diff --git a/__pycache__/app.cpython-311.pyc b/__pycache__/app.cpython-311.pyc
index e4ec633..c47379c 100644
Binary files a/__pycache__/app.cpython-311.pyc and b/__pycache__/app.cpython-311.pyc differ
diff --git a/app.py b/app.py
index 1ed59ce..90f7598 100644
--- a/app.py
+++ b/app.py
@@ -1,6 +1,12 @@
from flask import Flask, render_template, request, session
import google.generativeai as genai
import os
+# import torch
+# from PIL import Image
+# import numpy as np
+# from flask import jsonify, send_from_directory
+# from werkzeug.utils import secure_filename
+
app = Flask(__name__)
app.secret_key = os.urandom(24) # Necessary for session management
@@ -45,6 +51,78 @@ def format_response(response):
formatted_response = "
" + "\n".join(formatted_lines) + "
" if formatted_lines else response
return formatted_response.replace("", "") # Remove empty list tags
+# adding visualiztions
+
+# device = "cuda" if torch.cuda.is_available() else "cpu"
+
+# UPLOAD_FOLDER = 'uploads'
+# GENERATED_FOLDER = 'generated'
+# app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
+# app.config['GENERATED_FOLDER'] = GENERATED_FOLDER
+
+# os.makedirs(UPLOAD_FOLDER, exist_ok=True)
+# os.makedirs(GENERATED_FOLDER, exist_ok=True)
+
+# def generate_image_with_ml_model(image_path, prompt):
+# # Load the image
+# input_image = load_image(image_path).to(device)
+
+# # Initialize the depth estimator
+# depth_estimator = pipeline("depth-estimation", device=device)
+
+# # Process to obtain depth map
+# depth_map = get_depth_map(input_image, depth_estimator) # Assuming get_depth_map is defined similarly to your Colab code
+
+# # Initialize the ControlNet model and pipeline
+# controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-normal", torch_dtype=torch.float16, use_safetensors=True).to(device)
+# pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
+# "runwayml/stable-diffusion-v1-5",
+# controlnet=controlnet,
+# torch_dtype=torch.float16,
+# use_safetensors=True
+# ).to(device)
+# pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
+# pipe.enable_model_cpu_offload()
+
+# # Generate the image
+# output = pipe(prompt=prompt, image=input_image, control_image=depth_map).images[0]
+
+# # Convert tensor to PIL Image for saving
+# output_image = Image.fromarray(output.mul(255).clamp(0, 255).byte().cpu().numpy().astype(np.uint8).transpose(1, 2, 0))
+
+# return output_image
+
+# @app.route('/generate-image', methods=['POST'])
+# def generate_image_endpoint():
+# if 'image' not in request.files:
+# return jsonify({'error': 'No image part'}), 400
+# file = request.files['image']
+# prompt = request.form.get('prompt', '') # Get the prompt from the form data
+# if file.filename == '':
+# return jsonify({'error': 'No selected file'}), 400
+# if file and prompt:
+# filename = secure_filename(file.filename)
+# input_filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
+# file.save(input_filepath)
+
+# # Generate the image
+# output_image = generate_image_with_ml_model(input_filepath, prompt)
+# output_filename = f"generated_{filename}"
+# output_filepath = os.path.join(app.config['GENERATED_FOLDER'], output_filename)
+# output_image.save(output_filepath)
+
+# return jsonify({'generatedImageUrl': f'/generated/{output_filename}'})
+# else:
+# return jsonify({'error': 'Invalid request'}), 400
+
+# @app.route('/generated/')
+# def generated_image(filename):
+# return send_from_directory(app.config['GENERATED_FOLDER'], filename)
+
+
+@app.route('/visualize')
+def visualize():
+ return render_template('visualize.html')
@app.route('/')
def index():
diff --git a/static/predict.js b/static/predict.js
index 6185a41..ad71a50 100644
--- a/static/predict.js
+++ b/static/predict.js
@@ -8,16 +8,16 @@ tailwind.init();
var farmImage = document.getElementById('farmImage');
if (landSize >= 1 && landSize < 10) {
- farmImage.src = 'https://raw.githubusercontent.com/ombhojane/letschalokisaanai/main/assets/small.png?token=GHSAT0AAAAAACLEWSAUXKUNPOKOU7YRSYYQZOJFMJQ';
+ farmImage.src = 'https://github.com/ombhojane/chalokisaanai/blob/main/assets/small.png?raw=true';
farmImage.classList.remove('hidden');
} else if (landSize >= 10 && landSize < 20) {
- farmImage.src = 'https://raw.githubusercontent.com/ombhojane/letschalokisaanai/main/assets/mid.png?token=GHSAT0AAAAAACLEWSAUL2LMUOLEMOF2JFM2ZOJFM2A';
+ farmImage.src = 'https://github.com/ombhojane/chalokisaanai/blob/main/assets/mid.png?raw=true';
farmImage.classList.remove('hidden');
} else if (landSize >= 20 && landSize < 25) {
- farmImage.src = 'https://raw.githubusercontent.com/ombhojane/letschalokisaanai/main/assets/extramid.png?token=GHSAT0AAAAAACLEWSAU5U5RT3JIOVNKNZDSZOJFNIA';
+ farmImage.src = 'https://github.com/ombhojane/chalokisaanai/blob/main/assets/large.png?raw=true';
farmImage.classList.remove('hidden');
} else if (landSize >= 25) {
- farmImage.src = 'https://raw.githubusercontent.com/ombhojane/letschalokisaanai/main/assets/large.png?token=GHSAT0AAAAAACLEWSAVVWAAAKGCSNDKOKFUZOJFNUA';
+ farmImage.src = 'https://github.com/ombhojane/chalokisaanai/blob/main/assets/extramid.png?raw=true';
farmImage.classList.remove('hidden');
} else {
farmImage.classList.add('hidden');
diff --git a/templates/index.html b/templates/index.html
index 2c05952..c77ebf2 100644
--- a/templates/index.html
+++ b/templates/index.html
@@ -32,6 +32,7 @@
diff --git a/templates/predict.html b/templates/predict.html
index ed95c4a..125f038 100644
--- a/templates/predict.html
+++ b/templates/predict.html
@@ -33,7 +33,7 @@
Plan your next agrotourism service
-
![Agrotourism Image](https://raw.githubusercontent.com/ombhojane/letschalokisaanai/main/assets/planning.png?token=GHSAT0AAAAAACLEWSAUVSOJGOSWEMHTXDT2ZOJFOBQ)
+