forked from taasnim/speech-act
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspeech-act-dann.py
326 lines (271 loc) · 16.5 KB
/
speech-act-dann.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
from __future__ import absolute_import
from six.moves import cPickle
import gzip
import random
import math
import numpy as np
import tensorflow as tf
import optparse
import sys
import math
import glob, os, csv, re
from collections import Counter
from sklearn import metrics
from utilities import aidr
from flip_gradient import flip_gradient
class dannModel(object):
"""domain adaptation model."""
def __init__(self, E):
self._build_model(E)
def _build_model(self, E):
self.X = tf.placeholder(tf.int32, [None, options.maxlen], name="input_data")
self.sequence_lengths = tf.placeholder(tf.int32, shape=[None], name="sequence_lengths")
self.y_values = tf.placeholder(tf.int32, [None])
self.y = tf.one_hot(self.y_values, options.numClasses)
self.domain = tf.placeholder(tf.float32, [None, 2])
self.lambda_ = tf.placeholder(tf.float32, [])
self.train = tf.placeholder(tf.bool, [])
# RNN model for feature extraction
with tf.variable_scope('feature_extractor'):
# embedding matrix
E = tf.convert_to_tensor(E, tf.float32)
W_embedding = tf.get_variable("W_embedding", initializer=E)
print("Embedding shape: ", W_embedding.shape)
print("Input data shape: ", self.X.shape)
data = tf.nn.embedding_lookup(W_embedding, self.X)
print("After word embedding input shape: ", data.shape)
cell_fw = tf.contrib.rnn.LSTMCell(options.hidden_size)
cell_fw = tf.contrib.rnn.DropoutWrapper(cell=cell_fw, output_keep_prob=0.75)
cell_bw = tf.contrib.rnn.LSTMCell(options.hidden_size)
cell_bw = tf.contrib.rnn.DropoutWrapper(cell=cell_bw, output_keep_prob=0.75)
(output_fw, output_bw), (state_fw, state_bw) = tf.nn.bidirectional_dynamic_rnn(
cell_fw, cell_bw, data, sequence_length=self.sequence_lengths, dtype=tf.float32)
(c_fw, h_fw) = state_fw
(c_bw, h_bw) = state_bw
print("h_fw: ", h_fw.shape)
print("h_bw: ", h_bw.shape)
# The domain-invariant features
self.feature = tf.concat([h_fw, h_bw], axis=-1)
print("feature shape: ", self.feature.shape)
# MLP for class prediction
with tf.variable_scope('label_predictor'):
# Switches to route target examples (second half of batch) differently
# depending on train or test mode.
all_features = self.feature
source_features = tf.slice(self.feature, [0, 0], [options.minibatch_size // 2, -1])
print("All features: ", all_features.shape)
print("source features: ", source_features.shape)
classify_feats = tf.cond(self.train, lambda: source_features, lambda: all_features)
all_labels = self.y
source_labels = tf.slice(self.y, [0, 0], [options.minibatch_size // 2, -1])
print("All labels: ", all_labels.shape)
print("source labels: ", source_labels.shape)
self.classify_labels = tf.cond(self.train, lambda: source_labels, lambda: all_labels)
weight = tf.get_variable("l_w1",
shape=[options.hidden_size + options.hidden_size, options.numClasses],
initializer=tf.contrib.layers.xavier_initializer(seed=101))
bias = tf.get_variable("l_b1", shape=[options.numClasses], initializer=tf.constant_initializer(0.0))
self.logits = (tf.matmul(classify_feats, weight) + bias)
print("label Predictor: ", self.logits.shape)
self.pred = tf.nn.softmax(self.logits)
self.pred_loss = tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.classify_labels)
print("pred loss: ", self.pred_loss.shape)
# MLP for domain prediction with adversarial loss
with tf.variable_scope('domain_predictor'):
# Flip the gradient when backpropagating through this operation
feat = flip_gradient(self.feature, self.lambda_)
d_W_fc0 = tf.get_variable("d_w1", shape=[options.hidden_size + options.hidden_size, 100],
initializer=tf.contrib.layers.xavier_initializer(seed=101))
d_b_fc0 = tf.get_variable("d_b1", shape=[100], initializer=tf.constant_initializer(0.0))
d_h_fc0 = tf.nn.relu(tf.matmul(feat, d_W_fc0) + d_b_fc0)
d_W_fc1 = tf.get_variable("d_w2", shape=[100, 2],
initializer=tf.contrib.layers.xavier_initializer(seed=101))
d_b_fc1 = tf.get_variable("d_b2", shape=[2], initializer=tf.constant_initializer(0.0))
d_logits = tf.matmul(d_h_fc0, d_W_fc1) + d_b_fc1
print("domain predictor: ", d_logits.shape)
self.domain_pred = tf.nn.softmax(d_logits)
self.domain_loss = tf.nn.softmax_cross_entropy_with_logits(logits=d_logits, labels=self.domain)
print("domain loss: ", self.domain_loss.shape)
def mini_batches(X, Y, seq_len, mini_batch_size=32):
"""
Creates a list of minibatches from (X, Y)
Arguments:
X -- input data [2D shape (num_sentences X maxlen)]
Y -- label [list containing values 0-4 for 5 classes]
seq_len -- length of each element in X
mini_batch_size -- Size of each mini batch
Returns:
list of mini batches from the positive and negative documents.
"""
m = X.shape[0]
mini_batches = []
num_complete_minibatches = int(math.floor(m / mini_batch_size))
for k in range(0, num_complete_minibatches):
mini_batch_X = X[k * mini_batch_size: k * mini_batch_size + mini_batch_size]
mini_batch_Y = Y[k * mini_batch_size: k * mini_batch_size + mini_batch_size]
mini_batch_seqlen = seq_len[k * mini_batch_size: k * mini_batch_size + mini_batch_size]
mini_batch = (mini_batch_X, mini_batch_Y, mini_batch_seqlen)
mini_batches.append(mini_batch)
return mini_batches
if __name__ == '__main__':
parser = optparse.OptionParser("%prog [options]")
# file related options
parser.add_option("-g", "--log-file", dest="log_file", help="log file [default: %default]")
parser.add_option("-d", "--data-dir", dest="data_dir",
help="directory containing train, test and dev file [default: %default]")
parser.add_option("-D", "--data-spec", dest="data_spec",
help="specification for training data (in, out, in_out) [default: %default]")
parser.add_option("-p", "--model-dir", dest="model_dir",
help="directory to save the best models [default: %default]")
# network related
parser.add_option("-t", "--max-tweet-length", dest="maxlen", type="int",
help="maximal tweet length (for fixed size input) [default: %default]") # input size
parser.add_option("-m", "--model-type", dest="model_type",
help="uni or bidirectional [default: %default]") # uni, bi-directional
parser.add_option("-r", "--recurrent-type", dest="recur_type",
help="recurrent types (lstm, gru, simpleRNN) [default: %default]") # lstm, gru, simpleRNN
parser.add_option("-v", "--vocabulary-size", dest="max_features", type="int",
help="vocabulary size [default: %default]") # emb matrix row size
parser.add_option("-e", "--emb-size", dest="emb_size", type="int",
help="dimension of embedding [default: %default]") # emb matrix col size
parser.add_option("-s", "--hidden-size", dest="hidden_size", type="int",
help="hidden layer size [default: %default]") # size of the hidden layer
parser.add_option("-o", "--dropout_ratio", dest="dropout_ratio", type="float",
help="ratio of cells to drop out [default: %default]")
parser.add_option("-i", "--init-type", dest="init_type", help="random or pretrained [default: %default]")
parser.add_option("-f", "--emb-file", dest="emb_file", help="file containing the word vectors [default: %default]")
parser.add_option("-P", "--tune-emb", dest="tune_emb", action="store_false",
help="DON't tune word embeddings [default: %default]")
parser.add_option("-z", "--num-class", dest="numClasses", type="int",
help="Number of output classes [default: %default]")
parser.add_option("-E", "--eval-minibatches", dest="evalMinibatches", type="int",
help="After how many minibatch do we want to evaluate. [default: %default]")
# learning related
parser.add_option("-a", "--learning-algorithm", dest="learn_alg",
help="optimization algorithm (adam, sgd, adagrad, rmsprop, adadelta) [default: %default]")
parser.add_option("-b", "--minibatch-size", dest="minibatch_size", type="int",
help="minibatch size [default: %default]")
parser.add_option("-l", "--loss", dest="loss",
help="loss type (hinge, squared_hinge, binary_crossentropy) [default: %default]")
parser.add_option("-n", "--epochs", dest="epochs", type="int", help="nb of epochs [default: %default]")
parser.add_option("-C", "--map-class", dest="map_class", type="int",
help="map classes to five labels [default: %default]")
parser.set_defaults(
data_dir="./data/input_to_DNNs/main_files/ta/"
, data_spec="in"
, model_dir="./saved_models/"
, log_file="log"
, learn_alg="momentum" # momentum, sgd, adagrad, rmsprop, adadelta, adam (default)
, loss="softmax_crossentropy" # hinge, squared_hinge, binary_crossentropy (default)
, minibatch_size=64
, dropout_ratio=0.75
, maxlen=100
, epochs=10
, max_features=10000
, emb_size=300
, hidden_size=128
, model_type='bidirectional' # bidirectional, unidirectional (default)
, recur_type='lstm' # gru, simplernn, lstm (default)
, init_type='conv_glove' # 'random', 'word2vec', 'glove', 'conv_word2vec', 'conv_glove', 'meta_conv', 'meta_orig'
, emb_file="../data/unlabeled_corpus.vec"
, tune_emb=True
, map_class=0
, numClasses=5
, evalMinibatches=100
)
options, args = parser.parse_args(sys.argv)
(X_src, y_src), (X_train, y_train), (X_test, y_test), (X_dev, y_dev), max_features, E, label_id, sequence_len = \
aidr.load_and_numberize_data_dann(path=options.data_dir, nb_words=options.max_features, maxlen=options.maxlen,
init_type=options.init_type,
dev_train_merge=1, embfile=None, map_labels_to_five_class=1)
model = dannModel(E)
learning_rate = tf.placeholder(tf.float32, [])
prediction = model.logits
pred_loss = tf.reduce_mean(model.pred_loss)
domain_loss = tf.reduce_mean(model.domain_loss)
total_loss = pred_loss + domain_loss
if options.learn_alg == "adam":
optimizer_regular = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(pred_loss)
optimizer_dann = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(total_loss)
elif options.learn_alg == "momentum":
optimizer_regular = tf.train.MomentumOptimizer(learning_rate, 0.9).minimize(pred_loss)
optimizer_dann = tf.train.MomentumOptimizer(learning_rate, 0.9).minimize(total_loss)
correctPred = tf.equal(tf.argmax(prediction, axis=1), tf.argmax(model.classify_labels, axis=1))
accuracy = tf.reduce_mean(tf.cast(correctPred, tf.float32))
y_preds = tf.argmax(prediction, axis=1)
init = tf.global_variables_initializer()
m = X_src.shape[0]
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
saver = tf.train.Saver()
sess.run(init)
best_accuracy = 0.
best_macroF1 = 0.
best_epoch = -1
best_minibatch = -1
for epoch in range(options.epochs):
# randomly shuffle the source data
np.random.seed(2018+epoch)
np.random.shuffle(X_src)
np.random.seed(2018+epoch)
np.random.shuffle(y_src)
np.random.seed(2018+epoch)
np.random.shuffle(sequence_len['src_seq_len'])
src_minibatches = mini_batches(X_src, y_src, seq_len=sequence_len['src_seq_len'],
mini_batch_size=options.minibatch_size // 2)
src_num_minibatches = len(src_minibatches)
# randomly shuffle the target training data
np.random.seed(2018+epoch)
np.random.shuffle(X_train)
np.random.seed(2018+epoch)
np.random.shuffle(y_train)
np.random.seed(2018+epoch)
np.random.shuffle(sequence_len['train_seq_len'])
target_train_minibatches = mini_batches(X_train, y_train, seq_len=sequence_len['train_seq_len'],
mini_batch_size=options.minibatch_size // 2)
target_num_minibatches = len(target_train_minibatches)
domain_labels = np.vstack([np.tile([1., 0.], [options.minibatch_size // 2, 1]),
np.tile([0., 1.], [options.minibatch_size // 2, 1])])
for (i, src_minibatch) in enumerate(src_minibatches):
# Adaptation param and learning rate schedule as described in the DANN paper
num_steps = src_num_minibatches*options.epochs
p = float(epoch*src_num_minibatches + i) / num_steps
lambda_ = 2. / (1. + np.exp(-10. * p)) - 1
lr = 0.01 / (1. + 10 * p) ** 0.75
(src_minibatch_X, src_minibatch_y, src_minibatch_seqlen) = src_minibatch
(target_train_minibatch_X, target_train_minibatch_y, target_train_minibatch_seqlen) = \
target_train_minibatches[i%target_num_minibatches]
X = np.vstack([src_minibatch_X, target_train_minibatch_X])
Y = np.squeeze(np.vstack([np.reshape(np.asarray(src_minibatch_y), (-1, 1)),
np.reshape(np.asarray(target_train_minibatch_y), (-1, 1))]))
Z = np.squeeze(np.vstack([np.reshape(np.asarray(src_minibatch_seqlen), (-1, 1)),
np.reshape(np.asarray(target_train_minibatch_seqlen), (-1, 1))]))
'''
_, batch_loss = sess.run([optimizer_regular, pred_loss],
feed_dict={model.X: X, model.y_values: Y, model.sequence_lengths: Z, model.domain: domain_labels,
model.train: True, model.lambda_: lambda_, learning_rate: lr})
'''
_, batch_loss = sess.run([optimizer_dann, total_loss],
feed_dict={model.X: X, model.y_values: Y, model.sequence_lengths: Z,
model.domain: domain_labels,
model.train: True, model.lambda_: lambda_, learning_rate: lr})
if ((i + 1) % options.evalMinibatches == 0 or i == len(src_minibatches) - 1):
test_acc, test_y_vals, test_y_preds = sess.run([accuracy, model.y_values, y_preds],
feed_dict={model.X: X_test, model.y_values: y_test,
model.sequence_lengths: sequence_len['test_seq_len'], model.train: False})
acc_test = metrics.accuracy_score(test_y_vals, test_y_preds)
mic_p, mic_r, mic_f, sup = metrics.precision_recall_fscore_support(test_y_vals, test_y_preds,
average='micro')
mac_p, mac_r, mac_f, sup = metrics.precision_recall_fscore_support(test_y_vals, test_y_preds,
average='macro')
if (mac_f > best_macroF1):
best_accuracy = acc_test
best_macroF1 = mac_f
best_epoch = epoch
best_minibatch = i
print("\n\n##Epoch: ", epoch, " Minibatch: ", i)
print("Test Accuracy: ", acc_test)
print("Macro F-score: ", mac_f)
print("**Best so far** Epoch: ", best_epoch, " Minibatch: ", best_minibatch,
" Best Test acc: ", best_accuracy, " Best F1: ", best_macroF1, " **\n")