-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathhalfka_v2_hm.py
95 lines (76 loc) · 2.88 KB
/
halfka_v2_hm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import chess
import torch
import feature_block
from collections import OrderedDict
from feature_block import *
NUM_SQ = 64
NUM_PT_REAL = 11
NUM_PT_VIRTUAL = 12
NUM_PLANES_REAL = NUM_SQ * NUM_PT_REAL
NUM_PLANES_VIRTUAL = NUM_SQ * NUM_PT_VIRTUAL
NUM_INPUTS = NUM_PLANES_REAL * NUM_SQ // 2
KingBuckets = [
-1, -1, -1, -1, 31, 30, 29, 28,
-1, -1, -1, -1, 27, 26, 25, 24,
-1, -1, -1, -1, 23, 22, 21, 20,
-1, -1, -1, -1, 19, 18, 17, 16,
-1, -1, -1, -1, 15, 14, 13, 12,
-1, -1, -1, -1, 11, 10, 9, 8,
-1, -1, -1, -1, 7, 6, 5, 4,
-1, -1, -1, -1, 3, 2, 1, 0
]
def orient(is_white_pov: bool, sq: int, ksq: int):
# ksq must not be oriented
kfile = (ksq % 8)
return (7 * (kfile < 4)) ^ (56 * (not is_white_pov)) ^ sq
def halfka_idx(is_white_pov: bool, king_sq: int, sq: int, p: chess.Piece):
p_idx = (p.piece_type - 1) * 2 + (p.color != is_white_pov)
o_ksq = orient(is_white_pov, king_sq, king_sq)
if p_idx == 11:
p_idx -= 1
return orient(is_white_pov, sq, king_sq) + p_idx * NUM_SQ + KingBuckets[o_ksq] * NUM_PLANES_REAL
def halfka_psqts():
# values copied from stockfish, in stockfish internal units
piece_values = {
chess.PAWN : 126,
chess.KNIGHT : 781,
chess.BISHOP : 825,
chess.ROOK : 1276,
chess.QUEEN : 2538
}
values = [0] * NUM_INPUTS
for ksq in range(64):
for s in range(64):
for pt, val in piece_values.items():
idxw = halfka_idx(True, ksq, s, chess.Piece(pt, chess.WHITE))
idxb = halfka_idx(True, ksq, s, chess.Piece(pt, chess.BLACK))
values[idxw] = val
values[idxb] = -val
return values
class Features(FeatureBlock):
def __init__(self):
super(Features, self).__init__('HalfKAv2_hm', 0x7f234cb8, OrderedDict([('HalfKAv2_hm', NUM_INPUTS)]))
def get_active_features(self, board: chess.Board):
raise Exception('Not supported yet, you must use the c++ data loader for support during training')
def get_initial_psqt_features(self):
return halfka_psqts()
class FactorizedFeatures(FeatureBlock):
def __init__(self):
super(FactorizedFeatures, self).__init__('HalfKAv2_hm^', 0x7f234cb8, OrderedDict([('HalfKAv2_hm', NUM_INPUTS), ('A', NUM_PLANES_VIRTUAL)]))
def get_active_features(self, board: chess.Board):
raise Exception('Not supported yet, you must use the c++ data loader for factorizer support during training')
def get_feature_factors(self, idx):
if idx >= self.num_real_features:
raise Exception('Feature must be real')
a_idx = idx % NUM_PLANES_REAL
k_idx = idx // NUM_PLANES_REAL
if a_idx // NUM_SQ == 10 and k_idx != KingBuckets[a_idx % NUM_SQ]:
a_idx += NUM_SQ
return [idx, self.get_factor_base_feature('A') + a_idx]
def get_initial_psqt_features(self):
return halfka_psqts() + [0] * NUM_PLANES_VIRTUAL
'''
This is used by the features module for discovery of feature blocks.
'''
def get_feature_block_clss():
return [Features, FactorizedFeatures]