-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathEquityClasses.py
676 lines (573 loc) · 32.2 KB
/
EquityClasses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
from typing import List
import numpy as np
import pandas as pd
from pathlib import Path
from datetime import date
from dataclasses import dataclass
from dateutil.relativedelta import relativedelta
from CurvesClass import Curves
from FrequencyClass import Frequency
from TraceClass import Trace, tracer
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(levelname)s:%(name)s:(%(asctime)s):%(message)s (Line: %(lineno)d [%(filename)s])")
file_handler = logging.FileHandler("EquityClasses.log")
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
@dataclass
class EquityShare:
asset_id: int
nace: str
issuer: str
issue_date: date
dividend_yield: float
frequency: Frequency
units: float
market_price: float
growth_rate: float
spread_country: float
spread_sector: float
spread_stress: float
def __post_init__(self) -> None:
logger.info("Equity class initiated")
# @property Look into what property does
# @tracer
def dividend_amount(self, market_price: float) -> float:
"""
Calculate the size of the dividend for a share inside the EquityShare class.
The dividend amount is equal to the percentage of the market value.
Parameters
----------
self: EquityShare class
:type market_price: float
The current market price of the equity share
Returns
-------
:type dividend_size: float
The monetary amount of the dividend
"""
dividend_size = market_price * self.dividend_yield
return dividend_size
# @tracer
def terminal_amount(self, market_price: float, growth_rate: float, terminal_rate: float) -> float:
"""
Calculates the terminal value of an equity share. Currently set as the market value.
Parameters
----------
self: EquityShare class
:type market_price: float
The current market price of the equity share
:type growth_rate: float
The annual growth rate of the particular stock
:type terminal_rate: float
The assumed terminal interest rate
Returns
-------
:type terminal_amount: float
The monetary amount that can be obtained by selling the share at the end of the modelling window
"""
#return market_price / (terminal_rate - growth_rate)
return market_price
# @tracer
def generate_market_value(self, modelling_date: date, evaluated_date: date, market_price: float,
growth_rate: float) ->float:
"""
Calculates the market value appreciation of an equity share between two points in time.
Parameters
----------
self: EquityShare class
:type modeling_date: date
Earlier date of interest
:type evaluated_date: date
Later date of interest
:type market_price: float
The market price of the share at the earlier date
:type growth_rate: float
Assumed annualized growth rate of the issuer
Returns
-------
:type float
The market value at the later date of interest
"""
t = (evaluated_date - modelling_date).days / 365.5
return market_price * (1 + growth_rate) ** t
# @tracer
def generate_dividend_dates(self, modelling_date: date, end_date: date):
"""
Generator yielding the dividend payment date starting from the first dividend
paid after the modelling date.
Parameters
----------
self: EquityShare class
:type modelling_date: date
The earliest date considered.
:type end_date: date
The latest date considered
Returns
-------
:type yield float
The date at which the dividend occurs
"""
delta = relativedelta(months=(12 // self.frequency))
this_date = self.issue_date - delta
while this_date < end_date: # Coupon payment dates
this_date = this_date + delta
if this_date < modelling_date: # Not interested in past payments
continue
if this_date <= end_date:
yield this_date # ? What is the advantage of yield here?
def create_single_cash_flows(self, modelling_date: date, end_date: date, growth_rate: float)->dict:
"""
Create a dictionary of dividend cash flows using information about an equity share. The
return dictionary has dates of the cash flows as keys and monetary amounts as values.
Parameters
----------
self: EquityShare instance
The EquityShare instance with the equity position of interest.
:type modelling_date: datetime.date
The date from which the dividend dates and values start.
:type end_date: datetime.date
The last date that the model considers (end of the modelling window).
:type growth_rate: float
Annualized growth rate of the equity of interest.
Returns
-------
:type dividends: list of dict
Dictionary of dictionaries containing the cash flow date and the size.
"""
dividend_amount = 0
dividends = {}
for dividend_date in self.generate_dividend_dates(modelling_date, end_date):
if dividend_date in dividends: # If two cash flows on same date
pass
# Do nothing since dividend amounts are calibrated afterwards for equity
# dividends[dividend_date] = dividend_amount + dividends[dividend_date]
else: # New cash flow date
market_price = self.generate_market_value(modelling_date, dividend_date,
self.market_price,
growth_rate)
dividend_amount = self.dividend_amount(market_price=market_price)
dividends.update({dividend_date: dividend_amount})
return dividends
def create_single_terminal(self, modelling_date: date, end_date: date, terminal_rate: float, growth_rate: float)-> dict:
"""
Create a dictionary of terminal cash flows using information about an equity share. The
return dictionary has dates of the cash flows as keys and monetary amounts as values.
Parameters
----------
self: EquityShare instance
The EquityShare instance with the equity position of interest.
:type modelling_date: datetime.date
The date from which the dividend dates and values start.
:type end_date: datetime.date
The last date that the model considers (end of the modelling window).
:type terminal_rate: float
Long term interest rate assumed by the run.
:type growth_rate: float
Annualized growth rate of the equity of interest.
Returns
-------
:type dividends: list of dict
List of dictionaries containing the cash flow date and the size.
"""
terminals = {}
market_price = self.generate_market_value(modelling_date, end_date, self.market_price,
growth_rate)
terminal_amount = self.terminal_amount(market_price, growth_rate, terminal_rate)
terminals.update({end_date: terminal_amount})
return terminals
def price_share(self, dividends: dict, terminal: dict, modelling_date: date, proj_period: int, curves: Curves)->float:
"""
Calculate the price of an equity share using the yield curve obtained
from the curves object.
Parameters
----------
self: EquityShare instance
The EquityShare instance with the equity position of interest.
:type dividends: dict
A dictionary with dates of dividend cashflows as keys and monetary amounts as values.
:type terminal: dict
A dictionary with dates of terminal sale as keys and monetary amounts as values.
:type modelling_date: datetime.date
The date from which the dividend dates and values start.
:type proj_period: int
Which modelling date in dates of interest is the pricing function using.
:type curves: Curves
Instance of the Curves class with calibrated term structure.
Returns
-------
:type disc_value: float
The price of the share.
"""
date_frac = []
cash_flow = []
for key, value in dividends.items():
date_tmp = (key-modelling_date).days/365.25
date_frac.append(date_tmp)
cash_flow.append(value)
for key, value in terminal.items():
date_tmp = (key-modelling_date).days/365.25
date_frac.append(date_tmp)
cash_flow.append(value)
date_frac = pd.DataFrame(data = date_frac, columns = ["Date Fraction"]) # No need for Dataframes. Remove them
cash_flow = pd.DataFrame(data = cash_flow, columns = ["Cash flow"])
spread = self.spread_country + self.spread_sector+ self.spread_stress
discount = curves.RetrieveRates(proj_period, date_frac.iloc[:, 0].to_numpy(), "Discount", spread)
nodisc_value = cash_flow.values*discount
disc_value = sum(nodisc_value.values)
return disc_value
def bisection_growth(self, x_start: float, x_end:float, modelling_date:date, end_date:date, proj_period:int, curves: Curves, precision: float, max_iter:int)->float:
"""
Bisection root finding algorithm for finding growth rate that when discounting with the risk free curve returns the market price.
Args:
self = EquityShare object containing a single equity share positions
x_start = 1 x 1 floating number representing the minimum allowed value of the convergence speed parameter alpha. Ex. alpha = 0.05
x_end = 1 x 1 floating number representing the maximum allowed value of the convergence speed parameter alpha. Ex. alpha = 0.8
modelling_date = 1 x 1 date, representing the date at which the entire run starts
end_date = 1 x 1 date, representing the date at which the modelling window closes
proj_period = 1 x 1 integer, representing the projection step at which the equity is calibrated. Ex. 1, 2
curves = Curves object containing data about the term structure
precision = 1 x 1 floating number representing the precision of the calculation. Higher the precision, more accurate the estimation of the root
max_iter = 1 x 1 positive integer representing the maximum number of iterations allowed. This is to prevent an infinite loop in case the method does not converge to a solution
approx_function
Returns:
1 x 1 floating number representing the optimal growth of an equity to return the targeted market price
Implemented by Gregor Fabjan from Qnity Consultants on 08/02/2024.
"""
terminal_rate = curves.ufr
dividends = self.create_single_cash_flows(modelling_date, end_date, x_start)
terminal = self.create_single_terminal(modelling_date, end_date, terminal_rate, x_start)
y_start = self.price_share(dividends, terminal, modelling_date, proj_period, curves)[0]-self.market_price
dividends = self.create_single_cash_flows(modelling_date, end_date, x_end)
terminal = self.create_single_terminal(modelling_date, end_date, terminal_rate, x_end)
y_end = self.price_share(dividends, terminal, modelling_date, proj_period, curves)[0]-self.market_price
if np.abs(y_start) < precision:
return x_start
if np.abs(y_end) < precision:
return x_end # If final point already satisfies the conditions return end point
i_iter = 0
while i_iter <= max_iter:
x_mid = (x_end + x_start) / 2 # calculate mid-point
dividends = self.create_single_cash_flows(modelling_date, end_date, x_mid)
terminal = self.create_single_terminal(modelling_date, end_date, terminal_rate, x_mid)
y_mid = self.price_share(dividends, terminal, modelling_date, proj_period, curves)[0]-self.market_price
if (y_mid == 0 or (x_end - x_start) / 2 < precision): # Solution found
return x_mid
else: # Solution not found
i_iter += 1
if np.sign(y_mid) == np.sign(
y_start): # If the start point and the middle point have the same sign, then the root must be in the second half of the interval
x_start = x_mid
else: # If the start point and the middle point have a different sign than by mean value theorem the interval must contain at least one root
x_end = x_mid
return "Did not converge"
class EquitySharePortfolio():
def __init__(self, equity_share: dict[int, EquityShare] = None):
"""
Initialize the EquitySharePortfolio instance with the first EquityShare instance
Parameters
----------
:type equity_share: dict[int,EquityShare]
"""
logger.info("EquitySharePortfolio initializer called")
self.equity_share = equity_share
def IsEmpty(self) -> bool:
if self.equity_share is None:
return True
if len(self.equity_share) == 0:
return True
return False
def add(self, equity_share: EquityShare):
"""
Add a new EquityShare to the EquitySharePortfolio instance
Parameters
----------
self: EquitySharePortfolio class instance
The EquitySharePortfolio instance with populated initial portfolio.
:type equity_share: EquityShare
The EquityShare instance representing a single equity instrument.
"""
if self.equity_share is None:
self.equity_share = {equity_share.asset_id: equity_share}
else:
self.equity_share.update({equity_share.asset_id: equity_share})
def create_dividend_flows(self, modelling_date: date, end_date: date) -> list:
"""
Create the list of dictionaries containing dates at which the dividends are paid out and the total amounts for
all equity shares in the portfolio, for dates on or after the modelling date but not after the terminal date.
Parameters
----------
self: EquitySharePortfolio class instance
The EquitySharePortfolio instance with populated initial portfolio.
:type modelling_date: datetime.date
The date from which the dividend dates and values start.
:type end_date: datetime.date
The last date that the model considers (end of the modelling window).
Returns
-------
:rtype all_dividends
A dictionary of dictionaries with datetime keys and cash-flow size values, containing all the dates at which the coupons are paid out.
"""
all_dividends = {}
equity_share: EquityShare
for asset_id in self.equity_share:
equity_share = self.equity_share[asset_id] # Select one asset position
dividends = equity_share.create_single_cash_flows(modelling_date, end_date, equity_share.growth_rate)
all_dividends[asset_id] = dividends
return all_dividends
def create_terminal_flows(self, modelling_date: date, terminal_date: date, terminal_rate: float) -> dict:
"""
Create the list of dictionaries containing dates at which the terminal cash-flows are paid out and the total amounts for
all equity shares in the portfolio, for dates on or after the modelling date but not after the terminal date.
Parameters
----------
self: EquitySharePortfolio class instance
The EquitySharePortfolio instance with populated portfolio.
:type modelling_date: datetime.date
The date from which the terminal dates and market values start.
:type end_date: datetime.date
The last date that the model considers (end of the modelling window).
:type terminal_rate: float
The assumed ultimate forward rate. The long term interest rate used in the Gordon growth model to calculate the terminal cash-flow
Returns
-------
:rtype all_terminals
A dictionary of dictionaries with datetime keys and cash-flow size values, containing all the dates at which the terminal cash-flows are paid out.
"""
all_terminals = {}
terminals: dict[date, float] = {}
equity_share: EquityShare
terminal_date: date
for asset_id in self.equity_share:
equity_share = self.equity_share[asset_id]
terminals = equity_share.create_single_terminal(modelling_date, terminal_date, terminal_rate, equity_share.growth_rate)
all_terminals[asset_id]=terminals
return all_terminals
def create_dividend_fractions(self, modelling_date: date, dividend_array: list) -> list:
"""
Create the list of year-fractions at which each dividend is paid out (compared to the modelling date) and the list of
relevant indices (aka. indices of cash flows that are within the modelling period)
Parameters
----------
self: EquitySharePortfolio class instance
The EquitySharePortfolio instance with populated portfolio.
:type modelling_date: datetime.date
The date from which the dividend fraction is calculated.
:type dividend_array: list of dictionaries
Each element of the list represents a single equity asset. Each element contains a dictionary where has keys as dates at which the dividend cash flows are paid out
and the values are the size of payment amount in local currency
Returns
-------
:rtype dict Array with two elements:
all_dividend_date_frac: A list of numpy arrays, Each element in the list represents a sigle asset. Each numpy array represents the time fraction
between the modelling date and the date of the cash flow (ex. 18 months from modelling date is 1.5).
all_dividend_dates_considered: list of numpy arrays. Each element in the list represents a single asset. Each numpy array represents the indices of
the cash flows from the dividend_array that mature within the period between the modelling date and the terminal date.
"""
# other counting conventions MISSING
# Remove numpy arrays in construction
# Data structures list of lists for dividend payments
all_date_frac = ([]) # this will save the date fractions of dividends for the portfolio
all_dates_considered = (
[]) # this will save if a cash flow is already expired before the modelling date in the portfolio
for one_dividend_array in dividend_array:
# equity_share = self.equity_share[asset_id]
# one_dividend_array = dividend_array[asset_id]
# Reset objects for the next asset
equity_date_frac = np.array([]) # this will save date fractions of dividends of a single asset
equity_dates_considered = np.array(
[]) # this will save the boolean, if the dividend date is after the modelling date
dividend_counter = 0 # Counter of future dividend cash flows initialized to 0
for one_dividend_date in list(one_dividend_array.keys()): # for each dividend date of the selected equity
one_dividend_days = (one_dividend_date - modelling_date).days
if one_dividend_days > 0: # dividend date is after the modelling date
equity_date_frac = np.append(
equity_date_frac, one_dividend_days / 365.25
) # append date fraction
equity_dates_considered = np.append(
equity_dates_considered, int(dividend_counter)
) # append "is after modelling date" flag
dividend_counter += 1
# else skip
all_date_frac.append(
equity_date_frac
) # append what fraction of the date is each cash flow compared to the modelling date
all_dates_considered.append(
equity_dates_considered.astype(int)
) # append which cash flows are after the modelling date
return [
all_date_frac,
all_dates_considered
] # return all generated data structures (for now)
def create_terminal_fractions(self, modelling_date: date, terminal_array: dict) -> dict:
"""
Create the list of year-fractions at which the terminal amount is paid out (compared to the modelling date) and the list of
relevant indices (aka. indices of cash flows that are within the modelling period)
Parameters
----------
self: EquitySharePortfolio class instance
The EquitySharePortfolio instance with populated portfolio.
:type modelling_date: datetime.date
The date from which the terminal fraction is calculated.
:type terminal_array: list of dictionaries
Each element of the list represents a single equity asset. Each element contains a dictionary where keys are the dates at which the terminal cash flow is paid out
and the values are the size of payment in local currency
Returns
-------
:rtype dict Array with two elements:
all_terminal_date_frac: A list of numpy arrays, Each element in the list represents a sigle asset. Each numpy array represents the time fraction
between the modelling date and the terminal date (ex. 18 months from modelling date is 1.5).
all_terminal_dates_considered: list of numpy arrays. Each element in the list represents a single asset. Each numpy array represents the index of
the cash flow from the terminal_array that matures within the period between the modelling date and the terminal date.
"""
# other counting conventions MISSING
# Remove numpy arrays in construction
# Data structures list of lists for dividend payments
all_terminal_date_frac = ([]) # this will save the date fractions of dividends for the portfolio
all_terminal_dates_considered = (
[]) # this will save if a cash flow is already expired before the modelling date in the portfolio
for one_terminal_array in terminal_array:
# Reset objects for the next asset
equity_terminal_date_frac = np.array([]) # this will save date fractions of dividends of a single asset
equity_terminal_dates_considered = np.array(
[]) # this will save the boolean, if the dividend date is after the modelling date
one_dividend_date = list(one_terminal_array.keys())[0] # for each dividend date of the selected equity
one_dividend_days = (one_dividend_date - modelling_date).days
if one_dividend_days > 0: # if terminal sale date is after modelling date
equity_terminal_date_frac = np.append(
equity_terminal_date_frac, one_dividend_days / 365.25
) # append date fraction
equity_terminal_dates_considered = np.append(
equity_terminal_dates_considered, int(1)
) # append "is after modelling date" flag
# else skip
all_terminal_date_frac.append(
equity_terminal_date_frac
) # append what fraction of the date is each cash flow compared to the modelling date
all_terminal_dates_considered.append(
equity_terminal_dates_considered.astype(int)
) # append which cash flows are after the modelling date
return [
all_terminal_date_frac,
all_terminal_dates_considered
]
def unique_dates_profile(self, cash_flow_profile: list):
"""
Create a sorted list of dates at which there is an cash-flow event in any of the assets inside the portfolio and
a single numpy array (matrix) representing those cash flows.
Parameters
----------
self: EquitySharePortfolio class instance
The EquitySharePortfolio instance with populated portfolio.
:type cashflow_profile: list of dictionaries containing the size and date of each
cash-flow for the equity portfolio
Returns
-------
:rtype list: list of sorted unique dates containing at least one cash flow
"""
unique_dates = []
for one_dividend_array in cash_flow_profile.values():
for one_dividend_date in list(one_dividend_array.keys()): # for each dividend date of the selected equity
if one_dividend_date in unique_dates: # If two cash flows on same date
pass
# Do nothing since dividend amounts are calibrated afterwards for equity
# dividends[dividend_date] = dividend_amount + dividends[dividend_date] # ? Why is here a plus? (you agregate coupon amounts if same date?)
else: # New cash flow date
unique_dates.append(one_dividend_date)
return sorted(unique_dates)
def cash_flow_profile_list_to_matrix(self, cash_flow_profile: list) -> list:
unique_dates = self.unique_dates_profile(cash_flow_profile)
width = len(unique_dates)
height = len(cash_flow_profile)
cash_flow_matrix = np.zeros((height, width))
row = 0
for one_cash_flow_array in cash_flow_profile:
count = 0
values = list(one_cash_flow_array.values())
for one_cash_flow in one_cash_flow_array:
column = unique_dates.index(one_cash_flow)
cash_flow_matrix[row, column] = values[count]
count += 1
row += 1
return [
unique_dates,
cash_flow_matrix]
def init_equity_portfolio_to_dataframe(self, modelling_date: date)->list:
asset_keys = self.equity_share.keys()
market_price_tmp = []
growth_rate_tmp = []
asset_id_tmp = []
units_tmp = []
for key in asset_keys:
market_price_tmp.append(self.equity_share[key].market_price)
growth_rate_tmp.append(self.equity_share[key].growth_rate)
asset_id_tmp.append(self.equity_share[key].asset_id)
units_tmp.append(self.equity_share[key].units)
market_price = pd.DataFrame(data=market_price_tmp, index=asset_id_tmp, columns=[modelling_date])
growth_rate = pd.DataFrame(data=growth_rate_tmp, index=asset_id_tmp, columns=[modelling_date])
units = pd.DataFrame(data=units_tmp, index=asset_id_tmp, columns=[modelling_date])
return [market_price, growth_rate, units]
# Calculate terminal value given growth rate, ultimate forward rate and vector of cash flows
def equity_gordon(self, dividendyield, yieldrates, dividenddatefrac, ufr, g):
num = np.power((1 + g), dividenddatefrac)
den = np.power((1 + yieldrates), dividenddatefrac)
termvalue = 1 / ((1 + yieldrates[-1]) ** dividenddatefrac[-1]) * 1 / (ufr - g)
lhs = 1 / dividendyield
return np.sum(num / den) + termvalue - lhs
## Bisection (To Update)
def bisection_spread(x_start, x_end, dividendyield, r_obs_est, dividenddatefrac, ufr, Precision, maxIter,
growth_func):
"""
Bisection root finding algorithm for finding the root of a function. The function here is the allowed difference between the ultimate forward rate and the extrapolated curve using Smith & Wilson.
Args:
cbPriced = CorporateBondPriced object containing the list of priced bonds, spreads and cash flows
x_start = 1 x 1 floating number representing the minimum allowed value of the convergence speed parameter alpha. Ex. alpha = 0.05
x_end = 1 x 1 floating number representing the maximum allowed value of the convergence speed parameter alpha. Ex. alpha = 0.8
M_Obs = n x 1 ndarray of maturities of bonds, that have rates provided in input (r). Ex. u = [[1], [3]]
r_Obs = n x 1 ndarray of rates, for which you wish to calibrate the algorithm. Each rate belongs to an observable Zero-Coupon Bond with a known maturity. Ex. r = [[0.0024], [0.0034]]
ufr = 1 x 1 floating number, representing the ultimate forward rate. Ex. ufr = 0.042
Tau = 1 x 1 floating number representing the allowed difference between ufr and actual curve. Ex. Tau = 0.00001
Precision = 1 x 1 floating number representing the precision of the calculation. Higher the precision, more accurate the estimation of the root
maxIter = 1 x 1 positive integer representing the maximum number of iterations allowed. This is to prevent an infinite loop in case the method does not converge to a solution
approx_function
Returns:
1 x 1 floating number representing the optimal value of the parameter alpha
Example of use:
>>> import numpy as np
>>> from SWCalibrate import SWCalibrate as SWCalibrate
>>> M_Obs = np.transpose(np.array([1, 2, 4, 5, 6, 7]))
>>> r_Obs = np.transpose(np.array([0.01, 0.02, 0.03, 0.032, 0.035, 0.04]))
>>> xStart = 0.05
>>> xEnd = 0.5
>>> maxIter = 1000
>>> alfa = 0.15
>>> ufr = 0.042
>>> Precision = 0.0000000001
>>> Tau = 0.0001
>>> BisectionAlpha(xStart, xEnd, M_Obs, r_Obs, ufr, Tau, Precision, maxIter)
[Out] 0.11549789285636511
For more information see https://www.eiopa.europa.eu/sites/default/files/risk_free_interest_rate/12092019-technical_documentation.pdf and https://en.wikipedia.org/wiki/Bisection_method
Implemented by Gregor Fabjan from Qnity Consultants on 17/12/2021.
"""
yStart = growth_func(dividendyield, r_obs_est, dividenddatefrac, ufr, x_start)
yEnd = growth_func(dividendyield, r_obs_est, dividenddatefrac, ufr, x_end)
if np.abs(yStart) < Precision:
return x_start
if np.abs(yEnd) < Precision:
return x_end # If final point already satisfies the conditions return end point
iIter = 0
while iIter <= maxIter:
xMid = (x_end + x_start) / 2 # calculate mid-point
yMid = growth_func(dividendyield, r_obs_est, dividenddatefrac, ufr,
xMid) # What is the solution at midpoint
if ((yStart) == 0 or (x_end - x_start) / 2 < Precision): # Solution found
return xMid
else: # Solution not found
iIter += 1
if np.sign(yMid) == np.sign(
yStart): # If the start point and the middle point have the same sign, then the root must be in the second half of the interval
x_start = xMid
else: # If the start point and the middle point have a different sign than by mean value theorem the interval must contain at least one root
x_end = xMid
return "Did not converge"