diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json index 753b9a6..993c05e 100644 --- a/dev/.documenter-siteinfo.json +++ b/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.11.1","generation_timestamp":"2024-11-09T01:59:02","documenter_version":"1.7.0"}} \ No newline at end of file +{"documenter":{"julia_version":"1.11.1","generation_timestamp":"2024-11-09T02:03:53","documenter_version":"1.7.0"}} \ No newline at end of file diff --git a/dev/API/index.html b/dev/API/index.html index 1f0796e..2ad4186 100644 --- a/dev/API/index.html +++ b/dev/API/index.html @@ -1,5 +1,5 @@ -API reference · TwoBody.jl

API reference

TwoBody.BasisSetType

BasisSet(basis1, basis2, ...)

\[\{ \phi_1, \phi_2, \phi_3, \cdots \}\]

The basis set is the input for Rayleigh–Ritz method. You can define the basis set like this:

\[\begin{aligned} +API reference · TwoBody.jl

API reference

TwoBody.BasisSetType

BasisSet(basis1, basis2, ...)

\[\{ \phi_1, \phi_2, \phi_3, \cdots \}\]

The basis set is the input for Rayleigh–Ritz method. You can define the basis set like this:

\[\begin{aligned} \phi_1(r) &= \exp(-13.00773 ~r^2), \\ \phi_2(r) &= \exp(-1.962079 ~r^2), \\ \phi_3(r) &= \exp(-0.444529 ~r^2), \\ @@ -9,12 +9,12 @@ SimpleGaussianBasis(1.962079), SimpleGaussianBasis(0.444529), SimpleGaussianBasis(0.1219492), -)

source
TwoBody.HamiltonianType

Hamiltonian(operator1, operator2, ...)

\[\hat{H} = \sum_i \hat{o}_i\]

The Hamiltonian is the input for each solver. This is an example for the non-relativistic Hamiltonian of hydrogen atom in atomic units:

\[\hat{H} = +)

source
TwoBody.HamiltonianType

Hamiltonian(operator1, operator2, ...)

\[\hat{H} = \sum_i \hat{o}_i\]

The Hamiltonian is the input for each solver. This is an example for the non-relativistic Hamiltonian of hydrogen atom in atomic units:

\[\hat{H} = - \frac{1}{2} \nabla^2 - \frac{1}{r}\]

hamiltonian = Hamiltonian(
   NonRelativisticKinetic(ℏ =1 , m = 1),
   CoulombPotential(coefficient = -1),
-)
source
TwoBody.RelativisticCorrectionType

RelativisticCorrection(c=1, m=1, n=2) The p^{2n} term of the Taylor expansion:

\[\begin{aligned} \sqrt{p^2 c^2 + m^2 c^4} =& m \times c^2 \\ &+ 1 / 2 / m \times p^2 (n=1) \\ @@ -22,7 +22,7 @@ &+ 1 / 16 / m^5 / c^4 \times p^6 (n=3) \\ &- 5 / 128 / m^7 / c^6 \times p^8 (n=4) \\ &+ \cdots -\end{aligned}\]

Use c = 137.035999177 (from 2022 CODATA) in the atomic units.

source
TwoBody.YukawaPotentialType

YukawaPotential(coefficient=1, exponent=1)

\[+ \mathrm{coeff.} \times \exp(- \mathrm{expon.} \times r) / r\]

source
TwoBody.elementMethod

element(o::CoulombPotential, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} +\end{aligned}\]

Use c = 137.035999177 (from 2022 CODATA) in the atomic units.

source
TwoBody.YukawaPotentialType

YukawaPotential(coefficient=1, exponent=1)

\[+ \mathrm{coeff.} \times \exp(- \mathrm{expon.} \times r) / r\]

source
TwoBody.elementMethod

element(o::CoulombPotential, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} \langle \phi_{i} | \frac{1}{r} | \phi_{j} \rangle &= \iiint \phi_{i}^*(r) @@ -36,13 +36,13 @@ &= \underline{\frac{2\pi}{\alpha_i + \alpha_j}} \end{aligned}\]

Integral Formula:

\[\begin{aligned} \int_0^{\infty} r^{2n+1} \exp \left(-a r^2\right) ~\mathrm{d}r = \frac{n!}{2 a^{n+1}} -\end{aligned}\]

source
TwoBody.elementMethod

element(o::Hamiltonian, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} +\end{aligned}\]

source
TwoBody.elementMethod

element(o::Hamiltonian, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} H_{ij} &= \langle \phi_{i} | \hat{H} | \phi_{j} \rangle \\ &= \langle \phi_{i} | \hat{T} + \hat{V} | \phi_{j} \rangle \\ &= \langle \phi_{i} | \hat{T} | \phi_{j} \rangle + \langle \phi_{i} | \hat{V} | \phi_{j} \rangle \\ &= T_{ij} + V_{ij} -\end{aligned}\]

source
TwoBody.elementMethod

element(o::LinearPotential, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} +\end{aligned}\]

source
TwoBody.elementMethod

element(o::LinearPotential, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} \langle \phi_{i} | r | \phi_{j} \rangle &= \iiint \phi_{i}^*(r) @@ -56,7 +56,7 @@ &= \underline{\frac{2\pi}{(\alpha_i + \alpha_j)^2}} \end{aligned}\]

Integral Formula:

\[\begin{aligned} \int_0^{\infty} r^{2n+1} \exp \left(-a r^2\right) ~\mathrm{d}r = \frac{n!}{2 a^{n+1}} -\end{aligned}\]

source
TwoBody.elementMethod

element(o::NonRelativisticKinetic, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} +\end{aligned}\]

source
TwoBody.elementMethod

element(o::NonRelativisticKinetic, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} T_{ij} = \langle \phi_{i} | \hat{T} | \phi_{j} \rangle &= \iiint \mathrm{e}^{-\alpha_i r^2} @@ -159,7 +159,7 @@ \cdot 6 \cdot \frac{\alpha_i \alpha_j \pi^{\frac{3}{2}}}{(\alpha_i + \alpha_j)^{\frac{5}{2}}} } -\end{aligned}\]

source
TwoBody.elementMethod

element(o::PowerLawPotential, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} +\end{aligned}\]

source
TwoBody.elementMethod

element(o::PowerLawPotential, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} \langle \phi_{i} | r^n | \phi_{j} \rangle &= \iiint \phi_{i}^*(r) @@ -171,7 +171,7 @@ \int_0^\infty r^{n+2} \mathrm{e}^{-(\alpha_i + \alpha_j) r^2} ~\mathrm{d}r \\ &= 2\pi \times 2 \times \frac{\Gamma\left( \frac{n+3}{2} \right)}{2 (\alpha_i + \alpha_j)^{\frac{n+3}{2}}} \\ &= \underline{2\pi\frac{\Gamma\left( \frac{n+3}{2} \right)}{(\alpha_i + \alpha_j)^{\frac{n+3}{2}}}} -\end{aligned}\]

Integral Formula:

\[\int_0^{\infty} r^{n} \exp \left(-a r^2\right) ~\mathrm{d}r = \frac{\Gamma\left( \frac{n+1}{2} \right)}{2 a^{\frac{n+1}{2}}}\]

source
TwoBody.elementMethod

element(SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} +\end{aligned}\]

Integral Formula:

\[\int_0^{\infty} r^{n} \exp \left(-a r^2\right) ~\mathrm{d}r = \frac{\Gamma\left( \frac{n+1}{2} \right)}{2 a^{\frac{n+1}{2}}}\]

source
TwoBody.elementMethod

element(SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} S_{ij} = \langle \phi_{i} | \phi_{j} \rangle &= \iiint @@ -183,4 +183,4 @@ \int_0^\infty r^{2} \mathrm{e}^{-(\alpha_i + \alpha_j) r^2} ~\mathrm{d}r \\ &= 2\pi \times 2 \times \frac{1!!}{2^{2}} \sqrt{\frac{\pi}{a^{3}}} \\ &= \underline{\left( \frac{\pi}{\alpha_i + \alpha_j} \right)^{3/2}} -\end{aligned}\]

Integral Formula:

\[\int_0^{\infty} r^{2n} \exp \left(-a r^2\right) ~\mathrm{d}r = \frac{(2n-1)!!}{2^{n+1}} \sqrt{\frac{\pi}{a^{2n+1}}}\]

source
TwoBody.solveMethod

solve(hamiltonian::Hamiltonian, basisset::BasisSet)

This function returns the eigenvalues $E$ and eigenvectors $\pmb{c}$ for

\[\pmb{H} \pmb{c} = E \pmb{S} \pmb{c}.\]

The Hamiltonian matrix is defined as $H_{ij} = \langle \phi_{i} | \hat{H} | \phi_{j} \rangle$. The overlap matrix is defined as $S_{ij} = \langle \phi_{i} | \phi_{j} \rangle$.

source
+\end{aligned}\]

Integral Formula:

\[\int_0^{\infty} r^{2n} \exp \left(-a r^2\right) ~\mathrm{d}r = \frac{(2n-1)!!}{2^{n+1}} \sqrt{\frac{\pi}{a^{2n+1}}}\]

source
TwoBody.solveMethod

solve(hamiltonian::Hamiltonian, basisset::BasisSet)

This function returns the eigenvalues $E$ and eigenvectors $\pmb{c}$ for

\[\pmb{H} \pmb{c} = E \pmb{S} \pmb{c}.\]

The Hamiltonian matrix is defined as $H_{ij} = \langle \phi_{i} | \hat{H} | \phi_{j} \rangle$. The overlap matrix is defined as $S_{ij} = \langle \phi_{i} | \phi_{j} \rangle$.

source
diff --git a/dev/Hamiltonian/index.html b/dev/Hamiltonian/index.html index b883704..908fca5 100644 --- a/dev/Hamiltonian/index.html +++ b/dev/Hamiltonian/index.html @@ -4,7 +4,7 @@ - \frac{1}{r}\]

hamiltonian = Hamiltonian(
   NonRelativisticKinetic(ℏ =1 , m = 1),
   CoulombPotential(coefficient = -1),
-)
source

Operators

TwoBody.NonRelativisticKineticType

NonRelativisticKinetic(ℏ=1, m=1)

\[-\frac{\hbar^2}{2m} \nabla^2\]

source
TwoBody.RestEnergyType

RestEnergy(c=1, m=1)

\[m c^2\]

Use c = 137.035999177 (from 2022 CODATA) in the atomic units.

source
TwoBody.RelativisticCorrectionType

RelativisticCorrection(c=1, m=1, n=2) The p^{2n} term of the Taylor expansion:

\[\begin{aligned} +)

source

Operators

TwoBody.NonRelativisticKineticType

NonRelativisticKinetic(ℏ=1, m=1)

\[-\frac{\hbar^2}{2m} \nabla^2\]

source
TwoBody.RestEnergyType

RestEnergy(c=1, m=1)

\[m c^2\]

Use c = 137.035999177 (from 2022 CODATA) in the atomic units.

source
TwoBody.RelativisticCorrectionType

RelativisticCorrection(c=1, m=1, n=2) The p^{2n} term of the Taylor expansion:

\[\begin{aligned} \sqrt{p^2 c^2 + m^2 c^4} =& m \times c^2 \\ &+ 1 / 2 / m \times p^2 (n=1) \\ @@ -12,4 +12,4 @@ &+ 1 / 16 / m^5 / c^4 \times p^6 (n=3) \\ &- 5 / 128 / m^7 / c^6 \times p^8 (n=4) \\ &+ \cdots -\end{aligned}\]

Use c = 137.035999177 (from 2022 CODATA) in the atomic units.

source
TwoBody.RelativisticKineticType

RelativisticKinetic(c=1, m=1)

\[\sqrt{p^2 c^2 + m^2 c^4} - m c^2\]

Use c = 137.035999177 (from 2022 CODATA) in the atomic units.

source
TwoBody.ConstantPotentialType

ConstantPotential(constant=1)

\[+ \mathrm{const.}\]

source
TwoBody.LinearPotentialType

LinearPotential(coefficient=1)

\[+ \mathrm{coeff.} \times r \]

source
TwoBody.CoulombPotentialType

CoulombPotential(coefficient=1)

\[+ \mathrm{coeff.} \times \frac{1}{r}\]

source
TwoBody.PowerLawPotentialType

PowerLawPotential(coefficient=1, exponent=1)

\[+ \mathrm{coeff.} \times r^\mathrm{expon.}\]

source
TwoBody.GaussianPotentialType

GaussianPotential(coefficient=1, exponent=1)

\[+ \mathrm{coeff.} \times \exp(- \mathrm{expon.} \times r^2)\]

source
TwoBody.ExponentialPotentialType

ExponentialPotential(coefficient=1, exponent=1)

\[+ \mathrm{coeff.} \times \exp(- \mathrm{expon.} \times r)\]

source
TwoBody.YukawaPotentialType

YukawaPotential(coefficient=1, exponent=1)

\[+ \mathrm{coeff.} \times \exp(- \mathrm{expon.} \times r) / r\]

source
TwoBody.DeltaPotentialType

DeltaPotential(coefficient=1)

\[+ \mathrm{coeff.} \times δ(r)\]

source
TwoBody.FunctionPotentialType

FunctionPotential(f)

\[+ f(r)\]

source
TwoBody.UniformGridPotentialType

UniformGridPotential(R, V)

source
+\end{aligned}\]

Use c = 137.035999177 (from 2022 CODATA) in the atomic units.

source
TwoBody.RelativisticKineticType

RelativisticKinetic(c=1, m=1)

\[\sqrt{p^2 c^2 + m^2 c^4} - m c^2\]

Use c = 137.035999177 (from 2022 CODATA) in the atomic units.

source
TwoBody.ConstantPotentialType

ConstantPotential(constant=1)

\[+ \mathrm{const.}\]

source
TwoBody.LinearPotentialType

LinearPotential(coefficient=1)

\[+ \mathrm{coeff.} \times r \]

source
TwoBody.CoulombPotentialType

CoulombPotential(coefficient=1)

\[+ \mathrm{coeff.} \times \frac{1}{r}\]

source
TwoBody.PowerLawPotentialType

PowerLawPotential(coefficient=1, exponent=1)

\[+ \mathrm{coeff.} \times r^\mathrm{expon.}\]

source
TwoBody.GaussianPotentialType

GaussianPotential(coefficient=1, exponent=1)

\[+ \mathrm{coeff.} \times \exp(- \mathrm{expon.} \times r^2)\]

source
TwoBody.ExponentialPotentialType

ExponentialPotential(coefficient=1, exponent=1)

\[+ \mathrm{coeff.} \times \exp(- \mathrm{expon.} \times r)\]

source
TwoBody.YukawaPotentialType

YukawaPotential(coefficient=1, exponent=1)

\[+ \mathrm{coeff.} \times \exp(- \mathrm{expon.} \times r) / r\]

source
TwoBody.DeltaPotentialType

DeltaPotential(coefficient=1)

\[+ \mathrm{coeff.} \times δ(r)\]

source
TwoBody.FunctionPotentialType

FunctionPotential(f)

\[+ f(r)\]

source
TwoBody.UniformGridPotentialType

UniformGridPotential(R, V)

source
diff --git "a/dev/Rayleigh\342\200\223Ritz/index.html" "b/dev/Rayleigh\342\200\223Ritz/index.html" index 7093696..d327810 100644 --- "a/dev/Rayleigh\342\200\223Ritz/index.html" +++ "b/dev/Rayleigh\342\200\223Ritz/index.html" @@ -57,7 +57,7 @@ 3 -1.8403570367716342 4 -5.321258450209621 -(hamiltonian = Hamiltonian(NonRelativisticKinetic(ħ=1, m=1), CoulombPotential(coefficient=-1)), basisset = BasisSet(SimpleGaussianBasis(a=13.00773), SimpleGaussianBasis(a=1.962079), SimpleGaussianBasis(a=0.444529), SimpleGaussianBasis(a=0.1219492)), E = [-0.4992784056674876, 0.11321392045798988, 2.592299571959808, 21.144365190122507], C = [0.09610151618612488 0.1194538057449333 -0.010362061881687392 -6.155100006789123; 0.16301716963905885 0.08132945379475047 1.7448913023470436 1.2402020851506472; 0.18558698714513683 0.49621626366832666 -0.6291955141735303 -0.22641160819529882; 0.07370076069275631 -0.20591550816511817 0.09777447415099819 0.030779842546714373], S = [0.041964064408426524 0.0961391814715395 0.11285790355607861 0.11704251263182287; 0.0961391814715395 0.7163167080668228 1.4914777365294443 1.8508423236885296; 0.11285790355607861 1.4914777365294443 6.642471010530628 13.060205391889545; 0.11704251263182287 1.8508423236885296 13.060205391889545 46.22866820431064], H = [0.5772684658780091 0.072002466903411 -0.32154049871511875 -0.43612626272313476; 0.072002466903411 0.5070499286923358 -0.9891848263978418 -2.377419924763058; -0.3215404987151187 -0.9891848263978418 -2.6380824346106566 -7.342216931051755; -0.43612626272313476 -2.3774199247630583 -7.342216931051756 -17.30516271277891])

Solver

TwoBody.solveFunction

solve(hamiltonian::Hamiltonian, basisset::BasisSet)

This function returns the eigenvalues $E$ and eigenvectors $\pmb{c}$ for

\[\pmb{H} \pmb{c} = E \pmb{S} \pmb{c}.\]

The Hamiltonian matrix is defined as $H_{ij} = \langle \phi_{i} | \hat{H} | \phi_{j} \rangle$. The overlap matrix is defined as $S_{ij} = \langle \phi_{i} | \phi_{j} \rangle$.

source

Basis Set

TwoBody.BasisSetType

BasisSet(basis1, basis2, ...)

\[\{ \phi_1, \phi_2, \phi_3, \cdots \}\]

The basis set is the input for Rayleigh–Ritz method. You can define the basis set like this:

\[\begin{aligned} +(hamiltonian = Hamiltonian(NonRelativisticKinetic(ħ=1, m=1), CoulombPotential(coefficient=-1)), basisset = BasisSet(SimpleGaussianBasis(a=13.00773), SimpleGaussianBasis(a=1.962079), SimpleGaussianBasis(a=0.444529), SimpleGaussianBasis(a=0.1219492)), E = [-0.4992784056674876, 0.11321392045798988, 2.592299571959808, 21.144365190122507], C = [0.09610151618612488 0.1194538057449333 -0.010362061881687392 -6.155100006789123; 0.16301716963905885 0.08132945379475047 1.7448913023470436 1.2402020851506472; 0.18558698714513683 0.49621626366832666 -0.6291955141735303 -0.22641160819529882; 0.07370076069275631 -0.20591550816511817 0.09777447415099819 0.030779842546714373], S = [0.041964064408426524 0.0961391814715395 0.11285790355607861 0.11704251263182287; 0.0961391814715395 0.7163167080668228 1.4914777365294443 1.8508423236885296; 0.11285790355607861 1.4914777365294443 6.642471010530628 13.060205391889545; 0.11704251263182287 1.8508423236885296 13.060205391889545 46.22866820431064], H = [0.5772684658780091 0.072002466903411 -0.32154049871511875 -0.43612626272313476; 0.072002466903411 0.5070499286923358 -0.9891848263978418 -2.377419924763058; -0.3215404987151187 -0.9891848263978418 -2.6380824346106566 -7.342216931051755; -0.43612626272313476 -2.3774199247630583 -7.342216931051756 -17.30516271277891])

Solver

TwoBody.solveFunction

solve(hamiltonian::Hamiltonian, basisset::BasisSet)

This function returns the eigenvalues $E$ and eigenvectors $\pmb{c}$ for

\[\pmb{H} \pmb{c} = E \pmb{S} \pmb{c}.\]

The Hamiltonian matrix is defined as $H_{ij} = \langle \phi_{i} | \hat{H} | \phi_{j} \rangle$. The overlap matrix is defined as $S_{ij} = \langle \phi_{i} | \phi_{j} \rangle$.

source

Basis Set

TwoBody.BasisSetType

BasisSet(basis1, basis2, ...)

\[\{ \phi_1, \phi_2, \phi_3, \cdots \}\]

The basis set is the input for Rayleigh–Ritz method. You can define the basis set like this:

\[\begin{aligned} \phi_1(r) &= \exp(-13.00773 ~r^2), \\ \phi_2(r) &= \exp(-1.962079 ~r^2), \\ \phi_3(r) &= \exp(-0.444529 ~r^2), \\ @@ -67,7 +67,7 @@ SimpleGaussianBasis(1.962079), SimpleGaussianBasis(0.444529), SimpleGaussianBasis(0.1219492), -)

source

Basis Functions

Matrix Elements

TwoBody.elementFunction

element(SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} +)

source

Basis Functions

Matrix Elements

TwoBody.elementFunction

element(SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} S_{ij} = \langle \phi_{i} | \phi_{j} \rangle &= \iiint @@ -79,7 +79,7 @@ \int_0^\infty r^{2} \mathrm{e}^{-(\alpha_i + \alpha_j) r^2} ~\mathrm{d}r \\ &= 2\pi \times 2 \times \frac{1!!}{2^{2}} \sqrt{\frac{\pi}{a^{3}}} \\ &= \underline{\left( \frac{\pi}{\alpha_i + \alpha_j} \right)^{3/2}} -\end{aligned}\]

Integral Formula:

\[\int_0^{\infty} r^{2n} \exp \left(-a r^2\right) ~\mathrm{d}r = \frac{(2n-1)!!}{2^{n+1}} \sqrt{\frac{\pi}{a^{2n+1}}}\]

source

element(o::NonRelativisticKinetic, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} +\end{aligned}\]

Integral Formula:

\[\int_0^{\infty} r^{2n} \exp \left(-a r^2\right) ~\mathrm{d}r = \frac{(2n-1)!!}{2^{n+1}} \sqrt{\frac{\pi}{a^{2n+1}}}\]

source

element(o::NonRelativisticKinetic, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} T_{ij} = \langle \phi_{i} | \hat{T} | \phi_{j} \rangle &= \iiint \mathrm{e}^{-\alpha_i r^2} @@ -182,7 +182,7 @@ \cdot 6 \cdot \frac{\alpha_i \alpha_j \pi^{\frac{3}{2}}}{(\alpha_i + \alpha_j)^{\frac{5}{2}}} } -\end{aligned}\]

source

element(o::LinearPotential, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} +\end{aligned}\]

source

element(o::LinearPotential, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} \langle \phi_{i} | r | \phi_{j} \rangle &= \iiint \phi_{i}^*(r) @@ -196,7 +196,7 @@ &= \underline{\frac{2\pi}{(\alpha_i + \alpha_j)^2}} \end{aligned}\]

Integral Formula:

\[\begin{aligned} \int_0^{\infty} r^{2n+1} \exp \left(-a r^2\right) ~\mathrm{d}r = \frac{n!}{2 a^{n+1}} -\end{aligned}\]

source

element(o::CoulombPotential, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} +\end{aligned}\]

source

element(o::CoulombPotential, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} \langle \phi_{i} | \frac{1}{r} | \phi_{j} \rangle &= \iiint \phi_{i}^*(r) @@ -210,7 +210,7 @@ &= \underline{\frac{2\pi}{\alpha_i + \alpha_j}} \end{aligned}\]

Integral Formula:

\[\begin{aligned} \int_0^{\infty} r^{2n+1} \exp \left(-a r^2\right) ~\mathrm{d}r = \frac{n!}{2 a^{n+1}} -\end{aligned}\]

source

element(o::PowerLawPotential, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} +\end{aligned}\]

source

element(o::PowerLawPotential, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} \langle \phi_{i} | r^n | \phi_{j} \rangle &= \iiint \phi_{i}^*(r) @@ -222,10 +222,10 @@ \int_0^\infty r^{n+2} \mathrm{e}^{-(\alpha_i + \alpha_j) r^2} ~\mathrm{d}r \\ &= 2\pi \times 2 \times \frac{\Gamma\left( \frac{n+3}{2} \right)}{2 (\alpha_i + \alpha_j)^{\frac{n+3}{2}}} \\ &= \underline{2\pi\frac{\Gamma\left( \frac{n+3}{2} \right)}{(\alpha_i + \alpha_j)^{\frac{n+3}{2}}}} -\end{aligned}\]

Integral Formula:

\[\int_0^{\infty} r^{n} \exp \left(-a r^2\right) ~\mathrm{d}r = \frac{\Gamma\left( \frac{n+1}{2} \right)}{2 a^{\frac{n+1}{2}}}\]

source

element(o::Hamiltonian, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} +\end{aligned}\]

Integral Formula:

\[\int_0^{\infty} r^{n} \exp \left(-a r^2\right) ~\mathrm{d}r = \frac{\Gamma\left( \frac{n+1}{2} \right)}{2 a^{\frac{n+1}{2}}}\]

source

element(o::Hamiltonian, SGB1::SimpleGaussianBasis, SGB2::SimpleGaussianBasis)

\[\begin{aligned} H_{ij} &= \langle \phi_{i} | \hat{H} | \phi_{j} \rangle \\ &= \langle \phi_{i} | \hat{T} + \hat{V} | \phi_{j} \rangle \\ &= \langle \phi_{i} | \hat{T} | \phi_{j} \rangle + \langle \phi_{i} | \hat{V} | \phi_{j} \rangle \\ &= T_{ij} + V_{ij} -\end{aligned}\]

source
+\end{aligned}\]

source diff --git a/dev/index.html b/dev/index.html index 4b77d95..ef20909 100644 --- a/dev/index.html +++ b/dev/index.html @@ -57,4 +57,4 @@ 3 -1.8403570367716342 4 -5.321258450209621 -(hamiltonian = Hamiltonian(NonRelativisticKinetic(ħ=1, m=1), CoulombPotential(coefficient=-1)), basisset = BasisSet(SimpleGaussianBasis(a=13.00773), SimpleGaussianBasis(a=1.962079), SimpleGaussianBasis(a=0.444529), SimpleGaussianBasis(a=0.1219492)), E = [-0.4992784056674876, 0.11321392045798988, 2.592299571959808, 21.144365190122507], C = [0.09610151618612488 0.1194538057449333 -0.010362061881687392 -6.155100006789123; 0.16301716963905885 0.08132945379475047 1.7448913023470436 1.2402020851506472; 0.18558698714513683 0.49621626366832666 -0.6291955141735303 -0.22641160819529882; 0.07370076069275631 -0.20591550816511817 0.09777447415099819 0.030779842546714373], S = [0.041964064408426524 0.0961391814715395 0.11285790355607861 0.11704251263182287; 0.0961391814715395 0.7163167080668228 1.4914777365294443 1.8508423236885296; 0.11285790355607861 1.4914777365294443 6.642471010530628 13.060205391889545; 0.11704251263182287 1.8508423236885296 13.060205391889545 46.22866820431064], H = [0.5772684658780091 0.072002466903411 -0.32154049871511875 -0.43612626272313476; 0.072002466903411 0.5070499286923358 -0.9891848263978418 -2.377419924763058; -0.3215404987151187 -0.9891848263978418 -2.6380824346106566 -7.342216931051755; -0.43612626272313476 -2.3774199247630583 -7.342216931051756 -17.30516271277891])

API reference

+(hamiltonian = Hamiltonian(NonRelativisticKinetic(ħ=1, m=1), CoulombPotential(coefficient=-1)), basisset = BasisSet(SimpleGaussianBasis(a=13.00773), SimpleGaussianBasis(a=1.962079), SimpleGaussianBasis(a=0.444529), SimpleGaussianBasis(a=0.1219492)), E = [-0.4992784056674876, 0.11321392045798988, 2.592299571959808, 21.144365190122507], C = [0.09610151618612488 0.1194538057449333 -0.010362061881687392 -6.155100006789123; 0.16301716963905885 0.08132945379475047 1.7448913023470436 1.2402020851506472; 0.18558698714513683 0.49621626366832666 -0.6291955141735303 -0.22641160819529882; 0.07370076069275631 -0.20591550816511817 0.09777447415099819 0.030779842546714373], S = [0.041964064408426524 0.0961391814715395 0.11285790355607861 0.11704251263182287; 0.0961391814715395 0.7163167080668228 1.4914777365294443 1.8508423236885296; 0.11285790355607861 1.4914777365294443 6.642471010530628 13.060205391889545; 0.11704251263182287 1.8508423236885296 13.060205391889545 46.22866820431064], H = [0.5772684658780091 0.072002466903411 -0.32154049871511875 -0.43612626272313476; 0.072002466903411 0.5070499286923358 -0.9891848263978418 -2.377419924763058; -0.3215404987151187 -0.9891848263978418 -2.6380824346106566 -7.342216931051755; -0.43612626272313476 -2.3774199247630583 -7.342216931051756 -17.30516271277891])

API reference