This repository has been archived by the owner on Sep 14, 2018. It is now read-only.
forked from matthiaskramm/mrscake
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_cv_svm.cpp
293 lines (265 loc) · 9.29 KB
/
model_cv_svm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/* model_cv_svm.cpp
Support Vector Machine (SVM) model
Part of the data prediction package.
Copyright (c) 2010-2011 Matthias Kramm <[email protected]>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "cvtools.h"
#include "mrscake.h"
#include "dataset.h"
#include "easy_ast.h"
#include "model_select.h"
//#define VERIFY 1
typedef struct _svm_model_factory {
model_factory_t head;
int kernel;
} svm_model_factory_t;
class CodeGeneratingSVM: public CvSVM
{
public:
CodeGeneratingSVM(dataset_t*dataset)
:CvSVM()
{
this->dataset = dataset;
}
~CodeGeneratingSVM()
{
}
node_t* get_program() const
{
expanded_columns_t*expanded_columns = expanded_columns_new(dataset);
assert( kernel );
assert( params.svm_type == CvSVM::C_SVC );
int var_count = get_var_count();
int class_count = this->dataset->desired_response->num_classes;
assert(var_count == expanded_columns->num);
assert(class_labels->cols == class_count);
START_CODE(program)
BLOCK
/* FIXME: we should evaluate parameter_code(i) only once for each i */
if(params.kernel_type == CvSVM::RBF) {
//calc_rbf(vcount, var_count, vecs, another, results);
double gamma = -params.gamma;
int j, k;
for(j=0;j<sv_total;j++) {
float*vec = sv[j];
SETLOCAL(j)
EXP
MUL
ADD
for(k=0; k<var_count; k++) {
SQR
SUB
FLOAT_CONSTANT(vec[k]);
INSERT_NODE(expanded_columns_parameter_code(expanded_columns, k))
END;
END;
}
END;
FLOAT_CONSTANT(gamma);
END;
END;
END;
}
} else if(params.kernel_type == CvSVM::POLY) {
//calc_poly(vcount, var_count, vecs, another, results);
assert(!"polynomial kernel not supported yet");
} else if(params.kernel_type == CvSVM::SIGMOID) {
//calc_sigmoid(vcount, var_count, vecs, another, results);
int j;
for(j=0;j<sv_total;j++) {
float*vec = sv[j];
double mul = -2*params.gamma; //"alpha"
double add = -2*params.coef0; //"beta"
SETLOCAL(sv_total+j)
ADD
int k;
for(k=0;k<var_count;k++) {
MUL
INSERT_NODE(expanded_columns_parameter_code(expanded_columns, k))
FLOAT_CONSTANT(vec[k]*mul)
END;
}
FLOAT_CONSTANT(add);
END;
END;
SETLOCAL(j)
EXP
NEG
ABS
GETLOCAL(sv_total+j)
END;
END;
END;
END;
SETLOCAL(j)
DIV
SUB
FLOAT_CONSTANT(1.0);
GETLOCAL(j);
END;
ADD
FLOAT_CONSTANT(1.0);
GETLOCAL(j);
END;
END;
END;
IF
LTE
GETLOCAL(sv_total+j)
FLOAT_CONSTANT(0.0)
END;
THEN
SETLOCAL(j)
NEG
GETLOCAL(j);
END;
END;
ELSE
NOP;
END;
}
} else if(params.kernel_type == CvSVM::LINEAR) {
//calc_non_rbf_base(vcount, var_count, vecs, another, results, 1, 0);
int j;
for(j=0;j<sv_total;j++) {
float*vec = sv[j];
SETLOCAL(j)
ADD
int k;
for(k=0;k<var_count;k++) {
MUL
INSERT_NODE(expanded_columns_parameter_code(expanded_columns, k))
FLOAT_CONSTANT(vec[k])
END;
}
END;
END;
}
} else assert(!"invalid kernel type");
int vote_offset = sv_total;
int i;
for(i = 0; i < class_count; i++) {
SETLOCAL(vote_offset+i)
INT_CONSTANT(0);
END;
}
CvSVMDecisionFunc* df = (CvSVMDecisionFunc*)decision_func;
for(i=0; i<class_count; i++) {
int j;
for(j=i+1; j<class_count; j++) {
IF
GT
ADD
FLOAT_CONSTANT(-df->rho);
int sv_count = df->sv_count;
int k;
for(k = 0; k < sv_count; k++) {
MUL
FLOAT_CONSTANT(df->alpha[k])
GETLOCAL(df->sv_index[k]);
END;
}
END;
FLOAT_CONSTANT(0.0);
END;
THEN
INCLOCAL(vote_offset + i)
ELSE
INCLOCAL(vote_offset + j)
END;
df++;
}
}
ARRAY_AT_POS
ARRAY_CONSTANT(dataset_classes_as_array(dataset));
ARG_MAX_I
int j;
for(j=0; j<class_count; j++) {
GETLOCAL(vote_offset+j);
}
END;
END;
END;
END_CODE;
expanded_columns_destroy(expanded_columns);
return program;
}
dataset_t*dataset;
};
static model_t*svm_train(svm_model_factory_t*factory, dataset_t*d)
{
if(factory->kernel == CvSVM::LINEAR && d->desired_response->num_classes > 4 ||
factory->kernel == CvSVM::RBF && d->desired_response->num_classes > 3) {
/* if we have too many classes one-vs-one SVM classification is too slow */
return 0;
}
int num_rows = training_set_size(d->num_rows);
if(factory->kernel == CvSVM::LINEAR && d->num_rows > 1000) {
num_rows = 1000;
}
if(factory->kernel == CvSVM::RBF && d->num_rows > 300) {
num_rows = 300;
}
if(factory->kernel == CvSVM::SIGMOID && d->num_rows > 200) {
num_rows = 200;
}
CodeGeneratingSVM svm(d);
CvSVMParams params = CvSVMParams(CvSVM::C_SVC, factory->kernel,
/*degree*/0, /*gamma*/1, /*coef0*/0, /*C*/1,
/*nu*/0, /*p*/0, /*class_weights*/0,
cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 1000, FLT_EPSILON));
CvMat* input;
CvMat* response;
make_ml_multicolumn(d, &input, &response, num_rows, false);
bool use_auto_training = d->desired_response->num_classes <= 3;
model_t*m = 0;
if(use_auto_training && svm.train_auto(input, response, 0, 0, params, 5)) {
m = model_new(d);
m->code = svm.get_program();
}
if(!m && svm.train(input, response, 0, 0, params)) {
m = model_new(d);
m->code = svm.get_program();
}
cvReleaseMat(&input);
cvReleaseMat(&response);
return m;
}
static svm_model_factory_t rbf_svm_model_factory = {
head: {
name: "rbf svm",
train: (training_function_t)svm_train,
},
CvSVM::RBF
};
static svm_model_factory_t sigmoid_svm_model_factory = {
head: {
name: "sigmoid svm",
train: (training_function_t)svm_train,
},
CvSVM::SIGMOID
};
static svm_model_factory_t linear_svm_model_factory = {
head: {
name: "linear svm",
train: (training_function_t)svm_train,
},
CvSVM::LINEAR
};
model_factory_t* svm_models[] =
{
(model_factory_t*)&linear_svm_model_factory,
(model_factory_t*)&sigmoid_svm_model_factory,
(model_factory_t*)&rbf_svm_model_factory,
};
int num_svm_models = sizeof(svm_models) / sizeof(svm_models[0]);