psWWylX+xUWBIt2By15AM3pV3RDxZX4iv1LbpWV2f+0B1S8xxx2Ls2X
Pa179FEvFBQf7FNamm/x48BLt/vh3jfJCs7S/30n4Vpy+gDsKwnia6PMSTv5
9PaVQbhQ2KZHUB4LYowRkUPAfeuRZzTlX5Diw3VyBNTsX9Qtp3xO8kP5lsBR
kNbSDeqmzlPYJD1yi+Ev4Hdnf6mgzN9g9s7N8jdINOu0elKWCWGfqPXmgHGM
f2w5dV6P9A0ndnM4IGbZxRdHOcdS6OlcyDj4lgTq21Nev24f18bYCWCL6HRw
qHiwu+ltemruFOyfd2yUphwBo68K1k9DwMM4ha9UvKl5KNJX/WQahL4v08yl
bBFuqTVFzoDQ6y/empSdNzbWHu6cg1fN1YVqVLwyqPa8mCrIhawGPRT6RVnQ
OxMiKr+fCzlm2axOpxy9KT6nIJULeXC3vGZSrssoqK2WXoak9jyxyxNhgZXv
j1VT67hRZXrwTisq3rrJnSo6bMyD6h8l03yo+M1nE2owGMODYlTKcgUo58cm
NQWweVCEVTP3fQEW/Bgvmk204kXMEYWRdir+n2WP7sHOfEhW9lmsDp0a/5xv
l/JFOjrOdmsv4mEBik3Q2/iSjhp7dNUQ5dkb929sn6Ojumovh/c0Fpyq+GK9
N5gfadvzn/7JzQLbBbM3p88KoOqeAXuZZSxQiVIs+ddHCGUJJOgBlb+6X3sY
qG0SRbUatV5lVH4Ey6nRQgtR5Fot6K9EOfNz1C2tU6IoZeCBcwqHBNvvt+d2
PhJFoYOyo8fHSKgTaCnbp7kS3fPqbOX7RULpPkMN/3Vi6EWN0OhKKj9HfJQR
fyUvgUp545wOUvn/zLTN8gEDCbThtxf9ClUfHFmbPCfiJoGedHA82FT9sPME
rdcln2pfsvGA3hcSOLPDT3m1ViEL/94S4TYS3BQrbfcZSqIkQag9+5HKx75H
MzrcpJCDG9fLfVR9s+2fG0m8MVJI/vS8nXM1VS9UfIzY+EAKxUekFflWkbDA
w/QK+ymFAlM/RaaQJDxL36ynHCiNKtbd+vyqkgRVvKzTK0YGzY3k7+wsI4Eu
ck9h7oEsYh7LdVHLJWFjyZkzUWxZVMdPN199j4SD1ruJFT9l0deDa/7w5JBw
93qLI2PzWlQlnv2kI5uEXQz+dJNna1GvvV7AxUwSTmmdEk5hySH1gc82UWkk
DKlnXkz1YaDRV22M/DASDpgf91wXrYgy0wqvmh8iQcNmvzH7miLibprw5bUl
gcdRV+50riLiO3LMqNKGmr+XQOOzakU0f2OWpW5F1U/xRTv20JTQT1Pm9klz
qh6unaS7hymhZhUBPidDEgJNY+7fDVFGMoyqeleqfr5pmN+79rQqKo5OemH9
BwM/+6JEVqEGGvwcs2VXLIZxnmV9g3c2ou2qlakDghgmxr7Tsg20UHN2nacx
jYCI9Wt/JTtuRbOeW6W7yirhrf799cettdHw83pU6/wS1svMVYUFbEfnUzJb
mt/9C8y3uQXhvjvQnTx5etHucvh+8JzeZbddKL/qEm0k4zlk5kmofQzfjS7O
R0urVpSB8PvlbjznAflKVPJu6nsCTBfXP3rvEKIpZdC/fCgB82qbrNl2AxSn
dump88liKE7zcy9oMUT8ytIcTdsCuGk64RDab4RKrIRMLd7mQf+JnHPGvcYo
/vje0MHzd2Hct89zxRcT5OgS+bvFIRPinRPipof2oLTLRKNubyqEVxxpbOk3
RRmlLq1R05EgVfM+cNewKTqcVB3Oyo+Ex+8N12SPmqKS5tKHC3aR0Nmn6uYx
bYp4xcL/8SuPAD3R0Yk5fiZaZS8ZZhYSDtNul6QVNjDRM5Z0m+/URTglnO3s
5c9E3749jroy5w980mK874OYyOrN/OXqw/6QpRT1YNsFJhr4VCI+WeEH9bon
x/5EMZFkheBPmwu+oHFsc1TKP0y0baSXzjfrA33P8f2yciZSGh1rt50/BhdY
W8xlXjHRWcYh2RsvXUGi4d6vUBYTfZE2GW294AKG3Zd3MNlMZHzd1bF41gmy
hQ6w2zqYaHPQYEDCvDXorq46Dd+YiO/rLb/FCwfgnYK2xL0+JmI0+up0z+6D
BR1pJ58RJqqt53G+O28E/xjEL2sco/o/lDW5OLsbNpj/ydWZYiKu/V69L+a3
QrXt6b0355godKEy/eu8Evzf/QD6//uB/wFX7unK
"]]},
Annotation[#, "Charting`Private`Tag$26157#1"]& ]}, {}}, {{{}, {},
TagBox[
{RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.],
Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwt2Hc8V98fB3BCSbL3iOyQUSoy3m8SH7KiIqkoSSXS0PjKKFEyMgoVETIS
maWMe2/TFtJECaWBEIr4nR6P31/38XycO84597xf9zzu0l1+jnvmsbGxcbOz
sf07unl8HJqbY1H6SdKzrn/BpEfKbVRohkUZuYiULXORhV0dnb+Up1jUarPv
YYPOy8HbsnFmwwiLOvWkrvy5szEcWX6PJ/kDi4poH/Mrd7aFyN9RKjo0i+Iv
WuqU7rwdKuP0d7ifYVE5j6Ja9jofBDEmtoniZFGmTz71xG85DZYmb4J2jltQ
MT/uCUfFxICk3eSCRRPrKX6xHGW7wiugdjS0qnTGnIpxCPHx+poKheW31q0d
WkcFRUxY8XfdhJeR6TebfppRcQZcJZqBt+DIf6s6TD6YUl/41X9ruOeD3ZnV
unfakTrUatydpFIIiQYSjQ4lQOUpas3PaLkLJ7N/v52XYEx5h0ix9+SWQLp+
WEpzkiHl9jn4G8fWMjCbGihMvGVAPSzYoM8+UQ5tQ8H7xC6uoc660REWufcg
i5dpL05YRfXbioznaVXCbo+1n7gPr6RCjq7oiHj0AFJ7I61cXXUpW220tjCq
gpViC2sjm7QotWKPFuWIauB+6b3qdZw6xZJhPENe1oB7r9SirWkq1NiF7ePx
47WQuN1AY+MWBWrmy4SraAQFgbsFRv8zl6EYkZ6Vduw0xPucHJNRlqFSVeO6
JubRkHOsd7yaS4YS+zXvWhonDW0RZZNzT6UpzxIrh28LaFAtcPl71kqakuf3
SDvJR9rH07mj7KQop+VVyfukaVgWrit33UWC6nozGXFZj4bOXEebKh8RKi/P
5z9BTxpcRfm5K61FKImFo/Ou76GhO7ThUbmaCPWQvcdTeS8Nn13NDYv6hCnp
qt4Kvf00TPGuVr/pJkx1uBpErT9Eg5S/JPd5GyHKY3c8rR1Iww6DD4+cNAWo
wv1+55QSaOjNvh7swCNAOVYXvL6QSEOTUknA1VZ+6nUk1+yPy+R5nZl7oln8
lJ4IZ01JMg1shhHrjujzUeptgrxaaTSs57CbM5HgpVzbonK+5dLQnPAuoPPV
Aopd1UEitJqG2jgrJafkBZRzkY7A7Roa7sbee9HisoDqz+z/3V5LQ9zFBM26
N/MphzezGQoMDZvObuh9+I6LGsizh9KnNLw9/NA2o4eDWvk9IzSjhYaGzNVW
r5vnal3tbtF3P9BQcEMo64X9XO1VPZe4+x9piLk2NFvfOlt7KeeCTW0vDQ4J
t8qq2/7W/vHOCqvrI/N7Rkw+s3O61ljOdqL1Cxm/x8TEwe7J2h0FhmW3R2gY
Ax+rBe+Hax/omJrHztEwbntJfbJ3qFZe+22uHxsD49vKFn0e/FFb7f36rx07
8fGZpqeT32rPFzmc4OFgYKIoyjFc+Ettezsr/+h8Bv7I3dnGteFDrdkpm3ei
ixnQYaOqD2JSrWrbGaNISQY456YCXMKDYfeOemeWFANvIG2mMTQTqpZNbOeS
ZqAf+Hy+bKyEu8l26oEyDHyDp4oTBo3wSd+pxk2OgSG4OTdzpwuGM/cUDiox
MAKXDrJ5D0Ewz1yErjYDJ8ReVK4IGIaLX4fr3xCHTHCfXWE2Anb6sXSIDgML
m6xaPB1+Quo97rp6XQakTjXsrfMZA6VRA0N7PQaMO5qT47Mn4brw6WBJAwbO
wHDNbc0pGH0u019A/DSfv/9x6RRQlXrTJmsZsAt10J2kf4OsEYf+TkMG3LXa
6rZ1T0PsSMpQrDEDpo/3n45fxIaDMzOKJaYM9P0+JSBnT6yTe1LHjIFw7YuZ
t+PZ8JhmUeAd4vqrt+seS7Jj7G/eyMx1DDj6fxedVJ2HfeblVcHrGfBc4lu4
zZwTe9gCnadYDMzfFGT6JYITP3mv8PGwYiD3QkzH0QZOVOk006gj/j5e+Cfa
kQt/8ZbnJFozcKxh2IJyn4+molWJ0jbk+Sf8e5ROc+O7wBSxQTsG8EKUkVYV
N26Jc9VeY0/eZ0pOypppblxpIygTRuz7sMvJ+uRCvDy/8ZCUAwNbZq2e+x3j
QY4L/hwGGxkQ4N+jfLKMB6303t47TVwvF3LmzBgPvt4hDDSxiWmF0WX/RfjU
2OuJuSMDymEKxQ8O8uJq1vU7xk4MdCca8z0u4MXKk1fGTxAnZ7scaPrGi24h
potLiXmfxSh/2LcY3bukSxU3kfW4cDqFy4sPbx3gaJogLpQSm+TL5sM/kJ2q
tpkBbw3dTRJ9fCjY2mWylfi9zV4+jV38KMtEjFYQ9z7bZ6qmLYBX1oxLeW5h
ABwmhwvsBJB1JcQnivj667A0XV8BfGgYG11KvGXwxvTaOwK47UW+8Sxxqf/y
/NpGARSsONK41JmM/88DF/PvAlhUv1rdnLiep7PcVkMQ0/YpOZ4jVk3Y7dlm
LYjp6YtksojDpH8KOe8XxAl3rzKa2EST95B7niBGvxyx/018rSxlSf9zQWwY
7nIUdmFgyki1ad8XQfTbWamoSVxia6Z+RFUIBRfd03Il5u9seT1pIYSRe5O8
/Yh9dmyPCPQSwkOuvX5niesGvq5iDxfCy1rHza8Qq/id6DuXLYRmFqsGcojP
TnIl8DwRQlvpmU33iT8EJ5jG9gmhONy+9IzYmHvpiDCnMKa5KqS8JL56qTAt
WVEYg7RMfXuJJyWMbGXXCSNHwmf+IeJNGXXTGbuEUePEr9NTxMXLnPNVzghj
Sb/1ffatDPCV9LnczhBGqelnNQuJD6w9vECHFsayYZs4AeLnzFx52QdhLBB6
oC1GrLwh2tOATQQXNwynSBGfaZcSrpETwaak5hZZ4kNTmxZ8NhXBN7sNh+SI
d8jGTvN7iiBjoH5TntjGrG5YP1wEnbcf+favfe1ejj6PXBFMXDlc9+96tSjj
15H1IvjQLMD43/3Fio83ln4n56/4uF6UmLOzmHrPJ4o2Ddyf+IjH/nwr49IV
xcHJJyILiHvlVPK0nERx5NHPt3/JeFvN3VOdj4niTbc9q8aIa/ZdjQtJEsUW
gT+Kn4kLYjrO5VWK4ieHC7fe/JvPUr5Tbe9E8Wfh96p64vOvWb7Tf0WR7v7r
9YDYU6F6i62ZGKZoxB27TOxoOWkd4CmG6lufvQkhRh9duBEuhvknhV/sJ5ap
yFb9WS+GhcucT6wl5nnXIy31Qwy3v+FQk/+3nuYkBdbxi+P+Kp39nMQdVjFT
iU7iiB0B2c/J+mN8n3+vPiaOXmst0nKJ7ybM+ziQJI7Vq+ctiyCO6gqo038v
jqrNd8aAeL3/zqvvPSUwh+v91nRSH3pXUmK4IiRw6oF491FihYftZ7TyJDAL
5MYsiWc5WQdCfkigVz9HyyCpx4pkHSOlAEl8GWZtLUOcVb1fxzZZEgOyeDb2
k/qO781SCnggicypoM8FxL6akoufz0rix1eTzBpiFYq9+0CEFP7pCtAxInkh
0m/YlpgnhV6WksW/Sd7M4wl4Wt0ghZdF3Kly4m6nr4X8AtIY2ro5chlx0ue2
4NJkaTzmYPF8juQbN3/W0uk8GfS71NHiRfJRq/jQobAGGYysKXvBR7zZybh2
8Q8ZdD2QfbDcloGbSZ1u8jqyKNZhdmSW5Kuh/MLk9RWy+MAMSoI3kP7q+vJd
YpbgvF36AyYkvxPb126X7FuCjZGZ/7VaMvDw2IKCm1xyKNHkkudOzP0g3aqc
JYfL8/WaAi0YyDBrD3vbLIehV2pWZpkz8HXZ9dPxB+VRfPeoZxEy8PfUPGXn
IHkUjg89rE4s0OjdKB0rj3evVYhlAQNrfFdJZ9+Vx1+f7ygkmJD8KWm+f29M
Hp1vSFm4GzGwxJB9/P3Jpdhal5tdsYaBjTZe+1XDFVBlNl/JaTkD6pvszRsu
K6Cu6spPBZqkHtz0l/hlKyBPXbcnF3HFAZ62iscK2M7aXlyiTr6vFwsNLDgU
8X23ysFZVfL9q5vg3hOiiLvOMR6uCgwEWEbk3DylhBsGPdoVxRiwtz8UahGp
hKKfW15tFiX16Lx129cUJQxr/C81XISBt14a/CsqlbD6ubNPnxDJ6/CWAHpS
CT2/FonF8ZP5eiJu8eGoMvrRFfGF3CQ/zXL7ZP1U8LZ/SMfv3zRUJe/9KByi
gj8+u4gOT5H93pBK98I4FUweTerqnaRB4Vr2q18lKui+TZzz6S8acsdu1jdN
qOBj8Uc5p37SUJGVevd0kCqeHIuEVLKfapufENgVrYazm594PXtJ9k9ujifb
09RwrexAUHQHDWKlggF1RWpok6kk69hOw9adl/zKX5B2ifffOltp+HAvele0
6DJcF7TnRXMDDUPe51nGqcuwouZrxXGahoUNp0VSC9Qxnlvp8Z3bNIy8ql13
uEodXx3ozXbLp+F1H/sRy0Z1PBXNGPPkkf7Onnvx85s6bhboifW4RYPFipgY
Cw0N7Ox0qGbLoCEsJY17JE8DFZUqDdmv0DC7t3bGLEcTldW/0DzBpP+c7P1f
MrSwpd16BdrScMIhytS3WAu180/2ZW2gYeaaeNoYpYXnw+a5clvTwLlSy3m2
Rwvl01bHNljQIOyxrU54iTbG81UrrEMaVlSX3zG5qo1U2fqxiRU03F+7ytDa
SgczLq/29hen4dfoIEe6qS5Kyo/6lr6n4Iym7Eis20ocydxYutWGgmaTHE0v
p1VYcMz1o8auWtCUmn4UcnQN7i1eYRnbXw2s5uzbof4GqHbK125iaxUMbj5h
dN7TEMWaLG9VFz+A67dE1NpDjfHu42apGzX3ga91gSfnf4Dav6dSFeorgOWx
669RC+Jyq82yIefLwObxptQ/70zRJnp8U5xOCRQlHN5zu9MMNbfJNg81FsE1
y1+uQQPrMPFGxg/ezHwY2Jt5wrzPHAOa1+cJ5GbDuH///sVd69HhaLl/5a10
uOgeFTn11QIrfnT94Da8AqEPd7R1Dlii448Z54bwCJB42hpg+M0Sd7iJxw+q
RcDdVjPp9GFL3PrihxhXQzh096t47puyRHoySVOPPxyMBIZ/TS9k4b3G8w+O
JIXBlGew5NLlLNxw1HoqNCcUfPnS3Q8cYaGfpXaBfdRxmC8pxNV6nIUfz8s6
LmwNgFTFsDy9QBam9uy0oYQDoFHfe/RvGAs/W8xcVrl2FNR364RdusLCNNlT
A515/tB/j8opr2ThZRmvi6XReyGQWWEjVcNCG/4nPAMiXiDSlDUSxLAwqVt7
XPS6J5j1njdgNbAw0P5muW++B6Tzbmx4+56F6oveRgnGOIO++CM/+MhCnj06
7Vuub4KWpatEsvpZuEYqvSglfyPMrpbcfnCIhSV6leIrYyzhiulF9rZRFqKf
14nCfFNYbvM3e/UkC6Vj38bYx6yBx1v8rK9Ns1Dcds/LoBhV+P//BrQbDI2o
GLUw+R+jbcq7
"]]},
Annotation[#, "Charting`Private`Tag$25781#1"]& ]}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
TagBox["x", HoldForm], TraditionalForm],
FormBox["\[ExponentialE]", TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-50, 50}, {0., 0.1414213521033218}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.8878290920538473`*^9, 3.8878291159169803`*^9},
3.8878291496591845`*^9, 3.8878291805380588`*^9, 3.8878292875151443`*^9},
CellLabel->"Out[20]=",ExpressionUUID->"8fc3b2e1-caaf-4586-b1b7-55c2e057bed4"]
}, Open ]]
},
WindowSize->{960, 508},
WindowMargins->{{-5.5, Automatic}, {Automatic, -5.5}},
DockedCells->Cell[
BoxData[
FormBox[
GridBox[{{
ItemBox[
PanelBox[
StyleBox[
TagBox[
GridBox[{{
PaneBox[
TagBox[
GridBox[{{
TagBox[
TooltipBox[
TagBox[
FrameBox[
ButtonBox[
TagBox[
GridBox[{{
StyleBox[
DynamicBox[
FEPrivate`FrontEndResource[
"NotebookTemplatingBitmaps", "TemplateExpressionIcon"],
ImageSizeCache -> {15., {2., 13.}}, SingleEvaluation ->
True], StripOnInput -> False,
GraphicsBoxOptions -> {BaselinePosition -> Scaled[0.1]}],
DynamicBox[
FEPrivate`FrontEndResource[
"NotebookTemplatingStrings", "TemplateExpression"],
BaseStyle -> "TextStyling",
ImageSizeCache -> {12., {1., 10.}}, SingleEvaluation ->
True]}}, AutoDelete -> False,
GridBoxAlignment -> {"Rows" -> {{Baseline}}},
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
"Grid"], Appearance -> None, BaseStyle -> {},
ButtonFunction :>
NotebookTemplating`Authoring`Private`\
makeEvaluationExpression[
ButtonNotebook[]], Evaluator -> Automatic, Method ->
"Queued"], Background -> Dynamic[
If[
FEPrivate`And[
CurrentValue["MouseOver"],
CurrentValue["NotebookSelected"]],
GrayLevel[1],
RGBColor[
0.9607843137254902, 0.9607843137254902,
0.9607843137254902]]],
FrameMargins -> {{5, 5}, {Inherited, Inherited}},
FrameStyle -> GrayLevel[0.75],
ImageSize -> {Automatic, 30}, RoundingRadius -> 5,
StripOnInput -> False],
MouseAppearanceTag["LinkHand"]],
DynamicBox[
ToBoxes[
FEPrivate`FrontEndResource[
"NotebookTemplatingStrings", "TemplateExpressionTooltip"],
StandardForm]], TooltipDelay -> 0.25], Annotation[#,
Dynamic[
FEPrivate`FrontEndResource[
"NotebookTemplatingStrings",
"TemplateExpressionTooltip"]], "Tooltip"]& ],
TagBox[
TagBox[
TooltipBox[
FrameBox[
TagBox[
GridBox[{{
TagBox[
ButtonBox[
PaneBox[
TagBox[
GridBox[{{
StyleBox[
DynamicBox[
FEPrivate`FrontEndResource[
"NotebookTemplatingBitmaps", "TemplateSlotIcon"],
ImageSizeCache -> {15., {2., 13.}}, SingleEvaluation ->
True], StripOnInput -> False,
GraphicsBoxOptions -> {BaselinePosition -> Scaled[0.1]}],
DynamicBox[
FEPrivate`FrontEndResource[
"NotebookTemplatingStrings", "TemplateSlot"], BaseStyle ->
"TextStyling", ImageSizeCache -> {48., {1., 10.}},
SingleEvaluation -> True]}}, AutoDelete -> False,
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{Automatic}}}], "Grid"],
Appearance -> None, FrameMargins -> {{4, 2}, {-1, 0}},
ImageMargins -> 0],
Appearance -> {"Default" -> None, "Pressed" -> None},
BaseStyle -> {}, ButtonFunction :>
NotebookTemplating`Authoring`Private`makeTemplateSlot[
ButtonNotebook[], "Automatic"], ContentPadding -> False,
Evaluator -> Automatic, ImageSize -> {Automatic, 20},
Method -> "Preemptive"],
MouseAppearanceTag["LinkHand"]],
ActionMenuBox[
DynamicModuleBox[{},
DynamicBox[
FEPrivate`FrontEndResource[
"NotebookTemplatingBitmaps", "dropdownIcon"],
ImageSizeCache -> {15., {4., 11.}}, SingleEvaluation ->
True], DynamicModuleValues :> {},
Initialization :> (Needs["NotebookTemplating`"];
Needs["NotebookTemplating`Authoring`"]; Null)], {StyleBox[
DynamicBox[
FEPrivate`FrontEndResource[
"NotebookTemplatingStrings", "Named"], BaseStyle ->
"TextStyling", SingleEvaluation -> True], StripOnInput ->
False, TextAlignment -> Left] :>
NotebookTemplating`Authoring`Private`makeTemplateSlot[
ButtonNotebook[], "Named"], StyleBox[
DynamicBox[
FEPrivate`FrontEndResource[
"NotebookTemplatingStrings", "Positional"], BaseStyle ->
"TextStyling", SingleEvaluation -> True], StripOnInput ->
False, TextAlignment -> Left] :>
NotebookTemplating`Authoring`Private`makeTemplateSlot[
ButtonNotebook[], "Positional"]}, Appearance -> None,
BaselinePosition -> 0]}}, AutoDelete -> False, FrameStyle ->
GrayLevel[0.75],
GridBoxAlignment -> {"Rows" -> {{Baseline}}},
GridBoxDividers -> {
"ColumnsIndexed" -> {2 -> True}, "Rows" -> {{False}}},
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{0.25}}, "Rows" -> {{0}}}], "Grid"],
Alignment -> {Center, Center}, Background -> Dynamic[
If[
FEPrivate`And[
CurrentValue["MouseOver"],
CurrentValue["NotebookSelected"]],
GrayLevel[1],
RGBColor[
0.9607843137254902, 0.9607843137254902,
0.9607843137254902]]], FrameMargins -> 0, FrameStyle ->
GrayLevel[0.75], ImageMargins -> 0,
ImageSize -> {Automatic, 30}, RoundingRadius -> 5,
StripOnInput -> False],
DynamicBox[
ToBoxes[
FEPrivate`FrontEndResource[
"NotebookTemplatingStrings", "TemplateSlotTooltip"],
StandardForm]], TooltipDelay -> 0.25], Annotation[#,
Dynamic[
FEPrivate`FrontEndResource[
"NotebookTemplatingStrings", "TemplateSlotTooltip"]],
"Tooltip"]& ],
MouseAppearanceTag["LinkHand"]],
TagBox[
TooltipBox[
TagBox[
FrameBox[
ButtonBox[
TagBox[
GridBox[{{
StyleBox[
DynamicBox[
FEPrivate`FrontEndResource[
"NotebookTemplatingBitmaps", "ConditionalBlockIcon"],
ImageSizeCache -> {15., {2., 13.}}, SingleEvaluation ->
True], StripOnInput -> False,
GraphicsBoxOptions -> {BaselinePosition -> Scaled[0.1]}],
DynamicBox[
FEPrivate`FrontEndResource[
"NotebookTemplatingStrings", "ConditionalBlock"],
BaseStyle -> "TextStyling",
ImageSizeCache -> {72., {1., 11.}}, SingleEvaluation ->
True]}}, AutoDelete -> False,
GridBoxAlignment -> {"Rows" -> {{Baseline}}},
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
"Grid"], Appearance -> None, BaseStyle -> {},
ButtonFunction :>
NotebookTemplating`Authoring`Private`\
manageConditionalBlock[
ButtonNotebook[]], Evaluator -> Automatic, Method ->
"Queued"], Background -> Dynamic[
If[
FEPrivate`And[
CurrentValue["MouseOver"],
CurrentValue["NotebookSelected"]],
GrayLevel[1],
RGBColor[
0.9607843137254902, 0.9607843137254902,
0.9607843137254902]]],
FrameMargins -> {{5, 5}, {Inherited, Inherited}},
FrameStyle -> GrayLevel[0.75],
ImageSize -> {Automatic, 30}, RoundingRadius -> 5,
StripOnInput -> False],
MouseAppearanceTag["LinkHand"]],
DynamicBox[
ToBoxes[
FEPrivate`FrontEndResource[
"NotebookTemplatingStrings", "ConditionalBlockTooltip"],
StandardForm]], TooltipDelay -> 0.25], Annotation[#,
Dynamic[
FEPrivate`FrontEndResource[
"NotebookTemplatingStrings", "ConditionalBlockTooltip"]],
"Tooltip"]& ],
TagBox[
TooltipBox[
TagBox[
FrameBox[
ButtonBox[
TagBox[
GridBox[{{
StyleBox[
DynamicBox[
FEPrivate`FrontEndResource[
"NotebookTemplatingBitmaps", "RepeatingBlockIcon"],
ImageSizeCache -> {15., {2., 13.}}, SingleEvaluation ->
True], StripOnInput -> False,
GraphicsBoxOptions -> {BaselinePosition -> Scaled[0.1]}],
DynamicBox[
FEPrivate`FrontEndResource[
"NotebookTemplatingStrings", "RepeatingBlock"], BaseStyle ->
"TextStyling", ImageSizeCache -> {84., {1., 11.}},
SingleEvaluation -> True]}}, AutoDelete -> False,
GridBoxAlignment -> {"Rows" -> {{Baseline}}},
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
"Grid"], Appearance -> None, BaseStyle -> {},
ButtonFunction :>
NotebookTemplating`Authoring`Private`\
manageTemplateNameBlock[