-
Notifications
You must be signed in to change notification settings - Fork 553
/
Copy pathyolov7_tiny_syncbn_fast_8x16b-300e_coco.py
98 lines (89 loc) · 3.16 KB
/
yolov7_tiny_syncbn_fast_8x16b-300e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
_base_ = './yolov7_l_syncbn_fast_8x16b-300e_coco.py'
# ========================modified parameters========================
# -----model related-----
# Data augmentation
max_translate_ratio = 0.1 # YOLOv5RandomAffine
scaling_ratio_range = (0.5, 1.6) # YOLOv5RandomAffine
mixup_prob = 0.05 # YOLOv5MixUp
randchoice_mosaic_prob = [0.8, 0.2]
mixup_alpha = 8.0 # YOLOv5MixUp
mixup_beta = 8.0 # YOLOv5MixUp
# -----train val related-----
loss_cls_weight = 0.5
loss_obj_weight = 1.0
lr_factor = 0.01 # Learning rate scaling factor
# ===============================Unmodified in most cases====================
num_classes = _base_.num_classes
num_det_layers = _base_.num_det_layers
img_scale = _base_.img_scale
pre_transform = _base_.pre_transform
model = dict(
backbone=dict(
arch='Tiny', act_cfg=dict(type='LeakyReLU', negative_slope=0.1)),
neck=dict(
is_tiny_version=True,
in_channels=[128, 256, 512],
out_channels=[64, 128, 256],
block_cfg=dict(
_delete_=True, type='TinyDownSampleBlock', middle_ratio=0.25),
act_cfg=dict(type='LeakyReLU', negative_slope=0.1),
use_repconv_outs=False),
bbox_head=dict(
head_module=dict(in_channels=[128, 256, 512]),
loss_cls=dict(loss_weight=loss_cls_weight *
(num_classes / 80 * 3 / num_det_layers)),
loss_obj=dict(loss_weight=loss_obj_weight *
((img_scale[0] / 640)**2 * 3 / num_det_layers))))
mosiac4_pipeline = [
dict(
type='Mosaic',
img_scale=img_scale,
pad_val=114.0,
pre_transform=pre_transform),
dict(
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
max_translate_ratio=max_translate_ratio, # change
scaling_ratio_range=scaling_ratio_range, # change
# img_scale is (width, height)
border=(-img_scale[0] // 2, -img_scale[1] // 2),
border_val=(114, 114, 114)),
]
mosiac9_pipeline = [
dict(
type='Mosaic9',
img_scale=img_scale,
pad_val=114.0,
pre_transform=pre_transform),
dict(
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
max_translate_ratio=max_translate_ratio, # change
scaling_ratio_range=scaling_ratio_range, # change
border=(-img_scale[0] // 2, -img_scale[1] // 2),
border_val=(114, 114, 114)),
]
randchoice_mosaic_pipeline = dict(
type='RandomChoice',
transforms=[mosiac4_pipeline, mosiac9_pipeline],
prob=randchoice_mosaic_prob)
train_pipeline = [
*pre_transform,
randchoice_mosaic_pipeline,
dict(
type='YOLOv5MixUp',
alpha=mixup_alpha,
beta=mixup_beta,
prob=mixup_prob, # change
pre_transform=[*pre_transform, randchoice_mosaic_pipeline]),
dict(type='YOLOv5HSVRandomAug'),
dict(type='mmdet.RandomFlip', prob=0.5),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
'flip_direction'))
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
default_hooks = dict(param_scheduler=dict(lr_factor=lr_factor))