-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtable_consistency_checks.R
318 lines (283 loc) · 11.6 KB
/
table_consistency_checks.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
###############################################################################
#' Description: Table condition checks and asserts
#'
#' Input:
#'
#' Output: Supporting functions for ease of checking tables
#'
#' Author: Simon Anastasiadis
#'
#' Dependencies: dplyr, glue, utility_functions.R
#'
#' Notes:
#' - Uses code folding by headers (Alt + O to collapse all)
#' - Many of the functions come in two variants:
#' check_* variants return TRUE/FALSE
#' asssert_* variants error on a FALSE, and are silent on TRUE
#' - Functions intended for runtime checks for things we often assume (and should check)
#' - Replicates some existing R functions, but these versions will work on remote tables
#' as well as local tables.
#'
#' Issues:
#'
#' History (reverse order):
#' 2020-11-18 SA v2 for release
#' 2020-05-04 SA Added checks for number and non-overlapping date periods
#' 2020-04-15 SA Extend unique and join-covered to multiple columns
#' 2020-04-14 SA v1
#' #############################################################################
## Evaluate numeric comparison from string --------------------------------------------------------
#'
#' Provides numerical evaluation of text string comparison
#' E.g. evaluation_direction(14, "<", 10) returns 14<10
#'
evaluation_comparison <- function(val1, direction, val2) {
assert(is.numeric(val1), "input [val1] must be of type numeric")
assert(is.numeric(val2), "input [val2] must be of type numeric")
dd <- direction
assert(direction %in% c("==", "<", ">", "<=", ">=", "!="), "unrecognised direction provided")
answer <- eval(parse(text = paste(val1, direction, val2)))
return(answer)
}
## Number of rows ---------------------------------------------------------------------------------
#'
#' Provides the same functionality as nrow but also works on remote tables.
#'
num_row <- function(df) {
assert(is.data.frame(df) | dplyr::is.tbl(df), "input [df] must be of type data.frame")
answer <- df %>%
dplyr::ungroup() %>%
dplyr::summarise(num = dplyr::n()) %>%
dplyr::collect() %>%
unlist(use.names = FALSE)
return(answer)
}
## Number unique values in column(s) --------------------------------------------------------------
#'
#' Counts the number of unique values in a column (or set of columns).
#' Designed to work with remote and local tables.
#'
num_unique_entries <- function(df, col_name) {
assert(is.data.frame(df) | dplyr::is.tbl(df), "input [df] must be of type data.frame")
assert(is.character(col_name), "input [col_name] must be of type character")
assert(all(col_name %in% colnames(df)), "name provided does not match any column names")
answer <- df %>%
dplyr::ungroup() %>%
dplyr::select(!!!dplyr::syms(col_name)) %>%
dplyr::distinct() %>%
dplyr::summarise(num_u = dplyr::n()) %>%
dplyr::collect() %>%
unlist(use.names = FALSE)
return(answer)
}
## Number missing values in column ----------------------------------------------------------------
#'
#' Counts the number of missing values in a column (or cumulative across columns).
#' Designed to work with remote and local tables.
#'
num_missing_entries <- function(df, col_name) {
assert(is.data.frame(df) | dplyr::is.tbl(df), "input [df] must be of type data.frame")
assert(is.character(col_name), "input [col_name] must be of type character")
assert(all(col_name %in% colnames(df)), "name provided does not match any column names")
answer <- 0
for (col in col_name) {
this_answer <- df %>%
dplyr::mutate(missing_tmp = ifelse(is.na(!!dplyr::sym(col)), 1, 0)) %>%
dplyr::ungroup() %>%
dplyr::summarise(num_u = sum(missing_tmp)) %>%
dplyr::collect() %>%
unlist(use.names = FALSE)
answer <- answer + this_answer
}
return(answer)
}
## Check table size -------------------------------------------------------------------------------
#'
#' Returns T/F for whether number of rows in table is in direction relative to size
#'
check_size <- function(df, direction, size) {
nn <- num_row(df)
return(evaluation_comparison(nn, direction, size))
}
## Assert table size ------------------------------------------------------------------------------
#'
#' Asserts number of rows in table is in relative to size
#'
assert_size <- function(df, direction, size) {
msg <- glue::glue("num rows of df = {num_row(df)} is not {direction} {size}")
assert(check_size(df, direction, size), msg)
}
## Check comparison of table sizes ----------------------------------------------------------------
#'
#' Returns T/F for whether direction applies to number of rows in both tables
#'
check_size_comparison <- function(df1, direction, df2) {
n1 <- num_row(df1)
n2 <- num_row(df2)
return(evaluation_comparison(n1, direction, n2))
}
## Assert comparison of table sizes ---------------------------------------------------------------
#'
#' Asserts direction applies to number of rows in both tables
#'
assert_size_comparison <- function(df1, direction, df2) {
msg <- glue::glue(
"num rows of df1 = {num_row(df1)} is not",
" {direction} num rows of df2 = {num_row(df2)}"
)
assert(check_size_comparison(df1, direction, df2), msg)
}
## Check number of uniques ------------------------------------------------------------------------
#'
#' Returns T/F for whether number of unique values in col_name (or a combination of col_names)
#' of df is in direction relative to size
#'
check_size_uniques <- function(df, col_name, direction, size) {
uu <- num_unique_entries(df, col_name)
return(evaluation_comparison(uu, direction, size))
}
## Assert number of uniques -----------------------------------------------------------------------
#'
#' Assert number of unique values in col_name (or a combination of col_names)
#' of df is in direction relative to size
#'
assert_size_uniques <- function(df, col_name, direction, size) {
cc <- paste0(col_name, collapse = ", ")
msg <- glue::glue(
"number of uniques in {cc} of df = {num_unique_entries(df, col_name)}",
" is not {direction} {size}"
)
assert(check_size_uniques(df, col_name, direction, size), msg)
}
## Check every entry is unique --------------------------------------------------------------------
#'
#' Returns T/F for whether every entry in col_name (or the combination of col_names) is unique
#'
check_all_unique <- function(df, col_name) {
nn <- num_row(df)
check_size_uniques(df, col_name, "==", nn)
}
## Assert every entry is unique -------------------------------------------------------------------
#'
#' Asserts every entry in col_name (or the combination of col_names) is unique
#'
assert_all_unique <- function(df, col_name) {
cc <- paste0(col_name, collapse = ", ")
msg <- glue::glue("not all entries in {cc} of df are unique")
assert(check_all_unique(df, col_name), msg)
}
## Check LHS of join is covered by RHS of join ----------------------------------------------------
#'
#' Returns T/F for whether every value in join_col(s) of df1 is found in df2
#' TRUE --> no records in df1 will be lost during an inner join
#'
#' If joining on columns with different names, use a named list. E.g.:
#' join_col = c(col_in_df1 = "col_in_df2")
#'
check_join_covered <- function(df1, df2, join_col) {
n1 <- num_row(df1)
n2 <- num_row(dplyr::semi_join(df1, df2, by = join_col))
return(evaluation_comparison(n1, "==", n2))
}
## Assert LHS of join is covered by RHS of join ---------------------------------------------------
#'
#' Asserts every value in join_col(s) of df1 is found in df2
#' No error --> no records in df1 will be lost during an inner join
#'
assert_join_covered <- function(df1, df2, join_col) {
cc2 <- paste0(join_col, collapse = ", ")
cc1 <- ifelse(is.null(names(join_col)), cc2, paste0(names(join_col), collapse = ", "))
msg <- glue::glue("not covered, some values in {cc1} of df1 do not appear in {cc2} of df2")
assert(check_join_covered(df1, df2, join_col), msg)
}
## Check number of missings -----------------------------------------------------------------------
#'
#' Returns T/F for whether number of missing values in col_name (or cumulative across col_names)
#' of DF is in direction relative to size
#'
check_size_missing <- function(df, col_name, direction, size) {
mm <- num_missing_entries(df, col_name)
return(evaluation_comparison(mm, direction, size))
}
## Assert number of missings ----------------------------------------------------------------------
#'
#' Assert number of missing values in col_name (or cumulative across col_names)
#' of df is in direction relative to size
#'
assert_size_missing <- function(df, col_name, direction, size) {
cc <- paste0(col_name, collapse = ", ")
msg <- glue::glue(
"number of missings in {cc} of df = {num_missing_entries(df, col_name)}",
" is not {direction} {size}"
)
assert(check_size_missing(df, col_name, direction, size), msg)
}
## Check date periods do not overlap --------------------------------------------------------------
#'
#' Returns T/F for whether any overlap in date columns within groups defined by other columns.
#'
#' If two individuals have date periods that overlap with each other but neither individual
#' as overlapping date periods when considered on their own
#' Then group_by_cols = person_id will return TRUE (no overlap when grouped)
#' but group_by_cols = c() will return FALSE (overlap exists without grouping)
#'
check_no_date_overlap <- function(df, start_date, end_date, group_by_cols) {
assert(is.data.frame(df) | dplyr::is.tbl(df), "input [df] must be of type data.frame")
assert(is.character(start_date), "input [start_date] must be of type character")
assert(length(start_date) == 1, "only a single [start_date] may be specified")
assert(start_date %in% colnames(df), "[start_date] provided does not match any column names")
assert(is.character(end_date), "input [end_date] must be of type character")
assert(length(end_date) == 1, "only a single [end_date] may be specified")
assert(end_date %in% colnames(df), "[end_date] provided does not match any column names")
if (length(group_by_cols) == 0) {
group_by_cols <- "ones_tmp"
df <- df %>%
dplyr::mutate(ones_tmp = 1)
}
assert(is.character(group_by_cols), "input [group_by_cols] must be of type character")
assert(all(group_by_cols %in% colnames(df)), "name provided does not match any column names")
df <- df %>%
dplyr::rename(
sd_tmp = !!dplyr::sym(start_date),
ed_tmp = !!dplyr::sym(end_date)
)
# first check no common start dates
common_start <- df %>%
dplyr::group_by(!!!dplyr::syms(c(group_by_cols, "sd_tmp"))) %>%
dplyr::summarise(num_s = dplyr::n()) %>%
dplyr::filter(num_s != 1) %>%
dplyr::ungroup() %>%
dplyr::summarise(num_o = dplyr::n()) %>%
dplyr::collect() %>%
unlist(use.names = FALSE)
if (common_start > 0) {
return(FALSE)
}
# second check no common end dates
common_end <- df %>%
dplyr::group_by(!!!dplyr::syms(c(group_by_cols, "ed_tmp"))) %>%
dplyr::summarise(num_e = dplyr::n()) %>%
dplyr::filter(num_e != 1) %>%
dplyr::ungroup() %>%
dplyr::summarise(num_o = dplyr::n()) %>%
dplyr::collect() %>%
unlist(use.names = FALSE)
if (common_end > 0) {
return(FALSE)
}
# third check no overlaps when start & end dates do not match
number_overlaps <- df %>%
dplyr::inner_join(df, by = group_by_cols, suffix = c("_x", "_y")) %>%
dplyr::select(sd_tmp_x, sd_tmp_y, ed_tmp_x, ed_tmp_y) %>%
dplyr::filter(
sd_tmp_x <= ed_tmp_y, # overlap check
sd_tmp_y <= ed_tmp_x,
sd_tmp_x != sd_tmp_y, # start and end dates do not match
ed_tmp_x != ed_tmp_y
) %>%
dplyr::ungroup() %>%
dplyr::summarise(num_o = dplyr::n()) %>%
dplyr::collect() %>%
unlist(use.names = FALSE)
return(number_overlaps == 0)
}