-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathREADME.html
775 lines (767 loc) · 227 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<style type="text/css">
@font-face {
font-family: octicons-link;
src: url(data:font/woff;charset=utf-8;base64,d09GRgABAAAAAAZwABAAAAAACFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEU0lHAAAGaAAAAAgAAAAIAAAAAUdTVUIAAAZcAAAACgAAAAoAAQAAT1MvMgAAAyQAAABJAAAAYFYEU3RjbWFwAAADcAAAAEUAAACAAJThvmN2dCAAAATkAAAABAAAAAQAAAAAZnBnbQAAA7gAAACyAAABCUM+8IhnYXNwAAAGTAAAABAAAAAQABoAI2dseWYAAAFsAAABPAAAAZwcEq9taGVhZAAAAsgAAAA0AAAANgh4a91oaGVhAAADCAAAABoAAAAkCA8DRGhtdHgAAAL8AAAADAAAAAwGAACfbG9jYQAAAsAAAAAIAAAACABiATBtYXhwAAACqAAAABgAAAAgAA8ASm5hbWUAAAToAAABQgAAAlXu73sOcG9zdAAABiwAAAAeAAAAME3QpOBwcmVwAAAEbAAAAHYAAAB/aFGpk3jaTY6xa8JAGMW/O62BDi0tJLYQincXEypYIiGJjSgHniQ6umTsUEyLm5BV6NDBP8Tpts6F0v+k/0an2i+itHDw3v2+9+DBKTzsJNnWJNTgHEy4BgG3EMI9DCEDOGEXzDADU5hBKMIgNPZqoD3SilVaXZCER3/I7AtxEJLtzzuZfI+VVkprxTlXShWKb3TBecG11rwoNlmmn1P2WYcJczl32etSpKnziC7lQyWe1smVPy/Lt7Kc+0vWY/gAgIIEqAN9we0pwKXreiMasxvabDQMM4riO+qxM2ogwDGOZTXxwxDiycQIcoYFBLj5K3EIaSctAq2kTYiw+ymhce7vwM9jSqO8JyVd5RH9gyTt2+J/yUmYlIR0s04n6+7Vm1ozezUeLEaUjhaDSuXHwVRgvLJn1tQ7xiuVv/ocTRF42mNgZGBgYGbwZOBiAAFGJBIMAAizAFoAAABiAGIAznjaY2BkYGAA4in8zwXi+W2+MjCzMIDApSwvXzC97Z4Ig8N/BxYGZgcgl52BCSQKAA3jCV8CAABfAAAAAAQAAEB42mNgZGBg4f3vACQZQABIMjKgAmYAKEgBXgAAeNpjYGY6wTiBgZWBg2kmUxoDA4MPhGZMYzBi1AHygVLYQUCaawqDA4PChxhmh/8ODDEsvAwHgMKMIDnGL0x7gJQCAwMAJd4MFwAAAHjaY2BgYGaA4DAGRgYQkAHyGMF8NgYrIM3JIAGVYYDT+AEjAwuDFpBmA9KMDEwMCh9i/v8H8sH0/4dQc1iAmAkALaUKLgAAAHjaTY9LDsIgEIbtgqHUPpDi3gPoBVyRTmTddOmqTXThEXqrob2gQ1FjwpDvfwCBdmdXC5AVKFu3e5MfNFJ29KTQT48Ob9/lqYwOGZxeUelN2U2R6+cArgtCJpauW7UQBqnFkUsjAY/kOU1cP+DAgvxwn1chZDwUbd6CFimGXwzwF6tPbFIcjEl+vvmM/byA48e6tWrKArm4ZJlCbdsrxksL1AwWn/yBSJKpYbq8AXaaTb8AAHja28jAwOC00ZrBeQNDQOWO//sdBBgYGRiYWYAEELEwMTE4uzo5Zzo5b2BxdnFOcALxNjA6b2ByTswC8jYwg0VlNuoCTWAMqNzMzsoK1rEhNqByEyerg5PMJlYuVueETKcd/89uBpnpvIEVomeHLoMsAAe1Id4AAAAAAAB42oWQT07CQBTGv0JBhagk7HQzKxca2sJCE1hDt4QF+9JOS0nbaaYDCQfwCJ7Au3AHj+LO13FMmm6cl7785vven0kBjHCBhfpYuNa5Ph1c0e2Xu3jEvWG7UdPDLZ4N92nOm+EBXuAbHmIMSRMs+4aUEd4Nd3CHD8NdvOLTsA2GL8M9PODbcL+hD7C1xoaHeLJSEao0FEW14ckxC+TU8TxvsY6X0eLPmRhry2WVioLpkrbp84LLQPGI7c6sOiUzpWIWS5GzlSgUzzLBSikOPFTOXqly7rqx0Z1Q5BAIoZBSFihQYQOOBEdkCOgXTOHA07HAGjGWiIjaPZNW13/+lm6S9FT7rLHFJ6fQbkATOG1j2OFMucKJJsxIVfQORl+9Jyda6Sl1dUYhSCm1dyClfoeDve4qMYdLEbfqHf3O/AdDumsjAAB42mNgYoAAZQYjBmyAGYQZmdhL8zLdDEydARfoAqIAAAABAAMABwAKABMAB///AA8AAQAAAAAAAAAAAAAAAAABAAAAAA==) format('woff');
}
body {
-webkit-text-size-adjust: 100%;
text-size-adjust: 100%;
color: #333;
font-family: "Helvetica Neue", Helvetica, "Segoe UI", Arial, freesans, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
font-size: 16px;
line-height: 1.6;
word-wrap: break-word;
}
a {
background-color: transparent;
}
a:active,
a:hover {
outline: 0;
}
strong {
font-weight: bold;
}
h1 {
font-size: 2em;
margin: 0.67em 0;
}
img {
border: 0;
}
hr {
box-sizing: content-box;
height: 0;
}
pre {
overflow: auto;
}
code,
kbd,
pre {
font-family: monospace, monospace;
font-size: 1em;
}
input {
color: inherit;
font: inherit;
margin: 0;
}
html input[disabled] {
cursor: default;
}
input {
line-height: normal;
}
input[type="checkbox"] {
box-sizing: border-box;
padding: 0;
}
table {
border-collapse: collapse;
border-spacing: 0;
}
td,
th {
padding: 0;
}
* {
box-sizing: border-box;
}
input {
font: 13px / 1.4 Helvetica, arial, nimbussansl, liberationsans, freesans, clean, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
}
a {
color: #4078c0;
text-decoration: none;
}
a:hover,
a:active {
text-decoration: underline;
}
hr {
height: 0;
margin: 15px 0;
overflow: hidden;
background: transparent;
border: 0;
border-bottom: 1px solid #ddd;
}
hr:before {
display: table;
content: "";
}
hr:after {
display: table;
clear: both;
content: "";
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 15px;
margin-bottom: 15px;
line-height: 1.1;
}
h1 {
font-size: 30px;
}
h2 {
font-size: 21px;
}
h3 {
font-size: 16px;
}
h4 {
font-size: 14px;
}
h5 {
font-size: 12px;
}
h6 {
font-size: 11px;
}
blockquote {
margin: 0;
}
ul,
ol {
padding: 0;
margin-top: 0;
margin-bottom: 0;
}
ol ol,
ul ol {
list-style-type: lower-roman;
}
ul ul ol,
ul ol ol,
ol ul ol,
ol ol ol {
list-style-type: lower-alpha;
}
dd {
margin-left: 0;
}
code {
font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
font-size: 12px;
}
pre {
margin-top: 0;
margin-bottom: 0;
font: 12px Consolas, "Liberation Mono", Menlo, Courier, monospace;
}
.select::-ms-expand {
opacity: 0;
}
.octicon {
font: normal normal normal 16px/1 octicons-link;
display: inline-block;
text-decoration: none;
text-rendering: auto;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.octicon-link:before {
content: '\f05c';
}
.markdown-body:before {
display: table;
content: "";
}
.markdown-body:after {
display: table;
clear: both;
content: "";
}
.markdown-body>*:first-child {
margin-top: 0 !important;
}
.markdown-body>*:last-child {
margin-bottom: 0 !important;
}
a:not([href]) {
color: inherit;
text-decoration: none;
}
.anchor {
display: inline-block;
padding-right: 2px;
margin-left: -18px;
}
.anchor:focus {
outline: none;
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 1em;
margin-bottom: 16px;
font-weight: bold;
line-height: 1.4;
}
h1 .octicon-link,
h2 .octicon-link,
h3 .octicon-link,
h4 .octicon-link,
h5 .octicon-link,
h6 .octicon-link {
color: #000;
vertical-align: middle;
visibility: hidden;
}
h1:hover .anchor,
h2:hover .anchor,
h3:hover .anchor,
h4:hover .anchor,
h5:hover .anchor,
h6:hover .anchor {
text-decoration: none;
}
h1:hover .anchor .octicon-link,
h2:hover .anchor .octicon-link,
h3:hover .anchor .octicon-link,
h4:hover .anchor .octicon-link,
h5:hover .anchor .octicon-link,
h6:hover .anchor .octicon-link {
visibility: visible;
}
h1 {
padding-bottom: 0.3em;
font-size: 2.25em;
line-height: 1.2;
border-bottom: 1px solid #eee;
}
h1 .anchor {
line-height: 1;
}
h2 {
padding-bottom: 0.3em;
font-size: 1.75em;
line-height: 1.225;
border-bottom: 1px solid #eee;
}
h2 .anchor {
line-height: 1;
}
h3 {
font-size: 1.5em;
line-height: 1.43;
}
h3 .anchor {
line-height: 1.2;
}
h4 {
font-size: 1.25em;
}
h4 .anchor {
line-height: 1.2;
}
h5 {
font-size: 1em;
}
h5 .anchor {
line-height: 1.1;
}
h6 {
font-size: 1em;
color: #777;
}
h6 .anchor {
line-height: 1.1;
}
p,
blockquote,
ul,
ol,
dl,
table,
pre {
margin-top: 0;
margin-bottom: 16px;
}
hr {
height: 4px;
padding: 0;
margin: 16px 0;
background-color: #e7e7e7;
border: 0 none;
}
ul,
ol {
padding-left: 2em;
}
ul ul,
ul ol,
ol ol,
ol ul {
margin-top: 0;
margin-bottom: 0;
}
li>p {
margin-top: 16px;
}
dl {
padding: 0;
}
dl dt {
padding: 0;
margin-top: 16px;
font-size: 1em;
font-style: italic;
font-weight: bold;
}
dl dd {
padding: 0 16px;
margin-bottom: 16px;
}
blockquote {
padding: 0 15px;
color: #777;
border-left: 4px solid #ddd;
}
blockquote>:first-child {
margin-top: 0;
}
blockquote>:last-child {
margin-bottom: 0;
}
table {
display: block;
width: 100%;
overflow: auto;
word-break: normal;
word-break: keep-all;
}
table th {
font-weight: bold;
}
table th,
table td {
padding: 6px 13px;
border: 1px solid #ddd;
}
table tr {
background-color: #fff;
border-top: 1px solid #ccc;
}
table tr:nth-child(2n) {
background-color: #f8f8f8;
}
img {
max-width: 100%;
box-sizing: content-box;
background-color: #fff;
}
code {
padding: 0;
padding-top: 0.2em;
padding-bottom: 0.2em;
margin: 0;
font-size: 85%;
background-color: rgba(0,0,0,0.04);
border-radius: 3px;
}
code:before,
code:after {
letter-spacing: -0.2em;
content: "\00a0";
}
pre>code {
padding: 0;
margin: 0;
font-size: 100%;
word-break: normal;
white-space: pre;
background: transparent;
border: 0;
}
.highlight {
margin-bottom: 16px;
}
.highlight pre,
pre {
padding: 16px;
overflow: auto;
font-size: 85%;
line-height: 1.45;
background-color: #f7f7f7;
border-radius: 3px;
}
.highlight pre {
margin-bottom: 0;
word-break: normal;
}
pre {
word-wrap: normal;
}
pre code {
display: inline;
max-width: initial;
padding: 0;
margin: 0;
overflow: initial;
line-height: inherit;
word-wrap: normal;
background-color: transparent;
border: 0;
}
pre code:before,
pre code:after {
content: normal;
}
kbd {
display: inline-block;
padding: 3px 5px;
font-size: 11px;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.pl-c {
color: #969896;
}
.pl-c1,
.pl-s .pl-v {
color: #0086b3;
}
.pl-e,
.pl-en {
color: #795da3;
}
.pl-s .pl-s1,
.pl-smi {
color: #333;
}
.pl-ent {
color: #63a35c;
}
.pl-k {
color: #a71d5d;
}
.pl-pds,
.pl-s,
.pl-s .pl-pse .pl-s1,
.pl-sr,
.pl-sr .pl-cce,
.pl-sr .pl-sra,
.pl-sr .pl-sre {
color: #183691;
}
.pl-v {
color: #ed6a43;
}
.pl-id {
color: #b52a1d;
}
.pl-ii {
background-color: #b52a1d;
color: #f8f8f8;
}
.pl-sr .pl-cce {
color: #63a35c;
font-weight: bold;
}
.pl-ml {
color: #693a17;
}
.pl-mh,
.pl-mh .pl-en,
.pl-ms {
color: #1d3e81;
font-weight: bold;
}
.pl-mq {
color: #008080;
}
.pl-mi {
color: #333;
font-style: italic;
}
.pl-mb {
color: #333;
font-weight: bold;
}
.pl-md {
background-color: #ffecec;
color: #bd2c00;
}
.pl-mi1 {
background-color: #eaffea;
color: #55a532;
}
.pl-mdr {
color: #795da3;
font-weight: bold;
}
.pl-mo {
color: #1d3e81;
}
kbd {
display: inline-block;
padding: 3px 5px;
font: 11px Consolas, "Liberation Mono", Menlo, Courier, monospace;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.task-list-item {
list-style-type: none;
}
.task-list-item+.task-list-item {
margin-top: 3px;
}
.task-list-item input {
margin: 0 0.35em 0.25em -1.6em;
vertical-align: middle;
}
:checked+.radio-label {
z-index: 1;
position: relative;
border-color: #4078c0;
}
.sourceLine {
display: inline-block;
}
code .kw { color: #000000; }
code .dt { color: #ed6a43; }
code .dv { color: #009999; }
code .bn { color: #009999; }
code .fl { color: #009999; }
code .ch { color: #009999; }
code .st { color: #183691; }
code .co { color: #969896; }
code .ot { color: #0086b3; }
code .al { color: #a61717; }
code .fu { color: #63a35c; }
code .er { color: #a61717; background-color: #e3d2d2; }
code .wa { color: #000000; }
code .cn { color: #008080; }
code .sc { color: #008080; }
code .vs { color: #183691; }
code .ss { color: #183691; }
code .im { color: #000000; }
code .va {color: #008080; }
code .cf { color: #000000; }
code .op { color: #000000; }
code .bu { color: #000000; }
code .ex { color: #000000; }
code .pp { color: #999999; }
code .at { color: #008080; }
code .do { color: #969896; }
code .an { color: #008080; }
code .cv { color: #008080; }
code .in { color: #008080; }
</style>
<style>
body {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
padding-top: 0px;
}
</style>
</head>
<body>
<h1 id="readme">README</h1>
<h1 id="dnddata">dnddata</h1>
<ul>
<li><a href="#dnddata">dnddata</a>
<ul>
<li><a href="#usageinstallation">Usage/installation</a></li>
<li><a href="#examples">Examples</a></li>
<li><a href="#about-the-data">About the data</a>
<ul>
<li><a href="#columnelement-description">Column/element description</a></li>
<li><a href="#caveats">Caveats</a>
<ul>
<li><a href="#possible-issues-with-data-fields">Possible Issues with data fields</a></li>
<li><a href="#possible-issues-with-detection-of-unique-characters">Possible issues with detection of unique characters</a></li>
<li><a href="#possible-issues-with-selection-bias">Possible issues with selection bias</a></li>
</ul></li>
</ul></li>
</ul></li>
</ul>
<p>This is a weekly updated dataset of character that are submitted to my web applications <a href="https://oganm.com/shiny/printSheetApp">printSheetApp</a> and <a href="https://oganm.com/shiny/interactiveSheet">interactiveSheet</a>. It is a superset of the dataset I previously released under <a href="https://oganm.github.io/dndstats">oganm/dndstats</a> with a much larger sample (3242 characters) size and more data fields. It was inspired by the <a href="https://fivethirtyeight.com/features/is-your-dd-character-rare/">FiveThirtyEight</a> article on race/class proportions and the data seems to correlate well with those results (see my <a href="https://oganm.github.io/dndstats">dndstats article</a>).</p>
<p>Along with a simple table (an R <code>data.frame</code> in package), the data is also present in json format (an R <code>list</code> in package). In the table version some data fields encode complex information that are represented in a more readable manner in the json format. The data included is otherwise identical.</p>
<h2 id="usageinstallation">Usage/installation</h2>
<p>If you are an R user, you can simply install this package and load it to access the dataset</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb1-1" data-line-number="1">devtools<span class="op">::</span><span class="kw">install_github</span>(<span class="st">'oganm/dnddata'</span>)</a>
<a class="sourceLine" id="cb1-2" data-line-number="2"><span class="kw">library</span>(dnddata)</a></code></pre></div>
<p>Try <code>?tables</code>, <code>?lists</code> to see available objects and their descriptions</p>
<p>If you are not an R user, access the files within the <a href="data-raw">data-raw</a> directory. The files are available as JSON and TSV. You can find the field descriptions <a href="#columnelement-description">below</a>. <code>dnd_chars_all</code> files contain all characters that are submitted while <code>dnd_chars_unique</code> files are filtered to include unique characters.</p>
<h2 id="examples">Examples</h2>
<p>I will be using the list form of the dataset as a basis here.</p>
<p>Let’s replicate that plot from <a href="https://fivethirtyeight.com/features/is-your-dd-character-rare/">fivethirtyeight</a> as I did in my <a href="https://oganm.github.io/dndstats/">original article</a>.</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb2-1" data-line-number="1"><span class="kw">library</span>(purrr)</a>
<a class="sourceLine" id="cb2-2" data-line-number="2"><span class="kw">library</span>(ggplot2)</a>
<a class="sourceLine" id="cb2-3" data-line-number="3"><span class="kw">library</span>(magrittr)</a>
<a class="sourceLine" id="cb2-4" data-line-number="4"><span class="kw">library</span>(dplyr)</a>
<a class="sourceLine" id="cb2-5" data-line-number="5"><span class="kw">library</span>(reshape2)</a>
<a class="sourceLine" id="cb2-6" data-line-number="6"></a>
<a class="sourceLine" id="cb2-7" data-line-number="7"><span class="co"># find all available races</span></a>
<a class="sourceLine" id="cb2-8" data-line-number="8">races =<span class="st"> </span>dnd_chars_unique_list <span class="op">%>%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb2-9" data-line-number="9"><span class="st"> </span>purrr<span class="op">::</span><span class="kw">map</span>(<span class="st">'race'</span>) <span class="op">%>%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb2-10" data-line-number="10"><span class="st"> </span>purrr<span class="op">::</span><span class="kw">map_chr</span>(<span class="st">'processedRace'</span>) <span class="op">%>%</span></a>
<a class="sourceLine" id="cb2-11" data-line-number="11"><span class="st"> </span>unique <span class="op">%>%</span><span class="st"> </span>{.[.<span class="op">!=</span><span class="st">''</span>]}</a>
<a class="sourceLine" id="cb2-12" data-line-number="12"></a>
<a class="sourceLine" id="cb2-13" data-line-number="13"><span class="co"># find all available classes</span></a>
<a class="sourceLine" id="cb2-14" data-line-number="14">classes =<span class="st"> </span>dnd_chars_unique_list <span class="op">%>%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb2-15" data-line-number="15"><span class="st"> </span>purrr<span class="op">::</span><span class="kw">map</span>(<span class="st">'class'</span>) <span class="op">%>%</span></a>
<a class="sourceLine" id="cb2-16" data-line-number="16"><span class="st"> </span><span class="kw">unlist</span>(<span class="dt">recursive =</span> <span class="ot">FALSE</span>) <span class="op">%>%</span></a>
<a class="sourceLine" id="cb2-17" data-line-number="17"><span class="st"> </span>purrr<span class="op">::</span><span class="kw">map_chr</span>(<span class="st">'class'</span>) <span class="op">%>%</span><span class="st"> </span>unique</a>
<a class="sourceLine" id="cb2-18" data-line-number="18"></a>
<a class="sourceLine" id="cb2-19" data-line-number="19"><span class="co"># create an empty matrix</span></a>
<a class="sourceLine" id="cb2-20" data-line-number="20">coOccurenceMatrix =<span class="st"> </span><span class="kw">matrix</span>(<span class="dv">0</span> , <span class="dt">nrow=</span><span class="kw">length</span>(races),<span class="dt">ncol =</span> <span class="kw">length</span>(classes))</a>
<a class="sourceLine" id="cb2-21" data-line-number="21"><span class="kw">colnames</span>(coOccurenceMatrix) =<span class="st"> </span>classes</a>
<a class="sourceLine" id="cb2-22" data-line-number="22"><span class="kw">rownames</span>(coOccurenceMatrix) =<span class="st"> </span>races</a>
<a class="sourceLine" id="cb2-23" data-line-number="23"><span class="co"># fill the matrix with co-occurences of race and classes</span></a>
<a class="sourceLine" id="cb2-24" data-line-number="24"><span class="cf">for</span>(i <span class="cf">in</span> <span class="kw">seq_along</span>(races)){</a>
<a class="sourceLine" id="cb2-25" data-line-number="25"> <span class="cf">for</span>(j <span class="cf">in</span> <span class="kw">seq_along</span>(classes)){</a>
<a class="sourceLine" id="cb2-26" data-line-number="26"> <span class="co"># get characters with the right race</span></a>
<a class="sourceLine" id="cb2-27" data-line-number="27"> raceSubset =<span class="st"> </span>dnd_chars_unique_list[dnd_chars_unique_list <span class="op">%>%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb2-28" data-line-number="28"><span class="st"> </span>purrr<span class="op">::</span><span class="kw">map</span>(<span class="st">'race'</span>) <span class="op">%>%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb2-29" data-line-number="29"><span class="st"> </span>purrr<span class="op">::</span><span class="kw">map_chr</span>(<span class="st">'processedRace'</span>) <span class="op">%>%</span><span class="st"> </span>{.<span class="op">==</span>races[i]}]</a>
<a class="sourceLine" id="cb2-30" data-line-number="30"> </a>
<a class="sourceLine" id="cb2-31" data-line-number="31"> <span class="co"># get the characters with the right class. Weight multiclassed characters based on level</span></a>
<a class="sourceLine" id="cb2-32" data-line-number="32"> raceSubset <span class="op">%>%</span><span class="st"> </span>purrr<span class="op">::</span><span class="kw">map</span>(<span class="st">'class'</span>) <span class="op">%>%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb2-33" data-line-number="33"><span class="st"> </span>purrr<span class="op">::</span><span class="kw">map_dbl</span>(<span class="cf">function</span>(x){</a>
<a class="sourceLine" id="cb2-34" data-line-number="34"> x <span class="op">%>%</span><span class="st"> </span><span class="kw">sapply</span>(<span class="cf">function</span>(y){</a>
<a class="sourceLine" id="cb2-35" data-line-number="35"> (y<span class="op">$</span>class <span class="op">==</span><span class="st"> </span>classes[j])<span class="op">*</span>y<span class="op">$</span>level<span class="op">/</span>(<span class="kw">sum</span>(<span class="kw">map_int</span>(x,<span class="st">'level'</span>)))</a>
<a class="sourceLine" id="cb2-36" data-line-number="36"> }) <span class="op">%>%</span><span class="st"> </span>sum}) <span class="op">%>%</span><span class="st"> </span>sum -><span class="st"> </span>coOcc</a>
<a class="sourceLine" id="cb2-37" data-line-number="37"> </a>
<a class="sourceLine" id="cb2-38" data-line-number="38"> coOccurenceMatrix[i,j] =<span class="st"> </span>coOcc</a>
<a class="sourceLine" id="cb2-39" data-line-number="39"> }</a>
<a class="sourceLine" id="cb2-40" data-line-number="40">}</a>
<a class="sourceLine" id="cb2-41" data-line-number="41"></a>
<a class="sourceLine" id="cb2-42" data-line-number="42"><span class="co"># reorder the matrix a little bit</span></a>
<a class="sourceLine" id="cb2-43" data-line-number="43">coOccurenceMatrix =<span class="st"> </span></a>
<a class="sourceLine" id="cb2-44" data-line-number="44"><span class="st"> </span>coOccurenceMatrix[coOccurenceMatrix <span class="op">%>%</span><span class="st"> </span><span class="kw">apply</span>(<span class="dv">1</span>,sum) <span class="op">%>%</span><span class="st"> </span><span class="kw">order</span>(<span class="dt">decreasing =</span> <span class="ot">FALSE</span>),</a>
<a class="sourceLine" id="cb2-45" data-line-number="45"> coOccurenceMatrix <span class="op">%>%</span><span class="st"> </span><span class="kw">apply</span>(<span class="dv">2</span>,sum) <span class="op">%>%</span><span class="st"> </span><span class="kw">order</span>(<span class="dt">decreasing =</span> <span class="ot">TRUE</span>)]</a>
<a class="sourceLine" id="cb2-46" data-line-number="46"></a>
<a class="sourceLine" id="cb2-47" data-line-number="47"><span class="co"># calculate percentages</span></a>
<a class="sourceLine" id="cb2-48" data-line-number="48">coOccurenceMatrix =<span class="st"> </span>coOccurenceMatrix<span class="op">/</span>(<span class="kw">sum</span>(coOccurenceMatrix))<span class="op">*</span><span class="st"> </span><span class="dv">100</span></a>
<a class="sourceLine" id="cb2-49" data-line-number="49"></a>
<a class="sourceLine" id="cb2-50" data-line-number="50"><span class="co"># remove the rows and columns if they are less than 1%</span></a>
<a class="sourceLine" id="cb2-51" data-line-number="51">coOccurenceMatrixSubset =<span class="st"> </span>coOccurenceMatrix[,<span class="op">!</span>(coOccurenceMatrix <span class="op">%>%</span><span class="st"> </span><span class="kw">apply</span>(<span class="dv">2</span>,sum) <span class="op">%>%</span><span class="st"> </span>{.<span class="op"><</span><span class="dv">1</span>})]</a>
<a class="sourceLine" id="cb2-52" data-line-number="52">coOccurenceMatrixSubset =<span class="st"> </span>coOccurenceMatrixSubset[<span class="op">!</span>(coOccurenceMatrixSubset <span class="op">%>%</span><span class="st"> </span><span class="kw">apply</span>(<span class="dv">1</span>,sum) <span class="op">%>%</span><span class="st"> </span>{.<span class="op"><</span><span class="dv">1</span>}),]</a>
<a class="sourceLine" id="cb2-53" data-line-number="53"></a>
<a class="sourceLine" id="cb2-54" data-line-number="54"><span class="co"># add in class and race sums</span></a>
<a class="sourceLine" id="cb2-55" data-line-number="55">classSums =<span class="st"> </span>coOccurenceMatrix <span class="op">%>%</span><span class="st"> </span><span class="kw">apply</span>(<span class="dv">2</span>,sum) <span class="op">%>%</span><span class="st"> </span>{.[<span class="kw">colnames</span>(coOccurenceMatrixSubset)]}</a>
<a class="sourceLine" id="cb2-56" data-line-number="56">raceSums =<span class="st"> </span>coOccurenceMatrix <span class="op">%>%</span><span class="st"> </span><span class="kw">apply</span>(<span class="dv">1</span>,sum) <span class="op">%>%</span><span class="st"> </span>{.[<span class="kw">rownames</span>(coOccurenceMatrixSubset)]}</a>
<a class="sourceLine" id="cb2-57" data-line-number="57">coOccurenceMatrixSubset =<span class="st"> </span><span class="kw">cbind</span>(coOccurenceMatrixSubset,raceSums)</a>
<a class="sourceLine" id="cb2-58" data-line-number="58">coOccurenceMatrixSubset =<span class="st"> </span><span class="kw">rbind</span>(<span class="dt">Total =</span> <span class="kw">c</span>(classSums,<span class="ot">NA</span>), coOccurenceMatrixSubset)</a>
<a class="sourceLine" id="cb2-59" data-line-number="59"><span class="kw">colnames</span>(coOccurenceMatrixSubset)[<span class="kw">ncol</span>(coOccurenceMatrixSubset)] =<span class="st"> "Total"</span></a>
<a class="sourceLine" id="cb2-60" data-line-number="60"></a>
<a class="sourceLine" id="cb2-61" data-line-number="61"><span class="co"># ggplot</span></a>
<a class="sourceLine" id="cb2-62" data-line-number="62">coOccurenceFrame =<span class="st"> </span>coOccurenceMatrixSubset <span class="op">%>%</span><span class="st"> </span><span class="kw">melt</span>() </a>
<a class="sourceLine" id="cb2-63" data-line-number="63"><span class="kw">names</span>(coOccurenceFrame)[<span class="dv">1</span><span class="op">:</span><span class="dv">2</span>] =<span class="st"> </span><span class="kw">c</span>(<span class="st">'Race'</span>,<span class="st">'Class'</span>)</a>
<a class="sourceLine" id="cb2-64" data-line-number="64">coOccurenceFrame <span class="op">%<>%</span><span class="st"> </span><span class="kw">mutate</span>(<span class="dt">fillCol =</span> value<span class="op">*</span>(Race<span class="op">!=</span><span class="st">'Total'</span> <span class="op">&</span><span class="st"> </span>Class<span class="op">!=</span><span class="st">'Total'</span>))</a>
<a class="sourceLine" id="cb2-65" data-line-number="65">coOccurenceFrame <span class="op">%>%</span><span class="st"> </span><span class="kw">ggplot</span>(<span class="kw">aes</span>(<span class="dt">x =</span> Class,<span class="dt">y =</span> Race)) <span class="op">+</span></a>
<a class="sourceLine" id="cb2-66" data-line-number="66"><span class="st"> </span><span class="kw">geom_tile</span>(<span class="kw">aes</span>(<span class="dt">fill =</span> fillCol),<span class="dt">show.legend =</span> <span class="ot">FALSE</span>)<span class="op">+</span></a>
<a class="sourceLine" id="cb2-67" data-line-number="67"><span class="st"> </span><span class="kw">scale_fill_continuous</span>(<span class="dt">low =</span> <span class="st">'white'</span>,<span class="dt">high =</span> <span class="st">'#46A948'</span>,<span class="dt">na.value =</span> <span class="st">'white'</span>)<span class="op">+</span></a>
<a class="sourceLine" id="cb2-68" data-line-number="68"><span class="st"> </span>cowplot<span class="op">::</span><span class="kw">theme_cowplot</span>() <span class="op">+</span><span class="st"> </span></a>
<a class="sourceLine" id="cb2-69" data-line-number="69"><span class="st"> </span><span class="kw">geom_text</span>(<span class="kw">aes</span>(<span class="dt">label =</span> value <span class="op">%>%</span><span class="st"> </span><span class="kw">round</span>(<span class="dv">2</span>) <span class="op">%>%</span><span class="st"> </span><span class="kw">format</span>(<span class="dt">nsmall=</span><span class="dv">2</span>))) <span class="op">+</span><span class="st"> </span></a>
<a class="sourceLine" id="cb2-70" data-line-number="70"><span class="st"> </span><span class="kw">scale_x_discrete</span>(<span class="dt">position=</span><span class="st">'top'</span>) <span class="op">+</span><span class="st"> </span><span class="kw">xlab</span>(<span class="st">''</span>) <span class="op">+</span><span class="st"> </span><span class="kw">ylab</span>(<span class="st">''</span>) <span class="op">+</span><span class="st"> </span></a>
<a class="sourceLine" id="cb2-71" data-line-number="71"><span class="st"> </span><span class="kw">theme</span>(<span class="dt">axis.text.x =</span> <span class="kw">element_text</span>(<span class="dt">angle =</span> <span class="dv">30</span>,<span class="dt">vjust =</span> <span class="fl">0.5</span>,<span class="dt">hjust =</span> <span class="dv">0</span>)) </a></code></pre></div>
<p><img src="" /><!-- --></p>
<p>Or try something new. Wonder which fighting style is more popular?</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb3-1" data-line-number="1">dnd_chars_unique_list <span class="op">%>%</span><span class="st"> </span>purrr<span class="op">::</span><span class="kw">map</span>(<span class="st">'choices'</span>) <span class="op">%>%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb3-2" data-line-number="2"><span class="st"> </span>purrr<span class="op">::</span><span class="kw">map</span>(<span class="st">'fighting style'</span>) <span class="op">%>%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb3-3" data-line-number="3"><span class="st"> </span>unlist <span class="op">%>%</span></a>
<a class="sourceLine" id="cb3-4" data-line-number="4"><span class="st"> </span>table <span class="op">%>%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb3-5" data-line-number="5"><span class="st"> </span><span class="kw">sort</span>(<span class="dt">decreasing =</span> <span class="ot">TRUE</span>) <span class="op">%>%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb3-6" data-line-number="6"><span class="st"> </span>as.data.frame <span class="op">%>%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb3-7" data-line-number="7"><span class="st"> </span><span class="kw">ggplot</span>(<span class="kw">aes</span>(<span class="dt">x =</span> ., <span class="dt">y =</span> Freq)) <span class="op">+</span></a>
<a class="sourceLine" id="cb3-8" data-line-number="8"><span class="st"> </span><span class="kw">geom_bar</span>(<span class="dt">stat=</span> <span class="st">'identity'</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb3-9" data-line-number="9"><span class="st"> </span>cowplot<span class="op">::</span><span class="kw">theme_cowplot</span>() <span class="op">+</span></a>
<a class="sourceLine" id="cb3-10" data-line-number="10"><span class="st"> </span><span class="kw">theme</span>(<span class="dt">axis.text.x=</span> <span class="kw">element_text</span>(<span class="dt">angle =</span> <span class="dv">45</span>,<span class="dt">hjust =</span> <span class="dv">1</span>))</a></code></pre></div>
<p><img src="" /><!-- --></p>
<h2 id="about-the-data">About the data</h2>
<h3 id="columnelement-description">Column/element description</h3>
<ul>
<li><p><strong>ip:</strong> A shortened hash of the IP address of the submitter</p></li>
<li><p><strong>finger:</strong> A shortened hash of the browser fingerprint of the submitter</p></li>
<li><p><strong>name:</strong> A shortened hash of character names</p></li>
<li><p><strong>race:</strong> Race of the character as coded by the app. May be unclear as the app inconsistently codes race/subrace information. See processedRace</p></li>
<li><p><strong>background:</strong> Background as it comes out of the application.</p></li>
<li><p><strong>date:</strong> Time & date of input. Dates before 2018-04-16 are unreliable as some has accidentally changed while moving files around.</p></li>
<li><p><strong>class:</strong> Class and level. Different classes are separated by | when needed.</p></li>
<li><p><strong>justClass:</strong> Class without level. Different classes are separated by | when needed.</p></li>
<li><p><strong>subclass:</strong> Subclass. Might be missing if the character is low level. Different classes are separated by | when needed.</p></li>
<li><p><strong>level:</strong> Total level</p></li>
<li><p><strong>feats:</strong> Feats chosen. Mutliple feats are separated by | when needed</p></li>
<li><p><strong>HP:</strong> Total HP</p></li>
<li><p><strong>AC:</strong> AC score</p></li>
<li><p><strong>Str, Dex, Con, Int, Wis, Cha:</strong> Ability score modifiers</p></li>
<li><p><strong>alignment:</strong> Alignment free text field. Since it’s a free text field, it includes alignments written in many forms. See processedAlignment, good and lawful to get the standardized alignment data.</p></li>
<li><p><strong>skills:</strong> List of proficient skills. Skills are separated by |.</p></li>
<li><p><strong>weapons:</strong> List of weapons, separated by |. This is a free text field. See processedWeapons for the standardized version</p></li>
<li><p><strong>spells:</strong> List of spells, separated by |. Each spell has its level next to it separated by *s. This is a free text field. See processedSpells for the standardized version</p></li>
<li><p><strong>castingStat:</strong> Casting stat as entered by the user. The format allows one casting stat so this is likely wrong if the character has different spellcasting classes. Also every character has a casting stat even if they are not casters due to the data format.</p></li>
<li><p><strong>choices:</strong> Character building choices. This field information about character properties such as fighting styles and skills chosen for expertise. Different choice types are separated by | when needed. The choice data is written as name of choice followed by a / followed by the choices that are separated by *s</p></li>
<li><p><strong>country:</strong> The origin of the submitter’s IP</p></li>
<li><p><strong>countryCode:</strong> 2 letter country code</p></li>
<li><p><strong>processedAlignment:</strong> Standardized version of the alignment column. I have manually matched each non standard spelling of alignment to its correct form. First character represents lawfulness (L, N, C), second one goodness (G,N,E). An empty string means alignment wasn’t written or unclear.</p></li>
<li><p><strong>good, lawful:</strong> Isolated columns for goodness and lawfulness</p></li>
<li><p><strong>processedRace:</strong> I have gone through the way race column is filled by the app and asigned them to correct races. Also includes some common races that are not natively supported such as warforged and changelings. If empty, indiciates a homebrew race not natively supported by the app.</p></li>
<li><p><strong>processedSpells:</strong> Formatting is same as spells. Standardized version of the spells column. Spells are matched to an official list using string similarity and some hardcoded rules.</p></li>
<li><p><strong>processedWeapons:</strong> Formatting is same as weapons. Standardized version of the weapons column. Created like the processedSpells column.</p></li>
<li><p><strong>levelGroup:</strong> Splits levels into groups. The groups represent the common ASI levels</p></li>
<li><p><strong>alias:</strong> A friendly alias that correspond to each uniqe name</p></li>
</ul>
<p>The list version of this dataset contains all of these fields but they are organised a little differently, keeping fields like <code>spells</code> and <code>processedSpells</code> together.</p>
<h3 id="caveats">Caveats</h3>
<h4 id="possible-issues-with-data-fields">Possible Issues with data fields</h4>
<p>Some data fields are more reliable than others. Below is a summary of all potential problems with the data fields</p>
<ul>
<li><p><strong>ip and browser fingerprints:</strong> Both IP and browser fingerprints are represented as hashes. I keep them to have an idea of individual users but did not make use of them so far. Note that same IPs can be shared by an entire region in some cases.</p></li>
<li><p><strong>processedAlignment:</strong> Alignment is a free text field in the app and optional. Many characters do not enter their alignments. To create the standardized alignment fields, I went through every entry and manually assigned every alternative spelling to the standardized version. These include mispelled entries, abreviations, entries in different languages etc. In cases where I wasn’t able to match (eg. what the hell is “lawful cute”), this field was left blank. Between automatic updates new and exciting ways to describe alignment can come into play. Unless I manually added these new entries, they will also appear blank.</p></li>
<li><p><strong>processedSpells:</strong> The mobile app allows entering free text into the spell fields. Which means I have to deal with people writing spells in a non-standard way with typos, abbreviations or additional information such as range, damage dice. I use some heuristics to match the entered text to a list of all published spells. Shortly, I look at the Levenshtein distance between the entry and the published spells and match the entry with the top result if</p>
<ul>
<li>the spell level is correct and,</li>
<li>there are not more than 10 substitutions/deletions/insertions or either entry or the potential match includes all words that the counterpart includes.</li>
<li>In addition, there are special cases for Bigby’s Hand, Tasha’s Hideous Laughter and Melf’s Acid Arrow as those spells are often written in their SRD form and match to wrong spells.</li>
</ul></li>
</ul>
<p>74% of all spells parsed did not require any modification. 21% of were only able to be matched through the heuristics. A manual examination of a random seleciton of these matches revealed 2/200 mistakes. 5% of the spell entries were not matched to an official spell. Manual observation of these entries revealed that the common reasons for a failure to match are users writing the spell under the wrong spell level, writing some class/race features such as blindsight as spells or adding/removing more than 10 charters when writing the spells either through abbreviation or adding additional information about the spell.</p>
<ul>
<li><strong>processedWeapons:</strong> Weapon names are also free text fields so a processing method similar to the one used for spells is used for weapon names. Instead of a threshold of 10 substititutions/deletions/insertions, 2 was used since weapon names typically did not include additional information like spell names did. Special cases were written for hand crossbow and heavy crossbow as they were typically mismatched to their official name (eg. “crossbow, hand”). Here the weapons that weren’t matched were spell names or homebrew weapons.</li>
</ul>
<p>81% of all weapons parsed did not require any modification. 14% of were only able to be matched through the heuristics. A manual examination of a random seleciton of these matches revealed 1/200 mistake. 5% of the weapon entries were not matched to an official weapon.</p>
<h4 id="possible-issues-with-detection-of-unique-characters">Possible issues with detection of unique characters</h4>
<p>Identification of unique characters rely on some heuristics. I assume any character with the same name and class is potentially the same character. In these cases I pick the highest level character. Race and other properties are not considered so some unique characters may be lost along the way. I have chosen to be less exact to reduce the nubmer of possible test characters since there were examples of people submitting essentially the same character with different races, presumably to test things out. For multiclassed characters, if a lower level character with the same name and a subset of classes exist, they are removed, again leaving the character with the highest level.</p>
<h4 id="possible-issues-with-selection-bias">Possible issues with selection bias</h4>
<p>This data comes from characters submitted to my web applications. The applications are written to support a popular third party character sheet app for mobile platforms. I have advertised my applications primarily on Reddit r/dndnext and r/dnd. I have seen them mentioned in a few other platforms by word of mouth. That means we are looking at subsamples of subsamples here, all of which can cause some amount of selection bias. Some characters could be thought experiments or for testing purposes and never see actual game play.</p>
</body>
</html>