-
Notifications
You must be signed in to change notification settings - Fork 0
/
1b9100be-2004-4947-84ba-f44a5b5fc6a3.html
185 lines (184 loc) · 4.67 KB
/
1b9100be-2004-4947-84ba-f44a5b5fc6a3.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
<p class="os-raise-text-bold">Students will complete the following questions to practice the skills they have learned in this lesson.</p>
<p>For 1-4 use the problem below:</p>
<blockquote>Priya is buying raisins and almonds to make trail mix. Almonds cost $5.20 per pound, and raisins cost $2.75 per
pound. Priya spent $11.70 buying almonds and raisins. The relationship between pounds of almonds, pounds of raisins,
and the total cost is represented by the equation \(5.2a+2.75r=11.7\).</blockquote>
<p>How many pounds of raisins did Priya buy if she bought the following amounts of almonds?</p>
<ol class="os-raise-noindent">
<li>2 pounds of almonds<br></li>
</ol>
<ul>
<li>
a.
1.192
</li>
<li>
b.
2.75
</li>
<li>
c.
0.946
</li>
<li>
d. 0.473
</li>
</ul>
<p><strong>Answer: </strong> 0.473</p>
<p>\(5.2(2) + 2.75r = 11.7\)<br>
\(10.4 + 2.75r = 11.7\)<br>
\(10.4 + 2.75r - 10.4 = 11.7 - 10.4\)<br>
\(2.75r = 1.3\)<br>
\((1/2.75) (2.75r) = (1/2.75) (1.3)\)<br>
\(r = 0.473\)</p>
<ol class="os-raise-noindent" start="2">
<li>1.06 pounds of almonds<br></li>
</ol>
<ul>
<li>
2.25
</li>
<li>
1.689
</li>
<li>
5.5
</li>
<li>
2.811
</li>
</ul>
<p><strong>Answer: </strong> 2.25</p>
<p>\(5.2(1.06) + 2.75r = 11.7\)</p>
<ol class="os-raise-noindent" start="3">
<li>0.64 pounds of almonds<br></li>
</ol>
<ul>
<li>9.94
</li>
<li>1.911
</li>
<li>3.044
</li>
<li>8.371
</li>
</ul>
<p><strong>Answer: </strong>3.044</p>
<p>\(5.2(0.64) + 2.75r = 11.7\)</p>
<ol class="os-raise-noindent" start="4">
<li>\(a\) pounds of almonds<br></li>
</ol>
<ul>
<li>\(r=\frac{11.7+5.2a}{2.75}\) </li>
<li>\(r=\frac{11.7-2.75a}{5.2}\)
</li>
<li>\(r=\frac{2.75}{11.7-5.2a}\) </li>
<li>\(r=\frac{11.7-5.2a}{2.75}\)</li>
</ul>
<p><strong>Answer:</strong> \(r=\frac{11.7-5.2a}{2.75}\)</p>
<p>\(5.2(a) + 2.75r = 11.7\)</p>
<br>
<p>For 5 and 6 use the problem below:</p>
<blockquote>A car traveled 180 miles at a constant rate.</blockquote>
<ol class="os-raise-noindent" start="5">
<li> For each of the missing spaces in the table, a-d, select the missing value that
completes the table to show the rate at which the car was traveling if it
completed the same distance in each number of hours.</li>
</ol>
<table class="os-raise-skinnytable">
<thead>
<tr>
<th scope="col">
Travel Time<br>
(Hours)
</th>
<th scope="col">
Rate of Travel<br>
(Miles Per Hour)
</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>a. ____ <br></td>
</tr>
<tr>
<td>4.5</td>
<td>b. ____ <br></td>
</tr>
<tr>
<td>3</td>
<td>c. ____ </td>
</tr>
<tr>
<td>2.25</td>
<td>d. ____ </td>
</tr>
</tbody>
</table>
<br>
<p><strong>CHOICES: </strong></p>
<ul>
<li>40</li>
<li>80</li>
<li>36</li>
<li>60</li>
</ul>
<p>a. ____ </p>
<p><strong>Answer:</strong>36</p>
<ol class="os-raise-noindent">
<p>b. ____</p>
</ol>
<p><strong>Answer:</strong> 40</p>
<ol class="os-raise-noindent">
<p>c. ____ </p>
</ol>
<p><strong>Answer:</strong> 60</p>
<ol class="os-raise-noindent">
<p>d. ____</p>
</ol>
<p><strong>Answer:</strong> 80</p>
<ol class="os-raise-noindent" start="6">
<li>Choose the equation that would make it easy to find the rate at which the car
was traveling in miles per hour \(r\), if it traveled for \(t\) hours.</li>
</ol>
<ul>
<li>\(r=\frac t{180}\)</li>
<li>\(r=\frac{180}t\)</li>
<li>\(r=180t\)</li>
<li>\(r-180-t\)</li>
</ul>
<p><strong>Answer:</strong> \(r=\frac{180}t\)</p>
<ol class="os-raise-noindent" start="7">
<li> Bananas cost $0.50 each, and apples cost $1.00 each. <br><strong>Select all three</strong> combinations of bananas
and apples that Elena could buy for exactly $3.50.</li>
</ol>
<ul>
<li>2 bananas and 2 apples</li>
<li>3 bananas and 2 apples</li>
<li>1 banana and 2 apples</li>
<li>1 banana and 3 apples</li>
<li>5 bananas and 2 apples</li>
<li>5 bananas and 1 apple</li>
</ul>
<p><strong>Answer:</strong> “3 bananas and 2 apples” and “1 banana and 3 apples” and “5 bananas and 1 apple”</p>
<p>\(3(0.5)+2(1)=3.50\)<br>
\(1(0.5)+3(1)=3.50\)<br>
\(5(.5)+1(1)=3.50\)</p>
<ol class="os-raise-noindent" start="8">
<li>Choose the best answer to solve the formula \(A=P+Prt\) for \(t\).</li>
</ol>
<ul>
<li>\(t=\frac{P-A}{Pr}\)</li>
<li>\(t=\frac{A-P}{Pr}\)</li>
<li>\(t=\frac{A+P}{Pr}\)</li>
<li>\(t=\frac{r(A-P)}P\)</li>
<br>
</ul>
<p><strong>Answer:</strong> \(t=\frac{A-P}{Pr}\)</p>
<p>\(A=P+Prt\)<br>
\(A-P=P-P+Prt\)<br>
\(A-P=Prt\)<br>
\(\frac{A-P}{Pr}=\frac{Prt}{Pr}\)<br>
\(\frac{A-P}{Pr}=t\)</p>