-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeliverable3.py
403 lines (308 loc) · 11.6 KB
/
deliverable3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# -*- coding: utf-8 -*-
"""Deliverable3.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1uKoZ9BgWMzM_TishayBeFQbY9qUfIjds
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import csv
import random
import string
import re
from sklearn import svm
from sklearn import tree
from sklearn import metrics
from sklearn.svm import LinearSVC
from sklearn.metrics import mean_absolute_error
from sklearn.neural_network import MLPRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from keras.callbacks import ModelCheckpoint
from keras.models import Sequential
from keras.layers import Dense, Activation, Flatten
import seaborn as sb
import warnings
warnings.filterwarnings('ignore')
warnings.filterwarnings('ignore', category=DeprecationWarning)
from xgboost import XGBRegressor
#READ IN THE APPROPRIATE DATA AS YEAR SPECIFIC DATAFRAMES
datapath_2014 = "https://raw.githubusercontent.com/omarw99/MAIS202Project_StockPredictor/master/Dataset/2014_Financial_Data.csv"
datapath_2015 = "https://raw.githubusercontent.com/omarw99/MAIS202Project_StockPredictor/master/Dataset/2015_Financial_Data.csv"
datapath_2016 = "https://raw.githubusercontent.com/omarw99/MAIS202Project_StockPredictor/master/Dataset/2016_Financial_Data.csv"
datapath_2017 = "https://raw.githubusercontent.com/omarw99/MAIS202Project_StockPredictor/master/Dataset/2017_Financial_Data.csv"
datapath_2018 = "https://raw.githubusercontent.com/omarw99/MAIS202Project_StockPredictor/master/Dataset/2018_Financial_Data.csv"
df_2014 = pd.read_csv(datapath_2014)
df_2015 = pd.read_csv(datapath_2015)
df_2016 = pd.read_csv(datapath_2016)
df_2017 = pd.read_csv(datapath_2017)
df_2018 = pd.read_csv(datapath_2018)
#EXTRACT THE RETURN COLUMNS AS SERIES FROM THE YEAR SPECIFIC DATAFFRAMES
returns_2014 = df_2014['2015 PRICE VAR [%]']
returns_2015 = df_2015['2016 PRICE VAR [%]']
returns_2016 = df_2016['2017 PRICE VAR [%]']
returns_2017 = df_2017['2018 PRICE VAR [%]']
returns_2018 = df_2018['2019 PRICE VAR [%]']
returns_2014 = returns_2014.rename('Next Year Stock Return')
returns_2015 = returns_2015.rename('Next Year Stock Return')
returns_2016 = returns_2016.rename('Next Year Stock Return')
returns_2017 = returns_2017.rename('Next Year Stock Return')
returns_2018 = returns_2018.rename('Next Year Stock Return')
#IDENTIFY THE COLUMNS IN THE YEAR SPECIFIC DATAFRAMES TO KEEP AS THE ONES WITH RELEVANT FINANCIAL RATIOS
columnsToKeep = ['Revenue Growth', 'EPS', 'Dividend per Share', 'EBITDA Margin', 'Net Profit Margin', 'priceToSalesRatio', 'priceToFreeCashFlowsRatio',
'dividendYield', 'grossProfitMargin', 'returnOnEquity', 'currentRatio', 'quickRatio', 'cashRatio', 'debtRatio', 'debtEquityRatio',
'interestCoverage', 'PE ratio', 'Receivables Turnover', 'Payables Turnover', 'Inventory Turnover', 'Sector']
df_2014 = df_2014[columnsToKeep]
df_2015 = df_2015[columnsToKeep]
df_2016 = df_2016[columnsToKeep]
df_2017 = df_2017[columnsToKeep]
df_2018 = df_2018[columnsToKeep]
#ADD THE YEARLY RETURNS SERIES BACK TO THE YEAR SPECIFIC DATAFRAMES
df_2014 = pd.concat([df_2014, returns_2014], axis = 1)
df_2015 = pd.concat([df_2015, returns_2015], axis = 1)
df_2016 = pd.concat([df_2016, returns_2016], axis = 1)
df_2017 = pd.concat([df_2017, returns_2017], axis = 1)
df_2018 = pd.concat([df_2018, returns_2018], axis = 1)
#COMBINE ALL THE YEAR SPECIFIC DATAFRAMES INTO ONE INITIAL_COMBINED_DF, DROPNA, AND RESET INDEX
individual_dataframes = [df_2014, df_2015, df_2016, df_2017, df_2018]
initial_combined_df = pd.concat(individual_dataframes)
initial_combined_df = initial_combined_df.dropna()
initial_combined_df = initial_combined_df.reset_index(drop = True)
#ONE HOT ENCODE THE SECTOR COLUMN
combined_df = pd.get_dummies(initial_combined_df, columns = ['Sector'])
print(combined_df)
def remove_outlier(df_in, col_name):
q1 = df_in[col_name].quantile(0.25)
q3 = df_in[col_name].quantile(0.75)
iqr = q3-q1 #Interquartile range
fence_low = q1-1.5*iqr
fence_high = q3+1.5*iqr
df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)]
return df_out
std = combined_df.describe().iloc[2]
sortedSTD = std.sort_values(ascending=False)
x = 0
for std in sortedSTD:
if std > 1000:
x += 1
print(x)
colNamesWithHighestSTD = sortedSTD.index
for i in range(x):
combined_df = remove_outlier(combined_df, colNamesWithHighestSTD[i])
combined_df = combined_df.reset_index(drop = True)
print(combined_df)
#SPLIT THE COMBINED_DF INTO TRAIN AND TEST SETS, THEN RESET THEIR INDICES
train, test = train_test_split(combined_df, test_size=0.2)
train.reset_index(inplace = True, drop = True)
test.reset_index(inplace = True, drop = True)
print(train)
print(test)
#CREATE THE X_TRAIN, X_TEST, Y_TRAIN, Y_TEST ARRAYS
y_train = np.asarray(train['Next Year Stock Return'])
X_train = np.asarray(train.drop(columns = ['Next Year Stock Return']))
y_test = np.asarray(test['Next Year Stock Return'])
X_test = np.asarray(test.drop(columns = ['Next Year Stock Return']))
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
"""TESTING MODELS
Linear Regression
"""
model = LinearRegression()
model.fit(X_train, y_train)
y_train_predict = model.predict(X_train)
print(y_train.mean())
print(y_train.min())
print(y_train.max())
print()
print(y_train_predict.mean())
print(y_train_predict.min())
print(y_train_predict.max())
plt.scatter(y_train, y_train_predict)
plt.show()
#MSE OF THE TRAINING SET
mse_train = np.mean(np.square(np.subtract(y_train, y_train_predict)))
print("Training set Mean Squared Error: {}".format(mse_train))
y_test_predict = model.predict(X_test)
print(y_test.mean())
print(y_test.min())
print(y_test.max())
print()
print(y_test_predict.mean())
print(y_test_predict.min())
print(y_test_predict.max())
plt.scatter(y_test, y_test_predict)
plt.show()
#MSE OF THE TESTING SET
mse_test = np.mean(np.square(np.subtract(y_test, y_test_predict)))
print("Testing set Mean Squared Error: {}".format(mse_test))
"""Random Forest Regression"""
model = RandomForestRegressor(random_state = 0)
model.fit(X_train, y_train)
y_train_predict = model.predict(X_train)
print(y_train.mean())
print(y_train.min())
print(y_train.max())
print()
print(y_train_predict.mean())
print(y_train_predict.min())
print(y_train_predict.max())
plt.scatter(y_train, y_train_predict)
plt.show()
#MSE OF THE TRAINING SET
mse_train = np.mean(np.square(np.subtract(y_train, y_train_predict)))
print("Training set Mean Squared Error: {}".format(mse_train))
y_test_predict = model.predict(X_test)
print(y_test.mean())
print(y_test.min())
print(y_test.max())
print()
print(y_test_predict.mean())
print(y_test_predict.min())
print(y_test_predict.max())
plt.scatter(y_test, y_test_predict)
plt.show()
#MSE OF THE TESTING SET
mse_test = np.mean(np.square(np.subtract(y_test, y_test_predict)))
print("Testing set Mean Squared Error: {}".format(mse_test))
"""SVM"""
#Call the SVR model and fit using X_train and y_train
model = svm.SVR()
model.fit(X_train, y_train)
y_train_predict = model.predict(X_train)
print(y_train.mean())
print(y_train.min())
print(y_train.max())
print()
print(y_train_predict.mean())
print(y_train_predict.min())
print(y_train_predict.max())
plt.scatter(y_train, y_train_predict)
plt.show()
#MSE OF THE TRAINING SET
mse_train = np.mean(np.square(np.subtract(y_train, y_train_predict)))
print("Training set Mean Squared Error: {}".format(mse_train))
y_test_predict = model.predict(X_test)
print(y_test.mean())
print(y_test.min())
print(y_test.max())
print()
print(y_test_predict.mean())
print(y_test_predict.min())
print(y_test_predict.max())
plt.scatter(y_test, y_test_predict)
plt.show()
#MSE OF THE TESTING SET
mse_test = np.mean(np.square(np.subtract(y_test, y_test_predict)))
print("Testing set Mean Squared Error: {}".format(mse_test))
"""Decision Tree"""
#Call the Decision Tree model and fit using X_train and y_train
model = tree.DecisionTreeRegressor()
model.fit(X_train, y_train)
y_train_predict = model.predict(X_train)
print(y_train.mean())
print(y_train.min())
print(y_train.max())
print()
print(y_train_predict.mean())
print(y_train_predict.min())
print(y_train_predict.max())
plt.scatter(y_train, y_train_predict)
plt.show()
#MSE OF THE TRAINING SET
mse_train = np.mean(np.square(np.subtract(y_train, y_train_predict)))
print("Training set Mean Squared Error: {}".format(mse_train))
y_test_predict = model.predict(X_test)
print(y_test.mean())
print(y_test.min())
print(y_test.max())
print()
print(y_test_predict.mean())
print(y_test_predict.min())
print(y_test_predict.max())
plt.scatter(y_test, y_test_predict)
plt.show()
#MSE OF THE TESTING SET
mse_test = np.mean(np.square(np.subtract(y_test, y_test_predict)))
print("Testing set Mean Squared Error: {}".format(mse_test))
"""MLP"""
#Call the MLP model and fit using X_train and y_train
model = MLPRegressor()
model.fit(X_train, y_train)
y_train_predict = model.predict(X_train)
print(y_train.mean())
print(y_train.min())
print(y_train.max())
print()
print(y_train_predict.mean())
print(y_train_predict.min())
print(y_train_predict.max())
plt.scatter(y_train, y_train_predict)
plt.show()
#MSE OF THE TRAINING SET
mse_train = np.mean(np.square(np.subtract(y_train, y_train_predict)))
print("Training set Mean Squared Error: {}".format(mse_train))
y_test_predict = model.predict(X_test)
print(y_test.mean())
print(y_test.min())
print(y_test.max())
print()
print(y_test_predict.mean())
print(y_test_predict.min())
print(y_test_predict.max())
plt.scatter(y_test, y_test_predict)
plt.show()
#MSE OF THE TESTING SET
mse_test = np.mean(np.square(np.subtract(y_test, y_test_predict)))
print("Testing set Mean Squared Error: {}".format(mse_test))
"""CNN"""
model = Sequential()
# The Input Layer :
model.add(Dense(4096, kernel_initializer='normal',input_dim = X_train.shape[1], activation='relu'))
# The Hidden Layers :
'''
NN_model.add(Dense(2048, kernel_initializer='normal',activation='relu'))
NN_model.add(Dense(1024, kernel_initializer='normal',activation='relu'))
'''
model.add(Dense(512, kernel_initializer='normal',activation='relu'))
model.add(Dense(256, kernel_initializer='normal',activation='relu'))
# The Output Layer :
model.add(Dense(1, kernel_initializer='normal',activation='linear'))
# Compile the network :
model.compile(loss='mean_absolute_error', optimizer='adam', metrics=['mean_absolute_error'])
#NN_model.compile(optimizer='adam', loss='mean_absolute_error', metrics=['accuracy'])
model.summary()
checkpoint_name = 'Weights-{epoch:03d}--{val_loss:.5f}.hdf5'
checkpoint = ModelCheckpoint(checkpoint_name, monitor='val_loss', verbose = 1, save_best_only = True, mode ='auto')
callbacks_list = [checkpoint]
model.fit(X_train, y_train, epochs=100, validation_split = 0.25, callbacks=callbacks_list)
y_train_predict = model.predict(X_train)
print(y_train.mean())
print(y_train.min())
print(y_train.max())
print()
print(y_train_predict.mean())
print(y_train_predict.min())
print(y_train_predict.max())
plt.scatter(y_train, y_train_predict)
plt.show()
#MSE OF THE TRAINING SET
mse_train = np.mean(np.square(np.subtract(y_train, y_train_predict)))
print("Training set Mean Squared Error: {}".format(mse_train))
y_test_predict = model.predict(X_test)
print(y_test.mean())
print(y_test.min())
print(y_test.max())
print()
print(y_test_predict.mean())
print(y_test_predict.min())
print(y_test_predict.max())
plt.scatter(y_test, y_test_predict)
plt.show()
#MSE OF THE TESTING SET
mse_test = np.mean(np.square(np.subtract(y_test, y_test_predict)))
print("Testing set Mean Squared Error: {}".format(mse_test))