This repository has been archived by the owner on Sep 14, 2018. It is now read-only.
forked from matthiaskramm/mrscake
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_cv_ann.cpp
397 lines (356 loc) · 10 KB
/
model_cv_ann.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
/* model_cv_ann.cpp
Artificial Neuronal Network (ANN) model
Part of the data prediction package.
Copyright (c) 2011 Matthias Kramm <[email protected]>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "cvtools.h"
#include "mrscake.h"
#include "dataset.h"
#include "easy_ast.h"
#include "model_select.h"
//#define VERIFY 1
typedef struct _ann_model_factory {
model_factory_t head;
int activation_function;
int num_layers;
} ann_model_factory_t;
class CodeGeneratingANN: public CvANN_MLP
{
public:
CodeGeneratingANN(dataset_t*dataset,
int input_size,
int output_size, const CvMat* layer_sizes,
int activ_func, double f_param1, double f_param2)
:CvANN_MLP(layer_sizes, activ_func, f_param1, f_param2)
{
this->dataset = dataset;
this->input_size = input_size;
this->output_size = output_size;
var_offset = new int[layer_sizes->cols+1];
int t;
int o = 0;
for(t=0;t<layer_sizes->cols;t++) {
var_offset[t] = o;
o += layer_sizes->data.i[t];
}
var_offset[t] = o;
}
~CodeGeneratingANN()
{
delete[] var_offset;
}
void scale_input()
{
const double* w = weights[0];
}
/*
def predict(f,cls):
# initialize classes
a = f
b = int(cls=="A")
c = int(cls=="B")
# input scaling
a = a*0.3+0.5
b = b*0.3+0.5
c = c*0.3+0.5
# layer0 -> layer1
l0 = a*0.9 + b*0.2 + c*0.5
l1 = a*0.1 + b*0.3 + c*0.1
l2 = a*0.2 + b*0.6 + c*0.9
l0 = exp(l0*0.7 + 0.9)
l0 = (1-l0)/(1+l0)*0.1
l1 = exp(l0*0.7 + 0.9)
l1 = (1-l0)/(1+l0)*0.1
l2 = exp(l0*0.7 + 0.9)
l2 = (1-l0)/(1+l0)*0.1
# layer1 -> layer2
l3 = l0*0.9 + l1*0.2 + l2*0.5
l4 = l0*0.1 + l1*0.3 + l2*0.1
l5 = l0*0.2 + l1*0.6 + l2*0.9
...
# output scaling
r0 = l6*0.3 + 0.7
r1 = l7*0.1 + 0.2
r2 = l8*0.9 + 0.5
return ["A","B","C"][[r0,r1,r2].index(max([r0,r1,r2]))]
*/
node_t* get_program() const
{
expanded_columns_t*expanded_columns = expanded_columns_new(dataset);
START_CODE(program);
BLOCK
int l_count = layer_sizes->cols;
const double* w = weights[0];
int j;
int pos = 0;
for(j=0;j<input_size;j++) {
SETLOCAL(var_offset[0]+j)
ADD
MUL
INSERT_NODE(expanded_columns_parameter_code(expanded_columns, j));
FLOAT_CONSTANT(w[j*2])
END;
FLOAT_CONSTANT(w[j*2+1])
END;
END;
}
int cols = input_size;
for( j = 1; j < l_count; j++ )
{
int layer_in_cols = cols;
cols = layer_sizes->data.i[j];
int layer_out_cols = cols;
int w_rows = layer_in_cols;
int w_cols = layer_out_cols;
int x,y;
int o = var_offset[j];
w = weights[j];
for(x=0;x<w_cols;x++) {
SETLOCAL(o+x)
ADD
for(y=0;y<w_rows;y++) {
MUL
GETLOCAL(var_offset[j-1]+y);
FLOAT_CONSTANT(w[w_cols*y+x]);
END;
}
END;
END;
}
const double*bias = w + w_rows*w_cols;
for(x=0;x<w_cols;x++) {
double scale2 = f_param2;
switch( activ_func )
{
case IDENTITY: {
SETLOCAL(o+x)
ADD
GETLOCAL(o+x)
FLOAT_CONSTANT(bias[x]);
END;
END;
break;
}
case SIGMOID_SYM: {
double scale = -f_param1;
SETLOCAL(o+x)
EXP
MUL
ADD
GETLOCAL(o+x)
FLOAT_CONSTANT(bias[x]);
END;
FLOAT_CONSTANT(scale);
END;
END;
END;
SETLOCAL(o+x)
MUL
DIV
SUB
FLOAT_CONSTANT(1.0);
GETLOCAL(o+x)
END;
ADD
FLOAT_CONSTANT(1.0);
GETLOCAL(o+x)
END;
END;
FLOAT_CONSTANT(scale2);
END;
END;
break;
}
case GAUSSIAN: {
double scale = -f_param1*f_param1;
SETLOCAL(o+x)
MUL
EXP
MUL
SQR
ADD
GETLOCAL(o+x);
FLOAT_CONSTANT(bias[x]);
END;
END;
FLOAT_CONSTANT(scale);
END;
END;
FLOAT_CONSTANT(scale2);
END;
END;
break;
}
}
}
}
int final = var_offset[l_count-1];
w = weights[l_count];
for(j=0;j<output_size;j++) {
SETLOCAL(final+j)
ADD
MUL
GETLOCAL(final+j);
FLOAT_CONSTANT(w[j*2]);
END;
FLOAT_CONSTANT(w[j*2+1]);
END;
END;
}
ARRAY_AT_POS
ARRAY_CONSTANT(dataset_classes_as_array(dataset));
ARG_MAX_F
for(j=0;j<output_size;j++) {
GETLOCAL(final+j);
}
END;
END;
END_BLOCK;
END_CODE;
expanded_columns_destroy(expanded_columns);
return program;
}
constant_t predict(row_t*row, bool debug) const
{
CvMat* matrix_row = cvmat_from_row(dataset, row, true, false);
CvMat* output = cvCreateMat(1, dataset->desired_response->num_classes, CV_32FC1);
if(debug)
cvmat_print(matrix_row);
CvANN_MLP::predict(matrix_row, output);
int index = cvmat_get_max_index(output);
cvReleaseMat(&matrix_row);
cvReleaseMat(&output);
return dataset_map_response_class(dataset, index);
}
dataset_t*dataset;
int*var_offset;
int input_size;
int output_size;
};
#ifdef VERIFY
void verify(dataset_t*dataset, model_t*m, CodeGeneratingANN*ann)
{
example_t*e = dataset->first_example;
int t;
while(e) {
row_t* r = example_to_row(e, m->column_names);
constant_t p = ann->predict(r, false);
variable_t c1 = constant_to_variable(&p);
variable_t c2 = model_predict(m, r);
variable_print(&c1, stdout);
printf(" <-> ");
variable_print(&c2, stdout);
printf("\n");
if(!variable_equals(&c1, &c2)) {
ann->predict(r, true);
}
assert(variable_equals(&c1, &c2));
row_destroy(r);
e = e->next;
}
}
#endif
static model_t*ann_train(ann_model_factory_t*factory, dataset_t*d)
{
int num_layers = factory->num_layers;
CvMat* layers = cvCreateMat( 1, num_layers, CV_32SC1);
int input_width = count_multiclass_columns(d);
int output_width = d->desired_response->num_classes;
int t;
for(t=0;t<num_layers;t++) {
int size = (input_width+output_width)/2;
if(t==0) {
size = input_width;
} else if(t==num_layers-1) {
size = output_width;
} else {
if(size<=1)
size = 2;
}
cvmSetI(layers, 0, t, size);
}
int num_rows = training_set_size(d->num_rows);
CvANN_MLP_TrainParams ann_params;
CodeGeneratingANN ann(d, input_width, output_width, layers, factory->activation_function, 0.0, 0.0);
CvMat* ann_input;
CvMat* ann_response;
make_ml_multicolumn(d, &ann_input, &ann_response, num_rows, true);
ann.train(ann_input, ann_response, NULL, NULL, ann_params, 0x0000);
model_t*m = model_new(d);
m->code = ann.get_program();
#ifdef VERIFY
verify(dataset, m, &ann);
#endif
cvReleaseMat(&layers);
cvReleaseMat(&ann_input);
cvReleaseMat(&ann_response);
return m;
}
static ann_model_factory_t ann_2sigmoid_model_factory = {
head: {
name: "neuronal network (sigmoid) with 2 layers",
train: (training_function_t)ann_train,
},
activation_function: CvANN_MLP::SIGMOID_SYM,
num_layers: 2,
};
static ann_model_factory_t ann_2gaussian_model_factory = {
head: {
name: "neuronal network (gaussian) with 2 layers",
train: (training_function_t)ann_train,
},
activation_function: CvANN_MLP::GAUSSIAN,
num_layers: 2,
};
static ann_model_factory_t ann_2identity_model_factory = {
head: {
name: "neuronal network (id) with 2 layers",
train: (training_function_t)ann_train,
},
activation_function: CvANN_MLP::IDENTITY,
num_layers: 2,
};
static ann_model_factory_t ann_3sigmoid_model_factory = {
head: {
name: "neuronal network (sigmoid) with 3 layers",
train: (training_function_t)ann_train,
},
activation_function: CvANN_MLP::SIGMOID_SYM,
num_layers: 3,
};
static ann_model_factory_t ann_3gaussian_model_factory = {
head: {
name: "neuronal network (gaussian) with 3 layers",
train: (training_function_t)ann_train,
},
activation_function: CvANN_MLP::GAUSSIAN,
num_layers: 3,
};
static ann_model_factory_t ann_3identity_model_factory = {
head: {
name: "neuronal network (id) with 3 layers",
train: (training_function_t)ann_train,
},
activation_function: CvANN_MLP::IDENTITY,
num_layers: 3,
};
model_factory_t* ann_models[] =
{
(model_factory_t*)&ann_2sigmoid_model_factory,
(model_factory_t*)&ann_2gaussian_model_factory,
(model_factory_t*)&ann_2identity_model_factory,
(model_factory_t*)&ann_3sigmoid_model_factory,
(model_factory_t*)&ann_3gaussian_model_factory,
(model_factory_t*)&ann_3identity_model_factory,
};
int num_ann_models = sizeof(ann_models) / sizeof(ann_models[0]);