diff --git a/docs/source/notebooks/custom-conversions.ipynb b/docs/source/notebooks/custom-conversions.ipynb
deleted file mode 100644
index cda098d..0000000
--- a/docs/source/notebooks/custom-conversions.ipynb
+++ /dev/null
@@ -1,188 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "id": "446173ed",
- "metadata": {},
- "source": [
- "# Custom conversions\n",
- "\n",
- "Here we show how custom conversions can be passed to OpenSCM-Units' `ScmUnitRegistry`."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "cd0c599a",
- "metadata": {},
- "outputs": [],
- "source": [
- "# NBVAL_IGNORE_OUTPUT\n",
- "import traceback\n",
- "\n",
- "import pandas as pd\n",
- "\n",
- "from openscm_units import ScmUnitRegistry"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "711f59c0",
- "metadata": {},
- "source": [
- "## Custom conversions DataFrame\n",
- "\n",
- "On initialisation, a `pd.DataFrame` can be provided which contains the custom conversions. This `pd.DataFrame` should be formatted as shown below, with an index that contains the different species and columns which contain the conversion for different metrics."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "a6ed71c3",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Custom1 | \n",
- " Custom2 | \n",
- "
\n",
- " \n",
- " Species | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " CH4 | \n",
- " 20 | \n",
- " 25 | \n",
- "
\n",
- " \n",
- " N2O | \n",
- " 341 | \n",
- " 300 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " Custom1 Custom2\n",
- "Species \n",
- "CH4 20 25\n",
- "N2O 341 300"
- ]
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "metric_conversions_custom = pd.DataFrame([\n",
- " {\n",
- " \"Species\": \"CH4\",\n",
- " \"Custom1\": 20,\n",
- " \"Custom2\": 25,\n",
- " },\n",
- " {\n",
- " \"Species\": \"N2O\",\n",
- " \"Custom1\": 341,\n",
- " \"Custom2\": 300,\n",
- " },\n",
- "]).set_index(\"Species\")\n",
- "metric_conversions_custom"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "b26b3ec2",
- "metadata": {},
- "source": [
- "With such a `pd.DataFrame`, we can use custom conversions in our unit registry as shown."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "9f298b21",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'N2O: 1 N2O'"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "'N2O in CO2-equivalent: 341.0 CO2'"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# initialise the unit registry with custom conversions\n",
- "unit_registry = ScmUnitRegistry(metric_conversions=metric_conversions_custom)\n",
- "# add standard conversions before moving on\n",
- "unit_registry.add_standards()\n",
- "\n",
- "# start with e.g. N2O\n",
- "nitrous_oxide = unit_registry(\"N2O\")\n",
- "display(f\"N2O: {nitrous_oxide}\")\n",
- "\n",
- "# our unit registry allows us to make conversions using the \n",
- "# conversion factors we previously defined\n",
- "with unit_registry.context(\"Custom1\"):\n",
- " display(f\"N2O in CO2-equivalent: {nitrous_oxide.to('CO2')}\")"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.11.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}