-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDoubleSmoothedGDA.py
250 lines (202 loc) · 8.52 KB
/
DoubleSmoothedGDA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import numpy as np
from torch.nn import functional as F
import torch
from argparse import ArgumentParser
from torch import nn
import pytorch_lightning as pl
# print("here")
class Generator(nn.Module):
def __init__(self, latent_dim, img_shape, hidden_dim=256):
super().__init__()
feats = int(np.prod(img_shape))
self.img_shape = img_shape
self.fc1 = nn.Linear(latent_dim, hidden_dim)
self.fc2 = nn.Linear(self.fc1.out_features, self.fc1.out_features * 2)
self.fc3 = nn.Linear(self.fc2.out_features, self.fc2.out_features * 2)
self.fc4 = nn.Linear(self.fc3.out_features, feats)
# forward method
def forward(self, z):
z = F.leaky_relu(self.fc1(z), 0.2)
z = F.leaky_relu(self.fc2(z), 0.2)
z = F.leaky_relu(self.fc3(z), 0.2)
img = torch.tanh(self.fc4(z))
img = img.view(img.size(0), *self.img_shape)
return img
class Discriminator(nn.Module):
def __init__(self, img_shape, hidden_dim=1024):
super().__init__()
in_dim = int(np.prod(img_shape))
self.fc1 = nn.Linear(in_dim, hidden_dim)
self.fc2 = nn.Linear(self.fc1.out_features, self.fc1.out_features // 2)
self.fc3 = nn.Linear(self.fc2.out_features, self.fc2.out_features // 2)
self.fc4 = nn.Linear(self.fc3.out_features, 1)
# forward method
def forward(self, img):
x = img.view(img.size(0), -1)
x = F.leaky_relu(self.fc1(x), 0.2)
x = F.dropout(x, 0.3)
x = F.leaky_relu(self.fc2(x), 0.2)
x = F.dropout(x, 0.3)
x = F.leaky_relu(self.fc3(x), 0.2)
x = F.dropout(x, 0.3)
return torch.sigmoid(self.fc4(x))
class GAN(pl.LightningModule):
def __init__(
self,
input_channels: int,
input_height: int,
input_width: int,
latent_dim: int = 32,
learning_rate: float = 0.0005,
**kwargs
):
"""
Args:
datamodule: the datamodule (train, val, test splits)
latent_dim: emb dim for encoder
batch_size: the batch size
learning_rate: the learning rate
data_dir: where to store data
num_workers: data workers
"""
super().__init__()
# makes self.hparams under the hood and saves to ckpt
self.save_hyperparameters()
self.img_dim = (input_channels, input_height, input_width)
# networks
self.generator = self.init_generator(self.img_dim)
self.discriminator = self.init_discriminator(self.img_dim)
self.p = 1.0 / 2
beta = 0.1
self.swa_start = 10
self.step_count = 0
def avg_fn(averaged_model_parameter, model_parameter, num_averaged): return (
1 - beta) * averaged_model_parameter + beta * model_parameter
self.swa_discriminator = torch.optim.swa_utils.AveragedModel(
self.discriminator, avg_fn=avg_fn)
def init_generator(self, img_dim):
generator = Generator(
latent_dim=self.hparams.latent_dim, img_shape=img_dim)
return generator
def init_discriminator(self, img_dim):
discriminator = Discriminator(img_shape=img_dim)
return discriminator
def forward(self, z):
"""
Generates an image given input noise z
Example::
z = torch.rand(batch_size, latent_dim)
gan = GAN.load_from_checkpoint(PATH)
img = gan(z)
"""
return self.generator(z)
def generator_loss(self, x):
# sample noise
z = torch.randn(
x.shape[0], self.hparams.latent_dim, device=self.device)
y = torch.ones(x.size(0), 1, device=self.device)
# generate images
generated_imgs = self(z)
D_output = self.discriminator(generated_imgs)
SWA_D_output = self.swa_discriminator(generated_imgs)
# ground truth result (ie: all real)
g_loss = F.binary_cross_entropy(
D_output, y) + self.p * F.binary_cross_entropy(SWA_D_output, y)
return g_loss
def param_dist(self):
dist = 0.
for p1, p2 in zip(self.discriminator.parameters(), self.swa_discriminator.parameters()):
dist += torch.norm(p1 - p2, p='fro')
return self.p * dist
def discriminator_loss(self, x):
# train discriminator on real
b = x.size(0)
x_real = x.view(b, -1)
y_real = torch.ones(b, 1, device=self.device)
# calculate real score
D_output = self.discriminator(x_real)
D_real_loss = F.binary_cross_entropy(D_output, y_real)
# train discriminator on fake
z = torch.randn(b, self.hparams.latent_dim, device=self.device)
x_fake = self(z)
y_fake = torch.zeros(b, 1, device=self.device)
# calculate fake score
D_output = self.discriminator(x_fake)
D_fake_loss = F.binary_cross_entropy(D_output, y_fake)
# gradient backprop & optimize ONLY D's parameters
D_loss = D_real_loss + D_fake_loss + self.param_dist()
return D_loss
def training_step(self, batch, batch_idx, optimizer_idx):
x, _ = batch
# train generator
result = None
if optimizer_idx == 0:
result = self.generator_step(x)
# train discriminator
if optimizer_idx == 1:
result = self.discriminator_step(x)
self.step_count += 1
return result
def generator_step(self, x):
g_loss = self.generator_loss(x)
# log to prog bar on each step AND for the full epoch
# use the generator loss for checkpointing
self.log('g_loss', g_loss, on_epoch=True, prog_bar=True)
return g_loss
def discriminator_step(self, x):
# Measure discriminator's ability to classify real from generated samples
d_loss = self.discriminator_loss(x)
# log to prog bar on each step AND for the full epoch
self.log('d_loss', d_loss, on_epoch=True, prog_bar=True)
if self.step_count > self.swa_start:
self.swa_discriminator.update_parameters(self.discriminator)
# self.swa_scheduler.step()
return d_loss
def configure_optimizers(self):
lr = self.hparams.learning_rate
opt_g = torch.optim.Adam(self.generator.parameters(), lr=lr)
opt_d = torch.optim.Adam(self.discriminator.parameters(), lr=lr)
# self.swa_scheduler = torch.optim.swa_utils.SWALR(opt_d, anneal_strategy="linear", anneal_epochs=5, swa_lr=0.05)
return [opt_g, opt_d], []
@staticmethod
def add_model_specific_args(parent_parser):
parser = ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument('--learning_rate', type=float,
default=0.0002, help="adam: learning rate")
parser.add_argument('--adam_b1', type=float, default=0.5,
help="adam: decay of first order momentum of gradient")
parser.add_argument('--adam_b2', type=float, default=0.999,
help="adam: decay of first order momentum of gradient")
parser.add_argument('--latent_dim', type=int, default=100,
help="generator embedding dim")
return parser
def cli_main(args=None):
from pl_bolts.callbacks import LatentDimInterpolator, TensorboardGenerativeModelImageSampler
from pl_bolts.datamodules import CIFAR10DataModule, ImagenetDataModule, MNISTDataModule, STL10DataModule
pl.seed_everything(1234)
parser = ArgumentParser()
parser.add_argument("--dataset", default="mnist", type=str,
help="mnist, cifar10, stl10, imagenet")
script_args, _ = parser.parse_known_args(args)
if script_args.dataset == "mnist":
dm_cls = MNISTDataModule
elif script_args.dataset == "cifar10":
dm_cls = CIFAR10DataModule
elif script_args.dataset == "stl10":
dm_cls = STL10DataModule
elif script_args.dataset == "imagenet":
dm_cls = ImagenetDataModule
parser = dm_cls.add_argparse_args(parser)
parser = pl.Trainer.add_argparse_args(parser)
parser = GAN.add_model_specific_args(parser)
args = parser.parse_args(args)
dm = dm_cls.from_argparse_args(args)
model = GAN(*dm.size(), **vars(args))
callbacks = [TensorboardGenerativeModelImageSampler(
), LatentDimInterpolator(interpolate_epoch_interval=5)]
trainer = pl.Trainer.from_argparse_args(
args, callbacks=callbacks, progress_bar_refresh_rate=20)
trainer.fit(model, dm)
return dm, model, trainer
if __name__ == '__main__':
dm, model, trainer = cli_main()