diff --git a/src/Init/Data/Int/Lemmas.lean b/src/Init/Data/Int/Lemmas.lean index e3c2db105bd4..ddc32205fadc 100644 --- a/src/Init/Data/Int/Lemmas.lean +++ b/src/Init/Data/Int/Lemmas.lean @@ -24,9 +24,9 @@ theorem subNatNat_of_sub_eq_succ {m n k : Nat} (h : n - m = succ k) : subNatNat theorem subNatNat_of_sub {m n : Nat} (h : n ≤ m) : subNatNat m n = ↑(m - n) := by rw [subNatNat, ofNat_eq_coe] split - case h_1 x h' => + case h_1 _ _ => simp - case h_2 x h' => + case h_2 _ h' => rw [Nat.sub_eq_zero_of_le h] at h' simp at h' diff --git a/src/Init/Omega/Int.lean b/src/Init/Omega/Int.lean index 8487cdd8bf45..6c4c1b4c34ca 100644 --- a/src/Init/Omega/Int.lean +++ b/src/Init/Omega/Int.lean @@ -94,7 +94,7 @@ theorem ofNat_sub_dichotomy {a b : Nat} : b ≤ a ∧ ((a - b : Nat) : Int) = a - b ∨ a < b ∧ ((a - b : Nat) : Int) = 0 := by by_cases h : b ≤ a · left - have t := Int.ofNat_sub h + have := Int.ofNat_sub h simp [h] · right have t := Nat.not_le.mp h