diff --git a/MANIFEST.in b/MANIFEST.in index 3aa287b..be8a813 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -3,7 +3,7 @@ include hector/LICENSE.md include hector/README.md include hector/inst/include/*.hpp include include/*.h -include pyhector/rcp_default.ini +include pyhector/ssp_default.ini include versioneer.py recursive-include pyhector/emissions *.csv recursive-include tests/data *.csv diff --git a/pyhector/rcp_default.ini b/pyhector/rcp_default.ini deleted file mode 100644 index 9fb0cfe..0000000 --- a/pyhector/rcp_default.ini +++ /dev/null @@ -1,340 +0,0 @@ -; Config file for hector model: RCP26 -;------------------------------------------------------------------------ -[core] -run_name=rcp26 -startDate=1745 -endDate=2300 -do_spinup=1 ; if 1, spin up model before running (default=1) -max_spinup=2000 ; maximum steps allowed for spinup (default=2000) - -;------------------------------------------------------------------------ -[onelineocean] -enabled=0 ; 'enabled=0' will disable any component -;output=0 ; 'output=0' will disable any component's output -ocean_c=38000 ; Pg C - -;------------------------------------------------------------------------ -[ocean] -enabled=1 ; putting 'enabled=0' will disable any component -spinup_chem=0 ; run surface chemistry during spinup phase? -;carbon_HL=145 ; high latitude, Pg C -;carbon_LL=750 ; low latitude, Pg C -;carbon_IO=10040 ; intermediate, Pg C -;carbon_DO=27070 ; deep, Pg C - -tt=72000000 ; 7.2e7 thermohaline circulation, m3/s -tu=49000000 ; 4.9e7 high latitude overturning, m3/s -twi=12500000 ; 1.25e7 warm-intermediate exchange, m3/s -tid=200000000 ; 2.0e8 intermediate-deep exchange, m3/s - -; Optional ocean C uptake constraint, Pg C/yr -; If supplied, the model will use these data, ignoring what it calculates - -;------------------------------------------------------------------------ -[simpleNbox] -; Initial (preindustrial) carbon pools and fluxes -; These are generally consistent with reconstructed (Siegenthaler and Oeschger -; 1987, 10.1111/j.1600-0889.1987.tb00278.x) and modeled (e.g. Ricciuto 2008, -; 10.1029/2006GB002908; Murakami 2010, 10.1007/s00704-009-0232-8) values. - -; If using biomes (e.g. boreal.veg_c) must have data for all pools*biomes -atmos_c=588.071 ; Pg C in CO2, from Murakami et al. (2010) -;C0=276 ; another way to specify, in ppmv -;boreal.veg_c=100 ; e.g. -;tropical.veg_c=450 ; -veg_c=550 ; vegetation, Pg C -;boreal.detritus_c=15 -;tropical.detritus_c=45 -detritus_c=55 ; detritus, Pg C -;boreal.soil_c=1200 -;tropical.soil_c=578 -soil_c=1782 ; soil, Pg C -;boreal.npp_flux0=5.0 -;tropical.npp_flux0=45.0 -npp_flux0=50.0 ; net primary production, Pg C/yr - -; Partitioning parameters -f_nppv=0.35 ; Fraction of NPP to vegetation -f_nppd=0.60 ; Fraction of NPP to detritus (balance to soil) -f_litterd=0.98 ; Fraction of litter flux to detritus (balance to soil) -f_lucv=0.1 ; Fraction of land use change flux from vegetation -f_lucd=0.01 ; Fraction of land use change flux from detritus (balance from soil) - -; Anthropogenic contributions: direct emissions and land use change, Pg C/yr - -; Optional atmospheric CO2 constraint, ppmv -; If supplied, the model will use these data, ignoring what it calculates -; Any residual between model [CO2] and model [CO2] will be put into the deep ocean - -; CO2 and temperature effects on the carbon cycle -; these are global values, can optionally specify biome-specific ones as above -beta=0.36 ; 0.36=about +20% @2xCO2 -q10_rh=2.0 ; respiration response Q10, unitless - -; Optional biome-specific warming factors -; by default, assume 1.0 (i.e., warms as fast as the globe) -;boreal.warmingfactor=1.2 ; i.e., biome will warm 1.2 C for every 1 C globally - -; Albedo effect, in W/m2. The model assumes a constant value if nothing specified -Ftalbedo[1750]=0.0 -Ftalbedo[1950]=-0.2 - -;------------------------------------------------------------------------ -[carbon-cycle-solver] -eps_abs=1.0e-6 ; solution tolerances -eps_rel=1.0e-6 -dt=0.25 ; default time step -eps_spinup=0.001 ; spinup tolerance (drift), Pg C - -;------------------------------------------------------------------------ -[so2] -S0=53841.2 ; historical sulphate from year 2000 (Gg) -SN=42000 ; natural sulfur emissions (Gg) - -;------------------------------------------------------------------------ -[CH4] -M0=653 ; 721.8941 preindustrial methane, ppbv ; assumed to be 700 ppbv IPCC, 2001 Table 6.1 -Tsoil=160 ; CH4 loss to soil (years) -Tstrat=120 ; CH4 loss to stratosphere (years) -UC_CH4=2.78 ; Tg(CH4)/ppb unit conversion between emissions and concentrations -CH4N=300 ; Natural CH4 emissions (Tgrams) - -;------------------------------------------------------------------------ -[OH] - -TOH0=6.6 ; inital OH lifetime (years) -CNOX=0.0042 ; coefficent for NOX -CCO=-0.000105 ; coefficent for CO -CNMVOC=-0.000315 ; coefficent for NMVOC -CCH4=-0.32 ; coefficent for CH4 - -;------------------------------------------------------------------------ -[ozone] -PO3=30.0 ; preindustrial O3 concentration -;molarMass=16.04 ; grams -;tau=10 ; lifetime in years (Oucher et al 2009) - -;------------------------------------------------------------------------ -[N2O] -N0=272.9596 ; preindustrial nitrous oxide, ppbv -UC_N2O=4.8 ; Tg(N2O)/ppb unit conversion between emissions and concentrations -TN2O0=132 ; Initial Lifetime of N2O - -; An example of setting a time series by individual values -; The model will interpolate as necessary between them -N2O_natural_emissions[1765]=11 ; natural emissions in 1765 -N2O_natural_emissions[2000]=8 ; natural emissions in 2000 -N2O_natural_emissions[2300]=8 ; natural emissions in 2300 - -;molarMass=44.01 ; grams - -;------------------------------------------------------------------------ -[forcing] -baseyear=1750 ; when to start reporting; by definition, all F=0 in this year - -; Optional radiative forcing constraint -; If supplied, the model will use these data, ignoring what it calculates - -;------------------------------------------------------------------------ -[temperature] -enabled=1 - -S=3.0 ; equilibrium climate sensitivity for 2xCO2, degC -diff=2.3 ; ocean heat diffusivity, cm2/s -alpha=1.0 ; scaling factor for aerosol forcing -volscl=1.0 ; scaling factor for volcanic forcing - -; Optional global temperature constraint -; If supplied, the model will use these data, ignoring what it calculates - -;------------------------------------------------------------------------ -[bc] - -;------------------------------------------------------------------------ -[oc] - -;------------------------------------------------------------------------ -; Halocarbons -; Tau (lifetime) and Rho (radiative efficiency) from IPCC (2005, Table 2.14) - -[CF4_halocarbon] -tau=50000.0 ; lifetime in years -rho=0.00008 ; radiative efficiencies W/m2/ppt -H0=35.0,pptv ; preindustrial concentration, pptv -molarMass=88.0043 ; grams - -[C2F6_halocarbon] -tau=10000.0 -rho=0.00026 -molarMass=138.01 - -;[C4F10_halocarbon] -;tau=2600.0 -;rho=0.00033 -;molarMass=238.0 - -[HFC23_halocarbon] -tau=270.0 -rho=0.00019 -molarMass=70.0 - -[HFC32_halocarbon] -tau=4.9 -rho=0.00011 -molarMass=52.0 - -[HFC4310_halocarbon] -tau=15.9 -rho=0.0004 -molarMass=252.0 - -[HFC125_halocarbon] -tau=29.0 -rho=0.00023 -molarMass=120.02 - -[HFC134a_halocarbon] -tau=14.0 -rho=0.00016 -molarMass=102.02 - -[HFC143a_halocarbon] -tau=52.0 -rho=0.00013 -molarMass=84.04 - -;[HFC152a_halocarbon] -;tau=1.4 -;rho=0.00009 -;molarMass=66.0 - -[HFC227ea_halocarbon] -tau=34.2 -rho=0.00026 -molarMass=170.03 - -[HFC245fa_halocarbon] -tau=7.6 -rho=0.00028 -molarMass=134.0 - -;[HFC236fa_halocarbon] -;tau=240.0 -;rho=0.00028 -;molarMass=152.0 - -[SF6_halocarbon] -tau=3200.0 -rho=0.00052 -molarMass=146.06 - -[CFC11_halocarbon] -tau=45.0 -rho=0.00025 -molarMass=137.35 -;ni=3 -;FC=1 - -[CFC12_halocarbon] -tau=100 -rho=0.00032 -molarMass=120.9 -;ni=2 -;FC=0.6 - -[CFC113_halocarbon] -tau=85.0 -rho=0.0003 -molarMass=187.35 -;ni=3 -;FC=0.75 - -[CFC114_halocarbon] -tau=300 -rho=0.00031 -molarMass=170.9 -;ni=2 -;FC=0.28 - -[CFC115_halocarbon] -tau=1700 -rho=0.00018 -molarMass=154.45 - -[CCl4_halocarbon] -tau=26.0 -rho=0.00013 -molarMass=153.8 -;ni=4 -;FC=1.06 - -[CH3CCl3_halocarbon] -tau=5.0 -rho=0.00006 -molarMass=133.35 -;ni=3 -;FC=1.08 - -[halon1211_halocarbon] -tau=16.0 -rho=0.00003 -molarMass=165.35 -;ni=1 -;nj=1 -;FC=1.18 - -[halon1301_halocarbon] -tau=65.0 -rho=0.00032 -molarMass=148.9 -;nj=1 -;FC=0.62 - -[halon2402_halocarbon] -tau=20.0 -rho=0.00033 -molarMass=259.8 -;nj=2 -;FC=1.22 - -[HCF22_halocarbon] -tau=12.0 -rho=0.0002 -molarMass=86.45 -;ni=1 -;FC=0.35 - -[HCF141b_halocarbon] -tau=9.3 -rho=0.00014 -molarMass=116.9 -;ni=2 -;FC=0.72 - -[HCF142b_halocarbon] -tau=17.9 -rho=0.0002 -molarMass=100.45 -;ni=1 -;FC=0.36 - -;[HCFC143_halocarbon] -;tau=1.3 -;rho=0.00014 -;molarMass=152.9 - -[CH3Cl_halocarbon] -tau=1.3 -rho=0.00001 -H0=504.0 ; preindustrial concentration, pptv from Saito et al 2007 GRL -molarMass=50.45 -;ni=1 -;FC=0.8 - -[CH3Br_halocarbon] -tau=0.7 -rho=0.00001 -H0=5.8 ; preindustrial concentration, pptv from Saltzman et al 2004 JGR -molarMass=94.9 -;nj=1 -;FC=1.12