forked from abseil/abseil-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
int128_benchmark.cc
221 lines (196 loc) · 7.21 KB
/
int128_benchmark.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/numeric/int128.h"
#include <algorithm>
#include <cstdint>
#include <random>
#include <vector>
#include "benchmark/benchmark.h"
#include "absl/base/config.h"
namespace {
constexpr size_t kSampleSize = 1000000;
std::mt19937 MakeRandomEngine() {
std::random_device r;
std::seed_seq seed({r(), r(), r(), r(), r(), r(), r(), r()});
return std::mt19937(seed);
}
std::vector<std::pair<absl::uint128, absl::uint128>>
GetRandomClass128SampleUniformDivisor() {
std::vector<std::pair<absl::uint128, absl::uint128>> values;
std::mt19937 random = MakeRandomEngine();
std::uniform_int_distribution<uint64_t> uniform_uint64;
values.reserve(kSampleSize);
for (size_t i = 0; i < kSampleSize; ++i) {
absl::uint128 a =
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random));
absl::uint128 b =
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random));
values.emplace_back(std::max(a, b),
std::max(absl::uint128(2), std::min(a, b)));
}
return values;
}
void BM_DivideClass128UniformDivisor(benchmark::State& state) {
auto values = GetRandomClass128SampleUniformDivisor();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first / pair.second);
}
}
}
BENCHMARK(BM_DivideClass128UniformDivisor);
std::vector<std::pair<absl::uint128, uint64_t>>
GetRandomClass128SampleSmallDivisor() {
std::vector<std::pair<absl::uint128, uint64_t>> values;
std::mt19937 random = MakeRandomEngine();
std::uniform_int_distribution<uint64_t> uniform_uint64;
values.reserve(kSampleSize);
for (size_t i = 0; i < kSampleSize; ++i) {
absl::uint128 a =
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random));
uint64_t b = std::max(uint64_t{2}, uniform_uint64(random));
values.emplace_back(std::max(a, absl::uint128(b)), b);
}
return values;
}
void BM_DivideClass128SmallDivisor(benchmark::State& state) {
auto values = GetRandomClass128SampleSmallDivisor();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first / pair.second);
}
}
}
BENCHMARK(BM_DivideClass128SmallDivisor);
std::vector<std::pair<absl::uint128, absl::uint128>> GetRandomClass128Sample() {
std::vector<std::pair<absl::uint128, absl::uint128>> values;
std::mt19937 random = MakeRandomEngine();
std::uniform_int_distribution<uint64_t> uniform_uint64;
values.reserve(kSampleSize);
for (size_t i = 0; i < kSampleSize; ++i) {
values.emplace_back(
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random)),
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random)));
}
return values;
}
void BM_MultiplyClass128(benchmark::State& state) {
auto values = GetRandomClass128Sample();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first * pair.second);
}
}
}
BENCHMARK(BM_MultiplyClass128);
void BM_AddClass128(benchmark::State& state) {
auto values = GetRandomClass128Sample();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first + pair.second);
}
}
}
BENCHMARK(BM_AddClass128);
#ifdef ABSL_HAVE_INTRINSIC_INT128
// Some implementations of <random> do not support __int128 when it is
// available, so we make our own uniform_int_distribution-like type.
class UniformIntDistribution128 {
public:
// NOLINTNEXTLINE: mimicking std::uniform_int_distribution API
unsigned __int128 operator()(std::mt19937& generator) {
return (static_cast<unsigned __int128>(dist64_(generator)) << 64) |
dist64_(generator);
}
private:
std::uniform_int_distribution<uint64_t> dist64_;
};
std::vector<std::pair<unsigned __int128, unsigned __int128>>
GetRandomIntrinsic128SampleUniformDivisor() {
std::vector<std::pair<unsigned __int128, unsigned __int128>> values;
std::mt19937 random = MakeRandomEngine();
UniformIntDistribution128 uniform_uint128;
values.reserve(kSampleSize);
for (size_t i = 0; i < kSampleSize; ++i) {
unsigned __int128 a = uniform_uint128(random);
unsigned __int128 b = uniform_uint128(random);
values.emplace_back(
std::max(a, b),
std::max(static_cast<unsigned __int128>(2), std::min(a, b)));
}
return values;
}
void BM_DivideIntrinsic128UniformDivisor(benchmark::State& state) {
auto values = GetRandomIntrinsic128SampleUniformDivisor();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first / pair.second);
}
}
}
BENCHMARK(BM_DivideIntrinsic128UniformDivisor);
std::vector<std::pair<unsigned __int128, uint64_t>>
GetRandomIntrinsic128SampleSmallDivisor() {
std::vector<std::pair<unsigned __int128, uint64_t>> values;
std::mt19937 random = MakeRandomEngine();
UniformIntDistribution128 uniform_uint128;
std::uniform_int_distribution<uint64_t> uniform_uint64;
values.reserve(kSampleSize);
for (size_t i = 0; i < kSampleSize; ++i) {
unsigned __int128 a = uniform_uint128(random);
uint64_t b = std::max(uint64_t{2}, uniform_uint64(random));
values.emplace_back(std::max(a, static_cast<unsigned __int128>(b)), b);
}
return values;
}
void BM_DivideIntrinsic128SmallDivisor(benchmark::State& state) {
auto values = GetRandomIntrinsic128SampleSmallDivisor();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first / pair.second);
}
}
}
BENCHMARK(BM_DivideIntrinsic128SmallDivisor);
std::vector<std::pair<unsigned __int128, unsigned __int128>>
GetRandomIntrinsic128Sample() {
std::vector<std::pair<unsigned __int128, unsigned __int128>> values;
std::mt19937 random = MakeRandomEngine();
UniformIntDistribution128 uniform_uint128;
values.reserve(kSampleSize);
for (size_t i = 0; i < kSampleSize; ++i) {
values.emplace_back(uniform_uint128(random), uniform_uint128(random));
}
return values;
}
void BM_MultiplyIntrinsic128(benchmark::State& state) {
auto values = GetRandomIntrinsic128Sample();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first * pair.second);
}
}
}
BENCHMARK(BM_MultiplyIntrinsic128);
void BM_AddIntrinsic128(benchmark::State& state) {
auto values = GetRandomIntrinsic128Sample();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first + pair.second);
}
}
}
BENCHMARK(BM_AddIntrinsic128);
#endif // ABSL_HAVE_INTRINSIC_INT128
} // namespace