-
Notifications
You must be signed in to change notification settings - Fork 0
/
59369988-18b8-4459-b1cf-7e8e99551954.html
37 lines (37 loc) · 1.86 KB
/
59369988-18b8-4459-b1cf-7e8e99551954.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
<h3>Cool Down (5 minutes)</h3>
<h4>Student Activity</h4>
<p>The equations \(y=x^2+6x+8\) and \(y=(x+2)(x+4)\) both define the same quadratic function. </p>
<br>
<!--Text Entry Interaction Start -->
<div class="os-raise-ib-input" data-button-text="Solution" data-content-id="399f2c1e-bff7-4dd2-8967-27417986c0f6" data-fire-event="eventShow" data-schema-version="1.0">
<div class="os-raise-ib-input-content">
<ol class="os-raise-noindent">
<li>Without graphing, identify the \(x\)-intercepts of the graph. Explain how you know.</li>
</ol>
</div>
<div class="os-raise-ib-input-prompt">
<p>Enter your answer here:</p>
</div>
<div class="os-raise-ib-input-ack">
<p>Compare your answer:</p>
<p>\((-2,0)\),\((-4,0)\); The constants in the factors of an equation in factored form give a clue about where the \(x\)-intercepts are when the equation is graphed. In the equation \(y=(x+2)(x+4)\), the \(x\)-intercepts are \((-2,0)\) and \((-4,0)\).</p>
</div>
</div>
<!--Interaction End -->
<br>
<!--Text Entry Interaction Start -->
<div class="os-raise-ib-input" data-button-text="Solution" data-content-id="72c74454-7213-4522-a7f4-0b2803175233" data-fire-event="eventShow" data-schema-version="1.0">
<div class="os-raise-ib-input-content">
<ol class="os-raise-noindent" start="2">
<li>Without graphing, identify the \(y\)-value of the \(y\)-intercept of the graph. Be prepared to show your reasoning.</li>
</ol>
</div>
<div class="os-raise-ib-input-prompt">
<p>Enter your answer here:</p>
</div>
<div class="os-raise-ib-input-ack">
<p>Compare your answer:</p>
<p>8; The \(y\)-intercepts of the graph can be seen when the equation is in standard form. The \(y\)-coordinate is the number without the variable. In the equation \(y=x^2+6x+8\), it is the 8 so the \(y\)-intercept is \((0,8)\).</p>
</div>
</div>
<!--Interaction End -->