-
Notifications
You must be signed in to change notification settings - Fork 0
/
5d78bb25-68a7-413d-b302-8a0d0010f799.html
199 lines (199 loc) · 4.54 KB
/
5d78bb25-68a7-413d-b302-8a0d0010f799.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
<h4>Cool Down Activity</h4>
<p>Complete the table using all of the exponent properties you learned in the lesson.</p>
<div class="os-raise-ib-cta" data-button-text="Solution" data-fire-event="Reveal1" data-schema-version="1.0">
<div class="os-raise-ib-cta-content">
<table class="os-raise-textheavytable">
<caption>Exponent Property Review</caption>
<thead>
<tr>
<th scope="col">Expression</th>
<th scope="col">Simplified Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>
\(j^5 \cdot j^3\)
</td>
<td> </td>
</tr>
<tr>
<td>
\(\frac{h^7}{h^3}\)
</td>
<td> </td>
</tr>
<tr>
<td>
\((-ab)^0\)
</td>
<td> </td>
</tr>
<tr>
<td>
\(\frac{1}{s^{-4}}\)
</td>
<td> </td>
</tr>
<tr>
<td>
\((\frac{m}{n})^{-4}\)
</td>
<td> </td>
</tr>
<tr>
<td>
\((p^5)^2\)
</td>
<td> </td>
</tr>
<tr>
<td>
\((3s^3t^2)^3\)
</td>
<td> </td>
</tr>
<tr>
<td>
\((\frac{b}{d})^{-2}\)
</td>
<td> </td>
</tr>
</tbody>
</table>
<br>
</div>
<div class="os-raise-ib-cta-prompt">
<p>Write down your answers. Then select the <strong>solution</strong> button to compare your work. </p>
</div>
</div>
<div class="os-raise-ib-content" data-schema-version="1.0" data-wait-for-event="Reveal1">
<p>Compare your answers:</p>
<br>
<table class="os-raise-textheavytable">
<caption>Exponent Property Review</caption>
<thead>
<tr>
<th scope="col">Expression</th>
<th scope="col">Simplified Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>
\(j^5 \cdot j^3\)
</td>
<td>
\(j^8\)
</td>
</tr>
<tr>
<td>
\(\frac{h^7}{h^3}\)
</td>
<td>
\(h^4\)
</td>
</tr>
<tr>
<td>
\((-ab)^0\)
</td>
<td>
\(1\)
</td>
</tr>
<tr>
<td>
\(\frac{1}{s^{-4}}\)
</td>
<td>
\(s^4\)
</td>
</tr>
<tr>
<td>
\((\frac{m}{n})^{-4}\)
</td>
<td>
\(\frac{n^4}{m^4}\)
</td>
</tr>
<tr>
<td>
\((p^5)^2\)
</td>
<td>
\(p^{10}\)
</td>
</tr>
<tr>
<td>
\((3s^3t^2)^3\)
</td>
<td>
\(3^3s^9t^6 = 27s^9t^6\)
</td>
</tr>
<tr>
<td>
\((\frac{b}{d})^{-2}\)
</td>
<td>
\(\frac{d^2}{b^2}\)
</td>
</tr>
</tbody>
</table>
<br>
</div>
<p>Take some time to review each of the exponential properties you learned in the lesson. Look at each property and be
sure you know when to use it.</p>
<br>
<div class="os-raise-graybox os-raise-text-center">
<p class="os-raise-text-bold"> Summary of Exponent Properties</p>
<hr>
<p>If \(a\) and \(b\) are real numbers and \(m\) and \(n\) are integers, then</p>
<table class="os-raise-midsizetable">
<thead>
<tr>
<th scope="col">Property</th>
<th scope="col">Description</th>
</tr>
</thead>
<tbody>
<tr>
<td> Product Property </td>
<td> \(a^m \cdot a^n={a^{m+n}}\) </td>
</tr>
<tr>
<td> Power Property </td>
<td> \((a^m)^n=a^{m·n}\) </td>
</tr>
<tr>
<td> Product to a Power </td>
<td> \((ab)^m=a^mb^m\) </td>
</tr>
<tr>
<td> Quotient Property </td>
<td> \(\frac{a^m}{a^n}=a^{m−n}\), \(a\neq0\) </td>
</tr>
<tr>
<td> Zero Exponent Property </td>
<td> \(a^0=1\), \(a\neq0\) </td>
</tr>
<tr>
<td> Quotient to a Power Property </td>
<td> \((\frac{a}{b})^m=\frac{a^m}{b^m}\), \(b\neq0\) </td>
</tr>
<tr>
<td> Properties of Negative Exponents </td>
<td> \(a^{−n}=\frac{1}{a^n}\) and \(\frac{1}{a^{−n}}=a^n\) </td>
</tr>
<tr>
<td> Quotient to a Negative Exponent </td>
<td> \((\frac{a}{b})^{−n}=(\frac{b}{a})^n\) </td>
</tr>
</tbody>
</table>
</div>