This repository has been archived by the owner on Sep 14, 2018. It is now read-only.
forked from matthiaskramm/mrscake
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_perceptron.c
122 lines (103 loc) · 3.39 KB
/
model_perceptron.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/* model_perceptron.cpp
Perceptron model
Part of the data prediction package.
Copyright (c) 2010-2011 Matthias Kramm <[email protected]>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include <stdlib.h>
#include "mrscake.h"
#include "dataset.h"
#include "easy_ast.h"
#include "model_select.h"
typedef struct _perceptron_model_factory {
model_factory_t head;
} perceptron_model_factory_t;
category_t predict(dataset_t*d, double*weights, int row)
{
double result = 0;
int t;
for(t=0;t<d->num_columns;t++)
{
column_t*column = d->columns[t];
double v = column->entries[row].f;
result += weights[t]*v;
}
return result > 0 ? 1 : 0;
}
void update_weights(double*weights, dataset_t*d, int row, double eta)
{
double y = d->desired_response->entries[row].c ? 1 : -1;
int t;
for(t=0;t<d->num_columns;t++)
{
column_t*column = d->columns[t];
weights[t] += column->entries[row].f * y;
}
}
static model_t*perceptron_train(perceptron_model_factory_t*factory, dataset_t*d)
{
int num_iterations = d->num_rows*100;
double base_eta = 0.1;
double lastperf = 1.0;
double currentperf = -1;
int t;
double*weights = calloc(sizeof(double), d->num_columns);
if(dataset_has_categorical_columns(d))
return NULL;
if(d->desired_response->num_classes > 2)
return NULL;
double class_to_level[2] = {-1, 1};
for(t=1;t<num_iterations;t++)
{
int i = lrand48() % d->num_rows;
double eta = base_eta / t;
if(predict(d, weights, i) != d->desired_response->entries[i].c) {
update_weights(weights, d, i, eta);
}
}
expanded_columns_t*expanded_columns = expanded_columns_new(d);
START_CODE(program)
BLOCK
IF
LT
ADD
for(t=0;t<d->num_columns;t++) {
MUL
INSERT_NODE(expanded_columns_parameter_code(expanded_columns, t))
FLOAT_CONSTANT(weights[t])
END;
}
END;
FLOAT_CONSTANT(0.0);
END;
THEN
GENERIC_CONSTANT(d->desired_response->classes[0]);
ELSE
GENERIC_CONSTANT(d->desired_response->classes[1]);
END;
END_CODE;
expanded_columns_destroy(expanded_columns);
model_t*m = model_new(d);
m->code = program;
return m;
}
static perceptron_model_factory_t perceptron_model_factory = {
head: {
name: "perceptron",
train: (training_function_t)perceptron_train,
},
};
model_factory_t* perceptron_models[] =
{
(model_factory_t*)&perceptron_model_factory,
};
int num_perceptron_models = sizeof(perceptron_models) / sizeof(perceptron_models[0]);