From a31640ba8248ab94f9b9c0c672b02c9cbb5dd54a Mon Sep 17 00:00:00 2001 From: Vishniakov Nikolai Date: Tue, 5 Nov 2024 10:11:37 +0100 Subject: [PATCH 01/93] [OV JS] Simplify run js samples (#27206) ### Details: - Add script to fetch static - Update run instructions - Remove logic of downloading model from notebooks - Put image manipulation logic in one file - Refactor notebooks structure - Remove opencv-wasm dependency ### Tickets: - 154015 --- samples/js/node/.gitignore | 3 +- samples/js/node/README.md | 4 +- .../classification_sample_async/README.md | 7 +- .../classification_sample_async.js | 118 +++--- samples/js/node/fetch-samples-assets.js | 83 ++++ .../js/node/hello_classification/README.md | 8 +- .../hello_classification.js | 29 +- samples/js/node/hello_reshape_ssd/README.md | 8 +- .../hello_reshape_ssd/hello_reshape_ssd.js | 96 ++--- samples/js/node/helpers.js | 106 +---- samples/js/node/image.js | 275 ++++++++++++ samples/js/node/notebooks/hello-detection.nnb | 66 +-- .../js/node/notebooks/hello-segmentation.nnb | 77 +--- samples/js/node/notebooks/hello-world.nnb | 79 +--- .../optical-character-recognition.nnb | 195 ++++----- samples/js/node/notebooks/pose-estimation.nnb | 62 +-- .../js/node/notebooks/question-answering.nnb | 114 +---- .../{tokens_bert.js => tokenizer_bert.js} | 41 +- .../notebooks/vision-background-removal.nnb | 96 +---- .../optical_character_recognition/README.md | 10 +- .../optical-character-recognition.js | 399 ++++-------------- samples/js/node/package-lock.json | 260 ++++++++---- samples/js/node/package.json | 11 +- .../node/vision_background_removal/README.md | 10 +- .../vision_background_removal.js | 240 +++-------- 25 files changed, 1060 insertions(+), 1337 deletions(-) create mode 100644 samples/js/node/fetch-samples-assets.js create mode 100644 samples/js/node/image.js rename samples/js/node/notebooks/{tokens_bert.js => tokenizer_bert.js} (79%) diff --git a/samples/js/node/.gitignore b/samples/js/node/.gitignore index 2ab910508d5529..c836a5862da256 100644 --- a/samples/js/node/.gitignore +++ b/samples/js/node/.gitignore @@ -1,2 +1,3 @@ node_modules -hello_reshape_ssd/out.jpg +out*.jpg +output/ diff --git a/samples/js/node/README.md b/samples/js/node/README.md index 9e69769778d8a8..2fd4dbe76e5900 100644 --- a/samples/js/node/README.md +++ b/samples/js/node/README.md @@ -7,13 +7,15 @@ To run samples, install dependencies first. In current directory run: npm install ``` -Note: Perform these steps also before running notebooks. +Note: Perform this step also before running notebooks. ## Samples - hello_classification - hello_reshape_ssd - classification_sample_async + - optical_character_recognition + - vision_background_removal ## Notebooks diff --git a/samples/js/node/classification_sample_async/README.md b/samples/js/node/classification_sample_async/README.md index 0b19e908587505..6a0dcba6d16e02 100644 --- a/samples/js/node/classification_sample_async/README.md +++ b/samples/js/node/classification_sample_async/README.md @@ -4,7 +4,12 @@ Models with only 1 input and output are supported. Run: ```bash -node classification_sample_async.js -m *path_to_model_file* -i *path_to_img1* -i *path_to_img2* -d AUTO +node classification_sample_async.js -m ../../assets/models/v3-small_224_1.0_float.xml -i ../../assets/images/coco.jpg -i ../../assets/images/coco_hollywood.jpg -d AUTO +``` + +Where +```bash +node classification_sample_async.js -m *path_to_model_file* -i *path_to_img1* -i *path_to_img2* -d *device* ``` Other details see in [../../../python/classification_sample_async/README.md](../../../python/classification_sample_async/README.md) diff --git a/samples/js/node/classification_sample_async/classification_sample_async.js b/samples/js/node/classification_sample_async/classification_sample_async.js index 94f4d7828c95c2..96724be80d3b0b 100644 --- a/samples/js/node/classification_sample_async/classification_sample_async.js +++ b/samples/js/node/classification_sample_async/classification_sample_async.js @@ -1,39 +1,30 @@ const { addon: ov } = require('openvino-node'); const args = require('args'); -const { cv } = require('opencv-wasm'); -const { getImageData } = require('../helpers.js'); - -args.options([{ - name: 'img', - defaultValue: [], -}, { - name: 'model', -}, { - name: 'device', -}]); -const { model: modelPath, device: deviceName, img: images } = - args.parse(process.argv); - -main(modelPath, images, deviceName); - -function completionCallback(result, imagePath) { - const predictions = Array.from(result.data) - .map((prediction, classId) => ({ prediction, classId })) - .sort(({ prediction: predictionA }, { prediction: predictionB }) => - predictionA === predictionB ? 0 : predictionA > predictionB ? -1 : 1); - - console.log(`Image path: ${imagePath}`); - console.log('Top 10 results:'); - console.log('class_id probability'); - console.log('--------------------'); - predictions.slice(0, 10).forEach(({ classId, prediction }) => - console.log(`${classId}\t ${prediction.toFixed(7)}`), - ); - console.log(); -} - -async function main(modelPath, images, deviceName) { +const Image = require('../image.js'); +const imagenetClassesMap = require('../../assets/datasets/imagenet_class_index.json'); + +args.options([ + { + name: 'img', + defaultValue: [], + }, + { + name: 'model', + }, + { + name: 'device', + }, +]); +const { + model: modelPath, + device: deviceName, + img: imgPaths +} = args.parse(process.argv); + +main(modelPath, imgPaths, deviceName); + +async function main(modelPath, imgPaths, deviceName) { //----------- Step 1. Initialize OpenVINO Runtime Core ----------------------- console.log('Creating OpenVINO Runtime Core'); const core = new ov.Core(); @@ -42,8 +33,6 @@ async function main(modelPath, images, deviceName) { console.log(`Reading the model: ${modelPath}`); // (.xml and .bin files) or (.onnx file) const model = await core.readModel(modelPath); - const [h, w] = model.inputs[0].shape.slice(-2); - const tensorShape = [1, h, w, 3]; if (model.inputs.length !== 1) throw new Error('Sample supports only single input topologies'); @@ -52,56 +41,65 @@ async function main(modelPath, images, deviceName) { throw new Error('Sample supports only single output topologies'); //----------- Step 3. Set up input ------------------------------------------- - // Read input image - const imagesData = []; - - for (const imagePath of images) - imagesData.push(await getImageData(imagePath)); + const inputImages = []; + const [, inputHeight, inputWidth] = model.inputs[0].getShape(); - const preprocessedImages = imagesData.map((imgData) => { - // Use opencv-wasm to preprocess image. - const originalImage = cv.matFromImageData(imgData); - const image = new cv.Mat(); - // The MobileNet model expects images in RGB format. - cv.cvtColor(originalImage, image, cv.COLOR_RGBA2RGB); - cv.resize(image, image, new cv.Size(w, h)); + // Read input image, resize it to the model's input size and convert it to a tensor. + for (const path of imgPaths) { + const img = await Image.load(path); + const resized = img.resize(inputWidth, inputHeight); - return new Uint8Array(image.data); - }); + inputImages.push(resized); + } //----------- Step 4. Apply preprocessing ------------------------------------ const _ppp = new ov.preprocess.PrePostProcessor(model); _ppp.input().tensor().setLayout('NHWC').setElementType(ov.element.u8); - _ppp.input().model().setLayout('NCHW'); + _ppp.input().model().setLayout('NHWC'); _ppp.output().tensor().setElementType(ov.element.f32); _ppp.build(); - //----------------- Step 5. Loading model to the device ---------------------- + //----------- Step 5. Loading model to the device ---------------------------- console.log('Loading the model to the plugin'); const compiledModel = await core.compileModel(model, deviceName); const outputName = compiledModel.output(0).toString(); - //----------- Step 6. Collecting promises to react when they resolve --------- - console.log('Starting inference in asynchronous mode'); + //----------- Step 6. Do inference ------------------------------------------- + console.log('Starting inference\n'); // Create infer request const inferRequest = compiledModel.createInferRequest(); - - const promises = preprocessedImages.map((tensorData, i) => { - const inferPromise = inferRequest.inferAsync([ - new ov.Tensor(ov.element.u8, tensorShape, tensorData) - ]); + const promises = inputImages.map((img, i) => { + const inferPromise = inferRequest.inferAsync([img.toTensor()]); inferPromise.then(result => - completionCallback(result[outputName], images[i])); + completionCallback(result[outputName], imgPaths[i])); return inferPromise; }); - //----------- Step 7. Do inference ------------------------------------------- + //----------- Step 7. Wait till all inferences execute ----------------------- await Promise.all(promises); console.log('All inferences executed'); console.log('\nThis sample is an API example, for any performance ' + 'measurements please use the dedicated benchmark_app tool'); } + +function completionCallback(result, imagePath) { + const predictions = Array.from(result.data) + .map((prediction, classId) => ({ prediction, classId })) + .sort(({ prediction: predictionA }, { prediction: predictionB }) => + predictionA === predictionB ? 0 : predictionA > predictionB ? -1 : 1); + + const imagenetClasses = ['background', ...Object.values(imagenetClassesMap)]; + + console.log(`Image path: ${imagePath}`); + console.log('Top 5 results:\n'); + console.log('id\tprobability\tlabel'); + console.log('---------------------------------'); + predictions.slice(0, 5).forEach(({ classId, prediction }) => + console.log(`${classId}\t${prediction.toFixed(7)}\t${imagenetClasses[classId][1]}`), + ); + console.log(); +} diff --git a/samples/js/node/fetch-samples-assets.js b/samples/js/node/fetch-samples-assets.js new file mode 100644 index 00000000000000..33dd509a922f85 --- /dev/null +++ b/samples/js/node/fetch-samples-assets.js @@ -0,0 +1,83 @@ +const { downloadFile } = require('./helpers.js'); + +const host = 'https://storage.openvinotoolkit.org'; + +const models = [ + // hello classification + '/repositories/openvino_notebooks/models/mobelinet-v3-tf/FP32/v3-small_224_1.0_float.xml', + '/repositories/openvino_notebooks/models/mobelinet-v3-tf/FP32/v3-small_224_1.0_float.bin', + + // hello reshape ssd + '/repositories/open_model_zoo/2022.3/models_bin/1/road-segmentation-adas-0001/FP32/road-segmentation-adas-0001.xml', + '/repositories/open_model_zoo/2022.3/models_bin/1/road-segmentation-adas-0001/FP32/road-segmentation-adas-0001.bin', + + // hello detection, optical character recognition + '/repositories/open_model_zoo/2022.3/models_bin/1/horizontal-text-detection-0001/FP32/horizontal-text-detection-0001.xml', + '/repositories/open_model_zoo/2022.3/models_bin/1/horizontal-text-detection-0001/FP32/horizontal-text-detection-0001.bin', + + '/repositories/open_model_zoo/public/text-recognition-resnet-fc/text-recognition-resnet-fc.xml', + '/repositories/open_model_zoo/public/text-recognition-resnet-fc/text-recognition-resnet-fc.bin', + + // vision background removal + '/repositories/open_model_zoo/public/vision-background-removal/unet_ir_model.xml', + '/repositories/open_model_zoo/public/vision-background-removal/unet_ir_model.bin', + + // pose estimation + '/repositories/open_model_zoo/2022.1/models_bin/3/human-pose-estimation-0001/FP16-INT8/human-pose-estimation-0001.xml', + '/repositories/open_model_zoo/2022.1/models_bin/3/human-pose-estimation-0001/FP16-INT8/human-pose-estimation-0001.bin', + + // question answering + '/repositories/open_model_zoo/2022.3/models_bin/1/bert-small-uncased-whole-word-masking-squad-0001/FP16/bert-small-uncased-whole-word-masking-squad-0001.xml', +]; +const modelsDir = __dirname + '/../assets/models'; + + +const images = [ + // hello classification + '/repositories/openvino_notebooks/data/data/image/coco.jpg', + + // hello reshape ssd + '/repositories/openvino_notebooks/data/data/image/empty_road_mapillary.jpg', + + // hello detection, optical character recognition, pose estimation + '/repositories/openvino_notebooks/data/data/image/intel_rnb.jpg', + + // vision background removal + '/repositories/openvino_notebooks/data/data/image/coco_hollywood.jpg', + '/repositories/openvino_notebooks/data/data/image/wall.jpg', +]; +const imagesDir = __dirname + '/../assets/images'; + +const datasets = [ + // hello classification + '/repositories/openvino_notebooks/data/data/datasets/imagenet/imagenet_class_index.json', +]; +const datasetsDir = __dirname + '/../assets/datasets'; + +const vocab = [ + '/repositories/openvino_notebooks/data/data/text/bert-uncased/vocab.txt', +]; +const vocabDir = __dirname + '/../assets/vocab'; + +try { + main(); +} catch(error) { + console.error('Error Occurred', error); +} + +async function main() { + await downloadAssets(models, modelsDir); + await downloadAssets(images, imagesDir); + await downloadAssets(datasets, datasetsDir); + await downloadAssets(vocab, vocabDir); +} + +async function downloadAssets(links, destinationDir) { + for (const link of links) { + const url = host + link; + const filename = link.split('/').pop(); + + await downloadFile(url, filename, destinationDir); + console.log(`Downloaded: ${filename} \n`); + } +} diff --git a/samples/js/node/hello_classification/README.md b/samples/js/node/hello_classification/README.md index 2de983af58334b..1d20bba8ac63e6 100644 --- a/samples/js/node/hello_classification/README.md +++ b/samples/js/node/hello_classification/README.md @@ -2,9 +2,13 @@ Models with only 1 input and output are supported. -Run: +Run sample: ```bash -node hello_classification.js *path_to_model_file* *path_to_img* AUTO +node hello_classification.js ../../assets/models/v3-small_224_1.0_float.xml ../../assets/images/coco.jpg AUTO +``` +Where +```bash +node hello_classification.js *path_to_model_file* *path_to_img* *device* ``` Other details see in [../../../python/hello_classification/README.md](../../../python/hello_classification/README.md) diff --git a/samples/js/node/hello_classification/hello_classification.js b/samples/js/node/hello_classification/hello_classification.js index 00ba868e40f3a0..9edbc998d006bd 100644 --- a/samples/js/node/hello_classification/hello_classification.js +++ b/samples/js/node/hello_classification/hello_classification.js @@ -1,7 +1,7 @@ const { addon: ov } = require('openvino-node'); -const { cv } = require('opencv-wasm'); -const { getImageData } = require('../helpers.js'); +const Image = require('../image.js'); +const imagenetClassesMap = require('../../assets/datasets/imagenet_class_index.json'); // Parsing and validation of input arguments if (process.argv.length !== 5) @@ -31,21 +31,12 @@ async function main(modelPath, imagePath, deviceName) { //----------------- Step 3. Set up input ------------------------------------- // Read input image - const imgData = await getImageData(imagePath); - - // Use opencv-wasm to preprocess image. - const originalImage = cv.matFromImageData(imgData); - const image = new cv.Mat(); - // The MobileNet model expects images in RGB format. - cv.cvtColor(originalImage, image, cv.COLOR_RGBA2RGB); - - const tensorData = new Float32Array(image.data); - const shape = [1, image.rows, image.cols, 3]; - const inputTensor = new ov.Tensor(ov.element.f32, shape, tensorData); + const img = await Image.load(imagePath); + const inputTensor = img.toTensor(); //----------------- Step 4. Apply preprocessing ------------------------------ const _ppp = new ov.preprocess.PrePostProcessor(model); - _ppp.input().tensor().setShape(shape).setLayout('NHWC'); + _ppp.input().tensor().setElementType(ov.element.u8).setShape(inputTensor.getShape()).setLayout('NHWC'); _ppp.input().preprocess().resize(ov.preprocess.resizeAlgorithm.RESIZE_LINEAR); _ppp.input().model().setLayout('NHWC'); _ppp.output().tensor().setElementType(ov.element.f32); @@ -69,12 +60,14 @@ async function main(modelPath, imagePath, deviceName) { .sort(({ prediction: predictionA }, { prediction: predictionB }) => predictionA === predictionB ? 0 : predictionA > predictionB ? -1 : 1); + const imagenetClasses = ['background', ...Object.values(imagenetClassesMap)]; + console.log(`Image path: ${imagePath}`); - console.log('Top 10 results:'); - console.log('class_id probability'); - console.log('--------------------'); + console.log('Top 10 results:\n'); + console.log('id\tprobability\tlabel'); + console.log('---------------------------------'); predictions.slice(0, 10).forEach(({ classId, prediction }) => - console.log(`${classId}\t ${prediction.toFixed(7)}`), + console.log(`${classId}\t${prediction.toFixed(7)}\t${imagenetClasses[classId][1]}`), ); console.log('\nThis sample is an API example, for any performance ' diff --git a/samples/js/node/hello_reshape_ssd/README.md b/samples/js/node/hello_reshape_ssd/README.md index 21d8be8ec4b50d..547cf989478a87 100644 --- a/samples/js/node/hello_reshape_ssd/README.md +++ b/samples/js/node/hello_reshape_ssd/README.md @@ -2,9 +2,13 @@ Models with only 1 input and output are supported. -Run: +Run sample: ```bash -node hello_reshape_ssd.js *path_to_model_file* *path_to_img* AUTO +node hello_reshape_ssd.js ../../assets/models/road-segmentation-adas-0001.xml ../../assets/images/empty_road_mapillary.jpg AUTO +``` +Where +```bash +node hello_reshape_ssd.js *path_to_model_file* *path_to_img* *device* ``` Other details see in [../../../python/hello_reshape_ssd/README.md](../../../python/hello_reshape_ssd/README.md) diff --git a/samples/js/node/hello_reshape_ssd/hello_reshape_ssd.js b/samples/js/node/hello_reshape_ssd/hello_reshape_ssd.js index 416e8bc8180668..ebcc8e83223853 100644 --- a/samples/js/node/hello_reshape_ssd/hello_reshape_ssd.js +++ b/samples/js/node/hello_reshape_ssd/hello_reshape_ssd.js @@ -1,13 +1,5 @@ const { addon: ov } = require('openvino-node'); - -const fs = require('node:fs/promises'); -const { cv } = require('opencv-wasm'); -const { - setShape, - getImageData, - getImageBuffer, - arrayToImageData, -} = require('../helpers.js'); +const Image = require('../image.js'); // Parsing and validation of input arguments if (process.argv.length !== 5) @@ -38,24 +30,15 @@ async function main(modelPath, imagePath, deviceName) { //----------------- Step 3. Set up input ------------------------------------- // Read input image - const imgData = await getImageData(imagePath); - - // Use opencv-wasm to preprocess image. - const originalImage = cv.matFromImageData(imgData); - const image = new cv.Mat(); - // The MobileNet model expects images in RGB format. - cv.cvtColor(originalImage, image, cv.COLOR_RGBA2RGB); - - const tensorData = new Uint8Array(image.data); - const shape = [1, image.rows, image.cols, 3]; - const inputTensor = new ov.Tensor(ov.element.u8, shape, tensorData); + const img = await Image.load(imagePath); + const inputTensor = img.toTensor(); //----------------- Step 4. Apply preprocessing ------------------------------ const _ppp = new ov.preprocess.PrePostProcessor(model); _ppp.input().preprocess().resize(ov.preprocess.resizeAlgorithm.RESIZE_LINEAR); _ppp.input().tensor() - .setShape(shape) + .setShape(inputTensor.getShape()) .setElementType(ov.element.u8) .setLayout('NHWC'); @@ -70,48 +53,51 @@ async function main(modelPath, imagePath, deviceName) { //---------------- Step 6. Create infer request and do inference synchronously console.log('Starting inference in synchronous mode'); const inferRequest = compiledModel.createInferRequest(); - inferRequest.setInputTensor(inputTensor); - inferRequest.infer(); + const outputs = inferRequest.infer([inputTensor]); //----------------- Step 7. Process output ----------------------------------- const outputLayer = compiledModel.outputs[0]; - const resultInfer = inferRequest.getTensor(outputLayer); - const predictions = Array.from(resultInfer.data); - const [height, width] = [originalImage.rows, originalImage.cols]; - - const detections = setShape(predictions, [100, 7]); - const color = [255, 0, 0, 255]; - const THROUGHPUT = 0.9; - - detections.forEach(detection => { - const [classId, confidence, xmin, ymin, xmax, ymax] = detection.slice(1); - - if (confidence < THROUGHPUT) return; - - console.log(`Found: classId = ${classId}, ` - + `confidence = ${confidence.toFixed(2)}, ` - + `coords = (${xmin}, ${ymin}), (${xmax}, ${ymax})`, - ); - - // Draw a bounding box on a output image - cv.rectangle(originalImage, - new cv.Point(xmin*width, ymin*height), - new cv.Point(xmax*width, ymax*height), - color, - 2, - ); - }); - - const resultImgData = arrayToImageData(originalImage.data, width, height); + const output = outputs[outputLayer]; + const outputData = output.data; + const resultLayer = []; + const colormap = [ + [68, 1, 84, 255], + [48, 103, 141, 255], + [53, 183, 120, 255], + [199, 216, 52, 255], + ]; + const size = outputData.length/4; + + for (let i = 0; i < size; i++) { + const valueAt = (i, number) => outputData[i + number*size]; + const currentValues = { + bg: valueAt(i, 0), + c: valueAt(i, 1), + h: valueAt(i, 2), + w: valueAt(i, 3), + }; + const values = Object.values(currentValues); + const maxIndex = values.indexOf(Math.max(...values)); + + resultLayer.push(maxIndex); + } + + const pixels = []; + resultLayer.forEach(i => pixels.push(...colormap[i])); + + const alpha = 0.6; const filename = 'out.jpg'; + const [, , H, W] = output.getShape(); - await fs.writeFile(`./${filename}`, getImageBuffer(resultImgData)); + const segmentsImg = Image.fromArray(pixels, W, H); + const resizedSegments = segmentsImg.resize(img.width, img.height); + const mergedImg = Image.overlay(img, resizedSegments, alpha); try { - await fs.readFile(filename); - console.log('Image out.jpg was created!'); + await mergedImg.save(filename); + console.log(`Image '${filename}' was created.`); } catch(err) { - console.log(`Image ${filename} was not created. Check your permissions.`); + console.log(`Image '${filename}' was not created. Check your permissions.`); } console.log('\nThis sample is an API example, for any performance ' diff --git a/samples/js/node/helpers.js b/samples/js/node/helpers.js index 5cbd6650495070..5d56d4c60a7139 100644 --- a/samples/js/node/helpers.js +++ b/samples/js/node/helpers.js @@ -1,17 +1,8 @@ const path = require('node:path'); -const { cv } = require('opencv-wasm'); const { createWriteStream } = require('node:fs'); const { mkdir, stat } = require('node:fs/promises'); const { HttpsProxyAgent } = require('https-proxy-agent'); -const { - Image, - ImageData, - loadImage, - createCanvas, - createImageData, -} = require('canvas'); - module.exports = { exp, sum, @@ -23,96 +14,29 @@ module.exports = { setShape, transform, downloadFile, - displayImage, - getImageData, extractValues, - getImageBuffer, - arrayToImageData, - displayArrayAsImage, matrixMultiplication, }; -function arrayToImageData(array, width, height) { - return createImageData(new Uint8ClampedArray(array), width, height); -} - -function getImageBuffer(imageOrImageData) { - const canvas = createCanvas(imageOrImageData.width, imageOrImageData.height); - const ctx = canvas.getContext('2d'); - - if (imageOrImageData instanceof Image) - ctx.drawImage(imageOrImageData, 0, 0); - else if (imageOrImageData instanceof ImageData) - ctx.putImageData(imageOrImageData, 0, 0); - else - throw Error(`Passed parameters has type '${typeof imageOrImageData}'. ` - + 'It is\'t supported.'); - - return canvas.toBuffer('image/jpeg'); -} - -function displayImage(imageOrImageData, display) { - const buffer = getImageBuffer(imageOrImageData); - - display.image(buffer); -} - -function displayArrayAsImage(arr, width, height, display) { - const alpha = 255; - const componentsPerPixel = arr.length / (width*height); - - try { - switch (componentsPerPixel) { - case 1: - arr = arr.reduce((acc, val) => { - acc.push(val, val, val, alpha); - - return acc; - }, []); - break; - - case 3: - arr = arr.reduce((acc, val, index) => { - if (index && index%3 === 0) acc.push(alpha); - - acc.push(val); - - return acc; - }, []); - break; - } - } catch(e) { - console.log(e); - } - - const imageData = arrayToImageData(arr, width, height); - - displayImage(imageData, display); -} - -async function getImageData(path) { - const image = await loadImage(path); - const { width, height } = image; - - const canvas = await createCanvas(width, height); - const ctx = canvas.getContext('2d'); - - ctx.drawImage(image, 0, 0); - - return ctx.getImageData(0, 0, width, height); -} - function transform(arr, { width, height }, order) { - const img = new cv.Mat(height, width, cv.CV_8UC3); - - img.data.set(arr, 0, arr.length); + // Calculate the number of pixels and the size of each channel + const numPixels = width * height; + const channels = [[], [], []]; + + // Separate RGB channels + for (let i = 0; i < numPixels; i++) { + channels[0].push(arr[i * 3]); // Red channel + channels[1].push(arr[i * 3 + 1]); // Green channel + channels[2].push(arr[i * 3 + 2]); // Blue channel + } - const channels = new cv.MatVector(); - cv.split(img, channels); + // Reorder channels based on the 'order' array + const reorderedChannels = order.map(num => channels[num]); - const val = order.map(num => [...channels.get(num).data]); + // Flatten reordered channels into a single array + const result = reorderedChannels.flat(); - return [].concat(...val); + return result; } async function downloadFile(url, filename, destination) { diff --git a/samples/js/node/image.js b/samples/js/node/image.js new file mode 100644 index 00000000000000..30ac35032d7ed7 --- /dev/null +++ b/samples/js/node/image.js @@ -0,0 +1,275 @@ +const { + ImageData, + loadImage, + createCanvas, +} = require('@napi-rs/canvas'); +const path = require('node:path'); +const fs = require('node:fs/promises'); +const { addon: ov } = require('openvino-node'); + +const codeENOENT = 'ENOENT'; + +class OvImage { + constructor(imageData) { + this.imageData = imageData; + this.channels = imageData.data.length / (this.width*this.height); + } + + get width() { + return this.imageData.width; + } + + get height() { + return this.imageData.height; + } + + get rgb() { + return this.imageData.data.filter((_, index) => index % 4 !== 3); + } + + get rgba() { + return this.imageData.data; + } + + get grayscale() { + const grayData = new Uint8ClampedArray(this.width * this.height); + + for (let i = 0; i < this.imageData.data.length; i += 4) { + const [r, g, b] = this.imageData.data.slice(i, i + 3); + const gray = 0.299 * r + 0.587 * g + 0.114 * b; + + grayData[i / 4] = gray; + } + + return grayData; + } + + get canvasCtx() { + const canvas = createCanvas(this.width, this.height); + const ctx = canvas.getContext('2d'); + + ctx.putImageData(this.imageData, 0, 0); + + return ctx; + } + + get buffer() { + return this.canvasCtx.canvas.toBuffer('image/jpeg'); + } + + drawRect(x, y, width, height, properties) { + const ctx = this.canvasCtx; + + ctx.strokeStyle = properties.color || 'red'; + ctx.lineWidth = properties.width || 1; + ctx.strokeRect(x, y, width, height); + + const imageData = ctx.getImageData(0, 0, this.width, this.height); + + return new OvImage(imageData); + } + + drawText(text, x, y, properties) { + const ctx = this.canvasCtx; + + ctx.font = properties.font || '30px Arial'; + ctx.fillStyle = properties.color || 'red'; + ctx.fillText(text, x, y); + + const imageData = ctx.getImageData(0, 0, this.width, this.height); + + return new OvImage(imageData); + } + + drawCircle(x, y, radius, properties) { + const ctx = this.canvasCtx; + + ctx.strokeStyle = properties.color || 'red'; + ctx.lineWidth = properties.width || 1; + ctx.beginPath(); + ctx.arc(x, y, radius, 0, 2 * Math.PI); + ctx.stroke(); + + const imageData = ctx.getImageData(0, 0, this.width, this.height); + + return new OvImage(imageData); + } + + drawLine(x1, y1, x2, y2, properties) { + const ctx = this.canvasCtx; + + ctx.strokeStyle = properties.color || 'red'; + ctx.lineWidth = properties.width || 1; + ctx.beginPath(); + ctx.moveTo(x1, y1); + ctx.lineTo(x2, y2); + ctx.stroke(); + + const imageData = ctx.getImageData(0, 0, this.width, this.height); + + return new OvImage(imageData); + } + + toTensor() { + return new ov.Tensor( + ov.element.u8, + [1, this.height, this.width, 3], + new Uint8ClampedArray(this.rgb), + ); + } + + resize(newWidth, newHeight) { + const ctx = this.canvasCtx; + + const canvas2 = createCanvas(newWidth, newHeight); + const ctx2 = canvas2.getContext('2d'); + ctx2.drawImage(ctx.canvas, 0, 0, newWidth, newHeight); + + const imageData = ctx2.getImageData(0, 0, newWidth, newHeight); + + return new OvImage(imageData); + } + + invert() { + const invertedData = this.rgba.map((value, index) => { + if (index % 4 === 3) + return 255; + + return 255 - value; + }); + + return OvImage.fromArray(invertedData, this.width, this.height); + } + + crop(x, y, width, height) { + const canvas2 = createCanvas(width, height); + const ctx2 = canvas2.getContext('2d'); + + ctx2.drawImage(this.canvasCtx.canvas, x, y, width, height, 0, 0, width, height); + + const imageData = ctx2.getImageData(0, 0, width, height); + + return new OvImage(imageData); + } + + async save(filepath) { + const destination = path.dirname(filepath); + + try { + await fs.access(destination); + } catch(error) { + if (error.code !== codeENOENT) throw error; + + await fs.mkdir(destination, { recursive: true }); + } + + return await fs.writeFile(filepath, this.buffer); + } + + // Display the image using the node notebook display object + display(display) { + display.image(this.buffer); + } + + static async load(path) { + const image = await loadImage(path); + const { width, height } = image; + + const canvas = await createCanvas(width, height); + const ctx = canvas.getContext('2d'); + + ctx.drawImage(image, 0, 0); + + return new OvImage(ctx.getImageData(0, 0, width, height)); + } + + static fromArray(arr, width, height) { + const canvas = createCanvas(width, height); + const ctx = canvas.getContext('2d'); + + const imageData = new ImageData( + new Uint8ClampedArray(arr), + width, + height, + ); + + ctx.putImageData(imageData, 0, 0); + + return new OvImage(ctx.getImageData(0, 0, width, height)); + } + + static merge(img1, img2) { + if (img1.width !== img2.width || img1.height !== img2.height) + throw new Error('Images should have the same size'); + + const canvas = createCanvas(img1.width, img1.height); + const ctx = canvas.getContext('2d'); + + const img1Data = img1.imageData.data; + const img2Data = img2.imageData.data; + + const mergedData = img1Data.map((_, index) => { + if (index % 4 === 3) + return 255; + + return (img1Data[index] + img2Data[index]); + }); + + const imageData = new ImageData( + new Uint8ClampedArray(mergedData), + img1.width, + img1.height, + ); + + ctx.putImageData(imageData, 0, 0); + + return new OvImage(ctx.getImageData(0, 0, img1.width, img1.height)); + } + + static mask(img1, img2) { + if (img1.width !== img2.width || img1.height !== img2.height) + throw new Error('Images should have the same size'); + + const canvas = createCanvas(img1.width, img1.height); + const ctx = canvas.getContext('2d'); + + const img1Data = img1.imageData.data; + const img2Data = img2.imageData.data; + + const subtractedData = img1Data.map((_, index) => { + if (index % 4 === 3) + return 255; + + return img1Data[index] * (img2Data[index] / 255); + }); + + const imageData = new ImageData( + new Uint8ClampedArray(subtractedData), + img1.width, + img1.height, + ); + + ctx.putImageData(imageData, 0, 0); + + return new OvImage(ctx.getImageData(0, 0, img1.width, img1.height)); + } + + static overlay(img1, img2, alpha) { + if (img1.width !== img2.width || img1.height !== img2.height) + throw new Error('Images should have the same size'); + + const img1Data = img1.imageData.data; + const img2Data = img2.imageData.data; + + const overlayedData = img1Data.map((_, index) => { + if (index % 4 === 3) + return 255; + + return img1Data[index] * (1 - alpha) + img2Data[index] * alpha; + }); + + return OvImage.fromArray(overlayedData, img1.width, img1.height); + } +} + +module.exports = OvImage; diff --git a/samples/js/node/notebooks/hello-detection.nnb b/samples/js/node/notebooks/hello-detection.nnb index f6139ec7ec8b98..60640b3bd042ea 100644 --- a/samples/js/node/notebooks/hello-detection.nnb +++ b/samples/js/node/notebooks/hello-detection.nnb @@ -17,57 +17,42 @@ { "language": "typescript", "source": [ - "const { cv } = require('opencv-wasm');\nconst { display } = require('node-kernel');\nconst { transform, getImageData, displayArrayAsImage, downloadFile } = require('../helpers.js');\n\nconst { addon: ov } = require('openvino-node'); \n" + "const { addon: ov } = require('openvino-node');\nconst { display } = require('node-kernel');\n\nconst Image = require('../image');\nconst { transform, argMax, setShape } = require('../helpers.js');\n" ], "outputs": [] }, { "language": "markdown", "source": [ - "## Download the Model" + "## Load the Model" ], "outputs": [] }, { "language": "typescript", "source": [ - "const baseArtifactsDir = '../../assets/models';\n\nconst modelName = 'horizontal-text-detection-0001';\nconst modelXMLName = `${modelName}.xml`;\nconst modelBINName = `${modelName}.bin`;\n\nconst modelXMLPath = baseArtifactsDir + '/' + modelXMLName;\n\nconst baseURL = 'https://storage.openvinotoolkit.org/repositories/open_model_zoo/2022.3/models_bin/1/horizontal-text-detection-0001/FP32/';\n\nawait downloadFile(baseURL + modelXMLName, modelXMLName, baseArtifactsDir);\nawait downloadFile(baseURL + modelBINName, modelBINName, baseArtifactsDir);\n" + "const modelXMLPath = '../../assets/models/horizontal-text-detection-0001.xml';\n\n// Initialize OpenVINO core and load the detection model\nconst core = new ov.Core();\nconst model = await core.readModel(modelXMLPath);\nconst compiledModel = await core.compileModel(model, 'AUTO');\nconst inputLayer = compiledModel.input(0);\nconst outputLayer = compiledModel.output('boxes');\n" ], - "outputs": [ - { - "items": [ - { - "mime": "application/vnd.code.notebook.stdout", - "value": [ - "File successfully stored at '/home/nvishnya/Code/wasm-openvino/samples/js/assets/models/horizontal-text-detection-0001.bin'", - "" - ] - } - ] - } - ] + "outputs": [] }, { "language": "markdown", "source": [ - "## Download an Image" + "## Load an Image" ], "outputs": [] }, { "language": "typescript", "source": [ - "const baseImagesDir = '../../assets/images';\nconst imgUrl = 'https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/image/intel_rnb.jpg';\n\nawait downloadFile(imgUrl, 'intel_rnb.jpg', baseImagesDir);\n" + "const imagePath = '../../assets/images/intel_rnb.jpg';\nconst img = await Image.load(imagePath);\nimg.display(display);\n\n// Resize the image to meet network input size\nconst [inputHeight, inputWidth] = inputLayer.shape.slice(2);\nconst resizedImg = img.resize(inputWidth, inputHeight);\n\n// Prepare input tensor\nconst inputImageTransformedData = transform(\n resizedImg.rgb,\n { width: inputWidth, height: inputHeight },\n [0, 1, 2],\n);\nconst tensorData = new Float32Array(inputImageTransformedData);\nconst tensor = new ov.Tensor(ov.element.f32, inputLayer.shape, tensorData);\n" ], "outputs": [ { "items": [ { - "mime": "application/vnd.code.notebook.stdout", - "value": [ - "File successfully stored at '/home/nvishnya/Code/wasm-openvino/samples/js/assets/images/intel_rnb.jpg'", - "" - ] + "mime": "image/jpeg", + "value": "" } ] } @@ -76,51 +61,28 @@ { "language": "markdown", "source": [ - "## Load the Model" + "## Do Inference" ], "outputs": [] }, { "language": "typescript", "source": [ - "const core = new ov.Core();\nconst model = await core.readModel(modelXMLPath);\nconst compiledModel = await core.compileModel(model, 'CPU');\n\nconst inputLayer = compiledModel.input(0);\nconst outputLayer = compiledModel.output('boxes');\n" - ], - "outputs": [] - }, - { - "language": "markdown", - "source": [ - "## Load an Image" + "const inferRequest = compiledModel.createInferRequest();\nconst result = await inferRequest.inferAsync([tensor]);\n" ], "outputs": [] }, - { - "language": "typescript", - "source": [ - "const imgData = await getImageData('../../assets/images/intel_rnb.jpg');\nconst originalImage = cv.matFromImageData(imgData);\nconst { cols: originalWidth, rows: originalHeight } = originalImage;\n\nconst image = new cv.Mat();\nconst resizedImage = new cv.Mat();\ncv.cvtColor(originalImage, image, cv.COLOR_RGBA2RGB);\ncv.cvtColor(image, image, cv.COLOR_BGR2RGB);\n\nconst [B, C, H, W] = inputLayer.shape;\n\ncv.resize(image, resizedImage, new cv.Size(W, H));\n\nconst inputImage = transform(resizedImage.data, { width: W, height: H }, [0, 1, 2]); // NHWC to NCHW\n\ndisplayArrayAsImage(originalImage.data, originalWidth, originalHeight, display);\n" - ], - "outputs": [ - { - "items": [ - { - "mime": "image/jpeg", - "value": "" - } - ] - } - ] - }, { "language": "markdown", "source": [ - "## Do Inference" + "## Initialize helper functions\n" ], "outputs": [] }, { "language": "typescript", "source": [ - "const tensorData = new Float32Array(inputImage);\nconst tensor = new ov.Tensor(ov.element.f32, Int32Array.from(inputLayer.shape), tensorData);\n\nconst inferRequest = compiledModel.createInferRequest();\ninferRequest.setInputTensor(tensor);\ninferRequest.infer();\n\nconst output = inferRequest.getTensor(outputLayer);\nconst { data: boxes } = output;\n" + "// Function to extract bounding boxes from the model output\nfunction extractBoundingBoxes(output) {\n const { data: boxes } = output;\n const foldingCoefficient = 5;\n const numberOfBoxes = boxes.length / foldingCoefficient;\n\n return setShape(boxes, [numberOfBoxes, foldingCoefficient]);\n}\n\n// Function to adjust bounding box coordinates by a given ratio\nfunction multiplyByRatio(ratioX, ratioY, box) {\n const scaleShape = (shape, idx) => {\n const position = idx % 2\n ? Math.max(shape * ratioY, 10)\n : shape * ratioX;\n\n return Math.floor(position);\n }\n\n return box.map(scaleShape);\n}" ], "outputs": [] }, @@ -134,14 +96,14 @@ { "language": "typescript", "source": [ - "// For each detection, the description is in the [x_min, y_min, x_max, y_max, conf] format:\n// The image passed here is in BGR format with changed width and height. To display it in colors expected by matplotlib, use cvtColor function\nfunction convertResultToImage(bgrImage, resizedImage, boxes, componentsCount, options) {\n\tconst defaultOptions = { threshold: 0.3, confLabels: true };\n\tconst { threshold, confLabels } = Object.assign(defaultOptions, options);\n\n\t// Define colors for boxes and descriptions.\n\tconst colors = { red: [255, 0, 0, 255], green: [0, 255, 0, 255] };\n\n\t// Fetch the image shapes to calculate a ratio.\n\tconst [realY, realX] = [bgrImage.rows, bgrImage.cols];\n\tconst [resizedY, resizedX] = [resizedImage.rows, resizedImage.cols];\n\n\tconst [ratioX, ratioY] = [realX / resizedX, realY / resizedY];\n\n\t// Convert the base image from BGR to RGB format.\n\tconst rgbImage = new cv.Mat();\n\tcv.cvtColor(bgrImage, rgbImage, cv.COLOR_BGR2RGB);\n\n\t// Iterate through non-zero boxes.\n\tfor (let i = 0; i < boxes.length; i += componentsCount) {\n\t\tconst box = boxes.slice(i, i + componentsCount);\n\n\t\t// Pick a confidence factor from the last place in an array.\n\t\tconst conf = box[box.length - 1];\n\n\t\tif (conf < threshold) continue;\n\n\t\t// Convert float to int and multiply corner position of each box by x and y ratio.\n\t\t// If the bounding box is found at the top of the image, \n\t\t// position the upper box bar little lower to make it visible on the image. \n\t\tconst [xMin, yMin, xMax, yMax] = box.slice(0, -1).map((cornerPosition, idx) =>\n\t\t\tidx % 2\n\t\t\t\t? parseInt(Math.max(cornerPosition * ratioY, 10))\n\t\t\t\t: parseInt(cornerPosition * ratioX)\n\t\t);\n\t\t// Draw a box based on the position, parameters in rectangle function are: image, start_point, end_point, color, thickness.\n\t\tcv.rectangle(rgbImage, new cv.Point(xMin, yMin), new cv.Point(xMax, yMax), colors.green, 2);\n\n\t\t// Add text to the image based on position and confidence.\n\t\t// Parameters in text function are: image, text, bottom-left_corner_textfield, font, font_scale, color, thickness, line_type.\n\t\tif (confLabels)\n\t\t\tcv.putText(\n\t\t\t\trgbImage,\n\t\t\t\t`${conf.toFixed(2)}`,\n\t\t\t\tnew cv.Point(xMin, yMin - 10),\n\t\t\t\tcv.FONT_HERSHEY_SIMPLEX,\n\t\t\t\t0.8,\n\t\t\t\tcolors.red,\n\t\t\t\t1,\n\t\t\t\tcv.LINE_AA,\n\t\t\t);\n\t}\n\n\treturn rgbImage;\n}\n\nconst [ __, componentsCount] = output.getShape();\nconst img = convertResultToImage(image, resizedImage, boxes, componentsCount, { confLabels: false });\n\ndisplayArrayAsImage(img.data, originalWidth, originalHeight, display);\n" + "// Calculate ratios\nconst [ratioX, ratioY] = [img.width / inputWidth, img.height / inputHeight];\nconst boundingBoxesArray = extractBoundingBoxes(result[outputLayer]);\n// Resize bounding boxes to the original image size\nconst boundingBoxesOriginalSizeArray = boundingBoxesArray.map(box =>\n [...multiplyByRatio(ratioX, ratioY, box), box[4]]);\n\n// Takes original image and bounding boxes\n// and returns the image with bounding boxes drawn on it\nasync function putBoundingBoxesOnImage(img, boxes, threshold = 0.3) {\n let finalImage = img;\n\n for (const box of boxes) {\n const conf = box[box.length - 1];\n\n if (conf < threshold) continue;\n\n const [xMin, yMin, xMax, yMax] = box;\n\n finalImage = finalImage.drawRect(\n xMin, yMin,\n xMax - xMin, yMax - yMin,\n { color: 'red', width: 3 },\n );\n }\n\n return finalImage;\n}\n\n\nconst resultImg = await putBoundingBoxesOnImage(\n img,\n boundingBoxesOriginalSizeArray,\n);\nresultImg.display(display);\n" ], "outputs": [ { "items": [ { "mime": "image/jpeg", - "value": "" + "value": "" } ] } diff --git a/samples/js/node/notebooks/hello-segmentation.nnb b/samples/js/node/notebooks/hello-segmentation.nnb index 8df4e6227701e9..a7da34a2799edf 100644 --- a/samples/js/node/notebooks/hello-segmentation.nnb +++ b/samples/js/node/notebooks/hello-segmentation.nnb @@ -17,62 +17,10 @@ { "language": "typescript", "source": [ - "const {\n getImageData, \n displayArrayAsImage, \n arrayToImageData,\n transform,\n downloadFile,\n} = require('../helpers');\n\nconst { cv } = require('opencv-wasm');\nconst { display } = require('node-kernel');\n\nconst { addon: ov } = require('openvino-node'); \n" + "const { display } = require('node-kernel');\nconst { addon: ov } = require('openvino-node');\n\nconst Image = require('../image.js');\nconst {\n transform,\n} = require('../helpers');\n" ], "outputs": [] }, - { - "language": "markdown", - "source": [ - "## Download the Model" - ], - "outputs": [] - }, - { - "language": "typescript", - "source": [ - "const baseArtifactsDir = '../../assets/models';\n\nconst modelName = 'road-segmentation-adas-0001';\nconst modelXMLName = `${modelName}.xml`;\nconst modelBINName = `${modelName}.bin`;\n\nconst modelXMLPath = baseArtifactsDir + '/' + modelXMLName;\n\nconst baseURL = 'https://storage.openvinotoolkit.org/repositories/open_model_zoo/2022.3/models_bin/1/road-segmentation-adas-0001/FP32/';\n\n\nawait downloadFile(baseURL + modelXMLName, modelXMLName, baseArtifactsDir);\nawait downloadFile(baseURL + modelBINName, modelBINName, baseArtifactsDir);\n" - ], - "outputs": [ - { - "items": [ - { - "mime": "application/vnd.code.notebook.stdout", - "value": [ - "File successfully stored at '/home/nvishnya/Code/wasm-openvino/samples/js/assets/models/road-segmentation-adas-0001.bin'", - "" - ] - } - ] - } - ] - }, - { - "language": "markdown", - "source": [ - "## Download an Image" - ], - "outputs": [] - }, - { - "language": "typescript", - "source": [ - "const baseImagesDir = '../../assets/images';\nconst imgUrl = 'https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/image/empty_road_mapillary.jpg';\n\nawait downloadFile(imgUrl, 'empty_road_mapillary.jpg', baseImagesDir);\n" - ], - "outputs": [ - { - "items": [ - { - "mime": "application/vnd.code.notebook.stdout", - "value": [ - "File successfully stored at '/home/nvishnya/Code/wasm-openvino/samples/js/assets/images/empty_road_mapillary.jpg'", - "" - ] - } - ] - } - ] - }, { "language": "markdown", "source": [ @@ -83,7 +31,7 @@ { "language": "typescript", "source": [ - "const core = new ov.Core();\nconst model = await core.readModel(modelXMLPath);\nconst compiledModel = await core.compileModel(model, 'CPU');\n\nconst inputLayer = compiledModel.input(0);\nconst outputLayer = compiledModel.output(0);\n" + "const modelXMLPath = '../../assets/models/road-segmentation-adas-0001.xml';\n\nconst core = new ov.Core();\nconst model = await core.readModel(modelXMLPath);\nconst compiledModel = await core.compileModel(model, 'AUTO');\n\nconst inputLayer = compiledModel.input(0);\nconst outputLayer = compiledModel.output(0);\n" ], "outputs": [] }, @@ -97,14 +45,14 @@ { "language": "typescript", "source": [ - "const imgData = await getImageData('../../assets/images/empty_road_mapillary.jpg');\n\nconst originalImage = cv.matFromImageData(imgData);\nconst { cols: originalWidth, rows: originalHeight } = originalImage;\n\nconst image = new cv.Mat();\ncv.cvtColor(originalImage, image, cv.COLOR_RGBA2RGB);\ncv.cvtColor(image, image, cv.COLOR_BGR2RGB); \n\nconst [B, C, H, W] = inputLayer.shape;\n\ncv.resize(image, image, new cv.Size(W, H));\n\nconst inputImage = transform(image.data, { width: W, height: H }, [0, 1, 2]); // NHWC to NCHW\n\ndisplayArrayAsImage(originalImage.data, originalWidth, originalHeight, display);\n" + "const img = await Image.load('../../assets/images/empty_road_mapillary.jpg');\n\nimg.display(display);\n" ], "outputs": [ { "items": [ { "mime": "image/jpeg", - "value": "" + "value": "" } ] } @@ -120,18 +68,9 @@ { "language": "typescript", "source": [ - "const tensor_data = new Float32Array(inputImage);\nconst tensor = new ov.Tensor(ov.element.f32, inputLayer.shape, tensor_data);\n\nconst inferRequest = compiledModel.createInferRequest();\ninferRequest.setInputTensor(tensor);\ninferRequest.infer();\n\nconst output = inferRequest.getTensor(outputLayer);\n\nconst { data: outputData } = output;\nconst layers = { bg: [], c: [], h: [], w: [] };\nconst resultLayer = [];\nconst colormap = [[68, 1, 84, 255], [48, 103, 141, 255], [53, 183, 120, 255], [199, 216, 52, 255]];\n\nconst size = outputData.length/4;\n\nfor (let i = 0; i < size; i++) {\n const valueAt = (i, number) => outputData[i + number*size];\n\n const currentValues = { \n bg: valueAt(i, 0),\n c: valueAt(i, 1),\n h: valueAt(i, 2),\n w: valueAt(i, 3),\n };\n const values = Object.values(currentValues);\n const maxIndex = values.indexOf(Math.max(...values));\n\n resultLayer.push(maxIndex);\n}\n\nconst pixels = [];\nresultLayer.forEach(i => pixels.push(...colormap[i]));\n\ndisplayArrayAsImage(pixels, W, H, display);\n" + "const [height, width] = inputLayer.shape.slice(2);\nconst resizedImg = img.resize(width, height);\n\n// Transform image data from NHWC to NCHW to match model input\n// as alternative you can use ov.preprocess.PrePostProcessor\n// see hello_reshape_ssd.js sample\nconst transformedImgData = transform(resizedImg.rgb, { width, height }, [0, 1, 2]);\nconst tensor = new ov.Tensor(\n ov.element.f32,\n inputLayer.shape,\n new Float32Array(transformedImgData),\n);\n\nconst inferRequest = compiledModel.createInferRequest();\nconst outputs = await inferRequest.inferAsync([tensor]);\nconst output = outputs[outputLayer];\nconst outputData = output.data;\n" ], - "outputs": [ - { - "items": [ - { - "mime": "image/jpeg", - "value": "" - } - ] - } - ] + "outputs": [] }, { "language": "markdown", @@ -143,14 +82,14 @@ { "language": "typescript", "source": [ - "const alpha = 0.3;\n\nconst pixelsAsImageData = arrayToImageData(pixels, W, H);\nconst mask = cv.matFromImageData(pixelsAsImageData);\n\ncv.resize(mask, mask, new cv.Size(originalWidth, originalHeight));\n\ncv.addWeighted(mask, alpha, originalImage, 1 - alpha, 0, mask);\n\ndisplayArrayAsImage(mask.data, originalWidth, originalHeight, display);\n" + "const layers = { bg: [], c: [], h: [], w: [] };\nconst resultLayer = [];\nconst colormap = [\n [68, 1, 84, 255],\n [48, 103, 141, 255],\n [53, 183, 120, 255],\n [199, 216, 52, 255],\n];\nconst size = outputData.length/4;\n\nfor (let i = 0; i < size; i++) {\n const valueAt = (i, number) => outputData[i + number*size];\n\n const currentValues = {\n bg: valueAt(i, 0),\n c: valueAt(i, 1),\n h: valueAt(i, 2),\n w: valueAt(i, 3),\n };\n const values = Object.values(currentValues);\n const maxIndex = values.indexOf(Math.max(...values));\n\n resultLayer.push(maxIndex);\n}\n\nconst pixels = [];\nresultLayer.forEach(i => pixels.push(...colormap[i]));\n\nconst alpha = 0.6;\nconst [N, C, H, W] = output.getShape();\n\nconst segmentsImg = Image.fromArray(pixels, W, H);\nconst resizedSegments = segmentsImg.resize(img.width, img.height);\nconst mergedImg = Image.overlay(img, resizedSegments, alpha);\n\nmergedImg.display(display);\n" ], "outputs": [ { "items": [ { "mime": "image/jpeg", - "value": "" + "value": "" } ] } diff --git a/samples/js/node/notebooks/hello-world.nnb b/samples/js/node/notebooks/hello-world.nnb index dbc46d196345ab..83d4ca8bec29f5 100644 --- a/samples/js/node/notebooks/hello-world.nnb +++ b/samples/js/node/notebooks/hello-world.nnb @@ -17,62 +17,10 @@ { "language": "javascript", "source": [ - "const { cv } = require('opencv-wasm');\nconst { display } = require('node-kernel');\nconst { getImageData, displayImage, downloadFile } = require('../helpers.js');\n\nconst { addon: ov } = require('openvino-node');\n" + "const { display } = require('node-kernel');\nconst { addon: ov } = require('openvino-node');\n\nconst Image = require('../image.js');\nconst imagenetClassesMap = require('../../assets/datasets/imagenet_class_index.json');\n" ], "outputs": [] }, - { - "language": "markdown", - "source": [ - "## Download the Model" - ], - "outputs": [] - }, - { - "language": "javascript", - "source": [ - "const baseArtifactsDir = '../../assets/models';\n\nconst modelName = 'v3-small_224_1.0_float';\nconst modelXMLName = `${modelName}.xml`;\nconst modelBINName = `${modelName}.bin`;\n\nconst modelXMLPath = baseArtifactsDir + '/' + modelXMLName;\n\nconst baseURL = 'https://storage.openvinotoolkit.org/repositories/openvino_notebooks/models/mobelinet-v3-tf/FP32/';\n\nawait downloadFile(baseURL + modelXMLName, modelXMLName, baseArtifactsDir);\nawait downloadFile(baseURL + modelBINName, modelBINName, baseArtifactsDir);\n" - ], - "outputs": [ - { - "items": [ - { - "mime": "application/vnd.code.notebook.stdout", - "value": [ - "File successfully stored at '/home/nvishnya/Code/wasm-openvino/samples/js/assets/models/v3-small_224_1.0_float.bin'", - "" - ] - } - ] - } - ] - }, - { - "language": "markdown", - "source": [ - "## Download an Image and Imagenet Classes" - ], - "outputs": [] - }, - { - "language": "javascript", - "source": [ - "const imgUrl = 'https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/image/coco.jpg';\nconst classesUrl = 'https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/datasets/imagenet/imagenet_class_index.json';\n\nawait downloadFile(imgUrl, 'coco.jpg', '../../assets/images');\nawait downloadFile(classesUrl, 'imagenet_class_index.json', '../../assets/datasets');\n" - ], - "outputs": [ - { - "items": [ - { - "mime": "application/vnd.code.notebook.stdout", - "value": [ - "File successfully stored at '/home/nvishnya/Code/wasm-openvino/samples/js/assets/datasets/imagenet_class_index.json'", - "" - ] - } - ] - } - ] - }, { "language": "markdown", "source": [ @@ -83,7 +31,7 @@ { "language": "javascript", "source": [ - "const core = new ov.Core();\nconst model = await core.readModel(modelXMLPath);\nconst compiledModel = await core.compileModel(model, 'CPU');\n\nconst outputLayer = compiledModel.outputs[0];\n" + "const modelXMLPath = '../../assets/models/v3-small_224_1.0_float.xml';\n\nconst core = new ov.Core();\nconst model = await core.readModel(modelXMLPath);\nconst compiledModel = await core.compileModel(model, 'CPU');\n\nconst inputLayer = compiledModel.inputs[0];\nconst outputLayer = compiledModel.outputs[0];\n" ], "outputs": [] }, @@ -97,14 +45,14 @@ { "language": "javascript", "source": [ - "const imgData = await getImageData('../../assets/images/coco.jpg');\n\n// Use opencv-wasm to preprocess image.\nconst originalImage = cv.matFromImageData(imgData);\nconst image = new cv.Mat();\n// The MobileNet model expects images in RGB format.\ncv.cvtColor(originalImage, image, cv.COLOR_RGBA2RGB);\n// Resize to MobileNet image shape.\ncv.resize(image, image, new cv.Size(224, 224));\n\ndisplayImage(imgData, display);\n" + "const img = await Image.load('../../assets/images/coco.jpg');\n\nimg.display(display);\n" ], "outputs": [ { "items": [ { "mime": "image/jpeg", - "value": "" + "value": "" } ] } @@ -120,7 +68,7 @@ { "language": "javascript", "source": [ - "const tensorData = new Float32Array(image.data);\nconst tensor = new ov.Tensor(ov.element.f32, Int32Array.from([1, 224, 224, 3]), tensorData);\n" + "const [N, inputHeight, inputWidth] = inputLayer.shape;\nconst resizedImg = img.resize(inputWidth, inputHeight);\nconst tensor = new ov.Tensor(ov.element.f32, inputLayer.shape, new Float32Array(resizedImg.rgb));\n" ], "outputs": [] }, @@ -134,14 +82,21 @@ { "language": "javascript", "source": [ - "const inferRequest = compiledModel.createInferRequest();\ninferRequest.setInputTensor(tensor);\ninferRequest.infer();\n\nconst resultInfer = inferRequest.getTensor(outputLayer);\nconst resultIndex = resultInfer.data.indexOf(Math.max(...resultInfer.data));\n" + "const inferRequest = compiledModel.createInferRequest();\nconst result = await inferRequest.inferAsync([tensor]);\n\nconst outputData = result[outputLayer].data;\nconst resultIndex = outputData.indexOf(Math.max(...outputData));\nconst prediction = outputData[resultIndex];\n" + ], + "outputs": [] + }, + { + "language": "markdown", + "source": [ + "## Display result based on maximum probability" ], "outputs": [] }, { "language": "javascript", "source": [ - "const imagenetClassesMap = require('../../assets/datasets/imagenet_class_index.json');\nconst imagenetClasses = ['background', ...Object.values(imagenetClassesMap)];\n\nconsole.log(`Result: ${imagenetClasses[resultIndex][1]}`);\n" + "const imagenetClassesMap = require('../../assets/datasets/imagenet_class_index.json');\nconst imagenetClasses = ['background', ...Object.values(imagenetClassesMap)];\n\nconsole.log('Result:\\n\\nid\\tprobability\\tlabel');\nconsole.log('---------------------------------');\nconsole.log(`${resultIndex}\\t${prediction.toFixed(7)}\\t${imagenetClasses[resultIndex][1]}`);\n" ], "outputs": [ { @@ -149,7 +104,11 @@ { "mime": "application/vnd.code.notebook.stdout", "value": [ - "Result: flat-coated_retriever", + "Result:", + "", + "id\tprobability\tlabel", + "---------------------------------", + "206\t0.7470666\tflat-coated_retriever", "" ] } diff --git a/samples/js/node/notebooks/optical-character-recognition.nnb b/samples/js/node/notebooks/optical-character-recognition.nnb index b7e8e109ff857f..ce450dbce0a0d7 100644 --- a/samples/js/node/notebooks/optical-character-recognition.nnb +++ b/samples/js/node/notebooks/optical-character-recognition.nnb @@ -24,60 +24,42 @@ { "language": "typescript", "source": [ - "const fs = require(\"node:fs\");\nconst path = require(\"node:path\");\nconst { createCanvas, Image, ImageData } = require(\"canvas\");\nconst { addon: ov } = require(\"openvino-node\");\nconst { display } = require(\"node-kernel\");\nconst { cv } = require(\"opencv-wasm\");\nconst {\n transform,\n getImageData,\n displayArrayAsImage,\n downloadFile,\n arrayToImageData,\n getImageBuffer,\n argMax,\n setShape,\n} = require(\"../helpers.js\");\n" + "const { addon: ov } = require('openvino-node');\nconst { display } = require('node-kernel');\n\nconst Image = require('../image');\nconst { transform, argMax, setShape } = require('../helpers.js');\n" ], "outputs": [] }, { "language": "markdown", "source": [ - "# Download Models" + "# Load a Detection Model" ], "outputs": [] }, { "language": "typescript", "source": [ - "// Intializing Images, Models\nconst baseArtifactsDir = '../../assets/models';\nconst detBaseURL = 'https://storage.openvinotoolkit.org/repositories/open_model_zoo/2022.3/models_bin/1/horizontal-text-detection-0001/FP32/';\nconst recBaseURL = 'https://storage.openvinotoolkit.org/repositories/open_model_zoo/public/text-recognition-resnet-fc/';\nconst detectionModelName = 'horizontal-text-detection-0001';\nconst textRecModelName = 'text-recognition-resnet-fc';\n\nconst detModelXMLName = `${detectionModelName}.xml`;\nconst detModelBINName = `${detectionModelName}.bin`;\n\nconst detModelXMLPath = `${baseArtifactsDir}/${detModelXMLName}`;\nconst detModelBINPath = `${baseArtifactsDir}/${detModelBINName}`;\n\nconst recModelXMLName = `${textRecModelName}.xml`;\nconst recModelBINName = `${textRecModelName}.bin`;\n\nconst recModelXMLPath = `${baseArtifactsDir}/${textRecModelName}.xml`;\nconst recModelBINPath = `${baseArtifactsDir}/${textRecModelName}.bin`;\n\nawait downloadFile(\n detBaseURL + detModelXMLName,\n detModelXMLName,\n baseArtifactsDir\n);\n\nawait downloadFile(\n detBaseURL + detModelBINName,\n detModelBINName,\n baseArtifactsDir\n);\n\nawait downloadFile(\n recBaseURL + recModelXMLName,\n recModelXMLName,\n baseArtifactsDir\n);\n\nawait downloadFile(\n recBaseURL + recModelBINName,\n recModelBINName,\n baseArtifactsDir\n);\n" + "const detModelXMLPath = '../../assets/models/horizontal-text-detection-0001.xml';\n\n// Initialize OpenVINO core and load the detection model\nconst core = new ov.Core();\nconst detModel = await core.readModel(detModelXMLPath);\nconst detCompiledModel = await core.compileModel(detModel, 'AUTO');\nconst detInputLayer = detCompiledModel.input(0);\nconst detOutputLayer = detCompiledModel.output('boxes');\n" ], - "outputs": [ - { - "items": [ - { - "mime": "application/vnd.code.notebook.stdout", - "value": [ - "File successfully stored at '/home/prakash/OpenSource-Repos/ocr-node-sample/assets/models/horizontal-text-detection-0001.xml'", - "File successfully stored at '/home/prakash/OpenSource-Repos/ocr-node-sample/assets/models/horizontal-text-detection-0001.bin'", - "File successfully stored at '/home/prakash/OpenSource-Repos/ocr-node-sample/assets/models/text-recognition-resnet-fc.xml'", - "File successfully stored at '/home/prakash/OpenSource-Repos/ocr-node-sample/assets/models/text-recognition-resnet-fc.bin'", - "" - ] - } - ] - } - ] + "outputs": [] }, { "language": "markdown", "source": [ - "# Dowload Image" + "# Prepare Image for Inference" ], "outputs": [] }, { "language": "typescript", "source": [ - "const baseImagesDir = '../../assets/images';\nconst imgUrl = 'https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/image/intel_rnb.jpg';\nconst imgName = 'intel_rnb.jpg';\nawait downloadFile(imgUrl, imgName, baseImagesDir);\n" + "const imagePath = '../../assets/images/intel_rnb.jpg';\nconst img = await Image.load(imagePath);\nimg.display(display);\n\n// Resize the image to meet network input size\nconst [detInputHeight, detInputWidth] = detInputLayer.shape.slice(2);\nconst resizedImg = img.resize(detInputWidth, detInputHeight);\n\n// Prepare input tensor\nconst inputImageTransformedData = transform(\n resizedImg.rgb,\n { width: detInputWidth, height: detInputHeight },\n [0, 1, 2],\n);\nconst tensorData = new Float32Array(inputImageTransformedData);\nconst tensor = new ov.Tensor(ov.element.f32, detInputLayer.shape, tensorData);\n" ], "outputs": [ { "items": [ { - "mime": "application/vnd.code.notebook.stdout", - "value": [ - "File successfully stored at '/home/prakash/OpenSource-Repos/ocr-node-sample/assets/images/intel_rnb.jpg'", - "" - ] + "mime": "image/jpeg", + "value": "" } ] } @@ -86,141 +68,72 @@ { "language": "markdown", "source": [ - "# Load a Detection Model" + "## Run inference on the detection model" ], "outputs": [] }, { "language": "typescript", "source": [ - "// Initialize OpenVINO core and load the detection model\nconst core = new ov.Core();\nconst detModel = await core.readModel(detModelXMLPath);\nconst detCompiledModel = await core.compileModel(detModel, 'AUTO');\nconst detInputLayer = detCompiledModel.input(0);\nconst detOutputLayer = detCompiledModel.output('boxes');\n" + "const detInferRequest = detCompiledModel.createInferRequest();\nconst detResult = await detInferRequest.inferAsync([tensor]);\n" ], "outputs": [] }, { "language": "markdown", "source": [ - "# Prepare Image for Inference" + "# Load Text Recognition Model" ], "outputs": [] }, { "language": "typescript", "source": [ - "const imageData = await getImageData(`${baseImagesDir}/intel_rnb.jpg`);\nconst inputImageMat = cv.matFromImageData(imageData);\nconst displayImageMat = inputImageMat.clone();\n\n// Resize the image to meet network input size\nconst [B, C, H, W] = detInputLayer.shape;\nconst resizedImage = new cv.Mat();\ncv.cvtColor(inputImageMat, inputImageMat, cv.COLOR_RGBA2RGB);\ncv.cvtColor(inputImageMat, inputImageMat, cv.COLOR_BGR2RGB);\ncv.resize(inputImageMat, resizedImage, new cv.Size(W, H));\n\n// Prepare input tensor\nconst inputImage = transform(resizedImage.data,\n { width: W, height: H },\n [0, 1, 2]);\nconst tensorData = new Float32Array(inputImage);\nconst tensor = new ov.Tensor(\n ov.element.f32,\n detInputLayer.shape,\n tensorData\n);\n" + "const recModelXMLPath = '../../assets/models/text-recognition-resnet-fc.xml';\n\n// Load the recognition model and prepare the inference request\nconst recModel = await core.readModel(recModelXMLPath);\nconst recModelCompiled = await core.compileModel(recModel, 'AUTO');\nconst recInferRequest = recModelCompiled.createInferRequest();\n" ], "outputs": [] }, { "language": "markdown", "source": [ - "## Define Post-Processing Functions" + "# Define Post-Processing Functions" ], "outputs": [] }, { "language": "typescript", "source": [ - "// Function to extract bounding boxes from the model output\nfunction extractBoundingBoxes(output) {\n console.log(`Output shape: ${output.getData()}`);\n const { data: boxes } = output;\n const foldingCoefficient = 5;\n const numberOfBoxes = boxes.length / foldingCoefficient;\n\n return setShape(boxes, [numberOfBoxes, foldingCoefficient]);\n}\n" + "async function performTextRecognition(model, inferenceRequest, img) {\n const inputLayerShape = model.input(0).shape;\n const outputLayer = model.output(0);\n\n const [,, inputHeight, inputWidth] = inputLayerShape;\n const resizedImg = img.resize(inputWidth, inputHeight);\n\n // Convert image to grayscale and create tensor\n const tensor = new ov.Tensor(\n ov.element.f32,\n inputLayerShape,\n new Float32Array(resizedImg.grayscale),\n );\n\n const result = await inferenceRequest.inferAsync([tensor]);\n const recognitionResults = extractRecognitionResults(result[outputLayer]);\n const annotation = parseAnnotations(recognitionResults);\n\n return annotation;\n}\n\n// Function to extract bounding boxes from the model output\nfunction extractBoundingBoxes(output) {\n const { data: boxes } = output;\n const foldingCoefficient = 5;\n const numberOfBoxes = boxes.length / foldingCoefficient;\n\n return setShape(boxes, [numberOfBoxes, foldingCoefficient]);\n}\n\n// Function to adjust bounding box coordinates by a given ratio\nfunction multiplyByRatio(ratioX, ratioY, box) {\n const scaleShape = (shape, idx) => {\n const position = idx % 2\n ? Math.max(shape * ratioY, 10)\n : shape * ratioX;\n\n return Math.floor(position);\n }\n\n return box.map(scaleShape);\n}\n\n// Function to extract recognition results from the model output\nfunction extractRecognitionResults(output) {\n const outputData = output.getData();\n const outputShape = output.getShape();\n const [, height, width] = outputShape;\n\n return setShape(outputData, [height, width]);\n}\n\n// Function to parse annotations from the recognition results\nfunction parseAnnotations(recognitionResults) {\n const letters = '~0123456789abcdefghijklmnopqrstuvwxyz';\n const annotation = [];\n\n for (const row of recognitionResults) {\n const letterIndex = argMax(row);\n const parsedLetter = letters[letterIndex];\n\n // Stop if end character is encountered\n if (parsedLetter === letters[0]) break;\n\n annotation.push(parsedLetter);\n }\n\n return annotation.join('');\n}\n\n// Takes original image and bounding boxes with annotations\n// and returns the image with annotations\nasync function putAnnotationsOnImage(img, boxesWithAnnotations, options) {\n const defaultOptions = { threshold: 0.3, confLabels: true };\n const { threshold, confLabels } = Object.assign(defaultOptions, options);\n\n let finalImage = img;\n\n for (const item of boxesWithAnnotations) {\n const { box, annotation } = item;\n const conf = box[box.length - 1];\n\n if (conf < threshold) continue;\n\n const [xMin, yMin, xMax, yMax] = box;\n const yOffset = 10;\n\n finalImage = finalImage.drawRect(\n xMin, yMin,\n xMax - xMin, yMax - yMin,\n { color: 'green', width: 3 },\n );\n finalImage = finalImage.drawText(\n annotation,\n xMin, yMin - yOffset,\n { font: '30px Arial' },\n );\n\n if (!confLabels) continue;\n\n finalImage = finalImage.drawText(\n conf.toFixed(2),\n xMin, yMax + 2 * yOffset,\n { font: '20px Arial' },\n );\n }\n\n return finalImage;\n}\n" ], "outputs": [] }, { "language": "markdown", "source": [ - "# Do Inference" + "### Do Inference and Show Detected Text Boxes and OCR Results for the Image\n" ], "outputs": [] }, { "language": "typescript", "source": [ - "// Create infer request\nconst detInferRequest = detCompiledModel.createInferRequest();\n\nconst detResult = await detInferRequest.inferAsync([tensor]);\nconst boundingBoxesArray = extractBoundingBoxes(detResult[detOutputLayer]);\n\n// Show original image\ndisplayArrayAsImage(\n displayImageMat.data,\n displayImageMat.cols,\n displayImageMat.rows,\n display\n);\n" + "// Calculate ratios\nconst [ratioX, ratioY] = [img.width / detInputWidth, img.height / detInputHeight];\nconst boundingBoxesArray = extractBoundingBoxes(detResult[detOutputLayer]);\n// Resize bounding boxes to the original image size\nconst boundingBoxesOriginalSizeArray = boundingBoxesArray.map(box =>\n [...multiplyByRatio(ratioX, ratioY, box), box[4]]);\n\n// Process each bounding box and run inference on the recognition model\nconst boxesWithAnnotations = [];\nfor (let i = 0; i < boundingBoxesOriginalSizeArray.length; i++) {\n const box = boundingBoxesOriginalSizeArray[i];\n const [xMin, yMin, xMax, yMax] = box;\n const croppedImg = img.crop(xMin, yMin, xMax - xMin, yMax - yMin);\n croppedImg.display(display);\n\n const annotation = await performTextRecognition(recModel, recInferRequest, croppedImg);\n\n boxesWithAnnotations.push({ box, annotation });\n\n console.log(`Box ${i}: [${box.join(',')}], Annotation: '${annotation}'`);\n}\n" ], "outputs": [ { "items": [ { "mime": "image/jpeg", - "value": "" + "value": "" } ] - } - ] - }, - { - "language": "markdown", - "source": [ - "# Load Text Recognition Model" - ], - "outputs": [] - }, - { - "language": "typescript", - "source": [ - "// Loading the text recognition model\nconst recModel = await core.readModel(recModelXMLPath);\nconst recModelCompiled = await core.compileModel(recModel, 'AUTO');\nconst recInputLayer = recModelCompiled.input(0);\nconst recOutputLayer = recModelCompiled.output(0);\n" - ], - "outputs": [] - }, - { - "language": "markdown", - "source": [ - "# Define Post-Processing Functions" - ], - "outputs": [] - }, - { - "language": "typescript", - "source": [ - "// Function to calculate the ratios for the image\nfunction calculateRatios(originalImage, resizedImage) {\n const realY = originalImage.rows;\n const realX = originalImage.cols;\n const resizedY = resizedImage.rows;\n const resizedX = resizedImage.cols;\n const ratioX = realX / resizedX;\n const ratioY = realY / resizedY;\n\n return { ratioX, ratioY };\n}\n\n// Function to convert the image to grayscale\nfunction convertToGrayscale(originalImage) {\n const grayscaleImage = new cv.Mat();\n cv.cvtColor(originalImage, grayscaleImage, cv.COLOR_BGR2GRAY);\n\n return grayscaleImage;\n}\n\n\n// Function to adjust bounding box coordinates by a given ratio\nfunction multiplyByRatio(ratioX, ratioY, box) {\n const scaleShape = (shape, idx) => idx % 2\n ? Math.max(shape * ratioY, 10)\n : shape * ratioX;\n\n return box.map(scaleShape);\n}\n\n\n// Function to resize and convert a crop to the recognition model input format\nfunction resizeAndConvertCropToModelInput(crop, netShape) {\n const [netWidth, netHeight] = netShape;\n\n // Resize the crop to the network's input shape\n const tempImg = new cv.Mat();\n cv.resize(crop, tempImg, new cv.Size(netWidth, netHeight));\n\n // Create the reshaped buffer\n const reshapedBuffer = new Uint8Array(netHeight * netWidth);\n let index = 0;\n\n for (let i = 0; i < netHeight; i++) {\n for (let j = 0; j < netWidth; j++) {\n reshapedBuffer[index++] = tempImg.ucharPtr(i, j)[0];\n }\n }\n\n // Clean up\n tempImg.delete();\n\n return reshapedBuffer;\n}\n\n// Function to extract recognition results from the model output\nfunction extractRecognitionResults(output) {\n const outputData = output.getData();\n const outputShape = output.getShape();\n const [batchSize, height, width] = outputShape;\n\n return setShape(outputData, [height, width]);\n}\n\n// Function to parse annotations from the recognition results\nfunction parseAnnotations(recognitionResults) {\n const letters = \"~0123456789abcdefghijklmnopqrstuvwxyz\";\n const annotation = [];\n\n for (const row of recognitionResults) {\n const letterIndex = argMax(row);\n const parsedLetter = letters[letterIndex];\n\n // Stop if end character is encountered\n if (parsedLetter === letters[0]) break;\n annotation.push(parsedLetter);\n }\n\n return annotation.join('');\n}\n\n// Function to crop the image based on the bounding box coordinates\nfunction cropImage(originalImage, xMin, yMin, xMax, yMax) {\n xMin = Math.max(0, xMin);\n yMin = Math.max(0, yMin);\n xMax = Math.min(originalImage.cols, xMax);\n yMax = Math.min(originalImage.rows, yMax);\n if (xMin >= xMax || yMin >= yMax) {\n throw new Error('Invalid crop coordinates');\n }\n const roi = originalImage.roi(\n new cv.Rect(xMin, yMin, xMax - xMin, yMax - yMin)\n );\n const cropped = new cv.Mat();\n roi.copyTo(cropped);\n roi.delete();\n\n return cropped;\n}\n\n// Function to log the bounding boxes with annotations\nfunction printSortedAnnotations(boxesWithAnnotations) {\n /* Sort the boxes with annotations based\n on their position in the input image */\n const sortedAnnotations = boxesWithAnnotations\n .sort((a, b) => {\n const [aXMin, aYMin] = a.box;\n const [bXMin, bYMin] = b.box;\n\n return (aYMin - bYMin) || (aXMin - bXMin);\n })\n .map(item => item.annotation);\n\n console.log('Sorted Annotations:', sortedAnnotations);\n}\n\n// Get Text size\nfunction getTextSize(text, fontFace, fontScale) {\n const canvas = createCanvas(200, 200);\n const ctx = canvas.getContext('2d');\n const adjustedFontScale = fontScale * 35;\n ctx.font = `${adjustedFontScale}px ${fontFace}`;\n const metrics = ctx.measureText(text);\n const width = metrics.width;\n const height =\n metrics.actualBoundingBoxAscent +\n metrics.actualBoundingBoxDescent;\n\n return { width, height };\n}\n\n/* The convertResultToImage function visualizes object detection\n results on an image by drawing bounding boxes around detected\n objects and optionally adding labels to them. */\nfunction convertResultToImage(\n bgrImage,\n resizedImage,\n boxesWithAnnotations,\n options,\n) {\n const defaultOptions = { threshold: 0.3, confLabels: true };\n const { threshold, confLabels } = Object.assign(defaultOptions, options);\n\n const colors = {\n red: [255, 0, 0, 255],\n green: [0, 255, 0, 255],\n white: [255, 255, 255, 255]\n };\n const [realY, realX] = [bgrImage.rows, bgrImage.cols];\n const [resizedY, resizedX] = [resizedImage.rows, resizedImage.cols];\n const [ratioX, ratioY] = [realX / resizedX, realY / resizedY];\n\n const rgbImage = new cv.Mat();\n cv.cvtColor(bgrImage, rgbImage, cv.COLOR_BGR2RGB);\n\n boxesWithAnnotations.forEach(({ box, annotation }) => {\n const conf = box[box.length - 1];\n\n if (conf < threshold) return;\n\n const [xMin, yMin, xMax, yMax] = multiplyByRatio(ratioX, ratioY, box);\n\n cv.rectangle(\n rgbImage,\n new cv.Point(xMin, yMin),\n new cv.Point(xMax, yMax),\n colors.green,\n 3\n );\n\n if (!confLabels) return;\n\n const text = `${annotation}`;\n const fontScale = 0.8;\n const thickness = 1;\n const { width: textW, height: textH } = getTextSize(text, 'Arial', fontScale);\n const imageCopy = rgbImage.clone();\n\n cv.rectangle(\n imageCopy,\n new cv.Point(xMin, yMin - textH - 10),\n new cv.Point(xMin + textW, yMin - 10),\n colors.white,\n cv.FILLED\n );\n cv.addWeighted(imageCopy, 0.4, rgbImage, 0.6, 0, rgbImage);\n cv.putText(\n rgbImage,\n text,\n new cv.Point(xMin, yMin - 10),\n cv.FONT_HERSHEY_SIMPLEX,\n fontScale,\n colors.red,\n thickness,\n cv.LINE_AA\n );\n\n imageCopy.delete();\n\n });\n\n return rgbImage;\n}\n" - ], - "outputs": [] - }, - { - "language": "markdown", - "source": [ - "# Async Inference Helper Function" - ], - "outputs": [] - }, - { - "language": "typescript", - "source": [ - "async function inferAsyncProcess(\n tensor,\n recModelCompiled,\n recOutputLayer,\n i,\n annotations,\n) {\n // Create infer request\n const inferRequest = recModelCompiled.createInferRequest();\n\n // Define the completion callback function\n function completionCallback(outputTensor, i, annotations) {\n const recognitionResults = extractRecognitionResults(outputTensor);\n const annotation = parseAnnotations(recognitionResults);\n annotations.push(annotation);\n }\n\n // Start inference in asynchronous mode\n try {\n const result = await inferRequest.inferAsync([tensor]);\n completionCallback(result[recOutputLayer], i, annotations);\n }catch (error) {\n console.error('Error during inference:', error);\n }\n}\n" - ], - "outputs": [] - }, - { - "language": "markdown", - "source": [ - "### Do Inference and Show Detected Text Boxes and OCR Results for the Image\n" - ], - "outputs": [] - }, - { - "language": "typescript", - "source": [ - "// Process each bounding box and run inference on the recognition model\nconst [batchSize, channels, height, width] = recInputLayer.shape;\n// Calculate ratios\nconst {\n ratioX,\n ratioY,\n} = calculateRatios(inputImageMat, resizedImage);\n\n// Convert image to grayscale\nconst grayscaleImage = convertToGrayscale(inputImageMat);\n\nconst annotations = [];\nconst croppedImages = [];\n\n\nfor (let i = 0; i < boundingBoxesArray.length; i++) {\n const crop = boundingBoxesArray[i];\n const [xMin, yMin, xMax, yMax] = multiplyByRatio(ratioX, ratioY, crop).map(Math.floor);\n const cropRect = new cv.Rect(xMin, yMin, xMax - xMin, yMax - yMin);\n const croppedImage = grayscaleImage.roi(cropRect);\n\n try {\n const preprocessedCrop = resizeAndConvertCropToModelInput(croppedImage, [width, height]);\n const tensorData = new Float32Array(preprocessedCrop);\n const tensor = new ov.Tensor(\n ov.element.f32,\n Int32Array.from(recInputLayer.shape),\n tensorData\n );\n\n await inferAsyncProcess(\n tensor,\n recModelCompiled,\n recOutputLayer,\n i,\n annotations\n );\n\n croppedImages.push(\n cropImage(inputImageMat, xMin, yMin, xMax, yMax)\n );\n } catch (error) {\n console.error('Error during preprocessing:', error);\n }\n\n croppedImage.delete();\n}\n\ngrayscaleImage.delete();\n\nconst boxesWithAnnotations = boundingBoxesArray.map((box, index) => ({\n box,\n annotation: annotations[index]\n}));\n\nconst resultImage = convertResultToImage(\n inputImageMat,\n resizedImage,\n boxesWithAnnotations,\n { threshold: 0.3, confLabels: true }\n);\n\ndisplayArrayAsImage(\n resultImage.data,\n resultImage.cols,\n resultImage.rows,\n display\n);\n\ncroppedImages.forEach((croppedImage) => {\n displayArrayAsImage(\n croppedImage.data,\n croppedImage.cols,\n croppedImage.rows,\n display\n );\n});\n" - ], - "outputs": [ + }, { "items": [ { "mime": "application/vnd.code.notebook.stdout", "value": [ - "Annotation for box 0: building", - "Cropped Image Size: 159 x 40", - "Annotation for box 1: noyce", - "Original Image Size: 690 x 517", - "Cropping Coordinates: (256, 50) to (377, 88)", - "Cropped Image Size: 121 x 38", - "Cropping Coordinates: (604, 205) to (653, 228)", - "Cropped Image Size: 49 x 23", - "Cropped Image Size: 26 x 32", - "Cropped Image Size: 31 x 23", - "Text: noyce, Width: 74.716796875, Height: 21", - "Text: 2200, Width: 62.2890625, Height: 19", - "Text: robert, Width: 73.14453125, Height: 20", + "Box 0: [391,59,550,99,0,0.518794059753418], Annotation: 'building'", "" ] } @@ -230,15 +143,18 @@ "items": [ { "mime": "image/jpeg", - "value": "" + "value": "" } ] }, { "items": [ { - "mime": "image/jpeg", - "value": "" + "mime": "application/vnd.code.notebook.stdout", + "value": [ + "Box 1: [257,50,377,88,0,0.48566171526908875], Annotation: 'noyce'", + "" + ] } ] }, @@ -246,15 +162,18 @@ "items": [ { "mime": "image/jpeg", - "value": "" + "value": "" } ] }, { "items": [ { - "mime": "image/jpeg", - "value": "" + "mime": "application/vnd.code.notebook.stdout", + "value": [ + "Box 2: [604,205,653,229,0,0.45074450969696045], Annotation: '2200'", + "" + ] } ] }, @@ -262,7 +181,18 @@ "items": [ { "mime": "image/jpeg", - "value": "" + "value": "" + } + ] + }, + { + "items": [ + { + "mime": "application/vnd.code.notebook.stdout", + "value": [ + "Box 3: [22,33,185,74,0,0.3334950804710388], Annotation: 'robert'", + "" + ] } ] }, @@ -270,7 +200,18 @@ "items": [ { "mime": "image/jpeg", - "value": "" + "value": "" + } + ] + }, + { + "items": [ + { + "mime": "application/vnd.code.notebook.stdout", + "value": [ + "Box 4: [506,408,538,431,0,0.32059410214424133], Annotation: 'center'", + "" + ] } ] }, @@ -278,7 +219,18 @@ "items": [ { "mime": "image/jpeg", - "value": "" + "value": "" + } + ] + }, + { + "items": [ + { + "mime": "application/vnd.code.notebook.stdout", + "value": [ + "Box 5: [203,46,229,78,0,0.3125338554382324], Annotation: 'n'", + "" + ] } ] } @@ -287,28 +239,25 @@ { "language": "markdown", "source": [ - "### Print Annotations in Plain Text Format" + "## Display the OCR Results on the original image" ], "outputs": [] }, { "language": "typescript", "source": [ - "printSortedAnnotations(boxesWithAnnotations);\n" + "const annotatedImg = await putAnnotationsOnImage(\n img,\n boxesWithAnnotations,\n { threshold: 0.3, confLabels: false },\n);\nannotatedImg.display(display);\n" ], "outputs": [ { "items": [ { - "mime": "application/vnd.code.notebook.stdout", - "value": [ - "Sorted Annotations: [ 'robert', 'n', 'noyce', 'building', '2200', 'center' ]", - "" - ] + "mime": "image/jpeg", + "value": "" } ] } ] } ] -} \ No newline at end of file +} diff --git a/samples/js/node/notebooks/pose-estimation.nnb b/samples/js/node/notebooks/pose-estimation.nnb index 6ca358ed2b0cf4..16774b4514ab11 100644 --- a/samples/js/node/notebooks/pose-estimation.nnb +++ b/samples/js/node/notebooks/pose-estimation.nnb @@ -17,32 +17,17 @@ { "language": "javascript", "source": [ - "const path = require('node:path');\nconst { cv } = require('opencv-wasm');\nconst { display } = require('node-kernel');\nconst tf = require('@tensorflow/tfjs-node');\nconst {\n getImageData,\n displayArrayAsImage,\n arrayToImageData,\n getImageBuffer,\n transform,\n downloadFile,\n} = require('../helpers.js');\n\nconst { addon: ov } = require('openvino-node');\n" - ], - "outputs": [] - }, - { - "language": "markdown", - "source": [ - "## Download the Model" - ], - "outputs": [] - }, - { - "language": "javascript", - "source": [ - "const baseArtifactsDir = '../../assets/models';\n\nconst modelName = 'human-pose-estimation-0001';\nconst modelXMLName = `${modelName}.xml`;\nconst modelBINName = `${modelName}.bin`;\n\nconst modelXMLPath = baseArtifactsDir + '/' + modelXMLName;\n\nconst baseURL = `https://storage.openvinotoolkit.org/repositories/open_model_zoo/2022.1/models_bin/3/${modelName}/FP16-INT8/`;\n\nawait downloadFile(baseURL + modelXMLName, modelXMLName, baseArtifactsDir);\nawait downloadFile(baseURL + modelBINName, modelBINName, baseArtifactsDir);\n\nconst imgUrl = 'https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/image/intel_rnb.jpg';\nconst imageFilename = path.parse(imgUrl).base;\n\nawait downloadFile(imgUrl, imageFilename, '../../assets/images');\n\nconst imagePath = `../../assets/images/${imageFilename}`\n" + "const path = require('node:path');\nconst { display } = require('node-kernel');\nconst tf = require('@tensorflow/tfjs-node');\nconst { addon: ov } = require('openvino-node');\n\nconst { transform } = require('../helpers.js');\nconst Image = require('../image');\n" ], "outputs": [ { "items": [ { - "mime": "application/vnd.code.notebook.stdout", + "mime": "application/vnd.code.notebook.stderr", "value": [ - "Proxy agent configured using: 'http://proxy-dmz.intel.com:911'", - "Proxy agent configured using: 'http://proxy-dmz.intel.com:911'", - "Proxy agent configured using: 'http://proxy-dmz.intel.com:911'", - "File successfully stored at '/home/nvishnya/Code/wasm-openvino/samples/js/assets/images/intel_rnb.jpg'", + "2024-11-04 17:09:35.860051: I tensorflow/core/util/util.cc:169] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.", + "2024-11-04 17:09:35.872537: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX_VNNI FMA", + "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.", "" ] } @@ -60,7 +45,7 @@ { "language": "typescript", "source": [ - "const core = new ov.Core();\nconst model = await core.readModel(modelXMLPath);\nconst compiledModel = await core.compileModel(model, 'CPU', { PERFORMANCE_HINT: 'LATENCY' });\n\nconst inputLayer = compiledModel.inputs[0];\nconst outputLayers = compiledModel.outputs;\n\nconst [height, width] = inputLayer.shape.slice(2);\n\nconst heatmapsOutputKey = 'Mconv7_stage2_L2';\n\nconst THRESHOLD = 0.3;\nconst COLOR = [0, 255, 0, 255];" + "const modelXMLPath = '../../assets/models/human-pose-estimation-0001.xml';\n\nconst core = new ov.Core();\nconst model = await core.readModel(modelXMLPath);\nconst compiledModel = await core.compileModel(model, 'AUTO', { PERFORMANCE_HINT: 'LATENCY' });\n\nconst inputLayer = compiledModel.inputs[0];\nconst outputLayers = compiledModel.outputs;\n\nconst [height, width] = inputLayer.shape.slice(2);\n\nconst heatmapsOutputKey = 'Mconv7_stage2_L2';\n\nconst THRESHOLD = 0.3;\nconst COLOR = 'rgb(0,255,0)';\n" ], "outputs": [] }, @@ -74,9 +59,18 @@ { "language": "typescript", "source": [ - "const imgData = await getImageData(imagePath);\n\nconst originalImage = cv.matFromImageData(imgData);\nconst { cols: originalWidth, rows: originalHeight } = originalImage;\n\nconst image = new cv.Mat();\ncv.cvtColor(originalImage, image, cv.COLOR_RGBA2RGB);\ncv.cvtColor(image, image, cv.COLOR_BGR2RGB);\ncv.resize(image, image, new cv.Size(width, height), cv.INTER_AREA);\n\n// NHWC to NCHW\nconst inputImage = transform(image.data, { width, height }, [0, 1, 2]);" + "const imagePath = '../../assets/images/intel_rnb.jpg';\nconst img = await Image.load(imagePath);\nimg.display(display);\n\n// Resize the image to meet network input size\nconst [inputHeight, inputWidth] = inputLayer.shape.slice(2);\nconst resizedImg = img.resize(inputWidth, inputHeight);\n\n// Prepare input tensor\nconst inputImageTransformedData = transform(\n resizedImg.rgb,\n { width: inputWidth, height: inputHeight },\n [0, 1, 2],\n);\nconst tensorData = new Float32Array(inputImageTransformedData);\nconst tensor = new ov.Tensor(ov.element.f32, inputLayer.shape, tensorData);\n" ], - "outputs": [] + "outputs": [ + { + "items": [ + { + "mime": "image/jpeg", + "value": "" + } + ] + } + ] }, { "language": "markdown", @@ -88,7 +82,7 @@ { "language": "typescript", "source": [ - "\n// Utility function to get the coordinates of the maximum value in a tensor\nfunction getCoords(tensor) {\n const { values, indices } = tf.topk(tensor.flatten(), 1);\n const [maxVal] = values.dataSync();\n const [maxIndex] = indices.dataSync();\n const x = maxIndex % tensor.shape[1];\n const y = Math.floor(maxIndex / tensor.shape[1]);\n\n return { x, y, confidence: maxVal };\n}\n\n// Draw keypoints on the input image\nfunction drawKeypoints(image, keypoints) {\n keypoints.forEach(keypoint => {\n if (keypoint.confidence > THRESHOLD) {\n cv.circle(image,\n new cv.Point(keypoint.x, keypoint.y),\n 2,\n COLOR,\n 3,\n );\n }\n });\n}\n\n// Draw skeleton (lines between keypoints) on the input image\nfunction drawSkeleton(image, keypoints) {\n const skeleton = [\n [1, 2], [1, 5], [2, 3], [3, 4], [5, 6], [6, 7], [1, 8], [8, 9], [9, 10],\n [1, 11], [11, 12], [12, 13], [1, 0], [0, 14], [14, 16], [0, 15], [15, 17],\n ];\n\n skeleton.forEach(([start, end]) => {\n const startPoint = keypoints[start];\n const endPoint = keypoints[end];\n\n if (startPoint.confidence > THRESHOLD\n && endPoint.confidence > THRESHOLD) {\n cv.line(image,\n new cv.Point(startPoint.x, startPoint.y),\n new cv.Point(endPoint.x, endPoint.y),\n COLOR,\n 2,\n );\n }\n });\n}\n\nfunction toTFTensor(ovTensor) {\n return tf.tensor(ovTensor.data, ovTensor.getShape());\n}" + "// Utility function to get the coordinates of the maximum value in a tensor\nfunction getCoords(tensor) {\n const { values, indices } = tf.topk(tensor.flatten(), 1);\n const [maxVal] = values.dataSync();\n const [maxIndex] = indices.dataSync();\n const x = maxIndex % tensor.shape[1];\n const y = Math.floor(maxIndex / tensor.shape[1]);\n\n return { x, y, confidence: maxVal };\n}\n\n// Draw keypoints on the input image\nfunction drawKeypoints(image, keypoints) {\n let modifiedImage = image;\n\n keypoints.forEach(keypoint => {\n if (keypoint.confidence < THRESHOLD) return;\n\n modifiedImage = modifiedImage.drawCircle(\n keypoint.x,\n keypoint.y,\n 4,\n { color: COLOR, width: 3 },\n );\n });\n\n return modifiedImage;\n}\n\n// Draw skeleton (lines between keypoints) on the input image\nfunction drawSkeleton(image, keypoints) {\n const skeleton = [\n [1, 2], [1, 5], [2, 3], [3, 4], [5, 6], [6, 7], [1, 8], [8, 9], [9, 10],\n [1, 11], [11, 12], [12, 13], [1, 0], [0, 14], [14, 16], [0, 15], [15, 17],\n ];\n\n let modifiedImage = image;\n skeleton.forEach(([start, end]) => {\n const startPoint = keypoints[start];\n const endPoint = keypoints[end];\n\n if (startPoint.confidence < THRESHOLD\n || endPoint.confidence < THRESHOLD) return;\n\n modifiedImage = modifiedImage.drawLine(\n startPoint.x,\n startPoint.y,\n endPoint.x,\n endPoint.y,\n { color: COLOR, width: 3 },\n );\n });\n\n return modifiedImage;\n}\n\nfunction toTFTensor(ovTensor) {\n return tf.tensor(ovTensor.data, ovTensor.getShape());\n}" ], "outputs": [] }, @@ -102,7 +96,7 @@ { "language": "typescript", "source": [ - "const tensorData = new Float32Array(inputImage);\nconst tensor = new ov.Tensor(ov.element.f32, inputLayer.shape, tensorData);\n\nconst inferRequest = compiledModel.createInferRequest();\ninferRequest.setInputTensor(tensor);\nconst outputs = inferRequest.infer();\n\nconst heatmaps = outputs[heatmapsOutputKey];" + "const inferRequest = compiledModel.createInferRequest();\nconst outputs = await inferRequest.inferAsync([tensor]);\n\nconst heatmaps = outputs[heatmapsOutputKey];" ], "outputs": [] }, @@ -116,18 +110,30 @@ { "language": "typescript", "source": [ - "try {\n const outputHeatmapShape = heatmaps.getShape();\n\n // Define constants\n const numKeypoints = 18;\n const heatmapWidth = outputHeatmapShape[3];\n const heatmapHeight = outputHeatmapShape[2];\n\n // Extract keypoints from heatmaps\n let keypoints = [];\n const heatmapsTFTensors = toTFTensor(heatmaps);\n const xCoef = originalWidth / heatmapWidth;\n const yCoef = originalHeight / heatmapHeight;\n\n for (let i = 0; i < numKeypoints; i++) {\n const heatmap = heatmapsTFTensors.slice(\n [0, i, 0, 0],\n [1, 1, heatmapHeight, heatmapWidth]).squeeze();\n\n const { x, y, confidence } = getCoords(heatmap);\n\n keypoints.push({\n x: x * xCoef,\n y: y * yCoef,\n confidence,\n });\n }\n\n drawKeypoints(originalImage, keypoints);\n drawSkeleton(originalImage, keypoints);\n\n displayArrayAsImage(originalImage.data, originalWidth, originalHeight, display);\n} catch(e) {\n console.log(e);\n}" + "try {\n const [N, C, heatmapHeight, heatmapWidth] = heatmaps.getShape();\n\n // Define constants\n const numKeypoints = 18;\n\n // Extract keypoints from heatmaps\n let keypoints = [];\n const heatmapsTFTensors = toTFTensor(heatmaps);\n const xCoef = img.width / heatmapWidth;\n const yCoef = img.height / heatmapHeight;\n\n for (let i = 0; i < numKeypoints; i++) {\n const heatmap = heatmapsTFTensors.slice(\n [0, i, 0, 0],\n [1, 1, heatmapHeight, heatmapWidth]).squeeze();\n\n const { x, y, confidence } = getCoords(heatmap);\n\n keypoints.push({\n x: x * xCoef,\n y: y * yCoef,\n confidence,\n });\n }\n\n let imgWithKeypoints = drawKeypoints(img, keypoints);\n imgWithKeypoints = drawSkeleton(imgWithKeypoints, keypoints);\n\n imgWithKeypoints.display(display);\n} catch(e) {\n console.log(e);\n}" ], "outputs": [ + { + "items": [ + { + "mime": "application/vnd.code.notebook.stderr", + "value": [ + "(node:3778163) [DEP0051] DeprecationWarning: The `util.isNullOrUndefined` API is deprecated. Please use `arg === null || arg === undefined` instead.", + "(Use `node --trace-deprecation ...` to show where the warning was created)", + "" + ] + } + ] + }, { "items": [ { "mime": "image/jpeg", - "value": "" + "value": "" } ] } ] } ] -} \ No newline at end of file +} diff --git a/samples/js/node/notebooks/question-answering.nnb b/samples/js/node/notebooks/question-answering.nnb index 3b53ca163f0826..c1bf61063b5e15 100644 --- a/samples/js/node/notebooks/question-answering.nnb +++ b/samples/js/node/notebooks/question-answering.nnb @@ -17,62 +17,10 @@ { "language": "javascript", "source": [ - "const {\n exp,\n sum,\n tril,\n triu,\n argMax,\n reshape,\n getShape,\n downloadFile,\n extractValues,\n matrixMultiplication,\n} = require('../helpers.js');\nconst tokens = require('./tokens_bert.js');\n\nconst { addon: ov } = require('openvino-node'); \n" + "const {\n exp,\n sum,\n tril,\n triu,\n argMax,\n reshape,\n getShape,\n downloadFile,\n extractValues,\n matrixMultiplication,\n} = require('../helpers.js');\nconst Tokenizer = require('./tokenizer_bert.js');\n\nconst { addon: ov } = require('openvino-node');\n" ], "outputs": [] }, - { - "language": "markdown", - "source": [ - "## Download the Model" - ], - "outputs": [] - }, - { - "language": "typescript", - "source": [ - "const baseArtifactsDir = '../../assets/models';\n\nconst modelName = 'bert-small-uncased-whole-word-masking-squad-int8-0002';\nconst modelXMLName = `${modelName}.xml`;\nconst modelBINName = `${modelName}.bin`;\n\nconst modelXMLPath = baseArtifactsDir + '/' + modelXMLName;\n\nconst baseURL = 'https://storage.openvinotoolkit.org/repositories/open_model_zoo/2022.3/models_bin/1/bert-small-uncased-whole-word-masking-squad-int8-0002/FP16-INT8/';\n\nawait downloadFile(baseURL + modelXMLName, modelXMLName, baseArtifactsDir);\nawait downloadFile(baseURL + modelBINName, modelBINName, baseArtifactsDir);\n" - ], - "outputs": [ - { - "items": [ - { - "mime": "application/vnd.code.notebook.stdout", - "value": [ - "File successfully stored at '/home/nvishnya/Code/wasm-openvino/samples/js/assets/models/bert-small-uncased-whole-word-masking-squad-int8-0002.bin'", - "" - ] - } - ] - } - ] - }, - { - "language": "markdown", - "source": [ - "## Download the Vocab" - ], - "outputs": [] - }, - { - "language": "typescript", - "source": [ - "const baseImagesDir = '../../assets/text';\nconst imgUrl = 'https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/text/bert-uncased/vocab.txt';\n\nawait downloadFile(imgUrl, 'vocab.txt', baseImagesDir);\n" - ], - "outputs": [ - { - "items": [ - { - "mime": "application/vnd.code.notebook.stdout", - "value": [ - "File successfully stored at '/home/nvishnya/Code/wasm-openvino/samples/js/assets/text/vocab.txt'", - "" - ] - } - ] - } - ] - }, { "language": "markdown", "source": [ @@ -83,36 +31,10 @@ { "language": "typescript", "source": [ - "const core = new ov.Core();\nconst model = await core.readModel(modelXMLPath);\n\nconst _ppp = new ov.preprocess.PrePostProcessor(model);\n_ppp.input(0).tensor().setElementType(ov.element.f32);\n_ppp.input(1).tensor().setElementType(ov.element.f32);\n_ppp.input(2).tensor().setElementType(ov.element.f32);\n_ppp.input(3).tensor().setElementType(ov.element.f32);\n_ppp.build();\n\nconst compiledModel = await core.compileModel(model, 'CPU');\n\nconst inputs = compiledModel.inputs;\nconst outputs = compiledModel.outputs;\n\nconst inputSize = compiledModel.input(0).shape[1];\n" + "const modelXMLPath =\n '../../assets/models/bert-small-uncased-whole-word-masking-squad-0001.xml',\n\nconst core = new ov.Core();\nconst model = await core.readModel(modelXMLPath);\n\nconst _ppp = new ov.preprocess.PrePostProcessor(model);\n_ppp.input(0).tensor().setElementType(ov.element.f32);\n_ppp.input(1).tensor().setElementType(ov.element.f32);\n_ppp.input(2).tensor().setElementType(ov.element.f32);\n_ppp.build();\n\nconst compiledModel = await core.compileModel(model, 'AUTO');\n\nconst { inputs, outputs } = compiledModel;\nconst inputSize = compiledModel.input(0).shape[1];\n\nconsole.log('Input size:', inputSize);\n" ], "outputs": [] }, - { - "language": "javascript", - "source": [ - "console.log('=== Model Inputs:');\ninputs.forEach(i => console.log(`${i}`));\nconsole.log('=== Model Outputs:');\noutputs.forEach(o => console.log(`${o}`));\n" - ], - "outputs": [ - { - "items": [ - { - "mime": "application/vnd.code.notebook.stdout", - "value": [ - "=== Model Inputs:", - "input_ids", - "attention_mask", - "token_type_ids", - "position_ids", - "=== Model Outputs:", - "output_s", - "output_e", - "" - ] - } - ] - } - ] - }, { "language": "markdown", "source": [ @@ -123,14 +45,14 @@ { "language": "javascript", "source": [ - "// The path to the vocabulary file.\nconst vocabFilePath = \"../../assets/text/vocab.txt\";\n\n// Create a dictionary with words and their indices.\nconst vocab = await tokens.loadVocabFile(vocabFilePath);\n\n// Define special tokens.\nconst clsToken = vocab[\"[CLS]\"];\nconst padToken = vocab[\"[PAD]\"];\nconst sepToken = vocab[\"[SEP]\"];\n\n// A function to load text from given urls.\nfunction loadContext(sources) {\n const input_urls = [];\n const paragraphs = [];\n \n for (source of sources) {\n paragraphs.push(source);\n\n // Produce one big context string.\n return paragraphs.join('\\n');\n }\n}\n" + "// Initialize BERT tokenizer\nconst tokenizer = await Tokenizer.load('../../assets/vocab/vocab.txt');\n" ], "outputs": [] }, { "language": "markdown", "source": [ - "## Preprocessing\n\nThe input size in this case is 384 tokens long. The main input (`input_ids`) to used BERT model consists of two parts: question tokens and context tokens separated by some special tokens. \n\nIf `question + context` are shorter than 384 tokens, padding tokens are added. If `question + context` is longer than 384 tokens, the context must be split into parts and the question with different parts of context must be fed to the network many times. \n\nUse overlapping, so neighbor parts of the context are overlapped by half size of the context part (if the context part equals 300 tokens, neighbor context parts overlap with 150 tokens). You also need to provide the following sequences of integer values: \n\n- `attention_mask` - a sequence of integer values representing the mask of valid values in the input. \n- `token_type_ids` - a sequence of integer values representing the segmentation of `input_ids` into question and context. \n- `position_ids` - a sequence of integer values from 0 to 383 representing the position index for each input token. \n\nFor more information, refer to the **Input** section of [BERT model documentation](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/intel/bert-small-uncased-whole-word-masking-squad-int8-0002#input)." + "## Preprocessing\n\nThe input size in this case is 384 tokens long. The main input (`input_ids`) to used BERT model consists of two parts: question tokens and context tokens separated by some special tokens. \n\nIf `question + context` are shorter than 384 tokens, padding tokens are added. If `question + context` is longer than 384 tokens, the context must be split into parts and the question with different parts of context must be fed to the network many times. \n\nUse overlapping, so neighbor parts of the context are overlapped by half size of the context part (if the context part equals 300 tokens, neighbor context parts overlap with 150 tokens). You also need to provide the following sequences of integer values: \n\n- `attention_mask` - a sequence of integer values representing the mask of valid values in the input. \n- `token_type_ids` - a sequence of integer values representing the segmentation of `input_ids` into question and context.\n\nFor more information, refer to the **Input** section of [BERT model documentation](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/intel/bert-small-uncased-whole-word-masking-squad-int8-0002#input)." ], "outputs": [] }, @@ -158,14 +80,14 @@ { "language": "javascript", "source": [ - "// A function to add padding.\nfunction pad({ inputIds, attentionMask, tokenTypeIds }) {\n // How many padding tokens.\n const diffInputSize = inputSize - inputIds.length;\n\n if (diffInputSize > 0) {\n // Add padding to all the inputs.\n inputIds = inputIds.concat(Array(diffInputSize).fill(padToken));\n attentionMask = attentionMask.concat(Array(diffInputSize).fill(0));\n tokenTypeIds = tokenTypeIds.concat(Array(diffInputSize).fill(0));\n }\n\n return [inputIds, attentionMask, tokenTypeIds, diffInputSize];\n}\n" + "// A function to add padding.\nfunction pad({ inputIds, attentionMask, tokenTypeIds }) {\n // How many padding tokens.\n const diffInputSize = inputSize - inputIds.length;\n\n if (diffInputSize > 0) {\n // Add padding to all the inputs.\n inputIds = inputIds.concat(Array(diffInputSize).fill(tokenizer.padToken));\n attentionMask = attentionMask.concat(Array(diffInputSize).fill(0));\n tokenTypeIds = tokenTypeIds.concat(Array(diffInputSize).fill(0));\n }\n\n return [inputIds, attentionMask, tokenTypeIds, diffInputSize];\n}\n" ], "outputs": [] }, { "language": "javascript", "source": [ - "// A generator of a sequence of inputs.\nfunction* prepareInput(questionTokens, contextTokens) {\n // A length of question in tokens.\n const questionLen = questionTokens.length;\n // The context part size.\n const contextLen = inputSize - questionLen - 3;\n\n if (contextLen < 16)\n throw new Error('Question is too long in comparison to input size. No space for context');\n\n const inputLayerNames = inputs.map(i => i.toString());\n\n // Take parts of the context with overlapping by 0.5.\n const max = Math.max(1, contextTokens.length - contextLen);\n\n for (let start = 0; start < max; start += parseInt(contextLen / 2)) {\n // A part of the context.\n const partContextTokens = contextTokens.slice(start, start + contextLen);\n // The input: a question and the context separated by special tokens.\n let inputIds = [clsToken, ...questionTokens, sepToken, ...partContextTokens, sepToken];\n // 1 for any index if there is no padding token, 0 otherwise.\n let attentionMask = Array(inputIds.length).fill(1);\n // 0 for question tokens, 1 for context part.\n let tokenTypeIds = [...Array(questionLen + 2).fill(0), ...Array(partContextTokens.length + 1).fill(1)];\n\n let padNumber = 0;\n\n // Add padding at the end.\n [inputIds, attentionMask, tokenTypeIds, padNumber] = pad({ inputIds, attentionMask, tokenTypeIds });\n\n // Create an input to feed the model.\n const inputDict = {\n 'input_ids': new Float32Array(inputIds),\n 'attention_mask': new Float32Array(attentionMask),\n 'token_type_ids': new Float32Array(tokenTypeIds),\n };\n\n // Some models require additional position_ids.\n if (inputLayerNames.includes('position_ids')) {\n positionIds = inputIds.map((_, index) => index);\n inputDict['position_ids'] = new Float32Array(positionIds);\n }\n\n yield [inputDict, padNumber, start];\n }\n}\n" + "// A generator of a sequence of inputs.\nfunction* prepareInput(questionTokens, contextTokens) {\n // A length of question in tokens.\n const questionLen = questionTokens.length;\n // The context part size.\n const contextLen = inputSize - questionLen - 3;\n\n if (contextLen < 16)\n throw new Error('Question is too long in comparison to input size. No space for context');\n\n const inputLayerNames = inputs.map(i => i.toString());\n\n // Take parts of the context with overlapping by 0.5.\n const max = Math.max(1, contextTokens.length - contextLen);\n\n for (let start = 0; start < max; start += parseInt(contextLen / 2)) {\n // A part of the context.\n const partContextTokens = contextTokens.slice(start, start + contextLen);\n // The input: a question and the context separated by special tokens.\n let inputIds = [\n tokenizer.clsToken,\n ...questionTokens,\n tokenizer.sepToken,\n ...partContextTokens,\n tokenizer.sepToken,\n ];\n // 1 for any index if there is no padding token, 0 otherwise.\n let attentionMask = Array(inputIds.length).fill(1);\n // 0 for question tokens, 1 for context part.\n let tokenTypeIds = [...Array(questionLen + 2).fill(0), ...Array(partContextTokens.length + 1).fill(1)];\n\n let padNumber = 0;\n\n // Add padding at the end.\n [inputIds, attentionMask, tokenTypeIds, padNumber] = pad({ inputIds, attentionMask, tokenTypeIds });\n\n // Create an input to feed the model.\n const inputDict = {\n 'input_ids': new Float32Array(inputIds),\n 'attention_mask': new Float32Array(attentionMask),\n 'token_type_ids': new Float32Array(tokenTypeIds),\n };\n\n // Some models require additional position_ids.\n if (inputLayerNames.includes('position_ids')) {\n positionIds = inputIds.map((_, index) => index);\n inputDict['position_ids'] = new Float32Array(positionIds);\n }\n\n yield [inputDict, padNumber, start];\n }\n}\n" ], "outputs": [] }, @@ -186,7 +108,7 @@ { "language": "javascript", "source": [ - "function getBestAnswer(question, context) {\n // Convert the context string to tokens.\n const [contextTokens, contextTokensStartEnd] = tokens.textToTokens(context.toLowerCase(), vocab);\n // Convert the question string to tokens.\n const [questionTokens] = tokens.textToTokens(question.toLowerCase(), vocab);\n\n const results = [];\n // Iterate through different parts of the context.\n for ([networkInput, padding, startIdx] of prepareInput(questionTokens, contextTokens)) {\n // Get output layers.\n const outputStartKey = compiledModel.output('output_s');\n const outputEndKey = compiledModel.output('output_e');\n\n // OpenVINO inference.\n const inferRequest = compiledModel.createInferRequest();\n\n const transformedInput = {\n 'input_ids': new ov.Tensor(ov.element.f32, [1, 384], networkInput['input_ids']),\n 'attention_mask': new ov.Tensor(ov.element.f32, [1, 384], networkInput['attention_mask']),\n 'token_type_ids': new ov.Tensor(ov.element.f32, [1, 384], networkInput['token_type_ids']),\n 'position_ids': new ov.Tensor(ov.element.f32, [1, 384], networkInput['position_ids']),\n }\n\n inferRequest.infer(transformedInput);\n\n const resultStart = inferRequest.getTensor(outputStartKey).data;\n const resultEnd = inferRequest.getTensor(outputEndKey).data;\n\n // Postprocess the result, getting the score and context range for the answer.\n const scoreStartEnd = postprocess(resultStart,\n resultEnd,\n questionTokens,\n contextTokensStartEnd,\n padding,\n startIdx);\n results.push(scoreStartEnd);\n }\n\n // Find the highest score.\n const scores = results.map(r => r[0]);\n const maxIndex = scores.indexOf(Math.max(scores));\n\n const answer = results[maxIndex];\n // Return the part of the context, which is already an answer.\n return [context.slice(answer[1], answer[2]), answer[0]];\n}\n" + "function getBestAnswer(question, context) {\n // Convert the context string to tokens.\n const [contextTokens, contextTokensStartEnd] = tokenizer.tokenize(context.toLowerCase());\n // Convert the question string to tokens.\n const [questionTokens] = tokenizer.tokenize(question.toLowerCase());\n\n // Get output layers.\n const outputStartKey = compiledModel.output('output_s');\n const outputEndKey = compiledModel.output('output_e');\n\n const inferRequest = compiledModel.createInferRequest();\n\n const results = [];\n const preparedInput = prepareInput(questionTokens, contextTokens);\n\n // Iterate through different parts of the context.\n for ([networkInput, padding, startIdx] of preparedInput) {\n // OpenVINO inference\n inferRequest.infer({\n 'input_ids': new ov.Tensor(ov.element.f32, [1, inputSize], networkInput['input_ids']),\n 'attention_mask': new ov.Tensor(ov.element.f32, [1, inputSize], networkInput['attention_mask']),\n 'token_type_ids': new ov.Tensor(ov.element.f32, [1, inputSize], networkInput['token_type_ids']),\n });\n\n const resultStartData = inferRequest.getTensor(outputStartKey).data;\n const resultEndData = inferRequest.getTensor(outputEndKey).data;\n\n // Postprocess the result, getting the score and context range for the answer.\n const scoreStartEnd = postprocess(resultStartData,\n resultEndData,\n questionTokens,\n contextTokensStartEnd,\n padding,\n startIdx);\n\n results.push(scoreStartEnd);\n }\n\n // Find the highest score.\n const scores = results.map(r => r[0]);\n const maxIndex = argMax(scores);\n\n const answer = results[maxIndex];\n // Return the part of the context, which is already an answer.\n return [context.slice(answer[1], answer[2]), answer[0]];\n}\n" ], "outputs": [] }, @@ -200,23 +122,9 @@ { "language": "javascript", "source": [ - "function runQuestionAnswering(sources, exampleQuestion) {\n console.log(`Context: ${sources}`);\n const context = loadContext(sources);\n\n if (!context.length)\n return console.log('Error: Empty context or outside paragraphs');\n\n if (exampleQuestion) {\n const startTime = process.hrtime.bigint();\n const [answer, score] = getBestAnswer(exampleQuestion, context);\n const execTime = Number(process.hrtime.bigint() - startTime) / 1e9;\n\n console.log(`Question: ${exampleQuestion}`);\n console.log(`Answer: ${answer}`);\n console.log(`Score: ${score}`);\n console.log(`Time: ${execTime}s`);\n }\n}\n\nconst sources = [\"Computational complexity theory is a branch of the theory of computation in theoretical computer \" +\n \"science that focuses on classifying computational problems according to their inherent difficulty, \" +\n \"and relating those classes to each other. A computational problem is understood to be a task that \" +\n \"is in principle amenable to being solved by a computer, which is equivalent to stating that the \" +\n \"problem may be solved by mechanical application of mathematical steps, such as an algorithm.\"]\n\nrunQuestionAnswering(sources, 'What is the term for a task that generally lends itself to being solved by a computer?');\n" - ], - "outputs": [ - { - "items": [ - { - "mime": "application/vnd.code.notebook.stdout", - "value": [ - "Context: Computational complexity theory is a branch of the theory of computation in theoretical computer science that focuses on classifying computational problems according to their inherent difficulty, and relating those classes to each other. A computational problem is understood to be a task that is in principle amenable to being solved by a computer, which is equivalent to stating that the problem may be solved by mechanical application of mathematical steps, such as an algorithm.", - "Score: 0.5286847737759395", - "Time: 0.045750747s", - "" - ] - } - ] - } - ] + "function runQuestionAnswering(sources, exampleQuestion) {\n const context = sources.join('\\n');\n\n if (!context.length)\n return console.log('Error: Empty context or outside paragraphs');\n\n if (exampleQuestion) {\n const startTime = process.hrtime.bigint();\n const [answer, score] = getBestAnswer(exampleQuestion, context);\n const execTime = Number(process.hrtime.bigint() - startTime) / 1e9;\n\n console.log(`Question: ${exampleQuestion}`);\n console.log(`Answer: ${answer}`);\n console.log(`Score: ${score}`);\n console.log(`Time: ${execTime}s`);\n }\n}\n\nconst context = [\n 'Computational complexity theory is a branch of the theory of computation in ' +\n 'theoretical computer science that focuses on classifying computational ' +\n 'problems according to their inherent difficulty and relating those classes ' +\n 'to each other. A computational problem is understood to be a task that is in ' +\n 'principle amenable to being solved by a computer, which is equivalent to ' +\n 'stating that the problem may be solved by mechanical application of ' +\n 'mathematical steps, such as an algorithm.',\n];\n\nconst question = 'What is the term for a task that generally lends itself to being solved by a computer?';\n\ntry {\n runQuestionAnswering(context, question);\n} catch (error) {\n console.error(error);\n}\n" + ], + "outputs": [] } ] -} +} \ No newline at end of file diff --git a/samples/js/node/notebooks/tokens_bert.js b/samples/js/node/notebooks/tokenizer_bert.js similarity index 79% rename from samples/js/node/notebooks/tokens_bert.js rename to samples/js/node/notebooks/tokenizer_bert.js index 10dc250abe8e51..b23bcbfc8519d2 100644 --- a/samples/js/node/notebooks/tokens_bert.js +++ b/samples/js/node/notebooks/tokenizer_bert.js @@ -1,10 +1,39 @@ const fs = require('node:fs/promises'); -exports.cleanWord = cleanWord; -exports.encodeByVoc = encodeByVoc; -exports.textToTokens = textToTokens; -exports.splitToWords = splitToWords; -exports.loadVocabFile = loadVocabFile; +class Tokenizer { + constructor(vocab, original) { + this.vocab = vocab; + this.original = original; + } + + get clsToken() { + return this.vocab["[CLS]"]; + } + + get padToken() { + return this.vocab["[PAD]"]; + } + + get sepToken() { + return this.vocab["[SEP]"]; + } + + tokenize(text) { + return textToTokens(text, this.vocab); + } + + detokenize(tokens) { + return tokens.map(t => this.original[t]).join(' '); + } + + static async load(path) { + const { vocab, original } = await loadVocabFile(path); + + return new Tokenizer(vocab, original); + } +} + +module.exports = Tokenizer; // Load vocabulary file for encoding async function loadVocabFile(vocabFileName) { @@ -17,7 +46,7 @@ async function loadVocabFile(vocabFileName) { vocab[token] = index; }); - return vocab; + return { vocab, original: lines }; } // Remove mark and control chars diff --git a/samples/js/node/notebooks/vision-background-removal.nnb b/samples/js/node/notebooks/vision-background-removal.nnb index 92e4da28d1b4e9..fea5ba9fc5dd68 100644 --- a/samples/js/node/notebooks/vision-background-removal.nnb +++ b/samples/js/node/notebooks/vision-background-removal.nnb @@ -10,38 +10,23 @@ { "language": "typescript", "source": [ - "const { cv } = require(\"opencv-wasm\");\nconst fs = require(\"fs\");\nconst { addon: ov } = require(\"openvino-node\");\nconst { display } = require(\"node-kernel\");\nconst {\n downloadFile,\n getImageData,\n transform,\n setShape,\n displayArrayAsImage,\n} = require(\"../helpers\");\n" + "const { addon: ov } = require('openvino-node');\nconst { display } = require('node-kernel');\n\nconst { transform } = require('../helpers');\nconst Image = require('../image');\n" ], "outputs": [] }, { "language": "markdown", "source": [ - "## Download Images and Model" + "## Load and Compile Unet Model" ], "outputs": [] }, { "language": "typescript", "source": [ - "const baseArtifactsDir = \"../../assets/models\";\nconst baseImagesDir = \"../../assets/images\";\n\nconst modelXMLName = \"unet_ir_model.xml\";\nconst modelBINName = \"unet_ir_model.bin\";\nconst modelXMLPath = `${baseArtifactsDir}/${modelXMLName}`;\nconst modelBinPath = `${baseArtifactsDir}/${modelBINName}`;\n\nconsole.log(`Model XML path: ${modelXMLPath}`);\nconsole.log(`Model BIN path: ${modelBinPath}`);\n\nconst foregroundImgUrl =\n \"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/image/coco_hollywood.jpg\";\nconst backgroundImgUrl =\n \"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/image/wall.jpg\";\nconst modelBaseURL =\n \"https://storage.openvinotoolkit.org/repositories/open_model_zoo/public/vision-background-removal/\";\n\nawait downloadFile(foregroundImgUrl, \"coco_hollywood.jpg\", baseImagesDir);\nawait downloadFile(backgroundImgUrl, \"wall.jpg\", baseImagesDir);\n\nawait downloadFile(modelBaseURL + modelXMLName, modelXMLName, baseArtifactsDir);\nawait downloadFile(modelBaseURL + modelBINName, modelBINName, baseArtifactsDir);\n" + "const modelXMLPath = '../../assets/models/unet_ir_model.xml';\n\nconst core = new ov.Core();\n\n// Read and compile model\nconst model = await core.readModel(modelXMLPath);\nconst compiledModel = await core.compileModel(model, 'AUTO');\nconst inputLayer = compiledModel.input(0);\nconst outputLayer = compiledModel.output(0);\n\nconsole.log(`inputLayer: ${inputLayer}`);\nconsole.log(`outputLayer: ${outputLayer}`);\n" ], - "outputs": [ - { - "items": [ - { - "mime": "application/vnd.code.notebook.stdout", - "value": [ - "Model XML path: ../assets/models/unet_ir_model.xml", - "Model BIN path: ../assets/models/unet_ir_model.bin", - "File successfully stored at '/home/prakash/OpenSource-Repos/ocr-node-sample-clone/ocr-node-sample/assets/images/coco_hollywood.jpg'", - "File successfully stored at '/home/prakash/OpenSource-Repos/ocr-node-sample-clone/ocr-node-sample/assets/images/wall.jpg'", - "" - ] - } - ] - } - ] + "outputs": [] }, { "language": "markdown", @@ -53,37 +38,10 @@ { "language": "typescript", "source": [ - "function normalizeImage(imageData, width, height) {\n // Mean and scale values\n const inputMean = [123.675, 116.28, 103.53];\n const inputScale = [58.395, 57.12, 57.375];\n\n const normalizedData = new Float32Array(imageData.length);\n const channels = 3;\n\n for (let i = 0; i < height; i++) {\n for (let j = 0; j < width; j++) {\n for (let c = 0; c < channels; c++) {\n const index = i * width * channels + j * channels + c;\n normalizedData[index] =\n (imageData[index] - inputMean[c]) / inputScale[c];\n }\n }\n }\n\n return normalizedData;\n}\n\nfunction removeBackground(mask, image) {\n // Iterate over the mask and set all background pixels to white\n for (let i = 0; i < mask.rows; i++) {\n for (let j = 0; j < mask.cols; j++) {\n if (mask.ucharPtr(i, j)[0] === 0) {\n image.ucharPtr(i, j)[0] = 255;\n image.ucharPtr(i, j)[1] = 255;\n image.ucharPtr(i, j)[2] = 255;\n }\n }\n }\n}\n\nfunction removeForeground(mask, image) {\n // Iterate over the mask and set all foreground pixels to black\n for (let i = 0; i < mask.rows; i++) {\n for (let j = 0; j < mask.cols; j++) {\n if (mask.ucharPtr(i, j)[0] === 1) {\n image.ucharPtr(i, j)[0] = 0;\n image.ucharPtr(i, j)[1] = 0;\n image.ucharPtr(i, j)[2] = 0;\n } else {\n image.ucharPtr(i, j)[0] = image.ucharPtr(i, j)[0];\n image.ucharPtr(i, j)[1] = image.ucharPtr(i, j)[1];\n image.ucharPtr(i, j)[2] = image.ucharPtr(i, j)[2];\n }\n }\n }\n}\n\nfunction combineImages(mask, fgImage, bgImage, newImage) {\n // Iterate over the mask and combine the foreground and background images\n for (let i = 0; i < mask.rows; i++) {\n for (let j = 0; j < mask.cols; j++) {\n if (mask.ucharPtr(i, j)[0] === 1) {\n newImage.ucharPtr(i, j)[0] = fgImage.ucharPtr(i, j)[0];\n newImage.ucharPtr(i, j)[1] = fgImage.ucharPtr(i, j)[1];\n newImage.ucharPtr(i, j)[2] = fgImage.ucharPtr(i, j)[2];\n } else {\n newImage.ucharPtr(i, j)[0] = bgImage.ucharPtr(i, j)[0];\n newImage.ucharPtr(i, j)[1] = bgImage.ucharPtr(i, j)[1];\n newImage.ucharPtr(i, j)[2] = bgImage.ucharPtr(i, j)[2];\n }\n }\n }\n}\n" - ], - "outputs": [] - }, - { - "language": "markdown", - "source": [ - "## Load and Compile Unet Model" + "// Details about this normalization:\n// https://docs.openvino.ai/2024/notebooks/vision-background-removal-with-output.html#load-and-pre-process-input-image\nfunction normalizeImage(imageData, width, height) {\n // Mean and scale values\n const inputMean = [123.675, 116.28, 103.53];\n const inputScale = [58.395, 57.12, 57.375];\n\n const normalizedData = new Float32Array(imageData.length);\n const channels = 3;\n\n for (let i = 0; i < height; i++) {\n for (let j = 0; j < width; j++) {\n for (let c = 0; c < channels; c++) {\n const index = i * width * channels + j * channels + c;\n\n normalizedData[index] =\n (imageData[index] - inputMean[c]) / inputScale[c];\n }\n }\n }\n\n return normalizedData;\n}" ], "outputs": [] }, - { - "language": "typescript", - "source": [ - "const core = new ov.Core();\n\n// Read and compile model\nconst model = await core.readModel(modelXMLPath);\nconst compiledModel = await core.compileModel(model, \"CPU\");\nconst inputLayer = compiledModel.input(0);\nconst outputLayer = compiledModel.output(0);\n\nconsole.log(`inputLayer: ${inputLayer}`);\nconsole.log(`outputLayer: ${outputLayer}`);\n" - ], - "outputs": [ - { - "items": [ - { - "mime": "application/vnd.code.notebook.stdout", - "value": [ - "inputLayer: x", - "outputLayer: test_0", - "" - ] - } - ] - } - ] - }, { "language": "markdown", "source": [ @@ -94,7 +52,7 @@ { "language": "typescript", "source": [ - "// Get Image data from the foreground image\n\nconst fgrImageData = await getImageData(`${baseImagesDir}/coco_hollywood.jpg`);\nconst inputImageMat = cv.matFromImageData(fgrImageData);\nconst originalImageDisplayMat = inputImageMat.clone();\n\n// Convert the image shape to a shape and a data type expected by the network\nconst [B, C, H, W] = inputLayer.shape;\nconst resizedImage = new cv.Mat();\n\ncv.cvtColor(inputImageMat, inputImageMat, cv.COLOR_BGR2RGB);\ncv.resize(inputImageMat, resizedImage, new cv.Size(W, H));\n\nlet inputImage = transform(\n resizedImage.data,\n { width: W, height: H },\n [0, 1, 2]\n);\n\ninputImage = normalizeImage(inputImage, W, H);\n\nconst tensorData = new Float32Array(inputImage);\nconst tensor = new ov.Tensor(ov.element.f32, inputLayer.shape, tensorData);\n\n" + "const foregroundImagePath = '../../assets/images/coco_hollywood.jpg';\n\n// Load foreground image\nconst originalImg = await Image.load(foregroundImagePath);\n\n// Resize image to a shape expected by the network\nconst [modelInputHeight, modelInputWidth] = inputLayer.shape.slice(2);\nconst resized = await originalImg.resize(modelInputWidth, modelInputHeight);\n\n// Create a tensor from the normalized input image\nconst transformed = transform(\n resized.rgb,\n {\n width: modelInputWidth,\n height: modelInputHeight\n },\n [0, 1, 2]\n);\nconst normalizedInputImage = normalizeImage(\n transformed,\n modelInputWidth,\n modelInputHeight,\n);\nconst tensor = new ov.Tensor(ov.element.f32, inputLayer.shape, normalizedInputImage);\n" ], "outputs": [] }, @@ -108,26 +66,9 @@ { "language": "typescript", "source": [ - "// Do inference\nconst inferRequest = compiledModel.createInferRequest();\nconst inferResult = await inferRequest.inferAsync([tensor]);\n\nconst { data } = inferResult[outputLayer];\nconst reshapedResult = setShape(data, [512, 512]);\n\n// Create a Mat from the reshaped result\nconst reshapedMat = cv.matFromArray(512, 512, cv.CV_32F, reshapedResult.flat());\n\n// Get the height and width of the original image\nconst height = inputImageMat.rows;\nconst width = inputImageMat.cols;\n\n// Resize the inference result to the original image size\nconst resizedResult = new cv.Mat();\ncv.resize(\n reshapedMat,\n resizedResult,\n new cv.Size(width, height),\n 0,\n 0,\n cv.INTER_LINEAR\n);\n\n// Convert the resized result to uint8\nresizedResult.convertTo(resizedResult, cv.CV_8U);\n\n// Create a Mat to store the background removed result\nconst bgRemovedResult = originalImageDisplayMat.clone();\n\nremoveBackground(resizedResult, bgRemovedResult);\n\ndisplayArrayAsImage(\n originalImageDisplayMat.data,\n originalImageDisplayMat.cols,\n originalImageDisplayMat.rows,\n display\n);\ndisplayArrayAsImage(\n bgRemovedResult.data,\n bgRemovedResult.cols,\n bgRemovedResult.rows,\n display\n);\n" + "const inferRequest = compiledModel.createInferRequest();\n const inferResult = await inferRequest.inferAsync([tensor]);\n const { data: resultData } = inferResult[outputLayer];\n\n // Normalize the result data from grayscale to RGB\n const rgbData = [];\n for (let i = 0; i < resultData.length; i += 1) {\n const value = resultData[i] * 255;\n\n rgbData.push(value, value, value, 255);\n }\n\n // Create image based on result data\n const [outputHeight, outputWidth] = outputLayer.shape.slice(2);\n const maskImg = await Image.fromArray(rgbData, outputWidth, outputHeight);\n\n // Resize the result mask to the original image size and save it\n const { width, height } = originalImg;\n const resizedMaskImg = await maskImg.resize(originalImg.width, originalImg.height);\n resizedMaskImg.display(display);\n\n // Remove the foreground from the original image\n const removedBgImg = Image.mask(originalImg, resizedMaskImg);\n removedBgImg.display(display);\n" ], - "outputs": [ - { - "items": [ - { - "mime": "image/jpeg", - "value": "" - } - ] - }, - { - "items": [ - { - "mime": "image/jpeg", - "value": "" - } - ] - } - ] + "outputs": [] }, { "language": "markdown", @@ -139,26 +80,9 @@ { "language": "typescript", "source": [ - "// Get the background image data\nconst bgrImageData = await getImageData(`${baseImagesDir}/wall.jpg`);\nconst bgrImageMat = cv.matFromImageData(bgrImageData);\n\n// Resize the background image to the original image size\nconst resizedBgrImageMat = new cv.Mat();\ncv.resize(bgrImageMat, resizedBgrImageMat, new cv.Size(width, height));\n\n// Remove the foreground from the background image by\n// setting all foreground pixels to white\nremoveForeground(resizedResult, resizedBgrImageMat);\n\ndisplayArrayAsImage(\n resizedBgrImageMat.data,\n resizedBgrImageMat.cols,\n resizedBgrImageMat.rows,\n display\n);\n\n// create a new Mat to store the final image\nconst newImage = new cv.Mat(\n resizedBgrImageMat.rows,\n resizedBgrImageMat.cols,\n cv.CV_8UC3\n);\n\n// combine the foreground and background images to get the final image\ncombineImages(resizedResult, bgRemovedResult, resizedBgrImageMat, newImage);\n\ndisplayArrayAsImage(newImage.data, newImage.cols, newImage.rows, display);\n" + "const backgroundImagePath = '../../assets/images/wall.jpg';\n\n// Load the background image\nconst bgrImage = await Image.load(backgroundImagePath);\n\n// Resize the background image to the same size as the original image\nconst resizedBgrImage = bgrImage.resize(width, height);\n\n// Remove object from the background image\nconst removedFgImg = Image.mask(resizedBgrImage, resizedMaskImg.invert());\nremovedFgImg.display(display);\n\n// Combine the background and foreground images\nconst resultImg = Image.merge(removedBgImg, removedFgImg);\nresultImg.display(display);\n" ], - "outputs": [ - { - "items": [ - { - "mime": "image/jpeg", - "value": "" - } - ] - }, - { - "items": [ - { - "mime": "image/jpeg", - "value": "" - } - ] - } - ] + "outputs": [] } ] } \ No newline at end of file diff --git a/samples/js/node/optical_character_recognition/README.md b/samples/js/node/optical_character_recognition/README.md index 130566ca0bcd4c..c397bb3c846db3 100644 --- a/samples/js/node/optical_character_recognition/README.md +++ b/samples/js/node/optical_character_recognition/README.md @@ -1,6 +1,10 @@ # Optical Character Recognition Node.js Sample -Run: +Run sample: ```bash -node hello_reshape_ssd.js *path_to_detection_model_file* *path_to_recognition_model_file* *path_to_img* AUTO -``` \ No newline at end of file +node optical-character-recognition.js ../../assets/models/horizontal-text-detection-0001.xml ../../assets/models/text-recognition-resnet-fc.xml ../../assets/images/intel_rnb.jpg AUTO +``` +Where: +```bash +node optical-character-recognition.js *path_to_detection_model_file* *path_to_recognition_model_file* *path_to_img* *device* +``` diff --git a/samples/js/node/optical_character_recognition/optical-character-recognition.js b/samples/js/node/optical_character_recognition/optical-character-recognition.js index 5e371c1975a993..a5665afc67fa84 100644 --- a/samples/js/node/optical_character_recognition/optical-character-recognition.js +++ b/samples/js/node/optical_character_recognition/optical-character-recognition.js @@ -1,14 +1,10 @@ -const { addon: ov } = require('openvino-node'); -const fs = require('node:fs'); const path = require('node:path'); -const { createCanvas, ImageData } = require('canvas'); -const { cv } = require('opencv-wasm'); -const { - transform, - getImageData, - argMax, - setShape, -} = require('../helpers.js'); +const { addon: ov } = require('openvino-node'); + +const Image = require('../image.js'); +const { transform, argMax, setShape } = require('../helpers.js'); + +const OUTPUT_PATH = './output/'; if (require.main === module) { // Parsing and validation of input arguments @@ -32,110 +28,91 @@ if (require.main === module) { } async function main(detModelXMLPath, recModelXMLPath, imagePath, deviceName) { - // Initialize OpenVINO core and load the detection mode + // Initialize OpenVINO Core const core = new ov.Core(); + // Load the detection model const detModel = await core.readModel(detModelXMLPath); const detCompiledModel = await core.compileModel(detModel, deviceName); const detInputLayer = detCompiledModel.input(0); const detOutputLayer = detCompiledModel.output('boxes'); - const imageData = await getImageData(imagePath); - const inputImageMat = cv.matFromImageData(imageData); + const img = await Image.load(imagePath); // Resize the image to meet network input size - const [, , H, W] = detInputLayer.shape; - const resizedImage = new cv.Mat(); - cv.cvtColor(inputImageMat, inputImageMat, cv.COLOR_RGBA2RGB); - cv.cvtColor(inputImageMat, inputImageMat, cv.COLOR_BGR2RGB); - cv.resize(inputImageMat, resizedImage, new cv.Size(W, H)); + const [, , detInputHeight, detInputWidth] = detInputLayer.shape; + const resizedImg = img.resize(detInputWidth, detInputHeight); // Prepare input tensor - const inputImage = transform( - resizedImage.data, - { width: W, height: H }, + const inputImageTransformedData = transform( + resizedImg.rgb, + { width: detInputWidth, height: detInputHeight }, [0, 1, 2], ); - const tensorData = new Float32Array(inputImage); + const tensorData = new Float32Array(inputImageTransformedData); const tensor = new ov.Tensor(ov.element.f32, detInputLayer.shape, tensorData); + // Run inference on the detection model const detInferRequest = detCompiledModel.createInferRequest(); - const detResult = await detInferRequest.inferAsync([tensor]); - const boundingBoxesArray = extractBoundingBoxes(detResult[detOutputLayer]); + // Load the recognition model const recModel = await core.readModel(recModelXMLPath); const recModelCompiled = await core.compileModel(recModel, deviceName); - const recInputLayer = recModelCompiled.input(0); - const recOutputLayer = recModelCompiled.output(0); + const recInferRequest = recModelCompiled.createInferRequest(); - // Process each bounding box and run inference on the recognition model - const [, , height, width] = recInputLayer.shape; // Calculate ratios - const { ratioX, ratioY } = calculateRatios(inputImageMat, resizedImage); + const [ratioX, ratioY] = + [img.width / detInputWidth, img.height / detInputHeight]; + const boundingBoxesArray = extractBoundingBoxes(detResult[detOutputLayer]); + // Resize bounding boxes to the original image size + const boundingBoxesOriginalSizeArray = boundingBoxesArray.map(box => + [...multiplyByRatio(ratioX, ratioY, box), box[4]]); - // Convert image to grayscale - const grayscaleImage = convertToGrayscale(inputImageMat); + // Process each bounding box and run inference on the recognition model + const boxesWithAnnotations = []; + for (let i = 0; i < boundingBoxesOriginalSizeArray.length; i++) { + const box = boundingBoxesOriginalSizeArray[i]; + const [xMin, yMin, xMax, yMax] = box; + const croppedImg = img.crop(xMin, yMin, xMax - xMin, yMax - yMin); + await croppedImg.save(OUTPUT_PATH + `cropped_image_${i}.jpg`); - const annotations = []; - const croppedImages = []; + const annotation = + await performTextRecognition(recModel, recInferRequest, croppedImg); - for (let i = 0; i < boundingBoxesArray.length; i++) { - const crop = boundingBoxesArray[i]; - const [xMin, yMin, xMax, yMax] = multiplyByRatio(ratioX, ratioY, crop).map( - Math.floor, - ); - const cropRect = new cv.Rect(xMin, yMin, xMax - xMin, yMax - yMin); - const croppedImage = grayscaleImage.roi(cropRect); - - try { - const preprocessedCrop = resizeAndConvertCropToModelInput(croppedImage, [ - width, - height, - ]); - const tensorData = new Float32Array(preprocessedCrop); - const tensor = new ov.Tensor( - ov.element.f32, - Int32Array.from(recInputLayer.shape), - tensorData, - ); - - await inferAsyncProcess( - tensor, - recModelCompiled, - recOutputLayer, - i, - annotations, - ); - - croppedImages.push(cropImage(inputImageMat, xMin, yMin, xMax, yMax)); - } catch(error) { - console.error('Error during preprocessing:', error); - } - - croppedImage.delete(); + boxesWithAnnotations.push({ box, annotation }); + + console.log(`Box ${i}: [${box.join(',')}], Annotation: '${annotation}'`); } - grayscaleImage.delete(); + const annotatedImg = await putAnnotationsOnTheImage( + img, + boxesWithAnnotations, + { threshold: 0.3, confLabels: false }, + ); + const savePath = path.join(OUTPUT_PATH, 'output_image.jpg'); + await annotatedImg.save(savePath); + console.log(`The result was saved to ${savePath}`); +} - const boxesWithAnnotations = boundingBoxesArray.map((box, index) => ({ - box, - annotation: annotations[index], - })); +async function performTextRecognition(model, inferenceRequest, img) { + const inputLayerShape = model.input(0).shape; + const outputLayer = model.output(0); - logBoxesWithAnnotations(boxesWithAnnotations); + const [,, inputHeight, inputWidth] = inputLayerShape; + const resizedImg = img.resize(inputWidth, inputHeight); - convertResultToImage( - inputImageMat, - resizedImage, - boxesWithAnnotations, - { threshold: 0.3, confLabels: true }, - './assets/results/output_image.jpg', + // Convert image to grayscale and create tensor + const tensor = new ov.Tensor( + ov.element.f32, + inputLayerShape, + new Float32Array(resizedImg.grayscale), ); - croppedImages.forEach((croppedImage, i) => { - const savePath = `./assets/results/cropped_image_${i}.jpg`; - saveImage(croppedImage, savePath); - }); + const result = await inferenceRequest.inferAsync([tensor]); + const recognitionResults = extractRecognitionResults(result[outputLayer]); + const annotation = parseAnnotations(recognitionResults); + + return annotation; } // Function to extract bounding boxes from the model output @@ -147,56 +124,17 @@ function extractBoundingBoxes(output) { return setShape(boxes, [numberOfBoxes, foldingCoefficient]); } -// Function to calculate the ratios for the image -function calculateRatios(originalImage, resizedImage) { - const realY = originalImage.rows; - const realX = originalImage.cols; - const resizedY = resizedImage.rows; - const resizedX = resizedImage.cols; - const ratioX = realX / resizedX; - const ratioY = realY / resizedY; - - return { ratioX, ratioY }; -} - -// Function to convert the image to grayscale -function convertToGrayscale(originalImage) { - const grayscaleImage = new cv.Mat(); - cv.cvtColor(originalImage, grayscaleImage, cv.COLOR_BGR2GRAY); - - return grayscaleImage; -} - // Function to adjust bounding box coordinates by a given ratio function multiplyByRatio(ratioX, ratioY, box) { - const scaleShape = (shape, idx) => - idx % 2 ? Math.max(shape * ratioY, 10) : shape * ratioX; - - return box.map(scaleShape); -} - -// Function to resize and convert a crop to the recognition model input format -function resizeAndConvertCropToModelInput(crop, netShape) { - const [netWidth, netHeight] = netShape; + const scaleShape = (shape, idx) => { + const position = idx % 2 + ? Math.max(shape * ratioY, 10) + : shape * ratioX; - // Resize the crop to the network's input shape - const tempImg = new cv.Mat(); - cv.resize(crop, tempImg, new cv.Size(netWidth, netHeight)); - - // Create the reshaped buffer - const reshapedBuffer = new Uint8Array(netHeight * netWidth); - let index = 0; - - for (let i = 0; i < netHeight; i++) { - for (let j = 0; j < netWidth; j++) { - reshapedBuffer[index++] = tempImg.ucharPtr(i, j)[0]; - } + return Math.floor(position); } - // Clean up - tempImg.delete(); - - return reshapedBuffer; + return box.map(scaleShape); } // Function to extract recognition results from the model output @@ -219,204 +157,49 @@ function parseAnnotations(recognitionResults) { // Stop if end character is encountered if (parsedLetter === letters[0]) break; + annotation.push(parsedLetter); } return annotation.join(''); } -// Function to crop the image based on the bounding box coordinates -function cropImage(originalImage, xMin, yMin, xMax, yMax) { - xMin = Math.max(0, xMin); - yMin = Math.max(0, yMin); - xMax = Math.min(originalImage.cols, xMax); - yMax = Math.min(originalImage.rows, yMax); - if (xMin >= xMax || yMin >= yMax) { - throw new Error('Invalid crop coordinates'); - } - const roi = originalImage.roi( - new cv.Rect(xMin, yMin, xMax - xMin, yMax - yMin), - ); - const cropped = new cv.Mat(); - roi.copyTo(cropped); - roi.delete(); - - return cropped; -} - -// Get Text size -function getTextSize(text, fontFace, fontScale) { - const canvas = createCanvas(200, 200); - const ctx = canvas.getContext('2d'); - const adjustedFontScale = fontScale * 35; - ctx.font = `${adjustedFontScale}px ${fontFace}`; - const metrics = ctx.measureText(text); - const width = metrics.width; - const height = - metrics.actualBoundingBoxAscent + metrics.actualBoundingBoxDescent; - - return { width, height }; -} - -/* The convertResultToImage function visualizes object detection - results on an image by drawing bounding boxes around detected - objects and optionally adding labels to them. */ - -function convertResultToImage( - bgrImage, - resizedImage, - boxesWithAnnotations, - options, - savePath, -) { +// Takes original image and bounding boxes with annotations +// and returns the image with annotations +async function putAnnotationsOnTheImage(img, boxesWithAnnotations, options) { const defaultOptions = { threshold: 0.3, confLabels: true }; const { threshold, confLabels } = Object.assign(defaultOptions, options); - const colors = { - red: [255, 0, 0, 255], - green: [0, 255, 0, 255], - white: [255, 255, 255, 255], - }; - const [realY, realX] = [bgrImage.rows, bgrImage.cols]; - const [resizedY, resizedX] = [resizedImage.rows, resizedImage.cols]; - const [ratioX, ratioY] = [realX / resizedX, realY / resizedY]; - - const rgbImage = new cv.Mat(); - cv.cvtColor(bgrImage, rgbImage, cv.COLOR_BGR2RGB); + let finalImage = img; - boxesWithAnnotations.forEach(({ box, annotation }) => { + for (const item of boxesWithAnnotations) { + const { box, annotation } = item; const conf = box[box.length - 1]; - if (conf < threshold) return; - - const [xMin, yMin, xMax, yMax] = multiplyByRatio(ratioX, ratioY, box); - - cv.rectangle( - rgbImage, - new cv.Point(xMin, yMin), - new cv.Point(xMax, yMax), - colors.green, - 3, - ); + if (conf < threshold) continue; - if (!confLabels) return; + const [xMin, yMin, xMax, yMax] = box; + const yOffset = 10; - const text = `${annotation}`; - const fontScale = 0.8; - const thickness = 1; - const { width: textW, height: textH } = getTextSize( - text, - 'Arial', - fontScale, + finalImage = finalImage.drawRect( + xMin, yMin, + xMax - xMin, yMax - yMin, + { color: 'green', width: 3 }, ); - const imageCopy = rgbImage.clone(); - - cv.rectangle( - imageCopy, - new cv.Point(xMin, yMin - textH - 10), - new cv.Point(xMin + textW, yMin - 10), - colors.white, - cv.FILLED, + finalImage = finalImage.drawText( + annotation, + xMin, yMin - yOffset, + { font: '30px Arial' }, ); - cv.addWeighted(imageCopy, 0.4, rgbImage, 0.6, 0, rgbImage); - cv.putText( - rgbImage, - text, - new cv.Point(xMin, yMin - 10), - cv.FONT_HERSHEY_SIMPLEX, - fontScale, - colors.red, - thickness, - cv.LINE_AA, - ); - - imageCopy.delete(); - }); - - const saveDir = path.dirname(savePath); - if (!fs.existsSync(saveDir)) { - fs.mkdirSync(saveDir, { recursive: true }); - } - try { - saveImage(rgbImage, savePath); - } catch(e) { - console.log(`Error occurred while saving ----> ${e}`); - } - - return rgbImage; -} + if (!confLabels) continue; -// Infer async helper function - -async function inferAsyncProcess( - tensor, - recModelCompiled, - recOutputLayer, - i, - annotations, -) { - // Create infer request - const inferRequest = recModelCompiled.createInferRequest(); - - // Define the completion callback function - function completionCallback(outputTensor, i, annotations) { - const recognitionResults = extractRecognitionResults(outputTensor); - const annotation = parseAnnotations(recognitionResults); - annotations.push(annotation); - } - - // Start inference in asynchronous mode - try { - const result = await inferRequest.inferAsync([tensor]); - completionCallback(result[recOutputLayer], i, annotations); - } catch(error) { - console.error('Error during inference:', error); - } -} - -// Log boudning boxes with annotations -function logBoxesWithAnnotations(boxesWithAnnotations) { - boxesWithAnnotations.forEach((item, i) => { - const { box, annotation } = item; - console.log(`Box ${i}: [${box}], Annotation: ${annotation}`); - }); -} - -function saveImage(rgbImage, savePath) { - const canvas = createCanvas(rgbImage.cols, rgbImage.rows); - const ctx = canvas.getContext('2d'); - const componentsPerPixel = - rgbImage.data.length / (rgbImage.cols * rgbImage.rows); - const imgDataArr = []; - - if (componentsPerPixel === 1) { - for (const val of rgbImage.data) { - imgDataArr.push(val, val, val, 255); - } - } else if (componentsPerPixel === 3) { - for (let i = 0; i < rgbImage.data.length; i++) { - if (i % 3 === 0) imgDataArr.push(255); - imgDataArr.push(rgbImage.data[i]); - } - } - - const imageData = new ImageData( - new Uint8ClampedArray(imgDataArr), - rgbImage.cols, - rgbImage.rows, - ); - ctx.putImageData(imageData, 0, 0); - - const dataURL = canvas.toDataURL('image/jpeg'); - const base64Data = dataURL.replace(/^data:image\/jpeg;base64,/, ''); - const imageBuffer = Buffer.from(base64Data, 'base64'); - - const saveDir = path.dirname(savePath); - if (!fs.existsSync(saveDir)) { - fs.mkdirSync(saveDir, { recursive: true }); + finalImage = finalImage.drawText( + conf.toFixed(2), + xMin, yMax + 2 * yOffset, + { font: '20px Arial' }, + ); } - fs.writeFileSync(savePath, imageBuffer); - console.log('Image saved successfully!', savePath); + return finalImage; } diff --git a/samples/js/node/package-lock.json b/samples/js/node/package-lock.json index fe003eaac14935..96a013fb0435c7 100644 --- a/samples/js/node/package-lock.json +++ b/samples/js/node/package-lock.json @@ -7,14 +7,14 @@ "": { "name": "openvino-node-demo", "version": "1.0.0", + "hasInstallScript": true, "license": "Apache-2.0", "devDependencies": { + "@napi-rs/canvas": "^0.1.59", "@tensorflow/tfjs-node": "^4.19.0", "args": "^5.0.3", - "canvas": "^2.11.2", "eslint": "^8.39.0", "https-proxy-agent": "^7.0.2", - "opencv-wasm": "^4.3.0-10", "openvino-node": "^2024.4.0" }, "engines": { @@ -173,6 +173,180 @@ "url": "https://github.com/sponsors/isaacs" } }, + "node_modules/@napi-rs/canvas": { + "version": "0.1.59", + "resolved": "https://registry.npmjs.org/@napi-rs/canvas/-/canvas-0.1.59.tgz", + "integrity": "sha512-3vUtQ8DzYcz9xy86UUe8OfDiXNuuLB9zFAUs5N/I2GpkY/MWBJ2M7w5FqH380oC44IzYOWaOMLWCPfNZBsbBww==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 10" + }, + "optionalDependencies": { + "@napi-rs/canvas-android-arm64": "0.1.59", + "@napi-rs/canvas-darwin-arm64": "0.1.59", + "@napi-rs/canvas-darwin-x64": "0.1.59", + "@napi-rs/canvas-linux-arm-gnueabihf": "0.1.59", + "@napi-rs/canvas-linux-arm64-gnu": "0.1.59", + "@napi-rs/canvas-linux-arm64-musl": "0.1.59", + "@napi-rs/canvas-linux-x64-gnu": "0.1.59", + "@napi-rs/canvas-linux-x64-musl": "0.1.59", + "@napi-rs/canvas-win32-x64-msvc": "0.1.59" + } + }, + "node_modules/@napi-rs/canvas-android-arm64": { + "version": "0.1.59", + "resolved": "https://registry.npmjs.org/@napi-rs/canvas-android-arm64/-/canvas-android-arm64-0.1.59.tgz", + "integrity": "sha512-p4rRL9KIDz57Z+gKLpemX36DB7fVVHmY4DtesMGrnjx4gSBUM2M7LNzbzf4o3oPZGDiHMY0vnvNHR4dKfszNeg==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "android" + ], + "engines": { + "node": ">= 10" + } + }, + "node_modules/@napi-rs/canvas-darwin-arm64": { + "version": "0.1.59", + "resolved": "https://registry.npmjs.org/@napi-rs/canvas-darwin-arm64/-/canvas-darwin-arm64-0.1.59.tgz", + "integrity": "sha512-+8s06WxcM9ilv9PVOl57hvasbwKWMfrrNAYknqMPCn4jpc4XDcLbrM5LTZGhhptlv9jQ9DmHfZ978/xInsMYXw==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "darwin" + ], + "engines": { + "node": ">= 10" + } + }, + "node_modules/@napi-rs/canvas-darwin-x64": { + "version": "0.1.59", + "resolved": "https://registry.npmjs.org/@napi-rs/canvas-darwin-x64/-/canvas-darwin-x64-0.1.59.tgz", + "integrity": "sha512-6kziJHjXdxduYK2L2uuwjEIYoPJednKq+C81MCm3fPobXE4HBKs0JGXwq3GkWNe340U340vmagwXiFi6muEy+g==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "darwin" + ], + "engines": { + "node": ">= 10" + } + }, + "node_modules/@napi-rs/canvas-linux-arm-gnueabihf": { + "version": "0.1.59", + "resolved": "https://registry.npmjs.org/@napi-rs/canvas-linux-arm-gnueabihf/-/canvas-linux-arm-gnueabihf-0.1.59.tgz", + "integrity": "sha512-eCkyS7jojNmaUPaVFdNjAyS0R3isrJtUfRf1vRP6K50GRuHso3vwQRbZBPKM71qHdjPDylfaQc5H6/M7epyD+w==", + "cpu": [ + "arm" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">= 10" + } + }, + "node_modules/@napi-rs/canvas-linux-arm64-gnu": { + "version": "0.1.59", + "resolved": "https://registry.npmjs.org/@napi-rs/canvas-linux-arm64-gnu/-/canvas-linux-arm64-gnu-0.1.59.tgz", + "integrity": "sha512-1u4++lbsolP1MAPViuDoZmgmDLKlV0iJnlHN2dfwgbu3t53P0l3jIT1oCIAiWil0OlrWtDF24JbY7LUUGH5aHg==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">= 10" + } + }, + "node_modules/@napi-rs/canvas-linux-arm64-musl": { + "version": "0.1.59", + "resolved": "https://registry.npmjs.org/@napi-rs/canvas-linux-arm64-musl/-/canvas-linux-arm64-musl-0.1.59.tgz", + "integrity": "sha512-eqevZ2kWPxeAnvhxl7U5tf6AiMnhlO4w2Hci79WQkfeirqQG6RRM4Jnxbh9iO3jkAnnOXmM4r+S3UrOcfIx1Rg==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">= 10" + } + }, + "node_modules/@napi-rs/canvas-linux-x64-gnu": { + "version": "0.1.59", + "resolved": "https://registry.npmjs.org/@napi-rs/canvas-linux-x64-gnu/-/canvas-linux-x64-gnu-0.1.59.tgz", + "integrity": "sha512-F+T63RnLt0qYUXhbOpaome3vIWLW4xoQRmhTnkKDzOtBSnKVP7sCM6E5/5tByOFCR3fTj4ksMeeHy8zJScEExA==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">= 10" + } + }, + "node_modules/@napi-rs/canvas-linux-x64-musl": { + "version": "0.1.59", + "resolved": "https://registry.npmjs.org/@napi-rs/canvas-linux-x64-musl/-/canvas-linux-x64-musl-0.1.59.tgz", + "integrity": "sha512-HhUgpTGQUR2VRslEC5Idf6s0hhamJiVlEh2k3AG9XXOwX6fg0xXkqm84DPiOCLzsO5bqtJEo+rh03BUSDcf53g==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "linux" + ], + "engines": { + "node": ">= 10" + } + }, + "node_modules/@napi-rs/canvas-win32-x64-msvc": { + "version": "0.1.59", + "resolved": "https://registry.npmjs.org/@napi-rs/canvas-win32-x64-msvc/-/canvas-win32-x64-msvc-0.1.59.tgz", + "integrity": "sha512-bYMiZJsKPkU7HEoYI5E0alOSV1EkaigY4VEgGHPK9W/qGMmNFsxdbURQqa5h3zbhZTK5QRSdYYqowcTEYVIlug==", + "cpu": [ + "x64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "win32" + ], + "engines": { + "node": ">= 10" + } + }, "node_modules/@nodelib/fs.scandir": { "version": "2.1.5", "resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz", @@ -774,21 +948,6 @@ "node": ">=6" } }, - "node_modules/canvas": { - "version": "2.11.2", - "resolved": "https://registry.npmjs.org/canvas/-/canvas-2.11.2.tgz", - "integrity": "sha512-ItanGBMrmRV7Py2Z+Xhs7cT+FNt5K0vPL4p9EZ/UX/Mu7hFbkxSjKF2KVtPwX7UYWp7dRKnrTvReflgrItJbdw==", - "dev": true, - "hasInstallScript": true, - "dependencies": { - "@mapbox/node-pre-gyp": "^1.0.0", - "nan": "^2.17.0", - "simple-get": "^3.0.3" - }, - "engines": { - "node": ">=6" - } - }, "node_modules/chalk": { "version": "4.1.2", "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz", @@ -924,18 +1083,6 @@ } } }, - "node_modules/decompress-response": { - "version": "4.2.1", - "resolved": "https://registry.npmjs.org/decompress-response/-/decompress-response-4.2.1.tgz", - "integrity": "sha512-jOSne2qbyE+/r8G1VU+G/82LBs2Fs4LAsTiLSHOCOMZQl2OKZ6i8i4IyHemTe+/yIXOtTcRQMzPcgyhoFlqPkw==", - "dev": true, - "dependencies": { - "mimic-response": "^2.0.0" - }, - "engines": { - "node": ">=8" - } - }, "node_modules/deep-is": { "version": "0.1.4", "resolved": "https://registry.npmjs.org/deep-is/-/deep-is-0.1.4.tgz", @@ -1745,18 +1892,6 @@ "node": ">= 0.6" } }, - "node_modules/mimic-response": { - "version": "2.1.0", - "resolved": "https://registry.npmjs.org/mimic-response/-/mimic-response-2.1.0.tgz", - "integrity": "sha512-wXqjST+SLt7R009ySCglWBCFpjUygmCIfD790/kVbiGmUgfYGuB14PiTd5DwVxSV4NcYHjzMkoj5LjQZwTQLEA==", - "dev": true, - "engines": { - "node": ">=8" - }, - "funding": { - "url": "https://github.com/sponsors/sindresorhus" - } - }, "node_modules/minimatch": { "version": "3.1.2", "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-3.1.2.tgz", @@ -1830,12 +1965,6 @@ "integrity": "sha512-sGkPx+VjMtmA6MX27oA4FBFELFCZZ4S4XqeGOXCv68tT+jb3vk/RyaKWP0PTKyWtmLSM0b+adUTEvbs1PEaH2w==", "dev": true }, - "node_modules/nan": { - "version": "2.20.0", - "resolved": "https://registry.npmjs.org/nan/-/nan-2.20.0.tgz", - "integrity": "sha512-bk3gXBZDGILuuo/6sKtr0DQmSThYHLtNCdSdXk9YkxD/jK6X2vmCyyXBBxyqZ4XcnzTyYEAThfX3DCEnLf6igw==", - "dev": true - }, "node_modules/natural-compare": { "version": "1.4.0", "resolved": "https://registry.npmjs.org/natural-compare/-/natural-compare-1.4.0.tgz", @@ -1908,12 +2037,6 @@ "wrappy": "1" } }, - "node_modules/opencv-wasm": { - "version": "4.3.0-10", - "resolved": "https://registry.npmjs.org/opencv-wasm/-/opencv-wasm-4.3.0-10.tgz", - "integrity": "sha512-EWmWLUzp2suoc6N44Y4ouWT85QwvShx23Q430R+lp6NyS828bjQn6mCgA3NJ6Z/S59aaTeeu+RhqPQIJIYld1w==", - "dev": true - }, "node_modules/openvino-node": { "version": "2024.4.0", "resolved": "https://registry.npmjs.org/openvino-node/-/openvino-node-2024.4.0.tgz", @@ -2272,37 +2395,6 @@ "integrity": "sha512-wnD2ZE+l+SPC/uoS0vXeE9L1+0wuaMqKlfz9AMUo38JsyLSBWSFcHR1Rri62LZc12vLr1gb3jl7iwQhgwpAbGQ==", "dev": true }, - "node_modules/simple-concat": { - "version": "1.0.1", - "resolved": "https://registry.npmjs.org/simple-concat/-/simple-concat-1.0.1.tgz", - "integrity": "sha512-cSFtAPtRhljv69IK0hTVZQ+OfE9nePi/rtJmw5UjHeVyVroEqJXP1sFztKUy1qU+xvz3u/sfYJLa947b7nAN2Q==", - "dev": true, - "funding": [ - { - "type": "github", - "url": "https://github.com/sponsors/feross" - }, - { - "type": "patreon", - "url": "https://www.patreon.com/feross" - }, - { - "type": "consulting", - "url": "https://feross.org/support" - } - ] - }, - "node_modules/simple-get": { - "version": "3.1.1", - "resolved": "https://registry.npmjs.org/simple-get/-/simple-get-3.1.1.tgz", - "integrity": "sha512-CQ5LTKGfCpvE1K0n2us+kuMPbk/q0EKl82s4aheV9oXjFEz6W/Y7oQFVJuU6QG77hRT4Ghb5RURteF5vnWjupA==", - "dev": true, - "dependencies": { - "decompress-response": "^4.2.0", - "once": "^1.3.1", - "simple-concat": "^1.0.0" - } - }, "node_modules/sprintf-js": { "version": "1.0.3", "resolved": "https://registry.npmjs.org/sprintf-js/-/sprintf-js-1.0.3.tgz", diff --git a/samples/js/node/package.json b/samples/js/node/package.json index 683312fab6742b..d392a72143de03 100644 --- a/samples/js/node/package.json +++ b/samples/js/node/package.json @@ -2,17 +2,18 @@ "name": "openvino-node-demo", "version": "1.0.0", "license": "Apache-2.0", + "type": "commonjs", "devDependencies": { + "@tensorflow/tfjs-node": "^4.19.0", "args": "^5.0.3", - "canvas": "^2.11.2", "eslint": "^8.39.0", "https-proxy-agent": "^7.0.2", - "opencv-wasm": "^4.3.0-10", - "@tensorflow/tfjs-node": "^4.19.0", - "openvino-node": "^2024.4.0" + "openvino-node": "^2024.4.0", + "@napi-rs/canvas": "^0.1.59" }, "scripts": { - "lint": "eslint ." + "lint": "eslint .", + "postinstall": "node ./fetch-samples-assets.js" }, "engines": { "node": ">=21.0.0" diff --git a/samples/js/node/vision_background_removal/README.md b/samples/js/node/vision_background_removal/README.md index cdefc0c4186cbb..a9a3e3270eae45 100644 --- a/samples/js/node/vision_background_removal/README.md +++ b/samples/js/node/vision_background_removal/README.md @@ -1,6 +1,10 @@ # Vision Background Removal Node.js Sample -Run: +Run sample: ```bash -node vision_background_removal.js *path_to_model_file* *path_to_foreground_image* *path_to_background_image* AUTO -``` \ No newline at end of file +node vision_background_removal.js ../../assets/models/unet_ir_model.xml ../../assets/images/coco_hollywood.jpg ../../assets/images/wall.jpg AUTO +``` +Where: +```bash +node vision_background_removal.js *path_to_model_file* *path_to_foreground_image* *path_to_background_image* *device* +``` diff --git a/samples/js/node/vision_background_removal/vision_background_removal.js b/samples/js/node/vision_background_removal/vision_background_removal.js index 2487371c597008..aabaad1a65b80c 100644 --- a/samples/js/node/vision_background_removal/vision_background_removal.js +++ b/samples/js/node/vision_background_removal/vision_background_removal.js @@ -1,12 +1,10 @@ -const { cv } = require('opencv-wasm'); -const fs = require('node:fs').promises; -const path = require('node:path'); const { addon: ov } = require('openvino-node'); -const { createCanvas, ImageData } = require('canvas'); -const { getImageData, transform, setShape } = require('../helpers'); + +const { transform } = require('../helpers'); +const Image = require('../image'); if (require.main === module) { -// Parsing and validation of input arguments + // Parsing and validation of input arguments if (process.argv.length !== 6) throw new Error( `Usage: ${process.argv[1]} ` + @@ -15,21 +13,23 @@ if (require.main === module) { ); const unetModelPath = process.argv[2]; - const foreGroundImage = process.argv[3]; - const backGroundImage = process.argv[4]; + const foregroundImagePath = process.argv[3]; + const backgroundImagePath = process.argv[4]; const deviceName = process.argv[5]; try { - main(unetModelPath, foreGroundImage, backGroundImage, deviceName); + main(unetModelPath, foregroundImagePath, backgroundImagePath, deviceName); } catch(error) { console.error('Error occurred', error); } } +module.exports = main; + async function main( unetModelPath, - foreGroundImage, - backGroundImage, + foregroundImagePath, + backgroundImagePath, deviceName, ) { const core = new ov.Core(); @@ -38,104 +38,81 @@ async function main( const model = await core.readModel(unetModelPath); const compiledModel = await core.compileModel(model, deviceName); - // Get the names of input and output layers. + // Get the names of input and output layers const inputLayer = compiledModel.input(0); const outputLayer = compiledModel.output(0); - // Get Image data from the foreground image - const imageData = await getImageData(foreGroundImage); - const inputImageMat = cv.matFromImageData(imageData); - - // Convert the image shape to a shape and a data type expected by the network - const [, , H, W] = inputLayer.shape; - const resizedImage = new cv.Mat(); - cv.cvtColor(inputImageMat, inputImageMat, cv.COLOR_BGR2RGB); - cv.resize(inputImageMat, resizedImage, new cv.Size(W, H)); + // Load foreground image + const originalImg = await Image.load(foregroundImagePath); - const inputImage = transform( - resizedImage.data, - { width: W, height: H }, - [0, 1, 2], - ); - - // Normalize the input image Mat - const normalizedInputImage = normalizeImage(inputImage, W, H); + // Resize image to a shape expected by the network + const [, , modelInputHeight, modelInputWidth] = inputLayer.shape; + const resized = await originalImg.resize(modelInputWidth, modelInputHeight); // Create a tensor from the normalized input image - const tensorData = new Float32Array(normalizedInputImage); - const tensor = new ov.Tensor(ov.element.f32, inputLayer.shape, tensorData); + const transformed = transform( + resized.rgb, + { + width: modelInputWidth, + height: modelInputHeight + }, + [0, 1, 2] + ); + const normalizedInputImage = normalizeImage( + transformed, + modelInputWidth, + modelInputHeight, + ); + const tensor = new ov.Tensor(ov.element.f32, inputLayer.shape, normalizedInputImage); // Do inference const inferRequest = compiledModel.createInferRequest(); const inferResult = await inferRequest.inferAsync([tensor]); + const { data: resultData } = inferResult[outputLayer]; - const { data } = inferResult[outputLayer]; - const reshapedResult = setShape(data, [512, 512]); - - // Create a Mat from the reshaped result - const reshapedMat = cv.matFromArray( - 512, - 512, - cv.CV_32F, - reshapedResult.flat(), - ); - - // Get the height and width of the original image - const height = inputImageMat.rows; - const width = inputImageMat.cols; - - // Resize the inference result to the original image size - const resizedResult = new cv.Mat(); - cv.resize( - reshapedMat, - resizedResult, - new cv.Size(width, height), - 0, - 0, - cv.INTER_LINEAR, - ); - - // Convert the resized result to uint8 - resizedResult.convertTo(resizedResult, cv.CV_8U); - - // Create a Mat to store the background removed result - const bgRemovedResult = inputImageMat.clone(); + // Normalize the result data from grayscale to RGB + const rgbData = []; + for (let i = 0; i < resultData.length; i += 1) { + const value = resultData[i] * 255; - removeBackground(resizedResult, bgRemovedResult); + rgbData.push(value, value, value, 255); + } - // Save the background removed result - await saveImage(bgRemovedResult, './bg_removed_result.jpg'); + // Create image based on result data + const [outputHeight, outputWidth] = outputLayer.shape.slice(2); + const maskImg = await Image.fromArray(rgbData, outputWidth, outputHeight); - // Get the background image data - const bgrImageData = await getImageData(backGroundImage); - const bgrImageMat = cv.matFromImageData(bgrImageData); + // Resize the result mask to the original image size and save it + const { width, height } = originalImg; + const resizedMaskImg = await maskImg.resize(originalImg.width, originalImg.height); + const maskImagePath = './out_mask.jpg'; + await resizedMaskImg.save(maskImagePath); + console.log(`The mask image was saved to '${maskImagePath}'`); - // Resize the background image to the original image size - const resizedBgrImageMat = new cv.Mat(); - cv.cvtColor(bgrImageMat, bgrImageMat, cv.COLOR_BGR2RGB); - cv.resize(bgrImageMat, resizedBgrImageMat, new cv.Size(width, height)); + // Remove the foreground from the original image + const removedBgImg = Image.mask(originalImg, resizedMaskImg); - // Remove the foreground from the background image by - // setting all foreground pixels to white - removeForeground(resizedResult, resizedBgrImageMat); + // Load the background image + const bgrImage = await Image.load(backgroundImagePath); - // Save the foreground removed from the background image - await saveImage(resizedBgrImageMat, './fg_removed_from_background.jpg'); + // Resize the background image to the same size as the original image + const resizedBgrImage = bgrImage.resize(width, height); - // create a new Mat to store the final image - const newImage = new cv.Mat( - resizedBgrImageMat.rows, - resizedBgrImageMat.cols, - cv.CV_8UC3, - ); + // Remove object from the background image + const removedFgImg = Image.mask(resizedBgrImage, resizedMaskImg.invert()); - // combine the foreground and background images to get the final image - combineImages(resizedResult, bgRemovedResult, resizedBgrImageMat, newImage); + // Combine the background and foreground images + const resultImg = Image.merge(removedBgImg, removedFgImg); // Save the final image - await saveImage(newImage, './background_changed_image.jpg'); + const outputImagePath = './out_bgr_changed_image.jpg'; + await resultImg.save(outputImagePath); + console.log(`The result image was saved to '${outputImagePath}'`); + console.log('The background was successfully changed'); } +// Details about this normalization: +// https://docs.openvino.ai/2024/notebooks/vision-background-removal-with-output.html#load-and-pre-process-input-image function normalizeImage(imageData, width, height) { // Mean and scale values const inputMean = [123.675, 116.28, 103.53]; @@ -148,6 +125,7 @@ function normalizeImage(imageData, width, height) { for (let j = 0; j < width; j++) { for (let c = 0; c < channels; c++) { const index = i * width * channels + j * channels + c; + normalizedData[index] = (imageData[index] - inputMean[c]) / inputScale[c]; } @@ -156,93 +134,3 @@ function normalizeImage(imageData, width, height) { return normalizedData; } - -function removeBackground(mask, image) { - // Iterate over the mask and set all background pixels to white - for (let i = 0; i < mask.rows; i++) { - for (let j = 0; j < mask.cols; j++) { - if (mask.ucharPtr(i, j)[0] === 0) { - image.ucharPtr(i, j)[0] = 255; - image.ucharPtr(i, j)[1] = 255; - image.ucharPtr(i, j)[2] = 255; - } - } - } -} - -function removeForeground(mask, image) { - // Iterate over the mask and set all foreground pixels to black - for (let i = 0; i < mask.rows; i++) { - for (let j = 0; j < mask.cols; j++) { - if (mask.ucharPtr(i, j)[0] === 1) { - image.ucharPtr(i, j)[0] = 0; - image.ucharPtr(i, j)[1] = 0; - image.ucharPtr(i, j)[2] = 0; - } else { - image.ucharPtr(i, j)[0] = image.ucharPtr(i, j)[0]; - image.ucharPtr(i, j)[1] = image.ucharPtr(i, j)[1]; - image.ucharPtr(i, j)[2] = image.ucharPtr(i, j)[2]; - } - } - } -} - -function combineImages(mask, fgImage, bgImage, newImage) { - // Iterate over the mask and combine the foreground and background images - for (let i = 0; i < mask.rows; i++) { - for (let j = 0; j < mask.cols; j++) { - if (mask.ucharPtr(i, j)[0] === 1) { - newImage.ucharPtr(i, j)[0] = fgImage.ucharPtr(i, j)[0]; - newImage.ucharPtr(i, j)[1] = fgImage.ucharPtr(i, j)[1]; - newImage.ucharPtr(i, j)[2] = fgImage.ucharPtr(i, j)[2]; - } else { - newImage.ucharPtr(i, j)[0] = bgImage.ucharPtr(i, j)[0]; - newImage.ucharPtr(i, j)[1] = bgImage.ucharPtr(i, j)[1]; - newImage.ucharPtr(i, j)[2] = bgImage.ucharPtr(i, j)[2]; - } - } - } -} - -async function saveImage(rgbImage, savePath) { - const canvas = createCanvas(rgbImage.cols, rgbImage.rows); - const ctx = canvas.getContext('2d'); - const componentsPerPixel = - rgbImage.data.length / (rgbImage.cols * rgbImage.rows); - const imgDataArr = []; - - if (componentsPerPixel === 1) { - for (const val of rgbImage.data) { - imgDataArr.push(val, val, val, 255); - } - } else if (componentsPerPixel === 3) { - for (let i = 0; i < rgbImage.data.length; i += 3) { - imgDataArr.push( - rgbImage.data[i + 2], // Red - rgbImage.data[i + 1], // Green - rgbImage.data[i], // Blue - 255, // Alpha - ); - } - } - - const imageData = new ImageData( - new Uint8ClampedArray(imgDataArr), - rgbImage.cols, - rgbImage.rows, - ); - ctx.putImageData(imageData, 0, 0); - - const dataURL = canvas.toDataURL('image/jpeg'); - const base64Data = dataURL.replace(/^data:image\/jpeg;base64,/, ''); - const imageBuffer = Buffer.from(base64Data, 'base64'); - - const saveDir = path.dirname(savePath); - try { - await fs.mkdir(saveDir, { recursive: true }); - await fs.writeFile(savePath, imageBuffer); - console.log('Image saved successfully!', savePath); - } catch(error) { - console.error('Error saving image:', error); - } -} From 892eea46bc96d79a3ca57e0f737f97c0f73e9341 Mon Sep 17 00:00:00 2001 From: Roman Kazantsev Date: Tue, 5 Nov 2024 13:21:51 +0400 Subject: [PATCH 02/93] [TF FE] Provide better support for TopKV2 and stabilize test (#27374) **Details:** Provide better validation for TopKV2 and stabilize test **Ticket:** TBD --------- Signed-off-by: Kazantsev, Roman --- .../tensorflow_common/src/op/top_k.cpp | 23 ++++-- .../tensorflow_tests/test_tf_TopKV2.py | 70 +++++++++++-------- 2 files changed, 58 insertions(+), 35 deletions(-) diff --git a/src/frontends/tensorflow_common/src/op/top_k.cpp b/src/frontends/tensorflow_common/src/op/top_k.cpp index c916fe5b746327..4d3bfdcf64bcaf 100644 --- a/src/frontends/tensorflow_common/src/op/top_k.cpp +++ b/src/frontends/tensorflow_common/src/op/top_k.cpp @@ -3,6 +3,7 @@ // #include "common_op_table.hpp" +#include "openvino/op/convert.hpp" #include "openvino/op/topk.hpp" using namespace std; @@ -14,22 +15,35 @@ namespace tensorflow { namespace op { NamedOutputVector translate_top_k_base_op(const NodeContext& node, const ov::Output& k_input, - int min_input_size) { + int min_input_size, + const ov::element::Type& index_type = ov::element::i32) { default_op_checks(node, min_input_size, {"TopK", "TopKV2", "TOPK_V2"}); auto input = node.get_input(0); // retrieve k attribute bool sorted = node.get_attribute("sorted", true); + auto topk_index_type = index_type; + if (index_type == ov::element::i16) { + // v11::TopK supports only int32 and int64 output index type + topk_index_type = ov::element::i32; + } auto top_k = make_shared(input, k_input, -1, ov::op::v11::TopK::Mode::MAX, sorted ? v11::TopK::SortType::SORT_VALUES : v11::TopK::SortType::SORT_INDICES, - ov::element::i32, + topk_index_type, true); + auto values = top_k->output(0); + auto indices = top_k->output(1); + if (index_type != topk_index_type) { + // satisfy the requested output index type + indices = make_shared(indices, index_type)->output(0); + } set_node_name(node.get_name(), top_k); - return {{"values", top_k->output(0)}, {"indices", top_k->output(1)}}; + return {{"values", values}, {"indices", indices}}; } + NamedOutputVector translate_top_k_op(const NodeContext& node) { // retrieve k attribute auto k = node.get_attribute("k"); @@ -39,8 +53,9 @@ NamedOutputVector translate_top_k_op(const NodeContext& node) { NamedOutputVector translate_top_k_v2_op(const NodeContext& node) { default_op_checks(node, 2, {"TopKV2", "TOPK_V2"}); + auto index_type = node.get_attribute("index_type", ov::element::i32); auto k_input = node.get_input(1); - return translate_top_k_base_op(node, k_input, 1); + return translate_top_k_base_op(node, k_input, 1, index_type); } } // namespace op } // namespace tensorflow diff --git a/tests/layer_tests/tensorflow_tests/test_tf_TopKV2.py b/tests/layer_tests/tensorflow_tests/test_tf_TopKV2.py index 08540a1d7fec0e..23d5c6bf2c23fe 100644 --- a/tests/layer_tests/tensorflow_tests/test_tf_TopKV2.py +++ b/tests/layer_tests/tensorflow_tests/test_tf_TopKV2.py @@ -1,58 +1,66 @@ # Copyright (C) 2018-2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 -import platform - import numpy as np +import platform import pytest import tensorflow as tf from common.tf_layer_test_class import CommonTFLayerTest +rng = np.random.default_rng(235436) + class TestTopKV2(CommonTFLayerTest): def _prepare_input(self, inputs_info): # generate elements so that the input tensor may contain repeating elements - assert 'input:0' in inputs_info, "Test error: inputs_info must contain `input`" - x_shape = inputs_info['input:0'] + assert 'input:0' in inputs_info, "Test error: inputs_info must contain `x`" + input_shape = inputs_info['input:0'] inputs_data = {} - inputs_data['input:0'] = np.random.randint(-10, 10, x_shape) + # need to generate data with repeated elements so the range is narrow from 30 elements + if np.issubdtype(self.input_type, np.floating): + inputs_data['input:0'] = rng.integers(-15, 15, input_shape).astype(self.input_type) + elif np.issubdtype(self.input_type, np.signedinteger): + inputs_data['input:0'] = rng.integers(-15, 15, input_shape).astype(self.input_type) + else: + inputs_data['input:0'] = rng.integers(0, 30, input_shape).astype(self.input_type) return inputs_data - def create_topk_v2_net(self, input_shape, input_type, k, sorted, is_first_output, is_second_output): + def create_topk_v2_net(self, input_shape, input_type, k, k_type, sorted, index_type): + self.input_type = input_type tf.compat.v1.reset_default_graph() with tf.compat.v1.Session() as sess: input = tf.compat.v1.placeholder(input_type, input_shape, 'input') - k = tf.constant(k, dtype=tf.int32, shape=[]) - topk = tf.raw_ops.TopKV2(input=input, k=k, sorted=sorted) - if is_first_output: - tf.identity(topk[0], name='topk_values') - if is_second_output: - tf.identity(topk[1], name='unique_indices') + k = tf.constant(k, dtype=k_type, shape=[]) + topk = tf.raw_ops.TopKV2(input=input, k=k, sorted=sorted, index_type=index_type) + tf.identity(topk[0], name='topk_values') + tf.identity(topk[1], name='unique_indices') tf.compat.v1.global_variables_initializer() tf_net = sess.graph_def - ref_net = None return tf_net, None - test_basic = [ - dict(input_shape=[10], input_type=tf.float32, k=5, sorted=True, is_first_output=True, is_second_output=False), - dict(input_shape=[2, 3, 10], input_type=tf.int32, k=10, sorted=True, is_first_output=True, - is_second_output=False), - dict(input_shape=[4, 12], input_type=tf.float32, k=10, sorted=True, is_first_output=True, - is_second_output=True), - # Expect stable mode implementation for sort_type=indices in OpenVINO. See 101503 - pytest.param(dict(input_shape=[5, 10], input_type=tf.int32, k=8, sorted=False, is_first_output=True, - is_second_output=True), marks=pytest.mark.xfail(reason="101503")), - ] - - @pytest.mark.parametrize("params", test_basic) + @pytest.mark.parametrize('input_shape', [[30], [4, 30], [4, 2, 70]]) + @pytest.mark.parametrize('input_type', [np.float16, np.float32, np.float64, + np.int32, np.uint8, np.int16, np.int8, np.int64, + np.uint16, np.uint32, np.uint64]) + @pytest.mark.parametrize('k', [5, 10, 20]) + @pytest.mark.parametrize('k_type', [np.int16, np.int32, np.int64]) + @pytest.mark.parametrize('sorted', [True, + # TensorFlow has undefined behaviour (or poorly described in the spec) + # for sorted = False + ]) + @pytest.mark.parametrize('index_type', [np.int16, np.int32, np.int64]) @pytest.mark.precommit @pytest.mark.nightly - @pytest.mark.xfail(condition=platform.system() in ('Linux', 'Darwin') and platform.machine() in ('arm', 'armv7l', - 'aarch64', - 'arm64', 'ARM64'), - reason='Ticket - 126314, 122716') - def test_topk_v2_basic(self, params, ie_device, precision, ir_version, temp_dir, use_legacy_frontend): - self._test(*self.create_topk_v2_net(**params), + def test_topk_v2(self, input_shape, input_type, k, k_type, sorted, index_type, + ie_device, precision, ir_version, + temp_dir, use_legacy_frontend): + if ie_device == 'GPU' and input_type == np.uint8: + pytest.skip('156587: Check correct_layout_selected failed for input uint8 on GPU') + if platform.machine() in ['arm', 'armv7l', 'aarch64', 'arm64', 'ARM64'] and \ + input_type in [np.int32, np.uint8, np.int16, np.int8, np.int64, + np.uint16, np.uint32, np.uint64]: + pytest.skip('156588: Segmenation fault or OpenVINO hangs for TopKV2 on ARM') + self._test(*self.create_topk_v2_net(input_shape, input_type, k, k_type, sorted, index_type), ie_device, precision, ir_version, temp_dir=temp_dir, use_legacy_frontend=use_legacy_frontend) From 6878482f702cf92be6391147cb30da528e9dc543 Mon Sep 17 00:00:00 2001 From: Vladislav Golubev Date: Tue, 5 Nov 2024 10:25:09 +0100 Subject: [PATCH 03/93] [Transformations][CPU] LoraFusion: convert on states support (#27340) ### Details: - *This PR extends LoraFusion transformation: convert on states support is added* - *The corresponding transformation tests are extended* - *Fixed a critical bug in the memory reuse between the LoRA subgraph and the main CPU graph* ### Tickets: - CVS-155112 - CVS-153035 --------- Co-authored-by: Maksim Kutakov --- .../lora_subgraph_fusion.cpp | 31 ++- .../lora_subgraph_fusion.cpp | 57 +++++- .../include/openvino/util/weights_path.hpp | 4 +- src/plugins/intel_cpu/src/nodes/lora.cpp | 22 ++- src/plugins/intel_cpu/src/nodes/lora.h | 6 +- .../src/common/lora_pattern.cpp | 177 +++++++++++------- 6 files changed, 207 insertions(+), 90 deletions(-) diff --git a/src/common/transformations/src/transformations/common_optimizations/lora_subgraph_fusion.cpp b/src/common/transformations/src/transformations/common_optimizations/lora_subgraph_fusion.cpp index 366ce00894242e..95b754062c13b8 100644 --- a/src/common/transformations/src/transformations/common_optimizations/lora_subgraph_fusion.cpp +++ b/src/common/transformations/src/transformations/common_optimizations/lora_subgraph_fusion.cpp @@ -9,6 +9,7 @@ #include "itt.hpp" #include "openvino/op/add.hpp" +#include "openvino/op/convert.hpp" #include "openvino/op/convolution.hpp" #include "openvino/op/matmul.hpp" #include "openvino/op/multiply.hpp" @@ -26,12 +27,19 @@ ov::pass::LoraSubgraphFusion::LoraSubgraphFusion() { auto lora_input_m = any_input(); auto transpose_const1_m = wrap_type(consumers_count(1)); auto transpose1_m = optional({lora_input_m, transpose_const1_m}, consumers_count(1)); + auto read_value1_m = wrap_type(); - auto matmul1_m = wrap_type({transpose1_m, read_value1_m}, consumers_count(1)); + auto convert1_m = optional(read_value1_m, consumers_count(1)); + auto matmul1_m = wrap_type({transpose1_m, convert1_m}, consumers_count(1)); + auto read_value2_m = wrap_type(); - auto multiply_m = wrap_type({matmul1_m, read_value2_m}, consumers_count(1)); + auto convert2_m = optional(read_value2_m, consumers_count(1)); + auto multiply_m = wrap_type({matmul1_m, convert2_m}, consumers_count(1)); + auto read_value3_m = wrap_type(); - auto matmul2_m = wrap_type({multiply_m, read_value3_m}, consumers_count(1)); + auto convert3_m = optional(read_value3_m, consumers_count(1)); + auto matmul2_m = wrap_type({multiply_m, convert3_m}, consumers_count(1)); + auto transpose_const2_m = wrap_type(consumers_count(1)); auto transpose2_m = optional({matmul2_m, transpose_const2_m}, consumers_count(1)); auto main_flow_m = wrap_type({lora_input_m, any_input()}); @@ -41,11 +49,14 @@ ov::pass::LoraSubgraphFusion::LoraSubgraphFusion() { const auto& pattern_map = m.get_pattern_value_map(); const auto& lora_input = pattern_map.at(lora_input_m); const auto& matmul1 = pattern_map.at(matmul1_m); - const auto& read_value1 = pattern_map.at(read_value1_m); + const auto& state_1 = + pattern_map.count(convert1_m) ? pattern_map.at(convert1_m) : pattern_map.at(read_value1_m); const auto& multiply = pattern_map.at(multiply_m); - const auto& read_value2 = pattern_map.at(read_value2_m); + const auto& state_2 = + pattern_map.count(convert2_m) ? pattern_map.at(convert2_m) : pattern_map.at(read_value2_m); const auto& matmul2 = pattern_map.at(matmul2_m); - const auto& read_value3 = pattern_map.at(read_value3_m); + const auto& state_3 = + pattern_map.count(convert3_m) ? pattern_map.at(convert3_m) : pattern_map.at(read_value3_m); const auto& main_flow = pattern_map.at(main_flow_m); const auto& add = pattern_map.at(add_m); @@ -70,15 +81,15 @@ ov::pass::LoraSubgraphFusion::LoraSubgraphFusion() { pattern_map.count(transpose1_m) ? pattern_map.at(transpose1_m).get_node()->input(0) : matmul1.get_node()->input(0), matmul1.get_node()->input(1), - find_connected_input(multiply.get_node(), read_value2.get_node()), + find_connected_input(multiply.get_node(), state_2.get_node()), matmul2.get_node()->input(1), }; const ov::OutputVector external_connections{ main_flow, lora_input, - read_value1, - read_value2, - read_value3, + state_1, + state_2, + state_3, }; ov::ParameterVector subgraph_parameters; diff --git a/src/common/transformations/tests/common_optimizations/lora_subgraph_fusion.cpp b/src/common/transformations/tests/common_optimizations/lora_subgraph_fusion.cpp index 6557f763c6b368..2294668f49a6c5 100644 --- a/src/common/transformations/tests/common_optimizations/lora_subgraph_fusion.cpp +++ b/src/common/transformations/tests/common_optimizations/lora_subgraph_fusion.cpp @@ -20,21 +20,25 @@ using namespace ov; static constexpr auto netType = ov::element::f32; -std::pair create_states(const std::vector& shapes) { - ov::OutputVector read_values; +std::pair create_states(const std::vector& shapes, + const ov::element::Type& states_precision = netType) { + ov::OutputVector state_outs; ov::SinkVector assigns; size_t idx = 0; auto create_state = [&](const ov::PartialShape& shape) { - auto variable = - std::make_shared(ov::op::util::VariableInfo{shape, netType, std::to_string(idx++)}); + auto variable = std::make_shared( + ov::op::util::VariableInfo{shape, states_precision, std::to_string(idx++)}); auto read_value = std::make_shared(variable); auto assign = std::make_shared(read_value, variable); - read_values.push_back(read_value); assigns.push_back(assign); + if (states_precision == netType) + state_outs.push_back(read_value); + else + state_outs.push_back(std::make_shared(read_value, netType)); }; for (const auto& shape : shapes) create_state(shape); - return std::make_pair(read_values, assigns); + return std::make_pair(state_outs, assigns); } std::shared_ptr create_lora_subgraph(const ov::Output& main_flow, @@ -134,6 +138,47 @@ TEST_F(LoraSubgraphFusionMatMulTests, StandardPattern) { } } +TEST_F(LoraSubgraphFusionMatMulTests, StandardPatternWithConvert) { + { + auto param_lora = std::make_shared(netType, shape_x); + auto param_w = std::make_shared(netType, shape_w); + auto main_mm = std::make_shared(param_lora, param_w, false, true); + main_mm->set_friendly_name("main_mm"); + auto states = create_states({shape_state_1, shape_state_2, shape_state_3}, ov::element::f16); + auto lora_subgraph = create_lora_subgraph(main_mm, param_lora, states.first, false); + lora_subgraph->set_friendly_name("lora_subgraph"); + model = std::make_shared(OutputVector{lora_subgraph, main_mm}, + states.second, + ParameterVector{param_lora, param_w}); + } + { + auto param_lora = std::make_shared(netType, shape_x); + auto param_w = std::make_shared(netType, shape_w); + auto main_mm = std::make_shared(param_lora, param_w, false, true); + main_mm->set_friendly_name("main_mm"); + + auto inner_param_lora = std::make_shared(netType, shape_x); + auto inner_state_1 = std::make_shared(netType, shape_state_1); + auto inner_state_2 = std::make_shared(netType, shape_state_2); + auto inner_state_3 = std::make_shared(netType, shape_state_3); + auto inner_param_mm = std::make_shared(netType, main_mm->get_output_partial_shape(0)); + + ov::OutputVector states_outs{inner_state_1, inner_state_2, inner_state_3}; + auto lora_subgraph = create_lora_subgraph(inner_param_mm, inner_param_lora, states_outs, false); + lora_subgraph->set_friendly_name("lora_subgraph"); + ov::ParameterVector inner_params{inner_param_mm, inner_param_lora, inner_state_1, inner_state_2, inner_state_3}; + auto inner_model = std::make_shared(OutputVector{lora_subgraph}, inner_params); + + auto states = create_states({shape_state_1, shape_state_2, shape_state_3}, ov::element::f16); + ov::OutputVector lora_inputs{main_mm, param_lora, states.first[0], states.first[1], states.first[2]}; + auto lora = std::make_shared(lora_inputs, inner_model); + lora->set_friendly_name("lora_subgraph"); + + model_ref = + std::make_shared(OutputVector{lora, main_mm}, states.second, ParameterVector{param_lora, param_w}); + } +} + TEST_F(LoraSubgraphFusionMatMulTests, ReshaffledEltwiseInputs) { { auto param_lora = std::make_shared(netType, shape_x); diff --git a/src/common/util/include/openvino/util/weights_path.hpp b/src/common/util/include/openvino/util/weights_path.hpp index db97484be98d35..11215d8eee1304 100644 --- a/src/common/util/include/openvino/util/weights_path.hpp +++ b/src/common/util/include/openvino/util/weights_path.hpp @@ -11,5 +11,5 @@ namespace util { bool validate_weights_path(std::string& weights_path); -} // namespace ov -} // namespace util +} // namespace util +} // namespace ov diff --git a/src/plugins/intel_cpu/src/nodes/lora.cpp b/src/plugins/intel_cpu/src/nodes/lora.cpp index 2c69bc347b6139..52509cdfc44a13 100644 --- a/src/plugins/intel_cpu/src/nodes/lora.cpp +++ b/src/plugins/intel_cpu/src/nodes/lora.cpp @@ -47,8 +47,14 @@ void LoRA::selectOptimalPrimitiveDescriptor() { std::vector inConfs; std::vector graphInputConfig; - for (size_t i = 0; i < getParentEdges().size(); i++) { - auto desc = getParentOutputMemDesc(getParentEdgeAt(i)); + auto mainInputDesc = getParentOutputMemDesc(getParentEdgeAt(0)); + auto mainInputPrc = mainInputDesc->getPrecision(); // we have to align precision across all the inputs + + inConfs.emplace_back(mainInputDesc); + graphInputConfig.emplace_back(node::Input::InputConfig{mainInputDesc, true}); + + for (size_t i = 1; i < getParentEdges().size(); i++) { + auto desc = getParentOutputMemDesc(getParentEdgeAt(i))->cloneWithNewPrecision(mainInputPrc); inConfs.emplace_back(desc); graphInputConfig.emplace_back(node::Input::InputConfig{desc, true}); } @@ -87,7 +93,10 @@ void LoRA::createPrimitive() { std::vector inputMemory; for (size_t i = 0; i < getOriginalInputsNumber(); i++) { - inputMemory.emplace_back(getSrcMemoryAtPort(i)); + auto srcEdgeMem = getSrcMemoryAtPort(i); + auto mem = std::make_shared(getEngine(), srcEdgeMem->getDescPtr(), srcEdgeMem->getMemoryBlock()); + subgraphMemoryPtrs.push_back(mem); + inputMemory.emplace_back(std::move(mem)); } CPU_NODE_ASSERT(getOriginalOutputsNumber() == m_graph.GetOutputNodesMap().size(), @@ -105,6 +114,13 @@ void LoRA::executeDynamicImpl(dnnl::stream strm) { execute(strm); } +void LoRA::prepareParams() { + for (size_t i = 0; i < getOriginalInputsNumber(); i++) { + // since the external and internal descriptors are compatible, we may pass the descriptor + subgraphMemoryPtrs[i]->redefineDesc(getSrcMemoryAtPort(i)->getDescPtr()); + } +} + } // namespace node } // namespace intel_cpu } // namespace ov diff --git a/src/plugins/intel_cpu/src/nodes/lora.h b/src/plugins/intel_cpu/src/nodes/lora.h index 89a1bc15c2bf17..27701daf9034f2 100644 --- a/src/plugins/intel_cpu/src/nodes/lora.h +++ b/src/plugins/intel_cpu/src/nodes/lora.h @@ -21,18 +21,16 @@ class LoRA : public Node { return getType() == Type::LoRA; } - bool needPrepareParams() const override { - return false; - } - void getSupportedDescriptors() override{}; void selectOptimalPrimitiveDescriptor() override; void createPrimitive() override; + void prepareParams() override; void execute(dnnl::stream) override; void executeDynamicImpl(dnnl::stream strm) override; private: std::shared_ptr m_body; + std::vector subgraphMemoryPtrs; Graph m_graph; }; diff --git a/src/plugins/intel_cpu/tests/functional/custom/subgraph_tests/src/common/lora_pattern.cpp b/src/plugins/intel_cpu/tests/functional/custom/subgraph_tests/src/common/lora_pattern.cpp index 4f4b05ef56750c..20620e42ceddc7 100644 --- a/src/plugins/intel_cpu/tests/functional/custom/subgraph_tests/src/common/lora_pattern.cpp +++ b/src/plugins/intel_cpu/tests/functional/custom/subgraph_tests/src/common/lora_pattern.cpp @@ -16,10 +16,85 @@ constexpr auto t4_name = "lora/MatMul.B"; constexpr auto t5_name = "lora/MatMul.alpha"; constexpr auto t6_name = "lora/MatMul.A"; constexpr auto netType = ov::element::f32; + +enum class StatesPolicy { + EMPTY_TENSORS, + RANDOM_TENSORS, + UNDEFINED +}; +std::ostream &operator<<(std::ostream& os, StatesPolicy states_policy) { + switch (states_policy) { + case StatesPolicy::EMPTY_TENSORS: + return os << "empty_tensors"; + case StatesPolicy::RANDOM_TENSORS: + return os << "random_tensors"; + case StatesPolicy::UNDEFINED: + return os << "undefined"; + default: + OPENVINO_THROW("Unexpected states policy"); + } +} + } // namespace -class LoraPatternBaseCPUTest : public SubgraphBaseTest { +using LoraPatternParams = std::tuple; // states filling policy + +class LoraPatternBaseCPUTest : public SubgraphBaseTest, public testing::WithParamInterface { +public: +static std::string getTestCaseName(testing::TestParamInfo obj) { + ov::element::Type states_precision; + StatesPolicy states_policy; + std::tie(states_precision, states_policy) = obj.param; + + std::ostringstream result; + result << "states_precision=" << states_precision << "_states_policy=" << states_policy; + return result.str(); + } + + void SetUp() override { + targetDevice = ov::test::utils::DEVICE_CPU; + std::tie(states_precision, states_policy) = this->GetParam(); + init_function(); + } + protected: + virtual void init_function() = 0; + + std::pair create_states(const std::vector& shapes, + const std::vector names) { + ov::OutputVector state_outs; + ov::SinkVector assigns; + auto create_state = [&](const ov::PartialShape& shape, const std::string name) { + auto variable = std::make_shared( + ov::op::util::VariableInfo{shape, states_precision, name}); + auto read_value = std::make_shared(variable); + auto assign = std::make_shared(read_value, variable); + assigns.push_back(assign); + if (states_precision == netType) + state_outs.push_back(read_value); + else + state_outs.push_back(std::make_shared(read_value, netType)); + }; + OPENVINO_ASSERT(shapes.size() == names.size()); + for (size_t i = 0; i < shapes.size(); ++i) + create_state(shapes[i], names[i]); + return std::make_pair(state_outs, assigns); + } + + void run_test() { + switch (states_policy) { + case StatesPolicy::EMPTY_TENSORS: + run_test_empty_tensors(); + break; + case StatesPolicy::RANDOM_TENSORS: + run_test_random_tensors(); + break; + default: + OPENVINO_THROW("Unexpected states policy: ", states_policy); + } + } + void run_test_empty_tensors() { compile_model(); inferRequest = compiledModel.create_infer_request(); @@ -92,7 +167,7 @@ class LoraPatternBaseCPUTest : public SubgraphBaseTest { using ov::test::utils::InputGenerateData; const auto& shape = stateShapes.at(item.get_name()); auto tensor = - ov::test::utils::create_and_fill_tensor(netType, shape, InputGenerateData{0, 10, 1, i}); + ov::test::utils::create_and_fill_tensor(states_precision, shape, InputGenerateData{0, 10, 1, i}); item.set_state(tensor); auto itr = std::find_if(refStates.begin(), refStates.end(), [&](const ov::VariableState& state) { return state.get_name() == item.get_name(); @@ -112,17 +187,18 @@ class LoraPatternBaseCPUTest : public SubgraphBaseTest { auto tx_result_ref = inferRequestRef.get_tensor(outputs[0]); auto tz_result_ref = inferRequestRef.get_tensor(outputs[1]); - ov::test::utils::compare(tx_result, tx_result_ref, 1e-4, 1e-4); - ov::test::utils::compare(tz_result, tz_result_ref, 1e-4, 1e-4); + ov::test::utils::compare(tx_result_ref, tx_result, 1e-4, 1e-4); + ov::test::utils::compare(tz_result_ref, tz_result, 1e-4, 1e-4); } } + + StatesPolicy states_policy = StatesPolicy::UNDEFINED; + ov::element::Type states_precision = ov::element::undefined; }; class LoraPatternMatmulCPUTest : public LoraPatternBaseCPUTest { -public: - void SetUp() override { - targetDevice = ov::test::utils::DEVICE_CPU; - +protected: + void init_function() override { ov::PartialShape shape_x = {-1, -1, K}; ov::PartialShape shape_w = {N, K}; @@ -133,25 +209,12 @@ class LoraPatternMatmulCPUTest : public LoraPatternBaseCPUTest { auto tx = std::make_shared(param_y, param_w, false, true); // LoRA parameters from states - auto variable_t4 = std::make_shared( - ov::op::util::VariableInfo{ov::PartialShape({N, -1}), netType, t4_name}); - auto t4 = std::make_shared(variable_t4); - auto t4_assign = std::make_shared(t4, variable_t4); - - auto variable_t5 = std::make_shared( - ov::op::util::VariableInfo{ov::PartialShape({1, -1}), netType, t5_name}); - auto t5 = std::make_shared(variable_t5); - auto t5_assign = std::make_shared(t5, variable_t5); - - auto variable_t6 = std::make_shared( - ov::op::util::VariableInfo{ov::PartialShape({-1, K}), netType, t6_name}); - auto t6 = std::make_shared(variable_t6); - auto t6_assign = std::make_shared(t6, variable_t6); + auto states = create_states({{N, -1}, {1, -1}, {-1, K}}, {t4_name, t5_name, t6_name}); // Apply LoRA parameters to the current activations - auto t5810 = std::make_shared(param_y, t6, false, true); - auto t5811 = std::make_shared(t5810, t5); - auto t5812 = std::make_shared(t5811, t4, false, true); + auto t5810 = std::make_shared(param_y, states.first[2], false, true); + auto t5811 = std::make_shared(t5810, states.first[1]); + auto t5812 = std::make_shared(t5811, states.first[0], false, true); // Mix LoRA part into normally computed activations after the "main" MatMul auto tz = std::make_shared(tx, t5812); @@ -160,19 +223,17 @@ class LoraPatternMatmulCPUTest : public LoraPatternBaseCPUTest { auto result_z = std::make_shared(tz); function = std::make_shared(ov::ResultVector({result_x, result_z}), - ov::SinkVector({t4_assign, t5_assign, t6_assign}), + states.second, ov::ParameterVector({param_y, param_w})); } -protected: static constexpr size_t K = 563ul; // Weights matrix K dimension static constexpr size_t N = 2048ul; // Weights matrix N dimension }; class LoraPatternConvolutionCPUTest : public LoraPatternBaseCPUTest { public: - void SetUp() override { - targetDevice = ov::test::utils::DEVICE_CPU; + void init_function() override { ov::PartialShape shape_x = {-1, num_channels, -1, -1}; auto param_y = std::make_shared(netType, shape_x); @@ -189,29 +250,16 @@ class LoraPatternConvolutionCPUTest : public LoraPatternBaseCPUTest { num_channels); // LoRA parameters from states - auto variable_t4 = std::make_shared( - ov::op::util::VariableInfo{ov::PartialShape({num_channels, -1}), netType, t4_name}); - auto t4 = std::make_shared(variable_t4); - auto t4_assign = std::make_shared(t4, variable_t4); - - auto variable_t5 = std::make_shared( - ov::op::util::VariableInfo{ov::PartialShape({1, -1}), netType, t5_name}); - auto t5 = std::make_shared(variable_t5); - auto t5_assign = std::make_shared(t5, variable_t5); - - auto variable_t6 = std::make_shared( - ov::op::util::VariableInfo{ov::PartialShape({-1, num_channels}), netType, t6_name}); - auto t6 = std::make_shared(variable_t6); - auto t6_assign = std::make_shared(t6, variable_t6); + auto states = create_states({{num_channels, -1}, {1, -1}, {-1, num_channels}}, {t4_name, t5_name, t6_name}); // LoRA pattern with additional Transposes to move channel dimensions into positions where MatMul can be applied auto t4940 = std::make_shared(ov::element::i32, ov::Shape{4}, std::vector{2, 3, 0, 1}); auto t4941 = std::make_shared(param_y, t4940); - auto t4942 = std::make_shared(t4941, t6, false, true); - auto t4943 = std::make_shared(t4942, t5); - auto t4944 = std::make_shared(t4943, t4, false, true); + auto t4942 = std::make_shared(t4941, states.first[2], false, true); + auto t4943 = std::make_shared(t4942, states.first[1]); + auto t4944 = std::make_shared(t4943, states.first[0], false, true); auto t4945 = std::make_shared(ov::element::i32, ov::Shape{4}, std::vector{2, 3, 0, 1}); @@ -224,7 +272,7 @@ class LoraPatternConvolutionCPUTest : public LoraPatternBaseCPUTest { auto result_z = std::make_shared(tz); function = std::make_shared(ov::ResultVector({result_x, result_z}), - ov::SinkVector({t4_assign, t5_assign, t6_assign}), + states.second, ov::ParameterVector({param_y})); } @@ -232,35 +280,34 @@ class LoraPatternConvolutionCPUTest : public LoraPatternBaseCPUTest { static constexpr size_t num_channels = 64ul; }; -TEST_F(LoraPatternMatmulCPUTest, smoke_LoRA_CPU_MatMul_empty) { +TEST_P(LoraPatternMatmulCPUTest, CompareWithRefs) { targetStaticShapes = {{{{1, 20, K}}, {{N, K}}}}; - run_test_empty_tensors(); + run_test(); CPUTestUtils::CheckNumberOfNodesWithType(compiledModel, "LoRA", 1); CPUTestUtils::CheckNumberOfNodesWithType(compiledModel, "MatMul", 1); } -TEST_F(LoraPatternConvolutionCPUTest, smoke_LoRA_CPU_Conv_empty) { +TEST_P(LoraPatternConvolutionCPUTest, CompareWithRefs) { targetStaticShapes = {{{1, num_channels, 10, 15}}}; - run_test_empty_tensors(); + run_test(); CPUTestUtils::CheckNumberOfNodesWithType(compiledModel, "LoRA", 1); CPUTestUtils::CheckNumberOfNodesWithType(compiledModel, "MatMul", 0); } -TEST_F(LoraPatternMatmulCPUTest, smoke_LoRA_CPU_MatMul_random) { - GTEST_SKIP(); - targetStaticShapes = {{{{1, 20, K}}, {{N, K}}}}; - run_test_random_tensors(); - CPUTestUtils::CheckNumberOfNodesWithType(compiledModel, "LoRA", 1); - CPUTestUtils::CheckNumberOfNodesWithType(compiledModel, "MatMul", 1); -} +const ov::element::TypeVector states_precisions {ov::element::f32, ov::element::f16}; +const std::vector states_policies {StatesPolicy::EMPTY_TENSORS, StatesPolicy::RANDOM_TENSORS}; -TEST_F(LoraPatternConvolutionCPUTest, smoke_LoRA_CPU_Conv_random) { - GTEST_SKIP(); - targetStaticShapes = {{{1, num_channels, 10, 15}}}; - run_test_random_tensors(); - CPUTestUtils::CheckNumberOfNodesWithType(compiledModel, "LoRA", 1); - CPUTestUtils::CheckNumberOfNodesWithType(compiledModel, "MatMul", 0); -} +INSTANTIATE_TEST_SUITE_P(smoke_Snippets_LoRA_CPU_MatMul, LoraPatternMatmulCPUTest, + ::testing::Combine( + ::testing::ValuesIn(states_precisions), + ::testing::ValuesIn(states_policies)), + LoraPatternBaseCPUTest::getTestCaseName); + +INSTANTIATE_TEST_SUITE_P(smoke_Snippets_LoRA_CPU_Conv, LoraPatternConvolutionCPUTest, + ::testing::Combine( + ::testing::ValuesIn(states_precisions), + ::testing::ValuesIn(states_policies)), + LoraPatternBaseCPUTest::getTestCaseName); } // namespace test } // namespace ov \ No newline at end of file From 7c73c50ab843ba7e166a3273ff7bdc5643b081c4 Mon Sep 17 00:00:00 2001 From: Karol Blaszczak Date: Tue, 5 Nov 2024 10:34:39 +0100 Subject: [PATCH 04/93] [DOCS] unhide columns one more change mstr (#27396) --- docs/sphinx_setup/_static/js/openVinoDataTables.js | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/sphinx_setup/_static/js/openVinoDataTables.js b/docs/sphinx_setup/_static/js/openVinoDataTables.js index ea663394de5004..c65748065b2ad2 100644 --- a/docs/sphinx_setup/_static/js/openVinoDataTables.js +++ b/docs/sphinx_setup/_static/js/openVinoDataTables.js @@ -4,7 +4,7 @@ $(document).ready(function () { if(pageTitle.includes('Most Efficient Large Language Models for AI PC')) { columnDefs= [ - { "visible": false, "targets": [1] } + { "visible": false, "targets": [3,4,6] } ] } else From c2e42fab2c08ccd37304f5bddc1b62f5228abfb3 Mon Sep 17 00:00:00 2001 From: Sebastian Golebiewski Date: Tue, 5 Nov 2024 11:58:21 +0100 Subject: [PATCH 05/93] [DOCS] Updating notebooks (#27401) Updating the `Interactive Tutorials` section. --- docs/nbdoc/consts.py | 2 +- .../3D-pose-estimation-with-output.rst | 210 +++---- ...-segmentation-point-clouds-with-output.rst | 4 +- .../action-recognition-webcam-with-output.rst | 9 +- ...on-recognition-webcam-with-output_22_0.png | 3 + docs/notebooks/all_notebooks_paths.txt | 2 + ...-lightweight-text-to-image-with-output.rst | 53 +- docs/notebooks/async-api-with-output.rst | 25 +- .../async-api-with-output_23_0.png | 4 +- docs/notebooks/auto-device-with-output.rst | 50 +- .../auto-device-with-output_27_0.png | 4 +- .../auto-device-with-output_28_0.png | 4 +- docs/notebooks/catvton-with-output.rst | 360 ++++++++++++ ...p-zero-shot-classification-with-output.rst | 1 - .../convert-to-openvino-with-output.rst | 38 +- .../convnext-classification-with-output.rst | 2 +- ...segmentation-quantize-nncf-with-output.rst | 68 +-- ...ntation-quantize-nncf-with-output_37_1.png | 4 +- ...ddcolor-image-colorization-with-output.rst | 56 +- .../depth-anything-v2-with-output.rst | 47 +- docs/notebooks/depth-anything-with-output.rst | 32 +- .../detectron2-to-openvino-with-output.rst | 180 +++--- ...etectron2-to-openvino-with-output_22_0.jpg | 4 +- ...etectron2-to-openvino-with-output_22_0.png | 4 +- ...etectron2-to-openvino-with-output_32_0.jpg | 4 +- ...etectron2-to-openvino-with-output_32_0.png | 4 +- .../distil-whisper-asr-with-output.rst | 3 +- ...rt-sequence-classification-with-output.rst | 70 ++- ...ly-2-instruction-following-with-output.rst | 43 +- ...micrafter-animating-images-with-output.rst | 99 ++-- docs/notebooks/efficient-sam-with-output.rst | 68 +-- .../efficient-sam-with-output_17_1.png | 4 +- .../efficient-sam-with-output_25_1.png | 4 +- .../efficient-sam-with-output_36_1.png | 4 +- .../encodec-audio-compression-with-output.rst | 18 +- .../fast-segment-anything-with-output.rst | 20 +- docs/notebooks/florence2-with-output.rst | 39 +- .../florence2-with-output_18_0.png | 4 +- .../flux.1-image-generation-with-output.rst | 213 ++++--- ...ux.1-image-generation-with-output_16_1.jpg | 3 + ...ux.1-image-generation-with-output_16_1.png | 3 + ...ux.1-image-generation-with-output_20_1.jpg | 3 - ...ux.1-image-generation-with-output_20_1.png | 3 - .../freevc-voice-conversion-with-output.rst | 30 +- docs/notebooks/gpu-device-with-output.rst | 122 +--- .../grounded-segment-anything-with-output.rst | 50 +- .../hello-segmentation-with-output.rst | 4 +- .../hugging-face-hub-with-output.rst | 55 +- ...lassification-quantization-with-output.rst | 52 +- docs/notebooks/instant-id-with-output.rst | 1 + docs/notebooks/internvl2-with-output.rst | 20 +- docs/notebooks/jina-clip-with-output.rst | 14 +- .../knowledge-graphs-conve-with-output.rst | 28 +- ...modal-large-language-model-with-output.rst | 30 +- ...-large-language-model-with-output_29_1.jpg | 4 +- ...-large-language-model-with-output_29_1.png | 4 +- ...-large-language-model-with-output_48_1.png | 4 +- ...l-large-language-model-with-output_8_0.jpg | 4 +- ...l-large-language-model-with-output_8_0.png | 4 +- .../language-quantize-bert-with-output.rst | 64 +-- ...stency-models-optimum-demo-with-output.rst | 110 +--- ...y-models-optimum-demo-with-output_15_1.jpg | 4 +- ...y-models-optimum-demo-with-output_15_1.png | 4 +- ...cy-models-optimum-demo-with-output_8_1.jpg | 4 +- ...cy-models-optimum-demo-with-output_8_1.png | 4 +- ...a-multimodal-chatbot-genai-with-output.rst | 28 +- ...multimodal-chatbot-optimum-with-output.rst | 27 +- ...lm-agent-functioncall-qwen-with-output.rst | 36 +- .../llm-agent-rag-llamaindex-with-output.rst | 24 +- .../notebooks/llm-agent-react-with-output.rst | 107 ++-- docs/notebooks/meter-reader-with-output.rst | 2 +- ...nicpm-v-multimodal-chatbot-with-output.rst | 311 ++--------- .../mobileclip-video-search-with-output.rst | 163 +++--- ...bilevlm-language-assistant-with-output.rst | 22 +- .../music-generation-with-output.rst | 20 +- ...o-llava-multimodal-chatbot-with-output.rst | 385 +------------ .../object-detection-with-output.rst | 413 +++----------- .../object-detection-with-output_13_0.png | 3 + .../object-detection-with-output_19_0.png | 3 - docs/notebooks/openvino-api-with-output.rst | 16 +- docs/notebooks/openvoice-with-output.rst | 77 +-- ...ical-character-recognition-with-output.rst | 312 ++--------- ...haracter-recognition-with-output_13_0.png} | 0 ...character-recognition-with-output_23_0.png | 3 + ...haracter-recognition-with-output_25_0.jpg} | 0 ...haracter-recognition-with-output_25_0.png} | 0 ...aracter-recognition-with-output_25_10.jpg} | 0 ...aracter-recognition-with-output_25_10.png} | 0 ...haracter-recognition-with-output_25_2.jpg} | 0 ...haracter-recognition-with-output_25_2.png} | 0 ...haracter-recognition-with-output_25_4.jpg} | 0 ...haracter-recognition-with-output_25_4.png} | 0 ...haracter-recognition-with-output_25_6.jpg} | 0 ...haracter-recognition-with-output_25_6.png} | 0 ...haracter-recognition-with-output_25_8.jpg} | 0 ...haracter-recognition-with-output_25_8.png} | 0 ...character-recognition-with-output_26_0.png | 3 - .../optimize-preprocessing-with-output.rst | 10 +- .../paddle-ocr-webcam-with-output.rst | 6 +- .../paddle-ocr-webcam-with-output_30_0.png | 4 +- ...to-openvino-classification-with-output.rst | 18 +- .../parler-tts-text-to-speech-with-output.rst | 80 +-- .../notebooks/person-tracking-with-output.rst | 57 +- .../person-tracking-with-output_25_0.png | 4 +- docs/notebooks/phi-3-vision-with-output.rst | 51 +- docs/notebooks/photo-maker-with-output.rst | 47 +- docs/notebooks/pixart-with-output.rst | 51 +- docs/notebooks/pixtral-with-output.rst | 41 +- .../pose-estimation-with-output_22_0.png | 4 +- .../pytorch-onnx-to-openvino-with-output.rst | 6 +- ...training-quantization-nncf-with-output.rst | 104 ++-- ...uantization-aware-training-with-output.rst | 78 +-- ...on-sparsity-aware-training-with-output.rst | 358 ++++++------ .../pytorch-to-openvino-with-output.rst | 14 +- docs/notebooks/qwen2-audio-with-output.rst | 35 +- docs/notebooks/qwen2-vl-with-output.rst | 69 +-- .../rmbg-background-removal-with-output.rst | 18 +- .../segment-anything-2-image-with-output.rst | 29 +- ...-shot-image-classification-with-output.rst | 13 +- ...-image-classification-with-output_24_1.png | 4 +- .../speculative-sampling-with-output.rst | 516 +++++++---------- ...tion-quantization-wav2vec2-with-output.rst | 160 +++--- ...hbrain-emotion-recognition-with-output.rst | 74 +-- docs/notebooks/stable-audio-with-output.rst | 109 ++-- ...e-cascade-image-generation-with-output.rst | 20 +- ...cade-image-generation-with-output_29_2.jpg | 4 +- ...cade-image-generation-with-output_29_2.png | 4 +- ...table-diffusion-ip-adapter-with-output.rst | 43 +- ...-diffusion-ip-adapter-with-output_22_1.png | 4 +- ...-diffusion-ip-adapter-with-output_25_0.png | 4 +- ...-diffusion-ip-adapter-with-output_28_0.png | 4 +- ...fusion-torchdynamo-backend-with-output.rst | 3 +- docs/notebooks/style-transfer-with-output.rst | 2 +- .../style-transfer-with-output_25_0.png | 4 +- .../table-question-answering-with-output.rst | 59 +- ...classification-to-openvino-with-output.rst | 2 +- ...e-segmentation-to-openvino-with-output.rst | 2 +- ...mentation-to-openvino-with-output_39_0.png | 4 +- ...ject-detection-to-openvino-with-output.rst | 8 +- ...detection-to-openvino-with-output_38_0.png | 4 +- ...uantization-aware-training-with-output.rst | 54 +- ...tflite-selfie-segmentation-with-output.rst | 2 +- ...e-selfie-segmentation-with-output_33_0.png | 4 +- .../tflite-to-openvino-with-output.rst | 20 +- docs/notebooks/typo-detector-with-output.rst | 13 +- .../vision-background-removal-with-output.rst | 8 +- .../vision-monodepth-with-output.rst | 6 +- docs/notebooks/wav2lip-with-output.rst | 74 +-- .../whisper-asr-genai-with-output.rst | 39 +- ...isper-subtitles-generation-with-output.rst | 19 +- ...uerstchen-image-generation-with-output.rst | 4 +- ...ov11-instance-segmentation-with-output.rst | 60 +- ...instance-segmentation-with-output_46_0.png | 4 +- ...yolov11-keypoint-detection-with-output.rst | 58 +- ...11-keypoint-detection-with-output_43_0.png | 4 +- .../yolov11-object-detection-with-output.rst | 60 +- ...ov11-object-detection-with-output_43_0.png | 4 +- .../yolov8-object-detection-with-output.rst | 524 +++++++++++++++--- ...lov8-object-detection-with-output_16_1.jpg | 3 - ...lov8-object-detection-with-output_16_1.png | 4 +- ...lov8-object-detection-with-output_38_1.jpg | 3 - ...lov8-object-detection-with-output_38_1.png | 3 - ...lov8-object-detection-with-output_43_1.png | 3 + ...lov8-object-detection-with-output_61_0.jpg | 3 - ...lov8-object-detection-with-output_61_0.png | 3 - ...lov8-object-detection-with-output_67_0.png | 3 - ...lov8-object-detection-with-output_70_0.png | 3 + ...lov8-object-detection-with-output_76_0.png | 3 + ...olov8-object-detection-with-output_9_1.jpg | 3 - ...olov8-object-detection-with-output_9_1.png | 3 - ...olov8-object-detection-with-output_9_3.png | 3 + .../yolov9-optimization-with-output.rst | 60 +- .../yolov9-optimization-with-output_36_0.png | 4 +- 173 files changed, 3393 insertions(+), 4145 deletions(-) create mode 100644 docs/notebooks/action-recognition-webcam-with-output_files/action-recognition-webcam-with-output_22_0.png create mode 100644 docs/notebooks/catvton-with-output.rst create mode 100644 docs/notebooks/flux.1-image-generation-with-output_files/flux.1-image-generation-with-output_16_1.jpg create mode 100644 docs/notebooks/flux.1-image-generation-with-output_files/flux.1-image-generation-with-output_16_1.png delete mode 100644 docs/notebooks/flux.1-image-generation-with-output_files/flux.1-image-generation-with-output_20_1.jpg delete mode 100644 docs/notebooks/flux.1-image-generation-with-output_files/flux.1-image-generation-with-output_20_1.png create mode 100644 docs/notebooks/object-detection-with-output_files/object-detection-with-output_13_0.png delete mode 100644 docs/notebooks/object-detection-with-output_files/object-detection-with-output_19_0.png rename docs/notebooks/optical-character-recognition-with-output_files/{optical-character-recognition-with-output_16_0.png => optical-character-recognition-with-output_13_0.png} (100%) create mode 100644 docs/notebooks/optical-character-recognition-with-output_files/optical-character-recognition-with-output_23_0.png rename docs/notebooks/optical-character-recognition-with-output_files/{optical-character-recognition-with-output_28_0.jpg => optical-character-recognition-with-output_25_0.jpg} (100%) rename docs/notebooks/optical-character-recognition-with-output_files/{optical-character-recognition-with-output_28_0.png => optical-character-recognition-with-output_25_0.png} (100%) rename docs/notebooks/optical-character-recognition-with-output_files/{optical-character-recognition-with-output_28_10.jpg => optical-character-recognition-with-output_25_10.jpg} (100%) rename docs/notebooks/optical-character-recognition-with-output_files/{optical-character-recognition-with-output_28_10.png => optical-character-recognition-with-output_25_10.png} (100%) rename docs/notebooks/optical-character-recognition-with-output_files/{optical-character-recognition-with-output_28_2.jpg => optical-character-recognition-with-output_25_2.jpg} (100%) rename docs/notebooks/optical-character-recognition-with-output_files/{optical-character-recognition-with-output_28_2.png => optical-character-recognition-with-output_25_2.png} (100%) rename docs/notebooks/optical-character-recognition-with-output_files/{optical-character-recognition-with-output_28_4.jpg => optical-character-recognition-with-output_25_4.jpg} (100%) rename docs/notebooks/optical-character-recognition-with-output_files/{optical-character-recognition-with-output_28_4.png => optical-character-recognition-with-output_25_4.png} (100%) rename docs/notebooks/optical-character-recognition-with-output_files/{optical-character-recognition-with-output_28_6.jpg => optical-character-recognition-with-output_25_6.jpg} (100%) rename docs/notebooks/optical-character-recognition-with-output_files/{optical-character-recognition-with-output_28_6.png => optical-character-recognition-with-output_25_6.png} (100%) rename docs/notebooks/optical-character-recognition-with-output_files/{optical-character-recognition-with-output_28_8.jpg => optical-character-recognition-with-output_25_8.jpg} (100%) rename docs/notebooks/optical-character-recognition-with-output_files/{optical-character-recognition-with-output_28_8.png => optical-character-recognition-with-output_25_8.png} (100%) delete mode 100644 docs/notebooks/optical-character-recognition-with-output_files/optical-character-recognition-with-output_26_0.png delete mode 100644 docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_16_1.jpg delete mode 100644 docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_38_1.jpg delete mode 100644 docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_38_1.png create mode 100644 docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_43_1.png delete mode 100644 docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_61_0.jpg delete mode 100644 docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_61_0.png delete mode 100644 docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_67_0.png create mode 100644 docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_70_0.png create mode 100644 docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_76_0.png delete mode 100644 docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_9_1.jpg delete mode 100644 docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_9_1.png create mode 100644 docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_9_3.png diff --git a/docs/nbdoc/consts.py b/docs/nbdoc/consts.py index 75c8111bafcc6b..bfad4b042e5359 100644 --- a/docs/nbdoc/consts.py +++ b/docs/nbdoc/consts.py @@ -6,7 +6,7 @@ repo_owner = "openvinotoolkit" repo_name = "openvino_notebooks" repo_branch = "tree/main" -artifacts_link = "http://repository.toolbox.iotg.sclab.intel.com/projects/ov-notebook/0.1.0-latest/20241022220806/dist/rst_files/" +artifacts_link = "http://repository.toolbox.iotg.sclab.intel.com/projects/ov-notebook/0.1.0-latest/20241104220807/dist/rst_files/" blacklisted_extensions = ['.xml', '.bin'] notebooks_repo = "https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/" notebooks_binder = "https://mybinder.org/v2/gh/openvinotoolkit/openvino_notebooks/HEAD?filepath=" diff --git a/docs/notebooks/3D-pose-estimation-with-output.rst b/docs/notebooks/3D-pose-estimation-with-output.rst index e5e8e3813b5173..f39aa93b36851d 100644 --- a/docs/notebooks/3D-pose-estimation-with-output.rst +++ b/docs/notebooks/3D-pose-estimation-with-output.rst @@ -93,7 +93,7 @@ Lab instead.** .. code:: ipython3 - %pip install pythreejs "openvino-dev>=2024.0.0" "opencv-python" "torch" "onnx<1.16.2" --extra-index-url https://download.pytorch.org/whl/cpu + %pip install pythreejs "openvino>=2024.4.0" "opencv-python" "torch" "tqdm" --extra-index-url https://download.pytorch.org/whl/cpu .. parsed-literal:: @@ -101,85 +101,75 @@ Lab instead.** Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cpu Collecting pythreejs Using cached pythreejs-2.4.2-py3-none-any.whl.metadata (5.4 kB) - Collecting openvino-dev>=2024.0.0 - Using cached openvino_dev-2024.4.0-16579-py3-none-any.whl.metadata (16 kB) + Collecting openvino>=2024.4.0 + Using cached openvino-2024.4.0-16579-cp38-cp38-manylinux2014_x86_64.whl.metadata (8.3 kB) Collecting opencv-python Using cached opencv_python-4.10.0.84-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (20 kB) Collecting torch Using cached https://download.pytorch.org/whl/cpu/torch-2.4.1%2Bcpu-cp38-cp38-linux_x86_64.whl (194.9 MB) - Collecting onnx<1.16.2 - Using cached onnx-1.16.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (16 kB) - Requirement already satisfied: ipywidgets>=7.2.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from pythreejs) (8.1.5) + Collecting tqdm + Using cached tqdm-4.66.6-py3-none-any.whl.metadata (57 kB) + Requirement already satisfied: ipywidgets>=7.2.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from pythreejs) (8.1.5) Collecting ipydatawidgets>=1.1.1 (from pythreejs) Using cached ipydatawidgets-4.3.5-py2.py3-none-any.whl.metadata (1.4 kB) Collecting numpy (from pythreejs) Using cached numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.6 kB) - Requirement already satisfied: traitlets in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from pythreejs) (5.14.3) - Requirement already satisfied: defusedxml>=0.7.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino-dev>=2024.0.0) (0.7.1) - Collecting networkx<=3.1.0 (from openvino-dev>=2024.0.0) - Using cached networkx-3.1-py3-none-any.whl.metadata (5.3 kB) - Collecting openvino-telemetry>=2023.2.1 (from openvino-dev>=2024.0.0) + Requirement already satisfied: traitlets in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from pythreejs) (5.14.3) + Collecting openvino-telemetry>=2023.2.1 (from openvino>=2024.4.0) Using cached openvino_telemetry-2024.1.0-py3-none-any.whl.metadata (2.3 kB) - Requirement already satisfied: packaging in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino-dev>=2024.0.0) (24.1) - Requirement already satisfied: pyyaml>=5.4.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino-dev>=2024.0.0) (6.0.2) - Requirement already satisfied: requests>=2.25.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino-dev>=2024.0.0) (2.32.0) - Collecting openvino==2024.4.0 (from openvino-dev>=2024.0.0) - Using cached openvino-2024.4.0-16579-cp38-cp38-manylinux2014_x86_64.whl.metadata (8.3 kB) + Requirement already satisfied: packaging in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino>=2024.4.0) (24.1) Collecting filelock (from torch) Using cached filelock-3.16.1-py3-none-any.whl.metadata (2.9 kB) - Requirement already satisfied: typing-extensions>=4.8.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch) (4.12.2) + Requirement already satisfied: typing-extensions>=4.8.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch) (4.12.2) Collecting sympy (from torch) Using cached sympy-1.13.3-py3-none-any.whl.metadata (12 kB) - Requirement already satisfied: jinja2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch) (3.1.4) + Collecting networkx (from torch) + Using cached https://download.pytorch.org/whl/networkx-3.2.1-py3-none-any.whl (1.6 MB) + Requirement already satisfied: jinja2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch) (3.1.4) Collecting fsspec (from torch) Using cached fsspec-2024.10.0-py3-none-any.whl.metadata (11 kB) - Collecting protobuf>=3.20.2 (from onnx<1.16.2) - Using cached protobuf-5.28.2-cp38-abi3-manylinux2014_x86_64.whl.metadata (592 bytes) Collecting traittypes>=0.2.0 (from ipydatawidgets>=1.1.1->pythreejs) Using cached traittypes-0.2.1-py2.py3-none-any.whl.metadata (1.0 kB) - Requirement already satisfied: comm>=0.1.3 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipywidgets>=7.2.1->pythreejs) (0.2.2) - Requirement already satisfied: ipython>=6.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipywidgets>=7.2.1->pythreejs) (8.12.3) - Requirement already satisfied: widgetsnbextension~=4.0.12 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipywidgets>=7.2.1->pythreejs) (4.0.13) - Requirement already satisfied: jupyterlab-widgets~=3.0.12 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipywidgets>=7.2.1->pythreejs) (3.0.13) - Requirement already satisfied: charset-normalizer<4,>=2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.25.1->openvino-dev>=2024.0.0) (3.4.0) - Requirement already satisfied: idna<4,>=2.5 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.25.1->openvino-dev>=2024.0.0) (3.10) - Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.25.1->openvino-dev>=2024.0.0) (2.2.3) - Requirement already satisfied: certifi>=2017.4.17 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.25.1->openvino-dev>=2024.0.0) (2024.8.30) - Requirement already satisfied: MarkupSafe>=2.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from jinja2->torch) (2.1.5) + Requirement already satisfied: comm>=0.1.3 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipywidgets>=7.2.1->pythreejs) (0.2.2) + Requirement already satisfied: ipython>=6.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipywidgets>=7.2.1->pythreejs) (8.12.3) + Requirement already satisfied: widgetsnbextension~=4.0.12 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipywidgets>=7.2.1->pythreejs) (4.0.13) + Requirement already satisfied: jupyterlab-widgets~=3.0.12 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipywidgets>=7.2.1->pythreejs) (3.0.13) + Requirement already satisfied: MarkupSafe>=2.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from jinja2->torch) (2.1.5) + INFO: pip is looking at multiple versions of networkx to determine which version is compatible with other requirements. This could take a while. + Collecting networkx (from torch) + Using cached networkx-3.1-py3-none-any.whl.metadata (5.3 kB) Collecting mpmath<1.4,>=1.1.0 (from sympy->torch) Using cached https://download.pytorch.org/whl/mpmath-1.3.0-py3-none-any.whl (536 kB) - Requirement already satisfied: backcall in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.2.0) - Requirement already satisfied: decorator in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (5.1.1) - Requirement already satisfied: jedi>=0.16 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.19.1) - Requirement already satisfied: matplotlib-inline in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.1.7) - Requirement already satisfied: pickleshare in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.7.5) - Requirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (3.0.48) - Requirement already satisfied: pygments>=2.4.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (2.18.0) - Requirement already satisfied: stack-data in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.6.3) - Requirement already satisfied: pexpect>4.3 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (4.9.0) - Requirement already satisfied: parso<0.9.0,>=0.8.3 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from jedi>=0.16->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.8.4) - Requirement already satisfied: ptyprocess>=0.5 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from pexpect>4.3->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.7.0) - Requirement already satisfied: wcwidth in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.2.13) - Requirement already satisfied: executing>=1.2.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from stack-data->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (2.1.0) - Requirement already satisfied: asttokens>=2.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from stack-data->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (2.4.1) - Requirement already satisfied: pure-eval in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from stack-data->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.2.3) - Requirement already satisfied: six>=1.12.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from asttokens>=2.1.0->stack-data->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (1.16.0) + Requirement already satisfied: backcall in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.2.0) + Requirement already satisfied: decorator in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (5.1.1) + Requirement already satisfied: jedi>=0.16 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.19.1) + Requirement already satisfied: matplotlib-inline in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.1.7) + Requirement already satisfied: pickleshare in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.7.5) + Requirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (3.0.48) + Requirement already satisfied: pygments>=2.4.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (2.18.0) + Requirement already satisfied: stack-data in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.6.3) + Requirement already satisfied: pexpect>4.3 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (4.9.0) + Requirement already satisfied: parso<0.9.0,>=0.8.3 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from jedi>=0.16->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.8.4) + Requirement already satisfied: ptyprocess>=0.5 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from pexpect>4.3->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.7.0) + Requirement already satisfied: wcwidth in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.2.13) + Requirement already satisfied: executing>=1.2.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from stack-data->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (2.1.0) + Requirement already satisfied: asttokens>=2.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from stack-data->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (2.4.1) + Requirement already satisfied: pure-eval in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from stack-data->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (0.2.3) + Requirement already satisfied: six>=1.12.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from asttokens>=2.1.0->stack-data->ipython>=6.1.0->ipywidgets>=7.2.1->pythreejs) (1.16.0) Using cached pythreejs-2.4.2-py3-none-any.whl (3.4 MB) - Using cached openvino_dev-2024.4.0-16579-py3-none-any.whl (4.7 MB) Using cached openvino-2024.4.0-16579-cp38-cp38-manylinux2014_x86_64.whl (42.6 MB) Using cached opencv_python-4.10.0.84-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (62.5 MB) - Using cached onnx-1.16.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB) + Using cached tqdm-4.66.6-py3-none-any.whl (78 kB) Using cached ipydatawidgets-4.3.5-py2.py3-none-any.whl (271 kB) - Using cached networkx-3.1-py3-none-any.whl (2.1 MB) Using cached numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB) Using cached openvino_telemetry-2024.1.0-py3-none-any.whl (23 kB) - Using cached protobuf-5.28.2-cp38-abi3-manylinux2014_x86_64.whl (316 kB) Using cached filelock-3.16.1-py3-none-any.whl (16 kB) Using cached fsspec-2024.10.0-py3-none-any.whl (179 kB) + Using cached networkx-3.1-py3-none-any.whl (2.1 MB) Using cached sympy-1.13.3-py3-none-any.whl (6.2 MB) Using cached traittypes-0.2.1-py2.py3-none-any.whl (8.6 kB) - Installing collected packages: openvino-telemetry, mpmath, traittypes, sympy, protobuf, numpy, networkx, fsspec, filelock, torch, openvino, opencv-python, onnx, openvino-dev, ipydatawidgets, pythreejs - Successfully installed filelock-3.16.1 fsspec-2024.10.0 ipydatawidgets-4.3.5 mpmath-1.3.0 networkx-3.1 numpy-1.24.4 onnx-1.16.1 opencv-python-4.10.0.84 openvino-2024.4.0 openvino-dev-2024.4.0 openvino-telemetry-2024.1.0 protobuf-5.28.2 pythreejs-2.4.2 sympy-1.13.3 torch-2.4.1+cpu traittypes-0.2.1 + Installing collected packages: openvino-telemetry, mpmath, traittypes, tqdm, sympy, numpy, networkx, fsspec, filelock, torch, openvino, opencv-python, ipydatawidgets, pythreejs + Successfully installed filelock-3.16.1 fsspec-2024.10.0 ipydatawidgets-4.3.5 mpmath-1.3.0 networkx-3.1 numpy-1.24.4 opencv-python-4.10.0.84 openvino-2024.4.0 openvino-telemetry-2024.1.0 pythreejs-2.4.2 sympy-1.13.3 torch-2.4.1+cpu tqdm-4.66.6 traittypes-0.2.1 Note: you may need to restart the kernel to use updated packages. @@ -228,41 +218,31 @@ Download the model -We use ``omz_downloader``, which is a command line tool from the -``openvino-dev`` package. ``omz_downloader`` automatically creates a -directory structure and downloads the selected model. - .. code:: ipython3 - # directory where model will be downloaded - base_model_dir = "model" + from notebook_utils import download_file + import tarfile - # model name as named in Open Model Zoo - model_name = "human-pose-estimation-3d-0001" - # selected precision (FP32, FP16) - precision = "FP32" - BASE_MODEL_NAME = f"{base_model_dir}/public/{model_name}/{model_name}" - model_path = Path(BASE_MODEL_NAME).with_suffix(".pth") - onnx_path = Path(BASE_MODEL_NAME).with_suffix(".onnx") + # directory where model will be downloaded + base_model_dir = Path("model") + + download_file( + "https://storage.openvinotoolkit.org/repositories/open_model_zoo/public/2022.1/human-pose-estimation-3d-0001/human-pose-estimation-3d.tar.gz", + directory=base_model_dir, + ) - ir_model_path = Path(f"model/public/{model_name}/{precision}/{model_name}.xml") - model_weights_path = Path(f"model/public/{model_name}/{precision}/{model_name}.bin") + ckpt_file = base_model_dir / "human-pose-estimation-3d-0001.pth" - if not model_path.exists(): - download_command = f"omz_downloader " f"--name {model_name} " f"--output_dir {base_model_dir}" - ! $download_command + if not ckpt_file.exists(): + with tarfile.open(base_model_dir / "human-pose-estimation-3d.tar.gz") as f: + f.extractall(base_model_dir) + .. parsed-literal:: - ################|| Downloading human-pose-estimation-3d-0001 ||################ - - ========== Downloading model/public/human-pose-estimation-3d-0001/human-pose-estimation-3d-0001.tar.gz - - - ========== Unpacking model/public/human-pose-estimation-3d-0001/human-pose-estimation-3d-0001.tar.gz - + model/human-pose-estimation-3d.tar.gz: 0%| | 0.00/17.6M [00:00 1 or self.sliding_window is not None: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:164: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:164: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if past_key_values_length > 0: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:808: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:861: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! encoder_states = () if output_hidden_states else None - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:813: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:866: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if output_hidden_states: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:836: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:889: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if output_hidden_states: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:839: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:892: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if not return_dict: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:935: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:988: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if not return_dict: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:1426: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:1486: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if not return_dict: @@ -351,13 +352,13 @@ suitable. This function repeats part of ``AmusedPipeline``. .. parsed-literal:: - /tmp/ipykernel_2578393/3779428577.py:34: TracerWarning: Converting a tensor to a Python list might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /tmp/ipykernel_498025/3779428577.py:34: TracerWarning: Converting a tensor to a Python list might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! shape=shape.tolist(), - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/autoencoders/vq_model.py:144: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/autoencoders/vq_model.py:144: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if not force_not_quantize: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/upsampling.py:147: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/upsampling.py:147: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert hidden_states.shape[1] == self.channels - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/upsampling.py:162: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/upsampling.py:162: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if hidden_states.shape[0] >= 64: @@ -490,7 +491,7 @@ And insert wrappers instances in the pipeline: .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/configuration_utils.py:140: FutureWarning: Accessing config attribute `_execution_device` directly via 'AmusedPipeline' object attribute is deprecated. Please access '_execution_device' over 'AmusedPipeline's config object instead, e.g. 'scheduler.config._execution_device'. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/configuration_utils.py:140: FutureWarning: Accessing config attribute `_execution_device` directly via 'AmusedPipeline' object attribute is deprecated. Please access '_execution_device' over 'AmusedPipeline's config object instead, e.g. 'scheduler.config._execution_device'. deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False) @@ -696,7 +697,7 @@ model. .. parsed-literal:: - INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, onnx, openvino + INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, openvino @@ -707,7 +708,7 @@ model. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/configuration_utils.py:140: FutureWarning: Accessing config attribute `_execution_device` directly via 'AmusedPipeline' object attribute is deprecated. Please access '_execution_device' over 'AmusedPipeline's config object instead, e.g. 'scheduler.config._execution_device'. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/configuration_utils.py:140: FutureWarning: Accessing config attribute `_execution_device` directly via 'AmusedPipeline' object attribute is deprecated. Please access '_execution_device' over 'AmusedPipeline's config object instead, e.g. 'scheduler.config._execution_device'. deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False) @@ -760,17 +761,17 @@ model. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/tensor/tensor.py:100: RuntimeWarning: invalid value encountered in multiply + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/tensor/tensor.py:100: RuntimeWarning: invalid value encountered in multiply return Tensor(self.data * unwrap_tensor_data(other)) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/tensor/tensor.py:100: RuntimeWarning: invalid value encountered in multiply + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/tensor/tensor.py:100: RuntimeWarning: invalid value encountered in multiply return Tensor(self.data * unwrap_tensor_data(other)) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/tensor/tensor.py:100: RuntimeWarning: invalid value encountered in multiply + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/tensor/tensor.py:100: RuntimeWarning: invalid value encountered in multiply return Tensor(self.data * unwrap_tensor_data(other)) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/tensor/tensor.py:100: RuntimeWarning: invalid value encountered in multiply + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/tensor/tensor.py:100: RuntimeWarning: invalid value encountered in multiply return Tensor(self.data * unwrap_tensor_data(other)) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/tensor/tensor.py:100: RuntimeWarning: invalid value encountered in multiply + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/tensor/tensor.py:100: RuntimeWarning: invalid value encountered in multiply return Tensor(self.data * unwrap_tensor_data(other)) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/tensor/tensor.py:100: RuntimeWarning: invalid value encountered in multiply + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/tensor/tensor.py:100: RuntimeWarning: invalid value encountered in multiply return Tensor(self.data * unwrap_tensor_data(other)) @@ -794,7 +795,7 @@ Demo generation with quantized pipeline .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/configuration_utils.py:140: FutureWarning: Accessing config attribute `_execution_device` directly via 'AmusedPipeline' object attribute is deprecated. Please access '_execution_device' over 'AmusedPipeline's config object instead, e.g. 'scheduler.config._execution_device'. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/configuration_utils.py:140: FutureWarning: Accessing config attribute `_execution_device` directly via 'AmusedPipeline' object attribute is deprecated. Please access '_execution_device' over 'AmusedPipeline's config object instead, e.g. 'scheduler.config._execution_device'. deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False) @@ -878,7 +879,7 @@ a rough estimate of generation quality. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: Metric `InceptionScore` will save all extracted features in buffer. For large datasets this may lead to large memory footprint. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torchmetrics/utilities/prints.py:43: UserWarning: Metric `InceptionScore` will save all extracted features in buffer. For large datasets this may lead to large memory footprint. warnings.warn(\*args, \*\*kwargs) # noqa: B028 @@ -890,7 +891,7 @@ a rough estimate of generation quality. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torchmetrics/image/inception.py:175: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1808.) + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torchmetrics/image/inception.py:175: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1808.) return kl.mean(), kl.std() @@ -908,7 +909,7 @@ a rough estimate of generation quality. .. parsed-literal:: Quantized pipeline Inception Score: 11.0730562210083 - Quantization speed-up: 2.09x + Quantization speed-up: 2.08x Interactive inference diff --git a/docs/notebooks/async-api-with-output.rst b/docs/notebooks/async-api-with-output.rst index e8f5b80d429d81..9f9130a4fe0db2 100644 --- a/docs/notebooks/async-api-with-output.rst +++ b/docs/notebooks/async-api-with-output.rst @@ -61,13 +61,6 @@ Imports %pip install -q "openvino>=2023.1.0" %pip install -q opencv-python "matplotlib>=3.4" - -.. parsed-literal:: - - Note: you may need to restart the kernel to use updated packages. - Note: you may need to restart the kernel to use updated packages. - - .. code:: ipython3 import cv2 @@ -119,14 +112,12 @@ the person in each frame of the video. ################|| Downloading person-detection-0202 ||################ - ========== Downloading model/intel/person-detection-0202/FP16/person-detection-0202.xml - + ========== Retrieving model/intel/person-detection-0202/FP16/person-detection-0202.xml from the cache - ========== Downloading model/intel/person-detection-0202/FP16/person-detection-0202.bin + ========== Retrieving model/intel/person-detection-0202/FP16/person-detection-0202.bin from the cache - Select inference device ~~~~~~~~~~~~~~~~~~~~~~~ @@ -348,8 +339,8 @@ Test performance in Sync Mode .. parsed-literal:: Source ended - average throuput in sync mode: 63.79 fps - + average throuput in sync mode: 55.59 fps + Async Mode ~~~~~~~~~~ @@ -487,8 +478,8 @@ Test the performance in Async Mode .. parsed-literal:: Source ended - average throuput in async mode: 106.83 fps - + average throuput in async mode: 75.17 fps + Compare the performance ~~~~~~~~~~~~~~~~~~~~~~~ @@ -630,5 +621,5 @@ Test the performance with ``AsyncInferQueue`` .. parsed-literal:: - average throughput in async mode with async infer queue: 145.36 fps - + average throughput in async mode with async infer queue: 103.81 fps + diff --git a/docs/notebooks/async-api-with-output_files/async-api-with-output_23_0.png b/docs/notebooks/async-api-with-output_files/async-api-with-output_23_0.png index f3492582efc67f..3694e16797b727 100644 --- a/docs/notebooks/async-api-with-output_files/async-api-with-output_23_0.png +++ b/docs/notebooks/async-api-with-output_files/async-api-with-output_23_0.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:84a9b6aab4a04feb319b3243644da6837b3b894122657a8f6639fa604e3b48dd -size 29468 +oid sha256:fd71c3c8d066b8a16264c215b773c6200e981634ac24d04db99b0288d1ea1cca +size 30409 diff --git a/docs/notebooks/auto-device-with-output.rst b/docs/notebooks/auto-device-with-output.rst index 28d894eb72b22e..2ebcbe7d80deb2 100644 --- a/docs/notebooks/auto-device-with-output.rst +++ b/docs/notebooks/auto-device-with-output.rst @@ -197,16 +197,16 @@ By default, ``compile_model`` API will select **AUTO** as .. parsed-literal:: - [22:37:15.4888]I[plugin.cpp:421][AUTO] device:CPU, config:LOG_LEVEL=LOG_INFO - [22:37:15.4888]I[plugin.cpp:421][AUTO] device:CPU, config:PERFORMANCE_HINT=LATENCY - [22:37:15.4888]I[plugin.cpp:421][AUTO] device:CPU, config:PERFORMANCE_HINT_NUM_REQUESTS=0 - [22:37:15.4888]I[plugin.cpp:421][AUTO] device:CPU, config:PERF_COUNT=NO - [22:37:15.4888]I[plugin.cpp:426][AUTO] device:CPU, priority:0 - [22:37:15.4888]I[schedule.cpp:17][AUTO] scheduler starting - [22:37:15.4888]I[auto_schedule.cpp:181][AUTO] select device:CPU - [22:37:15.5995]I[auto_schedule.cpp:346][AUTO] Device: [CPU]: Compile model took 110.638049 ms - [22:37:15.5996]I[auto_schedule.cpp:112][AUTO] device:CPU compiling model finished - [22:37:15.5997]I[plugin.cpp:454][AUTO] underlying hardware does not support hardware context + [22:41:57.1267]I[plugin.cpp:421][AUTO] device:CPU, config:LOG_LEVEL=LOG_INFO + [22:41:57.1268]I[plugin.cpp:421][AUTO] device:CPU, config:PERFORMANCE_HINT=LATENCY + [22:41:57.1268]I[plugin.cpp:421][AUTO] device:CPU, config:PERFORMANCE_HINT_NUM_REQUESTS=0 + [22:41:57.1268]I[plugin.cpp:421][AUTO] device:CPU, config:PERF_COUNT=NO + [22:41:57.1268]I[plugin.cpp:426][AUTO] device:CPU, priority:0 + [22:41:57.1268]I[schedule.cpp:17][AUTO] scheduler starting + [22:41:57.1269]I[auto_schedule.cpp:181][AUTO] select device:CPU + [22:41:57.2582]I[auto_schedule.cpp:346][AUTO] Device: [CPU]: Compile model took 131.300219 ms + [22:41:57.2583]I[auto_schedule.cpp:112][AUTO] device:CPU compiling model finished + [22:41:57.2584]I[plugin.cpp:454][AUTO] underlying hardware does not support hardware context Successfully compiled model without a device_name. @@ -219,8 +219,8 @@ By default, ``compile_model`` API will select **AUTO** as .. parsed-literal:: - Deleted compiled_model[22:37:15.6060]I[schedule.cpp:308][AUTO] scheduler ending - + Deleted compiled_model + [22:41:57.2639]I[schedule.cpp:308][AUTO] scheduler ending Explicitly pass AUTO as device_name to Core::compile_model API @@ -378,7 +378,7 @@ executed on CPU until GPU is ready. .. parsed-literal:: - Time to load model using AUTO device and get first inference: 0.15 seconds. + Time to load model using AUTO device and get first inference: 0.12 seconds. .. code:: ipython3 @@ -553,12 +553,12 @@ Loop for inference and update the FPS/Latency every Compiling Model for AUTO device with THROUGHPUT hint Start inference, 6 groups of FPS/latency will be measured over 10s intervals - throughput: 184.25fps, latency: 31.12ms, time interval: 10.02s - throughput: 184.19fps, latency: 31.80ms, time interval: 10.00s - throughput: 183.00fps, latency: 32.00ms, time interval: 10.01s - throughput: 183.37fps, latency: 31.91ms, time interval: 10.01s - throughput: 178.30fps, latency: 32.90ms, time interval: 10.01s - throughput: 182.80fps, latency: 32.08ms, time interval: 10.01s + throughput: 179.70fps, latency: 32.12ms, time interval: 10.00s + throughput: 183.61fps, latency: 31.86ms, time interval: 10.01s + throughput: 183.96fps, latency: 31.88ms, time interval: 10.01s + throughput: 183.98fps, latency: 31.91ms, time interval: 10.00s + throughput: 183.26fps, latency: 31.98ms, time interval: 10.01s + throughput: 183.40fps, latency: 32.01ms, time interval: 10.00s Done @@ -604,12 +604,12 @@ Loop for inference and update the FPS/Latency for each Compiling Model for AUTO Device with LATENCY hint Start inference, 6 groups fps/latency will be out with 10s interval - throughput: 139.34fps, latency: 6.64ms, time interval: 10.00s - throughput: 141.45fps, latency: 6.63ms, time interval: 10.00s - throughput: 141.42fps, latency: 6.63ms, time interval: 10.01s - throughput: 141.70fps, latency: 6.62ms, time interval: 10.01s - throughput: 130.57fps, latency: 7.22ms, time interval: 10.00s - throughput: 141.61fps, latency: 6.62ms, time interval: 10.01s + throughput: 130.56fps, latency: 7.18ms, time interval: 10.00s + throughput: 142.51fps, latency: 6.61ms, time interval: 10.01s + throughput: 142.47fps, latency: 6.62ms, time interval: 10.00s + throughput: 142.46fps, latency: 6.61ms, time interval: 10.00s + throughput: 142.63fps, latency: 6.61ms, time interval: 10.00s + throughput: 142.73fps, latency: 6.60ms, time interval: 10.00s Done diff --git a/docs/notebooks/auto-device-with-output_files/auto-device-with-output_27_0.png b/docs/notebooks/auto-device-with-output_files/auto-device-with-output_27_0.png index af14e6c0ac24c7..cc037738f18096 100644 --- a/docs/notebooks/auto-device-with-output_files/auto-device-with-output_27_0.png +++ b/docs/notebooks/auto-device-with-output_files/auto-device-with-output_27_0.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:05bc2541cede3c32f2f9acff3f93d19572aab80a5bb7ac3e6c77bb397817bb54 -size 25899 +oid sha256:1bedd8ff3e65a23fb4af380958a261d0916d2e0134b9426652a2779bdc06d6de +size 26887 diff --git a/docs/notebooks/auto-device-with-output_files/auto-device-with-output_28_0.png b/docs/notebooks/auto-device-with-output_files/auto-device-with-output_28_0.png index e12bb8a48eaa0e..21be57ac89d68d 100644 --- a/docs/notebooks/auto-device-with-output_files/auto-device-with-output_28_0.png +++ b/docs/notebooks/auto-device-with-output_files/auto-device-with-output_28_0.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:b1e2e56c28c18b5d31607518b846e78c58e76b2b59a9ee083d02e0d8f8ec2b52 -size 40077 +oid sha256:ed1ab24c30040707a36155169f4aaa91a5bff6cb48a2c5d10401ecbd87ca6f54 +size 40117 diff --git a/docs/notebooks/catvton-with-output.rst b/docs/notebooks/catvton-with-output.rst new file mode 100644 index 00000000000000..a7a9a04359f338 --- /dev/null +++ b/docs/notebooks/catvton-with-output.rst @@ -0,0 +1,360 @@ +Virtual Try-On with CatVTON and OpenVINO +======================================== + +Virtual try-on methods based on diffusion models achieve realistic +try-on effects but replicate the backbone network as a ReferenceNet or +leverage additional image encoders to process condition inputs, +resulting in high training and inference costs. `In this +work `__, authors rethink the necessity +of ReferenceNet and image encoders and innovate the interaction between +garment and person, proposing CatVTON, a simple and efficient virtual +try-on diffusion model. It facilitates the seamless transfer of in-shop +or worn garments of arbitrary categories to target persons by simply +concatenating them in spatial dimensions as inputs. The efficiency of +the model is demonstrated in three aspects: 1. Lightweight network. Only +the original diffusion modules are used, without additional network +modules. The text encoder and cross attentions for text injection in the +backbone are removed, further reducing the parameters by 167.02M. 2. +Parameter-efficient training. We identified the try-on relevant modules +through experiments and achieved high-quality try-on effects by training +only 49.57M parameters (∼5.51% of the backbone network’s parameters). 3. +Simplified inference. CatVTON eliminates all unnecessary conditions and +preprocessing steps, including pose estimation, human parsing, and text +input, requiring only garment reference, target person image, and mask +for the virtual try-on process. Extensive experiments demonstrate that +CatVTON achieves superior qualitative and quantitative results with +fewer prerequisites and trainable parameters than baseline methods. +Furthermore, CatVTON shows good generalization in in-the-wild scenarios +despite using open-source datasets with only 73K samples. + +Teaser image from `CatVTON +GitHub `__ |teaser| + +In this tutorial we consider how to convert and run this model using +OpenVINO. + + +**Table of contents:** + + +- `Prerequisites <#prerequisites>`__ +- `Convert the model to OpenVINO + IR <#convert-the-model-to-openvino-ir>`__ +- `Compiling models <#compiling-models>`__ +- `Interactive demo <#interactive-demo>`__ + +Installation Instructions +~~~~~~~~~~~~~~~~~~~~~~~~~ + +This is a self-contained example that relies solely on its own code. + +We recommend running the notebook in a virtual environment. You only +need a Jupyter server to start. For details, please refer to +`Installation +Guide `__. + +.. |teaser| image:: https://github.com/Zheng-Chong/CatVTON/blob/edited/resource/img/teaser.jpg?raw=true + +Prerequisites +------------- + + + +.. code:: ipython3 + + import platform + + + if platform.system() == "Darwin": + %pip install -q "numpy<2.0.0" + %pip install -q "openvino>=2024.4" + %pip install -q "torch>=2.1" "diffusers>=0.29.1" torchvision opencv_python --extra-index-url https://download.pytorch.org/whl/cpu + %pip install -q fvcore "pillow" "tqdm" "gradio>=4.36" "omegaconf==2.4.0.dev3" av pycocotools cloudpickle scipy accelerate "transformers>=4.27.3" + + +.. parsed-literal:: + + Note: you may need to restart the kernel to use updated packages. + Note: you may need to restart the kernel to use updated packages. + Note: you may need to restart the kernel to use updated packages. + + +.. code:: ipython3 + + import requests + + + r = requests.get( + url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py", + ) + open("notebook_utils.py", "w").write(r.text) + + r = requests.get( + url="https://raw.githubusercontent.com/aleksandr-mokrov/openvino_notebooks/refs/heads/catvton/utils/cmd_helper.py", + ) + open("cmd_helper.py", "w").write(r.text) + + + + +.. parsed-literal:: + + 741 + + + +.. code:: ipython3 + + from cmd_helper import clone_repo + + + clone_repo("https://github.com/Zheng-Chong/CatVTON.git", "3b795364a4d2f3b5adb365f39cdea376d20bc53c") + + + + +.. parsed-literal:: + + PosixPath('CatVTON') + + + +Convert the model to OpenVINO IR +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + + +OpenVINO supports PyTorch models via conversion to OpenVINO Intermediate +Representation (IR). `OpenVINO model conversion +API `__ +should be used for these purposes. ``ov.convert_model`` function accepts +original PyTorch model instance and example input for tracing and +returns ``ov.Model`` representing this model in OpenVINO framework. +Converted model can be used for saving on disk using ``ov.save_model`` +function or directly loading on device using ``core.complie_model``. + +``ov_catvton_helper.py`` script contains helper function for models +downloading and models conversion, please check its content if you +interested in conversion details. + +To download checkpoints and load models, just call the helper function +``download_models``. It takes care about it. Functions +``convert_pipeline_models`` and ``convert_automasker_models`` will +convert models from pipeline and ``automasker`` in OpenVINO format. + +The original pipeline contains VAE encoder and decoder and UNET. +|CatVTON-overview| + +The ``automasker`` contains ``DensePose`` with +``detectron2.GeneralizedRCNN`` model and ``SCHP`` (``LIP`` and ``ATR`` +version). + +.. |CatVTON-overview| image:: https://github.com/user-attachments/assets/e35c8dab-1c54-47b1-a73b-2a62e6cdca7c + +.. code:: ipython3 + + from pathlib import Path + + from ov_catvton_helper import download_models, convert_pipeline_models, convert_automasker_models + + + MODEL_DIR = Path("models") + VAE_ENCODER_PATH = MODEL_DIR / "vae_encoder.xml" + VAE_DECODER_PATH = MODEL_DIR / "vae_decoder.xml" + UNET_PATH = MODEL_DIR / "unet.xml" + DENSEPOSE_PROCESSOR_PATH = MODEL_DIR / "densepose_processor.xml" + SCHP_PROCESSOR_ATR = MODEL_DIR / "schp_processor_atr.xml" + SCHP_PROCESSOR_LIP = MODEL_DIR / "schp_processor_lip.xml" + + + pipeline, mask_processor, automasker = download_models(MODEL_DIR) + convert_pipeline_models(pipeline, VAE_ENCODER_PATH, VAE_DECODER_PATH, UNET_PATH) + convert_automasker_models(automasker, DENSEPOSE_PROCESSOR_PATH, SCHP_PROCESSOR_ATR, SCHP_PROCESSOR_LIP) + + +.. parsed-literal:: + + Note: switching to '3b795364a4d2f3b5adb365f39cdea376d20bc53c'. + + You are in 'detached HEAD' state. You can look around, make experimental + changes and commit them, and you can discard any commits you make in this + state without impacting any branches by switching back to a branch. + + If you want to create a new branch to retain commits you create, you may + do so (now or later) by using -c with the switch command. Example: + + git switch -c + + Or undo this operation with: + + git switch - + + Turn off this advice by setting config variable advice.detachedHead to false + + HEAD is now at 3b79536 Update default base model path + + + +.. parsed-literal:: + + Fetching 10 files: 0%| | 0/10 [00:00= 64: + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/unets/unet_2d_condition.py:1111: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + if dim % default_overall_up_factor != 0: + + +Compiling models +---------------- + + + +Select device from dropdown list for running inference using OpenVINO. + +.. code:: ipython3 + + import openvino as ov + + from notebook_utils import device_widget + + + core = ov.Core() + + device = device_widget() + + device + + + + +.. parsed-literal:: + + Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO') + + + +``get_compiled_pipeline`` and ``get_compiled_automasker`` functions +defined in ``ov_catvton_helper.py`` provides convenient way for getting +the pipeline and the ``automasker`` with compiled ov-models that are +compatible with the original interface. It accepts the original pipeline +and ``automasker``, inference device and directories with converted +models as arguments. Under the hood we create callable wrapper classes +for compiled models to allow interaction with original pipelines. Note +that all of wrapper classes return ``torch.Tensor``\ s instead of +``np.array``\ s. And then insert wrappers instances in the pipeline. + +.. code:: ipython3 + + from ov_catvton_helper import get_compiled_pipeline, get_compiled_automasker + + + pipeline = get_compiled_pipeline(pipeline, core, device, VAE_ENCODER_PATH, VAE_DECODER_PATH, UNET_PATH) + automasker = get_compiled_automasker(automasker, core, device, DENSEPOSE_PROCESSOR_PATH, SCHP_PROCESSOR_ATR, SCHP_PROCESSOR_LIP) + +Interactive inference +--------------------- + + + +Please select below whether you would like to use the quantized models +to launch the interactive demo. + +.. code:: ipython3 + + from gradio_helper import make_demo + + + output_dir = "output" + demo = make_demo(pipeline, mask_processor, automasker, output_dir) + try: + demo.launch(debug=False) + except Exception: + demo.launch(debug=False, share=True) + + +.. parsed-literal:: + + Running on local URL: http://127.0.0.1:7860 + + To create a public link, set `share=True` in `launch()`. + + + + + + + diff --git a/docs/notebooks/clip-zero-shot-classification-with-output.rst b/docs/notebooks/clip-zero-shot-classification-with-output.rst index 3da831e6d9d0dd..fd572a83ffb834 100644 --- a/docs/notebooks/clip-zero-shot-classification-with-output.rst +++ b/docs/notebooks/clip-zero-shot-classification-with-output.rst @@ -729,7 +729,6 @@ up of the dynamic quantized models. Interactive demo ---------------- - Now, it is your turn! You can provide your own image and comma-separated list of labels for zero-shot classification. diff --git a/docs/notebooks/convert-to-openvino-with-output.rst b/docs/notebooks/convert-to-openvino-with-output.rst index 8ec32adef0e04a..2baaf0043e7f04 100644 --- a/docs/notebooks/convert-to-openvino-with-output.rst +++ b/docs/notebooks/convert-to-openvino-with-output.rst @@ -163,7 +163,7 @@ NLP model from Hugging Face and export it in ONNX format: .. code:: ipython3 from transformers import AutoModelForSequenceClassification, AutoTokenizer - from transformers.onnx import export, FeaturesManager + import torch ONNX_NLP_MODEL_PATH = MODEL_DIRECTORY_PATH / "distilbert.onnx" @@ -172,37 +172,27 @@ NLP model from Hugging Face and export it in ONNX format: # initialize tokenizer tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") - # get model onnx config function for output feature format sequence-classification - model_kind, model_onnx_config = FeaturesManager.check_supported_model_or_raise(hf_model, feature="sequence-classification") - # fill onnx config based on pytorch model config - onnx_config = model_onnx_config(hf_model.config) - - # export to onnx format - export( - preprocessor=tokenizer, - model=hf_model, - config=onnx_config, - opset=onnx_config.default_onnx_opset, - output=ONNX_NLP_MODEL_PATH, - ) + if not ONNX_NLP_MODEL_PATH.exists(): + inputs = tokenizer("Hi, how are you?", return_tensors="pt") + input_names = list(inputs.keys()) + dynamic_axes = {input_name: {0: "batch_size", 1: "seq_length"} for input_name in input_names} + torch.onnx.export( + hf_model, args=dict(inputs), input_names=input_names, output_names=["logits"], dynamic_axes=dynamic_axes, f=ONNX_NLP_MODEL_PATH, opset_version=14 + ) + print(f"ONNX model exported to {ONNX_NLP_MODEL_PATH}") .. parsed-literal:: - 2024-10-22 22:40:21.522113: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-22 22:40:21.555890: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-04 22:48:30.842642: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-04 22:48:30.876775: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-22 22:40:22.084160: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/distilbert/modeling_distilbert.py:215: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. - mask, torch.tensor(torch.finfo(scores.dtype).min) - - + 2024-11-04 22:48:31.539454: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT .. parsed-literal:: - (['input_ids', 'attention_mask'], ['logits']) - + ONNX model exported to model/distilbert.onnx Fetch @@ -670,7 +660,7 @@ frameworks conversion guides. .. parsed-literal:: - 2024-10-22 22:40:40.138322: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1956] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. + 2024-11-04 22:48:47.716205: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1956] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... diff --git a/docs/notebooks/convnext-classification-with-output.rst b/docs/notebooks/convnext-classification-with-output.rst index 1204ea2c17f106..6e1c039f7013c6 100644 --- a/docs/notebooks/convnext-classification-with-output.rst +++ b/docs/notebooks/convnext-classification-with-output.rst @@ -192,7 +192,7 @@ And print results Predicted Class: 281 Predicted Label: n02123045 tabby, tabby cat - Predicted Probability: 0.5351971983909607 + Predicted Probability: 0.4661690592765808 Convert the model to OpenVINO Intermediate representation format diff --git a/docs/notebooks/ct-segmentation-quantize-nncf-with-output.rst b/docs/notebooks/ct-segmentation-quantize-nncf-with-output.rst index 6f003fb71d75fb..30778bafc8e884 100644 --- a/docs/notebooks/ct-segmentation-quantize-nncf-with-output.rst +++ b/docs/notebooks/ct-segmentation-quantize-nncf-with-output.rst @@ -154,10 +154,10 @@ Imports .. parsed-literal:: - 2024-10-22 22:41:03.560708: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-22 22:41:03.596278: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-04 22:49:10.827255: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-04 22:49:10.861330: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-22 22:41:04.191138: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-04 22:49:11.454332: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT .. parsed-literal:: @@ -223,7 +223,7 @@ notebook `__. .. parsed-literal:: - /tmp/ipykernel_2583350/1592321960.py:3: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. + /tmp/ipykernel_503635/1592321960.py:3: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. state_dict = torch.load(state_dict_file, map_location=torch.device("cpu")) @@ -444,7 +444,7 @@ this notebook. .. parsed-literal:: [ WARNING ] Please fix your imports. Module %s has been moved to %s. The old module will be deleted in version %s. - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/monai/networks/nets/basic_unet.py:168: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/monai/networks/nets/basic_unet.py:168: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if x_e.shape[-i - 1] != x_0.shape[-i - 1]: @@ -526,18 +526,18 @@ Convert quantized model to OpenVINO IR model and save it. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/torch/quantization/layers.py:340: TracerWarning: Converting a tensor to a Python number might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/torch/quantization/layers.py:340: TracerWarning: Converting a tensor to a Python number might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! return self._level_low.item() - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/torch/quantization/layers.py:348: TracerWarning: Converting a tensor to a Python number might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/torch/quantization/layers.py:348: TracerWarning: Converting a tensor to a Python number might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! return self._level_high.item() - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/monai/networks/nets/basic_unet.py:168: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/monai/networks/nets/basic_unet.py:168: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if x_e.shape[-i - 1] != x_0.shape[-i - 1]: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:1303: TracerWarning: Output nr 1. of the traced function does not match the corresponding output of the Python function. Detailed error: + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:1303: TracerWarning: Output nr 1. of the traced function does not match the corresponding output of the Python function. Detailed error: Tensor-likes are not close! - Mismatched elements: 249255 / 262144 (95.1%) - Greatest absolute difference: 3.8265769481658936 at index (0, 0, 126, 353) (up to 1e-05 allowed) - Greatest relative difference: 18364.59337143498 at index (0, 0, 305, 451) (up to 1e-05 allowed) + Mismatched elements: 245783 / 262144 (93.8%) + Greatest absolute difference: 3.1180567741394043 at index (0, 0, 474, 435) (up to 1e-05 allowed) + Greatest relative difference: 16087.83647354372 at index (0, 0, 37, 224) (up to 1e-05 allowed) _check_trace( @@ -663,7 +663,7 @@ be run in the notebook with ``! benchmark_app`` or [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.LATENCY. [Step 4/11] Reading model files [ INFO ] Loading model files - [ INFO ] Read model took 8.83 ms + [ INFO ] Read model took 8.85 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] x (node: x) : f32 / [...] / [1,1,512,512] @@ -677,7 +677,7 @@ be run in the notebook with ``! benchmark_app`` or [ INFO ] Model outputs: [ INFO ] ***NO_NAME*** (node: __module.final_conv/aten::_convolution/Add) : f32 / [...] / [1,1,512,512] [Step 7/11] Loading the model to the device - [ INFO ] Compile model took 250.74 ms + [ INFO ] Compile model took 253.47 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: Model0 @@ -714,17 +714,17 @@ be run in the notebook with ``! benchmark_app`` or [ INFO ] Fill input 'x' with random values [Step 10/11] Measuring performance (Start inference synchronously, limits: 15000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). - [ INFO ] First inference took 51.21 ms + [ INFO ] First inference took 56.51 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] - [ INFO ] Count: 392 iterations - [ INFO ] Duration: 15027.48 ms + [ INFO ] Count: 406 iterations + [ INFO ] Duration: 15019.48 ms [ INFO ] Latency: - [ INFO ] Median: 34.96 ms - [ INFO ] Average: 38.10 ms - [ INFO ] Min: 34.49 ms + [ INFO ] Median: 35.01 ms + [ INFO ] Average: 36.77 ms + [ INFO ] Min: 34.63 ms [ INFO ] Max: 48.05 ms - [ INFO ] Throughput: 26.09 FPS + [ INFO ] Throughput: 27.03 FPS .. code:: ipython3 @@ -750,7 +750,7 @@ be run in the notebook with ``! benchmark_app`` or [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.LATENCY. [Step 4/11] Reading model files [ INFO ] Loading model files - [ INFO ] Read model took 11.01 ms + [ INFO ] Read model took 10.78 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] x (node: x) : f32 / [...] / [1,1,512,512] @@ -764,7 +764,7 @@ be run in the notebook with ``! benchmark_app`` or [ INFO ] Model outputs: [ INFO ] ***NO_NAME*** (node: __module.final_conv/aten::_convolution/Add) : f32 / [...] / [1,1,512,512] [Step 7/11] Loading the model to the device - [ INFO ] Compile model took 238.95 ms + [ INFO ] Compile model took 250.08 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: Model49 @@ -801,17 +801,17 @@ be run in the notebook with ``! benchmark_app`` or [ INFO ] Fill input 'x' with random values [Step 10/11] Measuring performance (Start inference synchronously, limits: 15000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). - [ INFO ] First inference took 30.03 ms + [ INFO ] First inference took 29.09 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] - [ INFO ] Count: 952 iterations - [ INFO ] Duration: 15015.31 ms + [ INFO ] Count: 938 iterations + [ INFO ] Duration: 15008.12 ms [ INFO ] Latency: - [ INFO ] Median: 15.55 ms - [ INFO ] Average: 15.57 ms - [ INFO ] Min: 15.23 ms - [ INFO ] Max: 17.26 ms - [ INFO ] Throughput: 63.40 FPS + [ INFO ] Median: 15.77 ms + [ INFO ] Average: 15.80 ms + [ INFO ] Min: 15.47 ms + [ INFO ] Max: 17.13 ms + [ INFO ] Throughput: 62.50 FPS Visually Compare Inference Results @@ -905,7 +905,7 @@ seed is displayed to enable reproducing specific runs of this cell. .. parsed-literal:: - Visualizing results with seed 1729629747 + Visualizing results with seed 1730757034 @@ -988,8 +988,8 @@ performs inference, and displays the results on the frames loaded in .. parsed-literal:: - Loaded model to AUTO in 0.18 seconds. - Total time for 68 frames: 2.32 seconds, fps:29.79 + Loaded model to AUTO in 0.15 seconds. + Total time for 68 frames: 2.36 seconds, fps:29.25 References diff --git a/docs/notebooks/ct-segmentation-quantize-nncf-with-output_files/ct-segmentation-quantize-nncf-with-output_37_1.png b/docs/notebooks/ct-segmentation-quantize-nncf-with-output_files/ct-segmentation-quantize-nncf-with-output_37_1.png index f7c163c1c77604..5aa37909b71cf7 100644 --- a/docs/notebooks/ct-segmentation-quantize-nncf-with-output_files/ct-segmentation-quantize-nncf-with-output_37_1.png +++ b/docs/notebooks/ct-segmentation-quantize-nncf-with-output_files/ct-segmentation-quantize-nncf-with-output_37_1.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:5d329fc21292f69aeee8164a3f805f2e8e61369c42eab565ebafe555cf6d1a1c -size 381131 +oid sha256:894600de56af211d4cc3e64ee092b5a62d1b0158c51048d17accadddea0f046e +size 382725 diff --git a/docs/notebooks/ddcolor-image-colorization-with-output.rst b/docs/notebooks/ddcolor-image-colorization-with-output.rst index b2a76fd1a0ded8..409d2495e2fea6 100644 --- a/docs/notebooks/ddcolor-image-colorization-with-output.rst +++ b/docs/notebooks/ddcolor-image-colorization-with-output.rst @@ -105,12 +105,12 @@ Prerequisites .. parsed-literal:: Cloning into 'DDColor'... - remote: Enumerating objects: 233, done. - remote: Counting objects: 100% (76/76), done. - remote: Compressing objects: 100% (42/42), done. - remote: Total 233 (delta 54), reused 34 (delta 34), pack-reused 157 (from 1) - Receiving objects: 100% (233/233), 13.34 MiB | 641.00 KiB/s, done. - Resolving deltas: 100% (80/80), done. + remote: Enumerating objects: 241, done. + remote: Counting objects: 100% (84/84), done. + remote: Compressing objects: 100% (49/49), done. + remote: Total 241 (delta 57), reused 37 (delta 35), pack-reused 157 (from 1) + Receiving objects: 100% (241/241), 14.10 MiB | 21.95 MiB/s, done. + Resolving deltas: 100% (83/83), done. @@ -131,7 +131,7 @@ Prerequisites .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/timm/models/layers/__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/timm/models/layers/__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning) @@ -412,10 +412,10 @@ Perform model quantization .. parsed-literal:: - 2024-10-22 22:45:07.339219: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-22 22:45:07.378241: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-04 22:52:53.152561: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-04 22:52:53.191342: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-22 22:45:07.784302: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-04 22:52:53.595160: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT @@ -523,7 +523,7 @@ Tool + @@ -307,13 +304,13 @@ loading on device using ``core.complie_model``. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/depth-anything/Depth-Anything-V2/depth_anything_v2/dinov2_layers/patch_embed.py:73: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/depth-anything/Depth-Anything-V2/depth_anything_v2/dinov2_layers/patch_embed.py:73: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}" - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/depth-anything/Depth-Anything-V2/depth_anything_v2/dinov2_layers/patch_embed.py:74: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/depth-anything/Depth-Anything-V2/depth_anything_v2/dinov2_layers/patch_embed.py:74: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}" - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/depth-anything/Depth-Anything-V2/depth_anything_v2/dinov2.py:183: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/depth-anything/Depth-Anything-V2/depth_anything_v2/dinov2.py:183: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if npatch == N and w == h: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/depth-anything/Depth-Anything-V2/depth_anything_v2/dpt.py:147: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/depth-anything/Depth-Anything-V2/depth_anything_v2/dpt.py:147: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True) @@ -405,7 +402,7 @@ range. .. parsed-literal:: - + @@ -627,7 +624,7 @@ Run inference on video .. parsed-literal:: - Processed 60 frames in 13.44 seconds. Total FPS (including video processing): 4.46.Inference FPS: 10.42 + Processed 60 frames in 13.24 seconds. Total FPS (including video processing): 4.53.Inference FPS: 10.68 Video saved to 'output/Coco Walking in Berkeley_depth_anything.mp4'. @@ -654,7 +651,7 @@ Run inference on video .. parsed-literal:: Showing video saved at - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/depth-anything/Depth-Anything-V2/output/Coco Walking in Berkeley_depth_anything.mp4 + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/depth-anything/Depth-Anything-V2/output/Coco Walking in Berkeley_depth_anything.mp4 If you cannot see the video in your browser, please click on the following link to download the video @@ -787,10 +784,10 @@ quantization code below may take some time. .. parsed-literal:: - 2024-10-22 22:53:01.689628: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-22 22:53:01.723459: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-04 23:01:18.047102: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-04 23:01:18.080343: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-22 22:53:02.312695: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-04 23:01:18.654050: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT @@ -916,10 +913,10 @@ data. .. parsed-literal:: - Processed 60 frames in 12.93 seconds. Total FPS (including video processing): 4.64.Inference FPS: 12.78 + Processed 60 frames in 12.60 seconds. Total FPS (including video processing): 4.76.Inference FPS: 13.12 Video saved to 'output/Coco Walking in Berkeley_depth_anything_int8.mp4'. Showing video saved at - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/depth-anything/Depth-Anything-V2/output/Coco Walking in Berkeley_depth_anything.mp4 + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/depth-anything/Depth-Anything-V2/output/Coco Walking in Berkeley_depth_anything.mp4 If you cannot see the video in your browser, please click on the following link to download the video @@ -999,9 +996,9 @@ Tool =4.8.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch) (4.12.2) - Requirement already satisfied: sympy in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch) (1.13.3) - Requirement already satisfied: networkx in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch) (3.1) - Requirement already satisfied: jinja2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch) (3.1.4) - Requirement already satisfied: fsspec in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch) (2024.9.0) - Requirement already satisfied: numpy in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torchvision) (1.23.5) - Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torchvision) (10.4.0) - Requirement already satisfied: MarkupSafe>=2.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from jinja2->torch) (2.1.5) - Requirement already satisfied: mpmath<1.4,>=1.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from sympy->torch) (1.3.0) + Requirement already satisfied: torch in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (2.4.1+cpu) + Requirement already satisfied: torchvision in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (0.19.1+cpu) + Requirement already satisfied: opencv-python in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (4.10.0.84) + Requirement already satisfied: wheel in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (0.44.0) + Requirement already satisfied: filelock in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch) (3.16.1) + Requirement already satisfied: typing-extensions>=4.8.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch) (4.12.2) + Requirement already satisfied: sympy in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch) (1.13.3) + Requirement already satisfied: networkx in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch) (3.1) + Requirement already satisfied: jinja2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch) (3.1.4) + Requirement already satisfied: fsspec in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch) (2024.9.0) + Requirement already satisfied: numpy in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torchvision) (1.23.5) + Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torchvision) (10.4.0) + Requirement already satisfied: MarkupSafe>=2.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from jinja2->torch) (2.1.5) + Requirement already satisfied: mpmath<1.4,>=1.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from sympy->torch) (1.3.0) Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cpu Collecting git+https://github.com/facebookresearch/detectron2.git - Cloning https://github.com/facebookresearch/detectron2.git to /tmp/pip-req-build-we1e_5gi + Cloning https://github.com/facebookresearch/detectron2.git to /tmp/pip-req-build-9ds1xx43 .. parsed-literal:: - Running command git clone --filter=blob:none --quiet https://github.com/facebookresearch/detectron2.git /tmp/pip-req-build-we1e_5gi + Running command git clone --filter=blob:none --quiet https://github.com/facebookresearch/detectron2.git /tmp/pip-req-build-9ds1xx43 .. parsed-literal:: @@ -125,88 +125,88 @@ Install required packages for running model Resolved https://github.com/facebookresearch/detectron2.git to commit 8d85329aed8506ea3672e3e208971345973ea761 Preparing metadata (setup.py): started Preparing metadata (setup.py): finished with status 'done' - Requirement already satisfied: Pillow>=7.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (10.4.0) - Requirement already satisfied: black in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (24.3.0) - Collecting cloudpickle (from detectron2==0.6) - Using cached cloudpickle-3.1.0-py3-none-any.whl.metadata (7.0 kB) - Collecting fvcore<0.1.6,>=0.1.5 (from detectron2==0.6) - Using cached fvcore-0.1.5.post20221221-py3-none-any.whl + Requirement already satisfied: Pillow>=7.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (10.4.0) + Requirement already satisfied: black in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (24.3.0) + Requirement already satisfied: cloudpickle in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (3.1.0) + Requirement already satisfied: fvcore<0.1.6,>=0.1.5 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (0.1.5.post20221221) Collecting hydra-core>=1.1 (from detectron2==0.6) Using cached hydra_core-1.3.2-py3-none-any.whl.metadata (5.5 kB) Collecting iopath<0.1.10,>=0.1.7 (from detectron2==0.6) - Using cached iopath-0.1.9-py3-none-any.whl.metadata (370 bytes) - Requirement already satisfied: matplotlib in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (3.7.5) - Requirement already satisfied: omegaconf<2.4,>=2.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (2.3.0) - Requirement already satisfied: packaging in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (24.1) - Collecting pycocotools>=2.0.2 (from detectron2==0.6) - Using cached pycocotools-2.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.1 kB) - Requirement already satisfied: tabulate in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (0.9.0) - Requirement already satisfied: tensorboard in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (2.12.3) - Requirement already satisfied: termcolor>=1.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (2.4.0) - Requirement already satisfied: tqdm>4.29.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (4.66.5) - Collecting yacs>=0.1.8 (from detectron2==0.6) - Using cached yacs-0.1.8-py3-none-any.whl.metadata (639 bytes) - Requirement already satisfied: numpy in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from fvcore<0.1.6,>=0.1.5->detectron2==0.6) (1.23.5) - Requirement already satisfied: pyyaml>=5.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from fvcore<0.1.6,>=0.1.5->detectron2==0.6) (6.0.2) - Requirement already satisfied: antlr4-python3-runtime==4.9.* in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from hydra-core>=1.1->detectron2==0.6) (4.9.3) - Requirement already satisfied: importlib-resources in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from hydra-core>=1.1->detectron2==0.6) (6.4.5) - Collecting portalocker (from iopath<0.1.10,>=0.1.7->detectron2==0.6) - Using cached portalocker-2.10.1-py3-none-any.whl.metadata (8.5 kB) - Requirement already satisfied: contourpy>=1.0.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from matplotlib->detectron2==0.6) (1.1.1) - Requirement already satisfied: cycler>=0.10 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from matplotlib->detectron2==0.6) (0.12.1) - Requirement already satisfied: fonttools>=4.22.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from matplotlib->detectron2==0.6) (4.54.1) - Requirement already satisfied: kiwisolver>=1.0.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from matplotlib->detectron2==0.6) (1.4.7) - Requirement already satisfied: pyparsing>=2.3.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from matplotlib->detectron2==0.6) (3.1.4) - Requirement already satisfied: python-dateutil>=2.7 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from matplotlib->detectron2==0.6) (2.9.0.post0) - Requirement already satisfied: click>=8.0.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from black->detectron2==0.6) (8.1.7) - Requirement already satisfied: mypy-extensions>=0.4.3 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from black->detectron2==0.6) (1.0.0) - Requirement already satisfied: pathspec>=0.9.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from black->detectron2==0.6) (0.12.1) - Requirement already satisfied: platformdirs>=2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from black->detectron2==0.6) (4.3.6) - Requirement already satisfied: tomli>=1.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from black->detectron2==0.6) (2.0.2) - Requirement already satisfied: typing-extensions>=4.0.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from black->detectron2==0.6) (4.12.2) - Requirement already satisfied: absl-py>=0.4 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (1.4.0) - Requirement already satisfied: grpcio>=1.48.2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (1.67.0) - Requirement already satisfied: google-auth<3,>=1.6.3 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (2.35.0) - Requirement already satisfied: google-auth-oauthlib<1.1,>=0.5 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (1.0.0) - Requirement already satisfied: markdown>=2.6.8 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (3.7) - Requirement already satisfied: protobuf>=3.19.6 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (3.20.3) - Requirement already satisfied: requests<3,>=2.21.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (2.32.3) - Requirement already satisfied: setuptools>=41.0.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (44.0.0) - Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (0.7.2) - Requirement already satisfied: werkzeug>=1.0.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (3.0.4) - Requirement already satisfied: wheel>=0.26 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (0.44.0) - Requirement already satisfied: cachetools<6.0,>=2.0.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->detectron2==0.6) (5.5.0) - Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->detectron2==0.6) (0.4.1) - Requirement already satisfied: rsa<5,>=3.1.4 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->detectron2==0.6) (4.9) - Requirement already satisfied: requests-oauthlib>=0.7.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from google-auth-oauthlib<1.1,>=0.5->tensorboard->detectron2==0.6) (2.0.0) - Requirement already satisfied: zipp>=3.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from importlib-resources->hydra-core>=1.1->detectron2==0.6) (3.20.2) - Requirement already satisfied: importlib-metadata>=4.4 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from markdown>=2.6.8->tensorboard->detectron2==0.6) (8.5.0) - Requirement already satisfied: six>=1.5 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from python-dateutil>=2.7->matplotlib->detectron2==0.6) (1.16.0) - Requirement already satisfied: charset-normalizer<4,>=2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->detectron2==0.6) (3.4.0) - Requirement already satisfied: idna<4,>=2.5 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->detectron2==0.6) (3.10) - Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->detectron2==0.6) (2.2.3) - Requirement already satisfied: certifi>=2017.4.17 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->detectron2==0.6) (2024.8.30) - Requirement already satisfied: MarkupSafe>=2.1.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from werkzeug>=1.0.1->tensorboard->detectron2==0.6) (2.1.5) - Requirement already satisfied: pyasn1<0.7.0,>=0.4.6 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->detectron2==0.6) (0.6.1) - Requirement already satisfied: oauthlib>=3.0.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<1.1,>=0.5->tensorboard->detectron2==0.6) (3.2.2) + Using cached https://download.pytorch.org/whl/iopath-0.1.9-py3-none-any.whl (27 kB) + Requirement already satisfied: matplotlib in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (3.7.5) + Collecting omegaconf<2.4,>=2.1 (from detectron2==0.6) + Using cached omegaconf-2.3.0-py3-none-any.whl.metadata (3.9 kB) + Requirement already satisfied: packaging in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (24.1) + Requirement already satisfied: pycocotools>=2.0.2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (2.0.7) + Requirement already satisfied: tabulate in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (0.9.0) + Requirement already satisfied: tensorboard in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (2.12.3) + Requirement already satisfied: termcolor>=1.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (2.4.0) + Requirement already satisfied: tqdm>4.29.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (4.66.6) + Requirement already satisfied: yacs>=0.1.8 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from detectron2==0.6) (0.1.8) + Requirement already satisfied: numpy in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from fvcore<0.1.6,>=0.1.5->detectron2==0.6) (1.23.5) + Requirement already satisfied: pyyaml>=5.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from fvcore<0.1.6,>=0.1.5->detectron2==0.6) (6.0.2) + Requirement already satisfied: antlr4-python3-runtime==4.9.* in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from hydra-core>=1.1->detectron2==0.6) (4.9.3) + Requirement already satisfied: importlib-resources in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from hydra-core>=1.1->detectron2==0.6) (6.4.5) + Requirement already satisfied: portalocker in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from iopath<0.1.10,>=0.1.7->detectron2==0.6) (2.10.1) + Requirement already satisfied: contourpy>=1.0.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from matplotlib->detectron2==0.6) (1.1.1) + Requirement already satisfied: cycler>=0.10 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from matplotlib->detectron2==0.6) (0.12.1) + Requirement already satisfied: fonttools>=4.22.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from matplotlib->detectron2==0.6) (4.54.1) + Requirement already satisfied: kiwisolver>=1.0.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from matplotlib->detectron2==0.6) (1.4.7) + Requirement already satisfied: pyparsing>=2.3.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from matplotlib->detectron2==0.6) (3.1.4) + Requirement already satisfied: python-dateutil>=2.7 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from matplotlib->detectron2==0.6) (2.9.0.post0) + Requirement already satisfied: click>=8.0.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from black->detectron2==0.6) (8.1.7) + Requirement already satisfied: mypy-extensions>=0.4.3 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from black->detectron2==0.6) (1.0.0) + Requirement already satisfied: pathspec>=0.9.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from black->detectron2==0.6) (0.12.1) + Requirement already satisfied: platformdirs>=2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from black->detectron2==0.6) (4.3.6) + Requirement already satisfied: tomli>=1.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from black->detectron2==0.6) (2.0.2) + Requirement already satisfied: typing-extensions>=4.0.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from black->detectron2==0.6) (4.12.2) + Requirement already satisfied: absl-py>=0.4 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (1.4.0) + Requirement already satisfied: grpcio>=1.48.2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (1.67.1) + Requirement already satisfied: google-auth<3,>=1.6.3 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (2.35.0) + Requirement already satisfied: google-auth-oauthlib<1.1,>=0.5 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (1.0.0) + Requirement already satisfied: markdown>=2.6.8 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (3.7) + Requirement already satisfied: protobuf>=3.19.6 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (3.20.3) + Requirement already satisfied: requests<3,>=2.21.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (2.32.3) + Requirement already satisfied: setuptools>=41.0.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (44.0.0) + Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (0.7.2) + Requirement already satisfied: werkzeug>=1.0.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (3.0.6) + Requirement already satisfied: wheel>=0.26 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from tensorboard->detectron2==0.6) (0.44.0) + Requirement already satisfied: cachetools<6.0,>=2.0.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->detectron2==0.6) (5.5.0) + Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->detectron2==0.6) (0.4.1) + Requirement already satisfied: rsa<5,>=3.1.4 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->detectron2==0.6) (4.9) + Requirement already satisfied: requests-oauthlib>=0.7.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from google-auth-oauthlib<1.1,>=0.5->tensorboard->detectron2==0.6) (2.0.0) + Requirement already satisfied: zipp>=3.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from importlib-resources->hydra-core>=1.1->detectron2==0.6) (3.20.2) + Requirement already satisfied: importlib-metadata>=4.4 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from markdown>=2.6.8->tensorboard->detectron2==0.6) (8.5.0) + Requirement already satisfied: six>=1.5 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from python-dateutil>=2.7->matplotlib->detectron2==0.6) (1.16.0) + Requirement already satisfied: charset-normalizer<4,>=2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->detectron2==0.6) (3.4.0) + Requirement already satisfied: idna<4,>=2.5 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->detectron2==0.6) (3.10) + Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->detectron2==0.6) (2.2.3) + Requirement already satisfied: certifi>=2017.4.17 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->detectron2==0.6) (2024.8.30) + Requirement already satisfied: MarkupSafe>=2.1.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from werkzeug>=1.0.1->tensorboard->detectron2==0.6) (2.1.5) + Requirement already satisfied: pyasn1<0.7.0,>=0.4.6 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->detectron2==0.6) (0.6.1) + Requirement already satisfied: oauthlib>=3.0.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<1.1,>=0.5->tensorboard->detectron2==0.6) (3.2.2) Using cached hydra_core-1.3.2-py3-none-any.whl (154 kB) - Using cached iopath-0.1.9-py3-none-any.whl (27 kB) - Using cached pycocotools-2.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (439 kB) - Using cached yacs-0.1.8-py3-none-any.whl (14 kB) - Using cached cloudpickle-3.1.0-py3-none-any.whl (22 kB) - Using cached portalocker-2.10.1-py3-none-any.whl (18 kB) + Using cached omegaconf-2.3.0-py3-none-any.whl (79 kB) Building wheels for collected packages: detectron2 Building wheel for detectron2 (setup.py): started Building wheel for detectron2 (setup.py): finished with status 'done' - Created wheel for detectron2: filename=detectron2-0.6-cp38-cp38-linux_x86_64.whl size=8313552 sha256=23ceb6e5b734ecc530172b613be139d732deaa2e962d5a8bc940e6b23a85309d - Stored in directory: /tmp/pip-ephem-wheel-cache-65iaghs7/wheels/19/ac/65/e48e5e4ec2702274d927c5a6efb75709b24014371d3bb778f2 + Created wheel for detectron2: filename=detectron2-0.6-cp38-cp38-linux_x86_64.whl size=8313237 sha256=7cd84a15a89de76a7ab5b648f2fb7ebff63b7e43ffc90c7f19a568d16858de8a + Stored in directory: /tmp/pip-ephem-wheel-cache-uvptv5zg/wheels/19/ac/65/e48e5e4ec2702274d927c5a6efb75709b24014371d3bb778f2 Successfully built detectron2 - Installing collected packages: yacs, portalocker, cloudpickle, iopath, hydra-core, pycocotools, fvcore, detectron2 - Successfully installed cloudpickle-3.1.0 detectron2-0.6 fvcore-0.1.5.post20221221 hydra-core-1.3.2 iopath-0.1.9 portalocker-2.10.1 pycocotools-2.0.7 yacs-0.1.8 - Requirement already satisfied: openvino>=2023.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (2024.4.0) - Requirement already satisfied: numpy<2.1.0,>=1.16.6 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino>=2023.1.0) (1.23.5) - Requirement already satisfied: openvino-telemetry>=2023.2.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino>=2023.1.0) (2024.1.0) - Requirement already satisfied: packaging in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino>=2023.1.0) (24.1) + Installing collected packages: omegaconf, iopath, hydra-core, detectron2 + Attempting uninstall: omegaconf + Found existing installation: omegaconf 2.4.0.dev3 + Uninstalling omegaconf-2.4.0.dev3: + Successfully uninstalled omegaconf-2.4.0.dev3 + Attempting uninstall: iopath + Found existing installation: iopath 0.1.10 + Uninstalling iopath-0.1.10: + Successfully uninstalled iopath-0.1.10 + Successfully installed detectron2-0.6 hydra-core-1.3.2 iopath-0.1.9 omegaconf-2.3.0 + Requirement already satisfied: openvino>=2023.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (2024.4.0) + Requirement already satisfied: numpy<2.1.0,>=1.16.6 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino>=2023.1.0) (1.23.5) + Requirement already satisfied: openvino-telemetry>=2023.2.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino>=2023.1.0) (2024.1.0) + Requirement already satisfied: packaging in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino>=2023.1.0) (24.1) Define helpers for PyTorch model initialization and conversion diff --git a/docs/notebooks/detectron2-to-openvino-with-output_files/detectron2-to-openvino-with-output_22_0.jpg b/docs/notebooks/detectron2-to-openvino-with-output_files/detectron2-to-openvino-with-output_22_0.jpg index 6160562199f757..f5b1d98eea3213 100644 --- a/docs/notebooks/detectron2-to-openvino-with-output_files/detectron2-to-openvino-with-output_22_0.jpg +++ b/docs/notebooks/detectron2-to-openvino-with-output_files/detectron2-to-openvino-with-output_22_0.jpg @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:b6475f9155bca7152327255fb36bac32dea6f10aa834b6a91d46d4ecc718be0f -size 58279 +oid sha256:0df4e94924f81aab66086702d85a461f463078f0d06f67b1fe5d46ad8480aa91 +size 58652 diff --git a/docs/notebooks/detectron2-to-openvino-with-output_files/detectron2-to-openvino-with-output_22_0.png b/docs/notebooks/detectron2-to-openvino-with-output_files/detectron2-to-openvino-with-output_22_0.png index 77ac4e5e0c1fd8..f676b44edd1d9a 100644 --- a/docs/notebooks/detectron2-to-openvino-with-output_files/detectron2-to-openvino-with-output_22_0.png +++ b/docs/notebooks/detectron2-to-openvino-with-output_files/detectron2-to-openvino-with-output_22_0.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:b98f4e2e56bb62e6d7c68e536d05695f16b412d4bb8a502f5ced3c466716fe91 -size 508620 +oid sha256:b5a857cd060d740290ccc65aec47252aad9f41c665dc2808195c3185248977e8 +size 509376 diff --git a/docs/notebooks/detectron2-to-openvino-with-output_files/detectron2-to-openvino-with-output_32_0.jpg b/docs/notebooks/detectron2-to-openvino-with-output_files/detectron2-to-openvino-with-output_32_0.jpg index 98087b7c1f10f2..67719cdcbd66b0 100644 --- a/docs/notebooks/detectron2-to-openvino-with-output_files/detectron2-to-openvino-with-output_32_0.jpg +++ b/docs/notebooks/detectron2-to-openvino-with-output_files/detectron2-to-openvino-with-output_32_0.jpg @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:02cb8226997c872abaee3c70c1ab90c8e6ac078adb81ec6d0721ece6049e7af3 -size 54825 +oid sha256:ddc40900fddf1a115903c4e200899306060114348bf2ca82fbb4d7d92a885b09 +size 53897 diff --git a/docs/notebooks/detectron2-to-openvino-with-output_files/detectron2-to-openvino-with-output_32_0.png b/docs/notebooks/detectron2-to-openvino-with-output_files/detectron2-to-openvino-with-output_32_0.png index e317a3a3005ef6..af63ef41697b47 100644 --- a/docs/notebooks/detectron2-to-openvino-with-output_files/detectron2-to-openvino-with-output_32_0.png +++ b/docs/notebooks/detectron2-to-openvino-with-output_files/detectron2-to-openvino-with-output_32_0.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:940552cfe8d62878a7b2fb827529df2ef6ef4fa135f82f578362142650e0d751 -size 457741 +oid sha256:d1276209027e5aac72e4bb6f39f4494d2a807ee4bd85054a1285b0832e4515b9 +size 460797 diff --git a/docs/notebooks/distil-whisper-asr-with-output.rst b/docs/notebooks/distil-whisper-asr-with-output.rst index 2cdecfe17a19d4..53950226a210c7 100644 --- a/docs/notebooks/distil-whisper-asr-with-output.rst +++ b/docs/notebooks/distil-whisper-asr-with-output.rst @@ -133,7 +133,8 @@ using tokenizer. "distil-whisper/distil-small.en", ], "Whisper": [ - "openai/whisper-large-v3-turbo" "openai/whisper-large-v3", + "openai/whisper-large-v3-turbo", + "openai/whisper-large-v3", "openai/whisper-large-v2", "openai/whisper-large", "openai/whisper-medium", diff --git a/docs/notebooks/distilbert-sequence-classification-with-output.rst b/docs/notebooks/distilbert-sequence-classification-with-output.rst index 5f069551357b6d..862079f68aeeb7 100644 --- a/docs/notebooks/distilbert-sequence-classification-with-output.rst +++ b/docs/notebooks/distilbert-sequence-classification-with-output.rst @@ -47,31 +47,31 @@ Imports .. parsed-literal:: Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cpu - Requirement already satisfied: openvino>=2023.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (2024.4.0) - Requirement already satisfied: transformers in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (4.45.2) - Requirement already satisfied: torch>=2.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (2.4.1+cpu) - Requirement already satisfied: tqdm in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (4.66.5) - Requirement already satisfied: numpy<2.1.0,>=1.16.6 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino>=2023.1.0) (1.23.5) - Requirement already satisfied: openvino-telemetry>=2023.2.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino>=2023.1.0) (2024.1.0) - Requirement already satisfied: packaging in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino>=2023.1.0) (24.1) - Requirement already satisfied: filelock in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (3.16.1) - Requirement already satisfied: huggingface-hub<1.0,>=0.23.2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (0.26.1) - Requirement already satisfied: pyyaml>=5.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (6.0.2) - Requirement already satisfied: regex!=2019.12.17 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (2024.9.11) - Requirement already satisfied: requests in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (2.32.3) - Requirement already satisfied: safetensors>=0.4.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (0.4.5) - Requirement already satisfied: tokenizers<0.21,>=0.20 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (0.20.1) - Requirement already satisfied: typing-extensions>=4.8.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1) (4.12.2) - Requirement already satisfied: sympy in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1) (1.13.3) - Requirement already satisfied: networkx in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1) (3.1) - Requirement already satisfied: jinja2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1) (3.1.4) - Requirement already satisfied: fsspec in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1) (2024.9.0) - Requirement already satisfied: MarkupSafe>=2.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from jinja2->torch>=2.1) (2.1.5) - Requirement already satisfied: charset-normalizer<4,>=2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests->transformers) (3.4.0) - Requirement already satisfied: idna<4,>=2.5 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests->transformers) (3.10) - Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests->transformers) (2.2.3) - Requirement already satisfied: certifi>=2017.4.17 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests->transformers) (2024.8.30) - Requirement already satisfied: mpmath<1.4,>=1.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from sympy->torch>=2.1) (1.3.0) + Requirement already satisfied: openvino>=2023.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (2024.4.0) + Requirement already satisfied: transformers in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (4.46.1) + Requirement already satisfied: torch>=2.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (2.4.1+cpu) + Requirement already satisfied: tqdm in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (4.66.6) + Requirement already satisfied: numpy<2.1.0,>=1.16.6 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino>=2023.1.0) (1.23.5) + Requirement already satisfied: openvino-telemetry>=2023.2.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino>=2023.1.0) (2024.1.0) + Requirement already satisfied: packaging in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from openvino>=2023.1.0) (24.1) + Requirement already satisfied: filelock in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (3.16.1) + Requirement already satisfied: huggingface-hub<1.0,>=0.23.2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (0.26.2) + Requirement already satisfied: pyyaml>=5.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (6.0.2) + Requirement already satisfied: regex!=2019.12.17 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (2024.9.11) + Requirement already satisfied: requests in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (2.32.3) + Requirement already satisfied: safetensors>=0.4.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (0.4.5) + Requirement already satisfied: tokenizers<0.21,>=0.20 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from transformers) (0.20.2) + Requirement already satisfied: typing-extensions>=4.8.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1) (4.12.2) + Requirement already satisfied: sympy in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1) (1.13.3) + Requirement already satisfied: networkx in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1) (3.1) + Requirement already satisfied: jinja2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1) (3.1.4) + Requirement already satisfied: fsspec in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1) (2024.9.0) + Requirement already satisfied: MarkupSafe>=2.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from jinja2->torch>=2.1) (2.1.5) + Requirement already satisfied: charset-normalizer<4,>=2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests->transformers) (3.4.0) + Requirement already satisfied: idna<4,>=2.5 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests->transformers) (3.10) + Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests->transformers) (2.2.3) + Requirement already satisfied: certifi>=2017.4.17 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests->transformers) (2024.8.30) + Requirement already satisfied: mpmath<1.4,>=1.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from sympy->torch>=2.1) (1.3.0) Note: you may need to restart the kernel to use updated packages. @@ -110,6 +110,15 @@ model from Hugging Face. checkpoint = "distilbert-base-uncased-finetuned-sst-2-english" model = AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path=checkpoint) + +.. parsed-literal:: + + 2024-11-04 23:18:47.102633: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-04 23:18:47.135966: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. + 2024-11-04 23:18:47.793551: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + + Initializing the Tokenizer -------------------------- @@ -166,10 +175,15 @@ optimal execution on end-point target devices. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:4779: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead + WARNING:tensorflow:Please fix your imports. Module tensorflow.python.training.tracking.base has been moved to tensorflow.python.trackable.base. The old module will be deleted in version 2.11. + + +.. parsed-literal:: + + [ WARNING ] Please fix your imports. Module %s has been moved to %s. The old module will be deleted in version %s. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:5006: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead warnings.warn( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/distilbert/modeling_distilbert.py:215: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. - mask, torch.tensor(torch.finfo(scores.dtype).min) + `loss_type=None` was set in the config but it is unrecognised.Using the default loss: `ForCausalLMLoss`. OpenVINO™ Runtime uses the `Infer diff --git a/docs/notebooks/dolly-2-instruction-following-with-output.rst b/docs/notebooks/dolly-2-instruction-following-with-output.rst index 9f6857b608d962..3b276a1725f0aa 100644 --- a/docs/notebooks/dolly-2-instruction-following-with-output.rst +++ b/docs/notebooks/dolly-2-instruction-following-with-output.rst @@ -136,6 +136,8 @@ documentation `__. .. code:: ipython3 import os + from pathlib import Path + import requests os.environ["GIT_CLONE_PROTECTION_ACTIVE"] = "false" @@ -144,12 +146,17 @@ documentation `__. %pip install -q "diffusers>=0.16.1" "transformers>=4.33.0" "torch>=2.1" "nncf>=2.10.0" "onnx<1.16.2" "gradio>=4.19" --extra-index-url https://download.pytorch.org/whl/cpu %pip install -q "git+https://github.com/huggingface/optimum-intel.git" - import requests - r = requests.get( - url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py", - ) - open("notebook_utils.py", "w").write(r.text) + utility_files = ["notebook_utils.py", "cmd_helper.py"] + + for utility in utility_files: + local_path = Path(utility) + if not local_path.exists(): + r = requests.get( + url=f"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/{local_path.name}", + ) + with local_path.open("w") as f: + f.write(r.text) Convert model using Optimum-CLI tool ------------------------------------ @@ -227,7 +234,7 @@ sacrifice of the model size and inference latency. .. code:: ipython3 - from IPython.display import Markdown, display + from IPython.display import display import ipywidgets as widgets prepare_int4_model = widgets.Checkbox( @@ -272,6 +279,7 @@ sacrifice of the model size and inference latency. .. code:: ipython3 from pathlib import Path + from cmd_helper import optimum_cli model_id = "databricks/dolly-v2-3b" model_path = Path("dolly-v2-3b") @@ -284,36 +292,19 @@ sacrifice of the model size and inference latency. def convert_to_fp16(): if (fp16_model_dir / "openvino_model.xml").exists(): return - fp16_model_dir.mkdir(parents=True, exist_ok=True) - export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format fp16".format(model_id) - export_command = export_command_base + " " + str(fp16_model_dir) - display(Markdown("**Export command:**")) - display(Markdown(f"`{export_command}`")) - ! $export_command + optimum_cli(model_id, fp16_model_dir, additional_args={"weight-format": "fp16"}) def convert_to_int8(): if (int8_model_dir / "openvino_model.xml").exists(): return - int8_model_dir.mkdir(parents=True, exist_ok=True) - export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format int8".format(model_id) - export_command = export_command_base + " " + str(int8_model_dir) - display(Markdown("**Export command:**")) - display(Markdown(f"`{export_command}`")) - ! $export_command + optimum_cli(model_id, int8_model_dir, additional_args={"weight-format": "int8"}) def convert_to_int4(): if (int4_model_dir / "openvino_model.xml").exists(): return - int4_model_dir.mkdir(parents=True, exist_ok=True) - export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format int4 --ratio 1.0 --group-size 128".format( - model_id - ) - export_command = export_command_base + " " + str(int4_model_dir) - display(Markdown("**Export command:**")) - display(Markdown(f"`{export_command}`")) - ! $export_command + optimum_cli(model_id, int4_model_dir, additional_args={"weight-format": "int4"}) if prepare_fp16_model.value: diff --git a/docs/notebooks/dynamicrafter-animating-images-with-output.rst b/docs/notebooks/dynamicrafter-animating-images-with-output.rst index 584c3442c94af2..992c346194e31c 100644 --- a/docs/notebooks/dynamicrafter-animating-images-with-output.rst +++ b/docs/notebooks/dynamicrafter-animating-images-with-output.rst @@ -189,10 +189,10 @@ Prerequisites remote: Counting objects: 100% (153/153), done. remote: Compressing objects: 100% (99/99), done. remote: Total 335 (delta 97), reused 54 (delta 54), pack-reused 182 (from 1) - Receiving objects: 100% (335/335), 72.41 MiB | 22.40 MiB/s, done. + Receiving objects: 100% (335/335), 72.41 MiB | 20.85 MiB/s, done. Resolving deltas: 100% (123/123), done. - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/dynamicrafter-animating-images/dynamicrafter - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/dynamicrafter-animating-images + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/dynamicrafter-animating-images/dynamicrafter + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/dynamicrafter-animating-images @@ -282,7 +282,7 @@ We will use model for 256x256 resolution as example. Also, models for .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/huggingface_hub/file_download.py:834: UserWarning: `local_dir_use_symlinks` parameter is deprecated and will be ignored. The process to download files to a local folder has been updated and do not rely on symlinks anymore. You only need to pass a destination folder as`local_dir`. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/huggingface_hub/file_download.py:834: UserWarning: `local_dir_use_symlinks` parameter is deprecated and will be ignored. The process to download files to a local folder has been updated and do not rely on symlinks anymore. You only need to pass a destination folder as`local_dir`. For more details, check out https://huggingface.co/docs/huggingface_hub/main/en/guides/download#download-files-to-local-folder. warnings.warn( @@ -300,8 +300,12 @@ We will use model for 256x256 resolution as example. Also, models for .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/timm/models/layers/__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/timm/models/layers/__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning) + 2024-11-04 23:23:38.980054: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-04 23:23:39.013901: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. + 2024-11-04 23:23:39.616188: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT .. parsed-literal:: @@ -384,6 +388,17 @@ Convert CLIP text encoder del cond_stage_model gc.collect(); + +.. parsed-literal:: + + WARNING:tensorflow:Please fix your imports. Module tensorflow.python.training.tracking.base has been moved to tensorflow.python.trackable.base. The old module will be deleted in version 2.11. + + +.. parsed-literal:: + + WARNING:tensorflow:Please fix your imports. Module tensorflow.python.training.tracking.base has been moved to tensorflow.python.trackable.base. The old module will be deleted in version 2.11. + + Convert CLIP image encoder ~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -409,43 +424,43 @@ resolutions. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/utils/image.py:226: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/utils/image.py:226: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if input.numel() == 0: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/geometry/transform/affwarp.py:573: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/geometry/transform/affwarp.py:573: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if size == input_size: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/geometry/transform/affwarp.py:579: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/geometry/transform/affwarp.py:579: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! antialias = antialias and (max(factors) > 1) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/geometry/transform/affwarp.py:581: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/geometry/transform/affwarp.py:581: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if antialias: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/geometry/transform/affwarp.py:584: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/geometry/transform/affwarp.py:584: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! sigmas = (max((factors[0] - 1.0) / 2.0, 0.001), max((factors[1] - 1.0) / 2.0, 0.001)) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/geometry/transform/affwarp.py:589: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/geometry/transform/affwarp.py:589: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3)) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/geometry/transform/affwarp.py:589: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/geometry/transform/affwarp.py:589: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3)) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/filters/gaussian.py:55: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/filters/gaussian.py:55: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. sigma = tensor([sigma], device=input.device, dtype=input.dtype) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/filters/gaussian.py:55: TracerWarning: Converting a tensor to a Python float might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/filters/gaussian.py:55: TracerWarning: Converting a tensor to a Python float might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! sigma = tensor([sigma], device=input.device, dtype=input.dtype) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/core/check.py:78: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/core/check.py:78: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if x_shape_to_check[i] != dim: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/filters/kernels.py:92: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/filters/kernels.py:92: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. mean = tensor([[mean]], device=sigma.device, dtype=sigma.dtype) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/enhance/normalize.py:101: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/enhance/normalize.py:101: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if len(mean.shape) == 0 or mean.shape[0] == 1: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/enhance/normalize.py:103: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/enhance/normalize.py:103: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if len(std.shape) == 0 or std.shape[0] == 1: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/enhance/normalize.py:107: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/enhance/normalize.py:107: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if mean.shape and mean.shape[0] != 1: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/enhance/normalize.py:108: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/enhance/normalize.py:108: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if mean.shape[0] != data.shape[1] and mean.shape[:2] != data.shape[:2]: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/enhance/normalize.py:112: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/enhance/normalize.py:112: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if std.shape and std.shape[0] != 1: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/enhance/normalize.py:113: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/enhance/normalize.py:113: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if std.shape[0] != data.shape[1] and std.shape[:2] != data.shape[:2]: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/enhance/normalize.py:116: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/enhance/normalize.py:116: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. mean = torch.as_tensor(mean, device=data.device, dtype=data.dtype) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/enhance/normalize.py:117: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/kornia/enhance/normalize.py:117: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. std = torch.as_tensor(std, device=data.device, dtype=data.dtype) @@ -474,7 +489,7 @@ Convert AE encoder .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/dynamicrafter-animating-images/dynamicrafter/lvdm/modules/networks/ae_modules.py:67: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/dynamicrafter-animating-images/dynamicrafter/lvdm/modules/networks/ae_modules.py:67: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! w_ = w_ * (int(c)**(-0.5)) @@ -518,15 +533,15 @@ Convert Diffusion U-Net model .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/dynamicrafter-animating-images/dynamicrafter/lvdm/modules/networks/openaimodel3d.py:556: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/dynamicrafter-animating-images/dynamicrafter/lvdm/modules/networks/openaimodel3d.py:556: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if l_context == 77 + t*16: ## !!! HARD CODE here - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/dynamicrafter-animating-images/dynamicrafter/lvdm/modules/networks/openaimodel3d.py:205: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/dynamicrafter-animating-images/dynamicrafter/lvdm/modules/networks/openaimodel3d.py:205: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if batch_size: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/dynamicrafter-animating-images/dynamicrafter/lvdm/modules/networks/openaimodel3d.py:232: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/dynamicrafter-animating-images/dynamicrafter/lvdm/modules/networks/openaimodel3d.py:232: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if self.use_temporal_conv and batch_size: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/dynamicrafter-animating-images/dynamicrafter/lvdm/modules/networks/openaimodel3d.py:76: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/dynamicrafter-animating-images/dynamicrafter/lvdm/modules/networks/openaimodel3d.py:76: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert x.shape[1] == self.channels - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/dynamicrafter-animating-images/dynamicrafter/lvdm/modules/networks/openaimodel3d.py:99: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/dynamicrafter-animating-images/dynamicrafter/lvdm/modules/networks/openaimodel3d.py:99: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert x.shape[1] == self.channels @@ -913,14 +928,14 @@ Run OpenVINO pipeline inference .. parsed-literal:: Seed set to 234 - /tmp/ipykernel_2590985/2451984876.py:25: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:206.) + /tmp/ipykernel_511478/2451984876.py:25: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:206.) img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device) .. parsed-literal:: - start: man fishing in a boat at sunset 2024-10-22 23:16:18 - Saved in man_fishing_in_a_boat_at_sunset.mp4. Time used: 196.25 seconds + start: man fishing in a boat at sunset 2024-11-04 23:26:56 + Saved in man_fishing_in_a_boat_at_sunset.mp4. Time used: 206.55 seconds .. code:: ipython3 @@ -1170,14 +1185,6 @@ quantization time. INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, tensorflow, onnx, openvino -.. parsed-literal:: - - 2024-10-22 23:45:51.693284: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-22 23:45:51.735392: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. - To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-22 23:45:52.354791: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT - - .. parsed-literal:: @@ -1357,8 +1364,8 @@ Let’s run the optimized pipeline .. parsed-literal:: - start: man fishing in a boat at sunset 2024-10-23 00:47:13 - Saved in man_fishing_in_a_boat_at_sunset.mp4. Time used: 98.40 seconds + start: man fishing in a boat at sunset 2024-11-05 00:58:08 + Saved in man_fishing_in_a_boat_at_sunset.mp4. Time used: 97.78 seconds .. code:: ipython3 @@ -1463,9 +1470,9 @@ models, we use median inference time on calibration subset. .. parsed-literal:: - FP32 latency: 195.358 - INT8 latency: 97.265 - Performance speed up: 2.009 + FP32 latency: 201.526 + INT8 latency: 96.036 + Performance speed up: 2.098 Interactive inference diff --git a/docs/notebooks/efficient-sam-with-output.rst b/docs/notebooks/efficient-sam-with-output.rst index 8d725c4594afc6..b50b82341f4af8 100644 --- a/docs/notebooks/efficient-sam-with-output.rst +++ b/docs/notebooks/efficient-sam-with-output.rst @@ -108,9 +108,9 @@ Prerequisites remote: Counting objects: 100% (85/85), done. remote: Compressing objects: 100% (33/33), done. remote: Total 424 (delta 76), reused 52 (delta 52), pack-reused 339 (from 1) - Receiving objects: 100% (424/424), 262.14 MiB | 24.94 MiB/s, done. + Receiving objects: 100% (424/424), 262.14 MiB | 23.37 MiB/s, done. Resolving deltas: 100% (246/246), done. - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM .. code:: ipython3 @@ -377,23 +377,23 @@ disk using ``openvino.save_model``. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM/efficient_sam/efficient_sam.py:220: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM/efficient_sam/efficient_sam.py:220: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if ( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM/efficient_sam/efficient_sam_encoder.py:241: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM/efficient_sam/efficient_sam_encoder.py:241: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert ( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM/efficient_sam/efficient_sam_encoder.py:163: TracerWarning: Converting a tensor to a Python float might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM/efficient_sam/efficient_sam_encoder.py:163: TracerWarning: Converting a tensor to a Python float might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! size = int(math.sqrt(xy_num)) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM/efficient_sam/efficient_sam_encoder.py:164: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM/efficient_sam/efficient_sam_encoder.py:164: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert size * size == xy_num - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM/efficient_sam/efficient_sam_encoder.py:166: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM/efficient_sam/efficient_sam_encoder.py:166: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if size != h or size != w: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM/efficient_sam/efficient_sam_encoder.py:251: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM/efficient_sam/efficient_sam_encoder.py:251: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert x.shape[2] == num_patches - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM/efficient_sam/efficient_sam.py:85: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM/efficient_sam/efficient_sam.py:85: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if num_pts > self.decoder_max_num_input_points: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM/efficient_sam/efficient_sam.py:92: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM/efficient_sam/efficient_sam.py:92: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! elif num_pts < self.decoder_max_num_input_points: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM/efficient_sam/efficient_sam.py:126: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam/EfficientSAM/efficient_sam/efficient_sam.py:126: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if output_w > 0 and output_h > 0: @@ -640,10 +640,10 @@ architecture type, we should specify ``transformer`` in ``model_type``. .. parsed-literal:: - 2024-10-23 01:04:24.934254: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 01:04:24.966235: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-05 01:15:40.935673: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 01:15:40.968460: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 01:04:25.612813: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-05 01:15:41.606156: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT @@ -810,7 +810,7 @@ models, we use ``bencmark_app``. [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT. [Step 4/11] Reading model files [ INFO ] Loading model files - [ INFO ] Read model took 30.59 ms + [ INFO ] Read model took 30.24 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] batched_images (node: batched_images) : f32 / [...] / [?,?,?,?] @@ -830,7 +830,7 @@ models, we use ``bencmark_app``. [ INFO ] ***NO_NAME*** (node: aten::reshape/Reshape_3) : f32 / [...] / [?,?,?,?,?] [ INFO ] ***NO_NAME*** (node: aten::reshape/Reshape_2) : f32 / [...] / [?,?,?] [Step 7/11] Loading the model to the device - [ INFO ] Compile model took 1397.68 ms + [ INFO ] Compile model took 1388.43 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: Model0 @@ -871,17 +871,17 @@ models, we use ``bencmark_app``. [ INFO ] Fill input 'batched_point_labels' with random values [Step 10/11] Measuring performance (Start inference asynchronously, 6 inference requests, limits: 15000 ms duration) [ INFO ] Benchmarking in full mode (inputs filling are included in measurement loop). - [ INFO ] First inference took 822.58 ms + [ INFO ] First inference took 798.46 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] - [ INFO ] Count: 51 iterations - [ INFO ] Duration: 16272.65 ms + [ INFO ] Count: 49 iterations + [ INFO ] Duration: 16827.30 ms [ INFO ] Latency: - [ INFO ] Median: 1835.79 ms - [ INFO ] Average: 1847.61 ms - [ INFO ] Min: 1271.60 ms - [ INFO ] Max: 2300.40 ms - [ INFO ] Throughput: 3.13 FPS + [ INFO ] Median: 2025.54 ms + [ INFO ] Average: 1991.09 ms + [ INFO ] Min: 816.09 ms + [ INFO ] Max: 2176.67 ms + [ INFO ] Throughput: 2.91 FPS .. code:: ipython3 @@ -907,7 +907,7 @@ models, we use ``bencmark_app``. [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT. [Step 4/11] Reading model files [ INFO ] Loading model files - [ INFO ] Read model took 43.92 ms + [ INFO ] Read model took 43.95 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] batched_images (node: batched_images) : f32 / [...] / [?,?,?,?] @@ -927,7 +927,7 @@ models, we use ``bencmark_app``. [ INFO ] ***NO_NAME*** (node: aten::reshape/Reshape_3) : f32 / [...] / [?,?,?,?,?] [ INFO ] ***NO_NAME*** (node: aten::reshape/Reshape_2) : f32 / [...] / [?,?,?] [Step 7/11] Loading the model to the device - [ INFO ] Compile model took 1623.93 ms + [ INFO ] Compile model took 1607.96 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: Model0 @@ -968,17 +968,17 @@ models, we use ``bencmark_app``. [ INFO ] Fill input 'batched_point_labels' with random values [Step 10/11] Measuring performance (Start inference asynchronously, 6 inference requests, limits: 15000 ms duration) [ INFO ] Benchmarking in full mode (inputs filling are included in measurement loop). - [ INFO ] First inference took 578.24 ms + [ INFO ] First inference took 596.94 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] [ INFO ] Count: 55 iterations - [ INFO ] Duration: 15797.98 ms + [ INFO ] Duration: 15959.69 ms [ INFO ] Latency: - [ INFO ] Median: 1695.87 ms - [ INFO ] Average: 1683.49 ms - [ INFO ] Min: 550.40 ms - [ INFO ] Max: 1833.79 ms - [ INFO ] Throughput: 3.48 FPS + [ INFO ] Median: 1701.74 ms + [ INFO ] Average: 1692.86 ms + [ INFO ] Min: 653.76 ms + [ INFO ] Max: 1817.85 ms + [ INFO ] Throughput: 3.45 FPS Interactive segmentation demo @@ -1308,7 +1308,7 @@ Interactive segmentation demo .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/efficient-sam Running on local URL: http://127.0.0.1:7860 To create a public link, set `share=True` in `launch()`. diff --git a/docs/notebooks/efficient-sam-with-output_files/efficient-sam-with-output_17_1.png b/docs/notebooks/efficient-sam-with-output_files/efficient-sam-with-output_17_1.png index c6c2e7d72e694a..9f65fa9db4554a 100644 --- a/docs/notebooks/efficient-sam-with-output_files/efficient-sam-with-output_17_1.png +++ b/docs/notebooks/efficient-sam-with-output_files/efficient-sam-with-output_17_1.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:ee7d364aeabe9a2787785e4d0ee5bb8951f530f90a0a625c9f31047bdc157b59 -size 1261144 +oid sha256:9368b1fbd458d1e022a768f24e689af0fd6e5dacc98a920f45d3fc0f63062567 +size 1259373 diff --git a/docs/notebooks/efficient-sam-with-output_files/efficient-sam-with-output_25_1.png b/docs/notebooks/efficient-sam-with-output_files/efficient-sam-with-output_25_1.png index ff03bff6360a90..7c0716600906a1 100644 --- a/docs/notebooks/efficient-sam-with-output_files/efficient-sam-with-output_25_1.png +++ b/docs/notebooks/efficient-sam-with-output_files/efficient-sam-with-output_25_1.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:40a049edc89f5339af256b80e0fc99740d9e3b6d3159e6e9d09e78683d24e0fe -size 1261722 +oid sha256:22f0e5bfd74e7426218d2bd007f9219433556530ddb10f33b9706398eb7cd370 +size 1263404 diff --git a/docs/notebooks/efficient-sam-with-output_files/efficient-sam-with-output_36_1.png b/docs/notebooks/efficient-sam-with-output_files/efficient-sam-with-output_36_1.png index 766db096877cba..0a717e2c9aa38d 100644 --- a/docs/notebooks/efficient-sam-with-output_files/efficient-sam-with-output_36_1.png +++ b/docs/notebooks/efficient-sam-with-output_files/efficient-sam-with-output_36_1.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:f4fcf4eecf855fa1a9ca72c0dbf5c070e11a4a520873971202b592bc65dd2ccc -size 1261487 +oid sha256:d1863ccc9483f6cbd60768b311d104ee68692c3a7181e06da4bc751b52cf0ca1 +size 1262535 diff --git a/docs/notebooks/encodec-audio-compression-with-output.rst b/docs/notebooks/encodec-audio-compression-with-output.rst index 394c6e5b92e9bf..7f0e153ffa4a55 100644 --- a/docs/notebooks/encodec-audio-compression-with-output.rst +++ b/docs/notebooks/encodec-audio-compression-with-output.rst @@ -142,7 +142,7 @@ bandwidth. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/nn/utils/weight_norm.py:134: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/nn/utils/weight_norm.py:134: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`. WeightNorm.apply(module, name, dim) @@ -302,7 +302,7 @@ similar as possible to the original. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/nn/utils/weight_norm.py:134: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/nn/utils/weight_norm.py:134: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`. WeightNorm.apply(module, name, dim) @@ -402,13 +402,13 @@ with ``ov.save_model``. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/encodec/modules/conv.py:60: TracerWarning: Converting a tensor to a Python float might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/encodec/modules/conv.py:60: TracerWarning: Converting a tensor to a Python float might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/encodec/modules/conv.py:85: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/encodec/modules/conv.py:85: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/encodec/modules/conv.py:87: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/encodec/modules/conv.py:87: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! max_pad = max(padding_left, padding_right) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/encodec/modules/conv.py:89: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/encodec/modules/conv.py:89: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if length <= max_pad: @@ -428,11 +428,11 @@ with ``ov.save_model``. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/encodec/quantization/core_vq.py:358: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/encodec/quantization/core_vq.py:358: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. quantized_out = torch.tensor(0.0, device=q_indices.device) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/encodec/quantization/core_vq.py:359: TracerWarning: Iterating over a tensor might cause the trace to be incorrect. Passing a tensor of different shape won't change the number of iterations executed (and might lead to errors or silently give incorrect results). + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/encodec/quantization/core_vq.py:359: TracerWarning: Iterating over a tensor might cause the trace to be incorrect. Passing a tensor of different shape won't change the number of iterations executed (and might lead to errors or silently give incorrect results). for i, indices in enumerate(q_indices): - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/encodec/modules/conv.py:103: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/encodec/modules/conv.py:103: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert (padding_left + padding_right) <= x.shape[-1] diff --git a/docs/notebooks/fast-segment-anything-with-output.rst b/docs/notebooks/fast-segment-anything-with-output.rst index c29a58c33e3490..e0f20e0f79974b 100644 --- a/docs/notebooks/fast-segment-anything-with-output.rst +++ b/docs/notebooks/fast-segment-anything-with-output.rst @@ -158,7 +158,7 @@ model and generate a segmentation map. .. parsed-literal:: - 100%|██████████| 138M/138M [00:02<00:00, 56.5MB/s] + 100%|██████████| 138M/138M [00:02<00:00, 67.7MB/s] @@ -170,8 +170,8 @@ model and generate a segmentation map. .. parsed-literal:: - image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/fast-segment-anything/coco_bike.jpg: 768x1024 37 objects, 662.7ms - Speed: 3.8ms preprocess, 662.7ms inference, 766.0ms postprocess per image at shape (1, 3, 768, 1024) + image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/fast-segment-anything/coco_bike.jpg: 768x1024 37 objects, 728.3ms + Speed: 3.1ms preprocess, 728.3ms inference, 768.2ms postprocess per image at shape (1, 3, 768, 1024) The model returns segmentation maps for all the objects on the image. @@ -216,8 +216,8 @@ tracing. The FastSAM model itself is based on YOLOv8 model. OpenVINO: starting export with openvino 2024.4.0-16579-c3152d32c9c-releases/2024/4... OpenVINO: export success ✅ 6.2s, saved as 'FastSAM-x_openvino_model/' (276.1 MB) - Export complete (9.2s) - Results saved to /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/fast-segment-anything + Export complete (9.1s) + Results saved to /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/fast-segment-anything Predict: yolo predict task=segment model=FastSAM-x_openvino_model imgsz=1024 Validate: yolo val task=segment model=FastSAM-x_openvino_model imgsz=1024 data=ultralytics/datasets/sa.yaml Visualize: https://netron.app @@ -321,8 +321,8 @@ pipeline. .. parsed-literal:: - image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/fast-segment-anything/coco_bike.jpg: 1024x1024 42 objects, 558.8ms - Speed: 5.7ms preprocess, 558.8ms inference, 34.6ms postprocess per image at shape (1, 3, 1024, 1024) + image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/fast-segment-anything/coco_bike.jpg: 1024x1024 42 objects, 504.9ms + Speed: 5.8ms preprocess, 504.9ms inference, 31.6ms postprocess per image at shape (1, 3, 1024, 1024) One can observe the converted model outputs in the next cell, they is @@ -643,9 +643,9 @@ calibration dataset to measure the performance. .. parsed-literal:: - Segmented in 23 seconds - Resulting in 5.57 fps - That is 3.0 times faster! + Segmented in 22 seconds + Resulting in 5.82 fps + That is 3.14 times faster! Try out the converted pipeline diff --git a/docs/notebooks/florence2-with-output.rst b/docs/notebooks/florence2-with-output.rst index 4cca2d85a2bd6c..e929a95fb182c1 100644 --- a/docs/notebooks/florence2-with-output.rst +++ b/docs/notebooks/florence2-with-output.rst @@ -100,10 +100,10 @@ available model. By default, we will use .. parsed-literal:: - 2024-10-23 01:17:38.434215: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 01:17:38.467940: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-05 01:28:54.034484: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 01:28:54.069316: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 01:17:39.118965: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-05 01:28:54.728430: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT @@ -193,49 +193,49 @@ pipeline. .. parsed-literal:: - SECURITY.md: 0%| | 0.00/2.66k [00:00 1 or self.sliding_window is not None: /opt/home/k8sworker/.cache/huggingface/modules/transformers_modules/chkpt/modeling_florence2.py:1205: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False diff --git a/docs/notebooks/florence2-with-output_files/florence2-with-output_18_0.png b/docs/notebooks/florence2-with-output_files/florence2-with-output_18_0.png index a1484a3eb4b6d0..37d11a47fd30c9 100644 --- a/docs/notebooks/florence2-with-output_files/florence2-with-output_18_0.png +++ b/docs/notebooks/florence2-with-output_files/florence2-with-output_18_0.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:f5808e660c685e4518f0a83232c2b9c9e88263e05ecd05891f769d263df4c642 -size 259656 +oid sha256:d85b3df68708172ed849a9e182bdec6a94f0174643833bd8cc7184ac0d090fae +size 259636 diff --git a/docs/notebooks/flux.1-image-generation-with-output.rst b/docs/notebooks/flux.1-image-generation-with-output.rst index 62549bd074d4a6..fe0c47899c3601 100644 --- a/docs/notebooks/flux.1-image-generation-with-output.rst +++ b/docs/notebooks/flux.1-image-generation-with-output.rst @@ -26,7 +26,11 @@ using OpenVINO. - `Prerequisites <#prerequisites>`__ - `Select model <#select-model>`__ - `Convert model with OpenVINO <#convert-model-with-openvino>`__ -- `Compress model weights <#compress-model-weights>`__ + + - `Convert model using Optimum + Intel <#convert-model-using-optimum-intel>`__ + - `Compress model weights <#compress-model-weights>`__ + - `Run OpenVINO model inference <#run-openvino-model-inference>`__ - `Interactive demo <#interactive-demo>`__ @@ -47,8 +51,9 @@ Prerequisites .. code:: ipython3 - %pip install -q "gradio>=4.19" "torch>=2.1" "transformers" "nncf>=2.12.0" "diffusers>=0.30.0" "opencv-python" "pillow" "peft>=0.7.0" --extra-index-url https://download.pytorch.org/whl/cpu + %pip install -q "gradio>=4.19" "torch>=2.1" "transformers" "nncf>=2.12.0" "diffusers>=0.31.0" "opencv-python" "pillow" "peft>=0.7.0" --extra-index-url https://download.pytorch.org/whl/cpu %pip install -q "sentencepiece" "protobuf" + %pip install -q "git+https://github.com/huggingface/optimum-intel.git" %pip install -qU "openvino>=2024.4.0" .. code:: ipython3 @@ -56,9 +61,9 @@ Prerequisites import requests from pathlib import Path - if not Path("flux_helper.py").exists(): - r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/notebooks/flux.1-image-generation/flux_helper.py") - open("flux_helper.py", "w").write(r.text) + if not Path("cmd_helper.py").exists(): + r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/cmd_helper.py") + open("cmd_helper.py", "w").write(r.text) if not Path("gradio_helper.py").exists(): r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/notebooks/flux.1-image-generation/gradio_helper.py") @@ -100,25 +105,19 @@ FLUX.1-dev version using widget bellow. .. code:: ipython3 - from flux_helper import get_model_selector + import ipywidgets as widgets - model_selector = get_model_selector() - model_selector - - -.. parsed-literal:: - - INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, tensorflow, onnx, openvino + model_ids = ["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-dev"] + + model_selector = widgets.Dropdown( + options=model_ids, + default=model_ids[0], + description="Model:", + ) - -.. parsed-literal:: - - 2024-08-13 17:30:13.543036: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-08-13 17:30:13.544738: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used. - 2024-08-13 17:30:13.579013: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. - To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-08-13 17:30:14.449873: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + model_selector + @@ -169,40 +168,44 @@ The pipeline consists of four important parts: - Transformer for step-by-step denoising latent image representation. - Autoencoder (VAE) for decoding latent space to image. -We will use ``convert_flux`` helper function defined in -`flux_helper.py `__ that create original PyTorch model -and convert each part of pipeline using ``ov.convert_model``. - -.. code:: ipython3 +Convert model using Optimum Intel +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - from flux_helper import convert_flux - - # uncomment the line to see model conversion code - # ??convert_flux -.. code:: ipython3 - model_dir = convert_flux(model_selector.value) +For convenience, we will use OpenVINO integration with HuggingFace +Optimum. `Optimum +Intel `__ is the +interface between the Transformers and Diffusers libraries and the +different tools and libraries provided by Intel to accelerate end-to-end +pipelines on Intel architectures. +Among other use cases, Optimum Intel provides a simple interface to +optimize your Transformers and Diffusers models, convert them to the +OpenVINO Intermediate Representation (IR) format and run inference using +OpenVINO Runtime. ``optimum-cli`` provides command line interface for +model conversion and optimization. -.. parsed-literal:: +General command format: - ✅ black-forest-labs/FLUX.1-schnell model already converted and can be found in FLUX.1-schnell - +.. code:: bash -.. code:: ipython3 + optimum-cli export openvino --model --task - from flux_helper import TRANSFORMER_PATH, VAE_DECODER_PATH, TEXT_ENCODER_PATH, TEXT_ENCODER_2_PATH - - model_dict = { - "transformer": model_dir / TRANSFORMER_PATH, - "text_encoder": model_dir / TEXT_ENCODER_PATH, - "text_encoder_2": model_dir / TEXT_ENCODER_2_PATH, - "vae": model_dir / VAE_DECODER_PATH, - } +where task is task to export the model for, if not specified, the task +will be auto-inferred based on the model. You can find a mapping between +tasks and model classes in Optimum TaskManager +`documentation `__. +Additionally, you can specify weights compression using +``--weight-format`` argument with one of following options: ``fp32``, +``fp16``, ``int8`` and ``int4``. Fro int8 and int4 +`nncf `__ will be used for +weight compression. More details about model export provided in `Optimum +Intel +documentation `__. Compress model weights ----------------------- +~~~~~~~~~~~~~~~~~~~~~~ @@ -215,14 +218,16 @@ where the size of weights is relatively larger than the size of activations, for example, Large Language Models (LLM). Compared to INT8 compression, INT4 compression improves performance even more, but introduces a minor drop in prediction quality. We will use -`NNCF `__ for weight -compression. +`NNCF `__ integration to +``optimum-cli`` tool for weight compression. .. code:: ipython3 - from flux_helper import weight_compression_widget - - to_compress = weight_compression_widget() + to_compress = widgets.Checkbox( + value=True, + description="Weight compression", + disabled=False, + ) to_compress @@ -237,112 +242,98 @@ compression. .. code:: ipython3 - import nncf - import openvino as ov - import gc + from pathlib import Path - compression_args = {"mode": nncf.CompressWeightsMode.INT4_SYM, "group_size": 64, "ratio": 1.0} + model_id = model_selector.value - int4_model_dict = {} + model_base_dir = Path(model_id.split("/")[-1]) + additional_args = {} if to_compress.value: - core = ov.Core() - - for model_name, model_path in model_dict.items(): - int4_path = model_path.parent / (model_path.stem + "_int4.xml") - if not int4_path.exists(): - print(f"⌛ {model_path.stem} compression started") - print( - f"Compression parameters:\n\tmode = {compression_args['mode']}\n\tratio = {compression_args['ratio']}\n\tgroup_size = {compression_args['group_size']}" - ) - model = core.read_model(model_path) - compressed_model = nncf.compress_weights(model, **compression_args) - ov.save_model(compressed_model, int4_path) - print(f"✅ {model_path.stem} compression finished") - del compressed_model - del model - gc.collect() - print(f"Compressed {model_path.stem} can be found in {int4_path}") - int4_model_dict[model_name] = int4_path + model_dir = model_base_dir / "INT4" + additional_args.update({"weight-format": "int4", "group-size": "64", "ratio": "1.0"}) + else: + model_dir = model_base_dir / "FP16" + additional_args.update({"weight-format": "fp16"}) +.. code:: ipython3 -.. parsed-literal:: - - Compressed transformer can be found in FLUX.1-schnell/transformer/transformer_int4.xml - Compressed text_encoder can be found in FLUX.1-schnell/text_encoder/text_encoder_int4.xml - Compressed text_encoder_2 can be found in FLUX.1-schnell/text_encoder_2/text_encoder_2_int4.xml - Compressed vae_decoder can be found in FLUX.1-schnell/vae/vae_decoder_int4.xml + from cmd_helper import optimum_cli + if not model_dir.exists(): + optimum_cli(model_id, model_dir, additional_args=additional_args) Run OpenVINO model inference ---------------------------- -``OVFluxPipeline`` class defined in ``flux_helper.py`` provides -convenient way for running model. It accepts directory with converted -model and inference device as arguments. +``OVDiffusionPipeline`` from Optimum Intel provides ready-to-use +interface for running Diffusers models using OpenVINO. It supports +various models including Stable Diffusion, Stable Diffusion XL, LCM, +Stable Diffusion v3 and Flux. Similar to original Diffusers pipeline, +for initialization, we should use ``from_preptrained`` method providing +model id from HuggingFace hub or local directory (both original PyTorch +and OpenVINO models formats supported, in the first case model class +additionally will trigger model conversion). .. code:: ipython3 - from flux_helper import get_pipeline_selection_option + from notebook_utils import device_widget - use_compressed = get_pipeline_selection_option(int4_model_dict) - use_compressed + device = device_widget(default="CPU", exclude=["NPU"]) + device .. parsed-literal:: - Checkbox(value=True, description='Use compressed models') + Dropdown(description='Device:', options=('CPU', 'AUTO'), value='CPU') .. code:: ipython3 - from flux_helper import OVFluxPipeline, init_pipeline # noqa: F401 + import ipywidgets as widgets - # uncomment the line to see model pipeline - # ??OVFluxPipeline - -.. code:: ipython3 - - from notebook_utils import device_widget + model_available = (model_base_dir / "INT4").is_dir() + use_quantized_models = widgets.Checkbox( + value=model_available, + description="Use compressed models", + disabled=not model_available, + ) - device = device_widget(default="CPU", exclude=["NPU"]) - device + use_quantized_models .. parsed-literal:: - Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO') + Checkbox(value=True, description='Use compressed models') .. code:: ipython3 - ov_pipe = init_pipeline(model_dir, model_dict if not use_compressed.value else int4_model_dict, device.value) - - -.. parsed-literal:: - - Models compilation - ✅ transformer - Done! - ✅ text_encoder - Done! - ✅ text_encoder_2 - Done! + from optimum.intel.openvino import OVDiffusionPipeline - -.. parsed-literal:: - - You set `add_prefix_space`. The tokenizer needs to be converted from the slow tokenizers + model_dir = model_base_dir / "INT4" if use_quantized_models.value else model_base_dir / "FP16" + ov_pipe = OVDiffusionPipeline.from_pretrained(model_dir, device=device.value) + .. parsed-literal:: - ✅ vae - Done! + 2024-10-28 18:12:30.714636: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-10-28 18:12:30.727116: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered + WARNING: All log messages before absl::InitializeLog() is called are written to STDERR + E0000 00:00:1730124750.741387 52454 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered + E0000 00:00:1730124750.745955 52454 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered + 2024-10-28 18:12:30.761443: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. + You set `add_prefix_space`. The tokenizer needs to be converted from the slow tokenizers .. code:: ipython3 @@ -365,7 +356,7 @@ model and inference device as arguments. -.. image:: flux.1-image-generation-with-output_files/flux.1-image-generation-with-output_20_1.png +.. image:: flux.1-image-generation-with-output_files/flux.1-image-generation-with-output_16_1.png diff --git a/docs/notebooks/flux.1-image-generation-with-output_files/flux.1-image-generation-with-output_16_1.jpg b/docs/notebooks/flux.1-image-generation-with-output_files/flux.1-image-generation-with-output_16_1.jpg new file mode 100644 index 00000000000000..6ad8e593ef5115 --- /dev/null +++ b/docs/notebooks/flux.1-image-generation-with-output_files/flux.1-image-generation-with-output_16_1.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5caeca2e3ae8e99146bb786321cbad04584523b693e3cbdba2a5f8c7f0dbb096 +size 13490 diff --git a/docs/notebooks/flux.1-image-generation-with-output_files/flux.1-image-generation-with-output_16_1.png b/docs/notebooks/flux.1-image-generation-with-output_files/flux.1-image-generation-with-output_16_1.png new file mode 100644 index 00000000000000..7cb1e2903a902f --- /dev/null +++ b/docs/notebooks/flux.1-image-generation-with-output_files/flux.1-image-generation-with-output_16_1.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0de23e409e068f39c1e0e568b921174c80b0c42e29a1473eeeba54a91b88aaef +size 113356 diff --git a/docs/notebooks/flux.1-image-generation-with-output_files/flux.1-image-generation-with-output_20_1.jpg b/docs/notebooks/flux.1-image-generation-with-output_files/flux.1-image-generation-with-output_20_1.jpg deleted file mode 100644 index 7223074e225dd8..00000000000000 --- a/docs/notebooks/flux.1-image-generation-with-output_files/flux.1-image-generation-with-output_20_1.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8923d4a7ce04ed66bb58c28ab4450594a0340b97a15245fc594e669d33b574ef -size 14369 diff --git a/docs/notebooks/flux.1-image-generation-with-output_files/flux.1-image-generation-with-output_20_1.png b/docs/notebooks/flux.1-image-generation-with-output_files/flux.1-image-generation-with-output_20_1.png deleted file mode 100644 index 83b60f80d75c13..00000000000000 --- a/docs/notebooks/flux.1-image-generation-with-output_files/flux.1-image-generation-with-output_20_1.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fab1fa5bf3f71d6bb6f505658da6765d37295b7b9618560d5f7c0c344e2a3896 -size 116250 diff --git a/docs/notebooks/freevc-voice-conversion-with-output.rst b/docs/notebooks/freevc-voice-conversion-with-output.rst index a3c914a44b36a7..fe2ac780f5cca6 100644 --- a/docs/notebooks/freevc-voice-conversion-with-output.rst +++ b/docs/notebooks/freevc-voice-conversion-with-output.rst @@ -104,7 +104,7 @@ Check if FreeVC is installed and append its path to ``sys.path`` remote: Counting objects: 100% (74/74), done. remote: Compressing objects: 100% (47/47), done. remote: Total 131 (delta 43), reused 27 (delta 27), pack-reused 57 (from 1) - Receiving objects: 100% (131/131), 15.28 MiB | 3.81 MiB/s, done. + Receiving objects: 100% (131/131), 15.28 MiB | 17.50 MiB/s, done. Resolving deltas: 100% (43/43), done. @@ -134,8 +134,8 @@ Check if FreeVC is installed and append its path to ``sys.path`` Downloading... From: https://drive.google.com/uc?id=12-cB34qCTvByWT-QtOcZaqwwO21FLSqU&confirm=t&uuid=a703c43c-ccce-436c-8799-c11b88e9e7e4 - To: /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/freevc-voice-conversion/FreeVC/wavlm/WavLM-Large.pt - 100%|██████████| 1.26G/1.26G [00:26<00:00, 48.4MB/s] + To: /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/freevc-voice-conversion/FreeVC/wavlm/WavLM-Large.pt + 100%|██████████| 1.26G/1.26G [00:32<00:00, 38.5MB/s] .. code:: ipython3 @@ -239,7 +239,7 @@ Models initialization .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/nn/utils/weight_norm.py:28: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/nn/utils/weight_norm.py:28: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm. warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.") @@ -288,7 +288,7 @@ Inference .. parsed-literal:: - 2it [00:03, 1.72s/it] + 2it [00:04, 2.03s/it] Result audio files should be available in ‘outputs/freevc’ @@ -360,13 +360,13 @@ Converting to OpenVINO’s IR format. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/freevc-voice-conversion/FreeVC/wavlm/modules.py:495: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/freevc-voice-conversion/FreeVC/wavlm/modules.py:495: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert embed_dim == self.embed_dim - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/freevc-voice-conversion/FreeVC/wavlm/modules.py:496: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/freevc-voice-conversion/FreeVC/wavlm/modules.py:496: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert list(query.size()) == [tgt_len, bsz, embed_dim] - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/freevc-voice-conversion/FreeVC/wavlm/modules.py:500: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/freevc-voice-conversion/FreeVC/wavlm/modules.py:500: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert key_bsz == bsz - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/freevc-voice-conversion/FreeVC/wavlm/modules.py:502: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/freevc-voice-conversion/FreeVC/wavlm/modules.py:502: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert src_len, bsz == value.shape[:2] @@ -581,12 +581,12 @@ function to OpenVINO IR format. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:1102: TracerWarning: Output nr 1. of the traced function does not match the corresponding output of the Python function. Detailed error: + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:1102: TracerWarning: Output nr 1. of the traced function does not match the corresponding output of the Python function. Detailed error: Tensor-likes are not close! - Mismatched elements: 25909 / 25920 (100.0%) - Greatest absolute difference: 0.713585376739502 at index (0, 0, 4783) (up to 1e-05 allowed) - Greatest relative difference: 22806.258007743752 at index (0, 0, 19024) (up to 1e-05 allowed) + Mismatched elements: 25915 / 25920 (100.0%) + Greatest absolute difference: 1.3485908806324005 at index (0, 0, 24258) (up to 1e-05 allowed) + Greatest relative difference: 8204.075456053068 at index (0, 0, 5777) (up to 1e-05 allowed) _check_trace( @@ -645,7 +645,7 @@ And now we can check inference using only IR models. .. parsed-literal:: - 2it [00:01, 1.30it/s] + 2it [00:01, 1.31it/s] Result audio files should be available in ‘outputs/freevc’ and you can @@ -707,7 +707,7 @@ Result audio: diff --git a/docs/notebooks/gpu-device-with-output.rst b/docs/notebooks/gpu-device-with-output.rst index 2b35846b766bd1..732cc297aa9531 100644 --- a/docs/notebooks/gpu-device-with-output.rst +++ b/docs/notebooks/gpu-device-with-output.rst @@ -21,13 +21,7 @@ Working with GPUs in OpenVINO™ - `Compiling a Model on GPU <#compiling-a-model-on-gpu>`__ - - `Download and Convert a Model <#download-and-convert-a-model>`__ - - - `Download and unpack the - Model <#download-and-unpack-the-model>`__ - - `Convert the Model to OpenVINO IR - format <#convert-the-model-to-openvino-ir-format>`__ - + - `Download a Model <#download-a-model>`__ - `Compile with Default Configuration <#compile-with-default-configuration>`__ - `Reduce Compile Time through Model @@ -119,10 +113,7 @@ Install required packages .. code:: ipython3 - %pip install -q "openvino-dev>=2024.0.0" "opencv-python" "tqdm" - %pip install -q "tensorflow-macos>=2.5; sys_platform == 'darwin' and platform_machine == 'arm64' and python_version > '3.8'" # macOS M1 and M2 - %pip install -q "tensorflow>=2.5; sys_platform == 'darwin' and platform_machine != 'arm64' and python_version > '3.8'" # macOS x86 - %pip install -q "tensorflow>=2.5; sys_platform != 'darwin' and python_version > '3.8'" + %pip install -q "openvino>=2024.4.0" "opencv-python" "tqdm" "huggingface_hub" Checking GPUs with Query Device ------------------------------- @@ -305,8 +296,8 @@ properties. We can easily use one for compiling and running models with OpenVINO `GPU plugin `__. -Download and Convert a Model -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Download a Model +~~~~~~~~~~~~~~~~ @@ -317,19 +308,9 @@ was trained on `Common Objects in Context categories of object. For details, see the `paper `__. -Download and unpack the Model -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - - - -Use the ``download_file`` function from the ``notebook_utils`` to -download an archive with the model. It automatically creates a directory -structure and downloads the selected model. This step is skipped if the -package is already downloaded. - .. code:: ipython3 - import tarfile + import huggingface_hub as hf_hub from pathlib import Path # Fetch `notebook_utils` module @@ -340,95 +321,18 @@ package is already downloaded. ) open("notebook_utils.py", "w").write(r.text) - from notebook_utils import download_file # A directory where the model will be downloaded. base_model_dir = Path("./model").expanduser() - model_name = "ssdlite_mobilenet_v2" - archive_name = Path(f"{model_name}_coco_2018_05_09.tar.gz") - - # Download the archive - downloaded_model_path = base_model_dir / archive_name - if not downloaded_model_path.exists(): - model_url = f"http://download.tensorflow.org/models/object_detection/{archive_name}" - download_file(model_url, downloaded_model_path.name, downloaded_model_path.parent) - - # Unpack the model - tf_model_path = base_model_dir / archive_name.with_suffix("").stem / "frozen_inference_graph.pb" - if not tf_model_path.exists(): - with tarfile.open(downloaded_model_path) as file: - file.extractall(base_model_dir) - - - -.. parsed-literal:: - - model/ssdlite_mobilenet_v2_coco_2018_05_09.tar.gz: 0%| | 0.00/48.7M [00:00`__. - -.. code:: ipython3 - - from openvino.tools.mo.front import tf as ov_tf_front - - precision = "FP16" + model_name = "ssdlite_mobilenet_v2_fp16" - # The output path for the conversion. - model_path = base_model_dir / "ir_model" / f"{model_name}_{precision.lower()}.xml" + ov_model_path = base_model_dir / model_name / f"{model_name}.xml" - trans_config_path = Path(ov_tf_front.__file__).parent / "ssd_v2_support.json" - pipeline_config = base_model_dir / archive_name.with_suffix("").stem / "pipeline.config" + if not (ov_model_path).exists(): + hf_hub.snapshot_download("katuni4ka/ssdlite_mobilenet_v2_fp16", local_dir=base_model_dir) - model = None - if not model_path.exists(): - model = ov.tools.mo.convert_model( - input_model=tf_model_path, - input_shape=[1, 300, 300, 3], - layout="NHWC", - transformations_config=trans_config_path, - tensorflow_object_detection_api_pipeline_config=pipeline_config, - reverse_input_channels=True, - ) - ov.save_model(model, model_path, compress_to_fp16=(precision == "FP16")) - print("IR model saved to {}".format(model_path)) - else: - print("Read IR model from {}".format(model_path)) - model = core.read_model(model_path) - - -.. parsed-literal:: - - [ WARNING ] The Preprocessor block has been removed. Only nodes performing mean value subtraction and scaling (if applicable) are kept. - - -.. parsed-literal:: - - IR model saved to model/ir_model/ssdlite_mobilenet_v2_fp16.xml - + model = core.read_model(ov_model_path) Compile with Default Configuration ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -484,7 +388,7 @@ following: core.set_property({props.cache_dir(): cache_folder}) # Compile the model as before - model = core.read_model(model=model_path) + model = core.read_model(ov_model_path) compiled_model = core.compile_model(model, device) print(f"Cache enabled (first time) - compile time: {time.time() - start}s") @@ -502,13 +406,13 @@ compile times with caching enabled and disabled as follows: start = time.time() core = ov.Core() core.set_property({props.cache_dir(): "cache"}) - model = core.read_model(model=model_path) + model = core.read_model(model=ov_model_path) compiled_model = core.compile_model(model, device) print(f"Cache enabled - compile time: {time.time() - start}s") start = time.time() core = ov.Core() - model = core.read_model(model=model_path) + model = core.read_model(ov_model_path) compiled_model = core.compile_model(model, device) print(f"Cache disabled - compile time: {time.time() - start}s") diff --git a/docs/notebooks/grounded-segment-anything-with-output.rst b/docs/notebooks/grounded-segment-anything-with-output.rst index 51522e791e04a4..232629422b14e0 100644 --- a/docs/notebooks/grounded-segment-anything-with-output.rst +++ b/docs/notebooks/grounded-segment-anything-with-output.rst @@ -124,16 +124,16 @@ segmentation you can select vanilla ``SAM``. Cloning into 'GroundingDINO'... remote: Enumerating objects: 379, done. remote: Counting objects: 100% (190/190), done. - remote: Compressing objects: 100% (81/81), done. - remote: Total 379 (delta 135), reused 109 (delta 109), pack-reused 189 (from 1) - Receiving objects: 100% (379/379), 14.03 MiB | 18.28 MiB/s, done. + remote: Compressing objects: 100% (79/79), done. + remote: Total 379 (delta 136), reused 111 (delta 111), pack-reused 189 (from 1) + Receiving objects: 100% (379/379), 14.03 MiB | 20.95 MiB/s, done. Resolving deltas: 100% (194/194), done. Cloning into 'EfficientSAM'... remote: Enumerating objects: 424, done. remote: Counting objects: 100% (85/85), done. remote: Compressing objects: 100% (33/33), done. remote: Total 424 (delta 76), reused 52 (delta 52), pack-reused 339 (from 1) - Receiving objects: 100% (424/424), 262.14 MiB | 30.07 MiB/s, done. + Receiving objects: 100% (424/424), 262.14 MiB | 24.44 MiB/s, done. Resolving deltas: 100% (246/246), done. @@ -222,6 +222,10 @@ GroundingDINO imports .. parsed-literal:: + 2024-11-05 01:34:53.765709: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 01:34:53.988314: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. + 2024-11-05 01:34:54.760718: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers UserWarning: Failed to load custom C++ ops. Running on CPU mode Only! @@ -362,6 +366,30 @@ Convert GroundingDINO to OpenVINO IR format TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + TracerWarning: Converting a tensor to a Python number might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + TracerWarning: Converting a tensor to a Python number might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + + +.. parsed-literal:: + + output layer_id 0 is nan + num_nan 230400, num_inf 0 + output layer_id 1 is nan + num_nan 230400, num_inf 0 + output layer_id 2 is nan + num_nan 230400, num_inf 0 + output layer_id 3 is nan + num_nan 230400, num_inf 0 + output layer_id 4 is nan + num_nan 230400, num_inf 0 + output layer_id 5 is nan + num_nan 230400, num_inf 0 + WARNING:tensorflow:Please fix your imports. Module tensorflow.python.training.tracking.base has been moved to tensorflow.python.trackable.base. The old module will be deleted in version 2.11. + + +.. parsed-literal:: + + [ WARNING ] Please fix your imports. Module %s has been moved to %s. The old module will be deleted in version %s. Run OpenVINO optimized GroundingDINO @@ -504,15 +532,6 @@ class, but the inference will be done using OpenVINO optimized model. boxes_filt, pred_phrases, logits_filt = get_ov_grounding_output(ov_compiled_grounded_dino, pil_image, classes_prompt, BOX_THRESHOLD, TEXT_THRESHOLD) - -.. parsed-literal:: - - 2024-10-23 01:22:04.926963: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 01:22:04.966234: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. - To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 01:22:05.582957: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT - - Convert predicted boxes to supervision box detections format .. code:: ipython3 @@ -573,11 +592,6 @@ segmentation. First of all let’s convert ``SAM`` model to OpenVINO IR. ov_efficient_sam = core.read_model(ov_efficient_sam_path) -.. parsed-literal:: - - WARNING:tensorflow:Please fix your imports. Module tensorflow.python.training.tracking.base has been moved to tensorflow.python.trackable.base. The old module will be deleted in version 2.11. - - .. parsed-literal:: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! diff --git a/docs/notebooks/hello-segmentation-with-output.rst b/docs/notebooks/hello-segmentation-with-output.rst index e490cf48533277..6ddc0e3b0aa78b 100644 --- a/docs/notebooks/hello-segmentation-with-output.rst +++ b/docs/notebooks/hello-segmentation-with-output.rst @@ -188,7 +188,7 @@ is provided. .. parsed-literal:: - + @@ -215,7 +215,7 @@ Do Inference .. parsed-literal:: - + diff --git a/docs/notebooks/hugging-face-hub-with-output.rst b/docs/notebooks/hugging-face-hub-with-output.rst index e17d63a031b445..a92f8cd18fba31 100644 --- a/docs/notebooks/hugging-face-hub-with-output.rst +++ b/docs/notebooks/hugging-face-hub-with-output.rst @@ -132,6 +132,10 @@ tutorials `__. To disable this warning, you can either: - Avoid using `tokenizers` before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false) - 2024-10-23 01:23:29.312809: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 01:23:29.347879: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. - To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 01:23:29.943155: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT Initialize and Convert the Model Automatically using OVModel class @@ -377,11 +384,6 @@ inference run. - This IS NOT expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). -.. parsed-literal:: - - WARNING:tensorflow:Please fix your imports. Module tensorflow.python.training.tracking.base has been moved to tensorflow.python.trackable.base. The old module will be deleted in version 2.11. - - Convert model using Optimum CLI interface ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -434,7 +436,7 @@ Full list of supported arguments available via ``--help`` .. parsed-literal:: - 2024-10-23 01:23:44.450300: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-05 01:37:12.161579: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT usage: optimum-cli export openvino [-h] -m MODEL [--task TASK] [--framework {pt,tf}] [--trust-remote-code] [--weight-format {fp32,fp16,int8,int4,mxfp4}] @@ -465,20 +467,20 @@ Full list of supported arguments available via ``--help`` --task TASK The task to export the model for. If not specified, the task will be auto-inferred based on the model. Available tasks depend on the model, but are among: - ['audio-xvector', 'text-to-audio', 'fill-mask', - 'feature-extraction', 'text-generation', 'zero-shot- - image-classification', 'text-to-image', 'text2text- - generation', 'zero-shot-object-detection', 'automatic- - speech-recognition', 'text-classification', 'semantic- - segmentation', 'masked-im', 'image-to-text', - 'sentence-similarity', 'object-detection', - 'inpainting', 'audio-frame-classification', 'image-to- - image', 'token-classification', 'question-answering', - 'audio-classification', 'image-segmentation', 'image- - classification', 'mask-generation', 'multiple-choice', - 'depth-estimation']. For decoder models, use `xxx- - with-past` to export the model using past key values - in the decoder. + ['mask-generation', 'image-classification', 'fill- + mask', 'audio-xvector', 'audio-frame-classification', + 'sentence-similarity', 'multiple-choice', 'automatic- + speech-recognition', 'text-to-image', 'token- + classification', 'image-to-text', 'image- + segmentation', 'question-answering', 'depth- + estimation', 'semantic-segmentation', 'feature- + extraction', 'text-generation', 'zero-shot-object- + detection', 'text-to-audio', 'zero-shot-image- + classification', 'object-detection', 'text2text- + generation', 'audio-classification', 'image-to-image', + 'masked-im', 'inpainting', 'text-classification']. For + decoder models, use `xxx-with-past` to export the + model using past key values in the decoder. --framework {pt,tf} The framework to use for the export. If not provided, will attempt to use the local checkpoint's original framework or what is available in the environment. @@ -583,10 +585,11 @@ compression: .. parsed-literal:: - 2024-10-23 01:23:49.987001: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-05 01:37:17.680673: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT Some weights of the model checkpoint at cardiffnlp/twitter-roberta-base-sentiment-latest were not used when initializing RobertaForSequenceClassification: ['roberta.pooler.dense.bias', 'roberta.pooler.dense.weight'] - This IS expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model). - This IS NOT expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). + `loss_type=None` was set in the config but it is unrecognised.Using the default loss: `ForCausalLMLoss`. Tokenizer won't be converted. diff --git a/docs/notebooks/image-classification-quantization-with-output.rst b/docs/notebooks/image-classification-quantization-with-output.rst index b5b33fdfc852e7..7bf7172f720588 100644 --- a/docs/notebooks/image-classification-quantization-with-output.rst +++ b/docs/notebooks/image-classification-quantization-with-output.rst @@ -102,9 +102,9 @@ Model preparation stage has the following steps: Cloning into 'pytorch-cifar-models'... remote: Enumerating objects: 282, done. remote: Counting objects: 100% (281/281), done. - remote: Compressing objects: 100% (96/96), done. - remote: Total 282 (delta 135), reused 269 (delta 128), pack-reused 1 (from 1) - Receiving objects: 100% (282/282), 9.22 MiB | 24.58 MiB/s, done. + remote: Compressing objects: 100% (94/94), done. + remote: Total 282 (delta 135), reused 275 (delta 130), pack-reused 1 (from 1) + Receiving objects: 100% (282/282), 9.22 MiB | 9.58 MiB/s, done. Resolving deltas: 100% (135/135), done. @@ -176,7 +176,7 @@ Preprocessing for model obtained from training .. parsed-literal:: - 100%|██████████| 170498071/170498071 [00:07<00:00, 23490143.19it/s] + 100%|██████████| 170498071/170498071 [00:07<00:00, 22536051.32it/s] .. parsed-literal:: @@ -248,10 +248,10 @@ about supported parameters can be found on this .. parsed-literal:: - 2024-10-23 01:24:29.479834: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 01:24:29.511386: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-05 01:37:57.500572: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 01:37:57.532367: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 01:24:30.071901: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-05 01:37:58.074631: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT @@ -419,7 +419,7 @@ Tool `__ - `Interactive demo <#interactive-demo>`__ + Installation Instructions ~~~~~~~~~~~~~~~~~~~~~~~~~ diff --git a/docs/notebooks/internvl2-with-output.rst b/docs/notebooks/internvl2-with-output.rst index 602bfe84590494..ed67209a0303eb 100644 --- a/docs/notebooks/internvl2-with-output.rst +++ b/docs/notebooks/internvl2-with-output.rst @@ -279,7 +279,7 @@ documentation self.max_seq_len_cached: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/qwen2/modeling_qwen2.py:324: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/qwen2/modeling_qwen2.py:324: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/qwen2/modeling_qwen2.py:339: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/qwen2/modeling_qwen2.py:339: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): @@ -531,7 +531,7 @@ Let’s check model capabilities in answering questions about image: .. parsed-literal:: - The image depicts a red panda, a large feline with a distinctive, reddish-brown coat and white face and chest. It is peeking over what appears to be a wooden platform or platform made for panda viewing in captivity. The background is filled with greenery, indicating that the photo was likely taken in a conservatory or wildlife park where penguins or seabirds are displayed. + The image shows a red panda lying on its side, partially wrapped in a wooden structure, possibly a container or log. The red panda appears to be looking at the camera with large, expressive eyes, displaying an endearing and lively appearance. The background consists of a portion of the red panda's habitat environment, which appears to be a tree and some greenery. Interactive demo ---------------- diff --git a/docs/notebooks/jina-clip-with-output.rst b/docs/notebooks/jina-clip-with-output.rst index 466e3be5d03fd1..1cdb2e1d286245 100644 --- a/docs/notebooks/jina-clip-with-output.rst +++ b/docs/notebooks/jina-clip-with-output.rst @@ -106,11 +106,11 @@ weights, using ``from_pretrained`` method. .. parsed-literal:: - 2024-10-23 01:28:42.177313: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 01:28:42.211816: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-05 01:41:58.578137: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 01:41:58.612620: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 01:28:42.875342: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/timm/models/layers/__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers + 2024-11-05 01:41:59.276782: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/timm/models/layers/__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning) @@ -301,7 +301,7 @@ loading on device using ``core.complie_model``. .. parsed-literal:: WARNING:tensorflow:Please fix your imports. Module tensorflow.python.training.tracking.base has been moved to tensorflow.python.trackable.base. The old module will be deleted in version 2.11. - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:4713: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:4713: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead warnings.warn( /opt/home/k8sworker/.cache/huggingface/modules/transformers_modules/jinaai/jina-bert-flash-implementation/b78d1595de294f13ffe7b19d6cd63892a6e4e7a4/mha.py:333: TracerWarning: Converting a tensor to a Python float might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) @@ -820,8 +820,8 @@ approximately estimate the speed up of the dynamic quantized models. .. parsed-literal:: - Performance speed up for text model: 1.560 - Performance speed up for vision model: 1.435 + Performance speed up for text model: 1.978 + Performance speed up for vision model: 1.428 Gradio demo diff --git a/docs/notebooks/knowledge-graphs-conve-with-output.rst b/docs/notebooks/knowledge-graphs-conve-with-output.rst index b9e4f56ebb05af..de9115fd9ab4a8 100644 --- a/docs/notebooks/knowledge-graphs-conve-with-output.rst +++ b/docs/notebooks/knowledge-graphs-conve-with-output.rst @@ -233,7 +233,7 @@ Download Model Checkpoint .. parsed-literal:: - PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/knowledge-graphs-conve/models/conve.pt') + PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/knowledge-graphs-conve/models/conve.pt') @@ -395,7 +395,7 @@ typical to use metrics such as Mean Reciprocal Rank, Hits@10 etc. .. parsed-literal:: - Average time taken for inference: 0.6894171237945557 ms + Average time taken for inference: 0.7430613040924072 ms Mean accuracy of the model on the test dataset: 0.875 @@ -534,7 +534,7 @@ select device from dropdown list for running inference using OpenVINO .. parsed-literal:: - Average time taken for inference: 0.8764564990997314 ms + Average time taken for inference: 1.0752081871032715 ms Mean accuracy of the model on the test dataset: 0.10416666666666667 @@ -553,7 +553,7 @@ Determine the platform specific speedup obtained through OpenVINO graph optimiza .. parsed-literal:: - Speedup with OpenVINO optimizations: 0.79 X + Speedup with OpenVINO optimizations: 0.69 X Benchmark the converted OpenVINO model using benchmark app @@ -598,7 +598,7 @@ inference can also be obtained by looking at the benchmark app results. [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT. [Step 4/11] Reading model files [ INFO ] Loading model files - [ INFO ] Read model took 4.34 ms + [ INFO ] Read model took 4.36 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] e1 (node: e1) : i64 / [...] / [] @@ -614,7 +614,7 @@ inference can also be obtained by looking at the benchmark app results. [ INFO ] Model outputs: [ INFO ] ***NO_NAME*** (node: aten::softmax/Softmax) : f32 / [...] / [1,271] [Step 7/11] Loading the model to the device - [ INFO ] Compile model took 72.42 ms + [ INFO ] Compile model took 54.92 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: Model0 @@ -653,17 +653,17 @@ inference can also be obtained by looking at the benchmark app results. [ INFO ] Fill input 'rel' with random values [Step 10/11] Measuring performance (Start inference asynchronously, 12 inference requests, limits: 10000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). - [ INFO ] First inference took 1.79 ms + [ INFO ] First inference took 1.66 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] - [ INFO ] Count: 94740 iterations - [ INFO ] Duration: 10002.15 ms + [ INFO ] Count: 94596 iterations + [ INFO ] Duration: 10001.69 ms [ INFO ] Latency: - [ INFO ] Median: 1.08 ms - [ INFO ] Average: 1.08 ms - [ INFO ] Min: 0.74 ms - [ INFO ] Max: 9.80 ms - [ INFO ] Throughput: 9471.96 FPS + [ INFO ] Median: 1.07 ms + [ INFO ] Average: 1.09 ms + [ INFO ] Min: 0.79 ms + [ INFO ] Max: 8.57 ms + [ INFO ] Throughput: 9458.00 FPS Conclusions diff --git a/docs/notebooks/kosmos2-multimodal-large-language-model-with-output.rst b/docs/notebooks/kosmos2-multimodal-large-language-model-with-output.rst index c18464f77585b2..b6a7a971fef3be 100644 --- a/docs/notebooks/kosmos2-multimodal-large-language-model-with-output.rst +++ b/docs/notebooks/kosmos2-multimodal-large-language-model-with-output.rst @@ -85,7 +85,7 @@ Install requirements .. parsed-literal:: - Requirement already satisfied: pip in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (24.2) + Requirement already satisfied: pip in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (24.3.1) Note: you may need to restart the kernel to use updated packages. Note: you may need to restart the kernel to use updated packages. Note: you may need to restart the kernel to use updated packages. @@ -152,10 +152,10 @@ example `__ .. parsed-literal:: - 2024-10-23 01:31:37.373532: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 01:31:37.408388: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-05 01:44:54.753766: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 01:44:54.788691: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 01:31:37.931462: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-05 01:44:55.309895: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT .. parsed-literal:: @@ -374,11 +374,11 @@ Vision model accept ``pixel_values`` and returns ``image_embeds``. .. parsed-literal:: [ WARNING ] Please fix your imports. Module %s has been moved to %s. The old module will be deleted in version %s. - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:4713: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:4713: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead warnings.warn( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/kosmos2/modeling_kosmos2.py:465: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/kosmos2/modeling_kosmos2.py:465: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/kosmos2/modeling_kosmos2.py:505: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/kosmos2/modeling_kosmos2.py:505: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): @@ -406,7 +406,7 @@ Convert Image To Text Projection model .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:165: UserWarning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the .grad field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations. (Triggered internally at aten/src/ATen/core/TensorBody.h:489.) + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:165: UserWarning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the .grad field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations. (Triggered internally at aten/src/ATen/core/TensorBody.h:489.) if a.grad is not None: @@ -541,13 +541,13 @@ generated text by ``AutoProcessor``. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/kosmos2/modeling_kosmos2.py:804: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/kosmos2/modeling_kosmos2.py:804: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if max_pos > self.weights.size(0): - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/kosmos2/modeling_kosmos2.py:1113: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/kosmos2/modeling_kosmos2.py:1113: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if input_shape[-1] > 1: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/kosmos2/modeling_kosmos2.py:920: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/kosmos2/modeling_kosmos2.py:920: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if attention_mask.size() != (batch_size, 1, seq_length, src_len): - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/kosmos2/modeling_kosmos2.py:1206: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/kosmos2/modeling_kosmos2.py:1206: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if past_key_values_length > 0: @@ -1389,9 +1389,9 @@ pipelines, we use mean inference time on 7 samples. .. parsed-literal:: - FP32 pipeline: 2.696 seconds - Optimized pipeline: 1.137 seconds - Performance speed-up: 2.372 + FP32 pipeline: 2.746 seconds + Optimized pipeline: 1.140 seconds + Performance speed-up: 2.409 Interactive inference diff --git a/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_29_1.jpg b/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_29_1.jpg index 9673054cc1b8e0..2310cb001b0c6b 100644 --- a/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_29_1.jpg +++ b/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_29_1.jpg @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:c45f05bcfa118a3d7e9024cf83963a4bb5504cb97f669c0c8261c469bab6dc75 -size 121985 +oid sha256:9ca596f09c0f6c0dafa4aca0fbe7974941301cfcbc6bcb3a8c4255774c347d0b +size 123320 diff --git a/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_29_1.png b/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_29_1.png index a5be9e2155f6cc..91289c35d7c60c 100644 --- a/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_29_1.png +++ b/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_29_1.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:2fc77a26e4c6d30ca9d21fe47ddc25624662d566f6c98ac1c160637fbcb2363b -size 1151151 +oid sha256:56d06f7d654939feda627f67196b813de9b38a718acba9f5daed59a43314829f +size 1150807 diff --git a/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_48_1.png b/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_48_1.png index 0da4a480d88cc3..d98f56141b1252 100644 --- a/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_48_1.png +++ b/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_48_1.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:9cfd18faba3aef57349c70b157fabd4dc2827a8bc6074252e717a67a9f9d488a -size 1148752 +oid sha256:0d7f8506e5f1bd369debee273b45c601d05901af4937d8cc976f985cd4a81fed +size 1149292 diff --git a/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_8_0.jpg b/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_8_0.jpg index e992bdf66a9da7..b53344f52b7396 100644 --- a/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_8_0.jpg +++ b/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_8_0.jpg @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:f70d76f01ee01d54713ed161de8d09713816b4f3fd7df99a5ff96c4c5e0b1bf0 -size 124539 +oid sha256:edd5a47baf47ae90532b47bc5ee05e8503b7d1deda59d956a354688ed949c8b5 +size 121605 diff --git a/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_8_0.png b/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_8_0.png index ec9e6a6277d4f0..2edc9a038ff8c3 100644 --- a/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_8_0.png +++ b/docs/notebooks/kosmos2-multimodal-large-language-model-with-output_files/kosmos2-multimodal-large-language-model-with-output_8_0.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:f4dc2d892ef69df259eff4b46527d5e4382457b9b381a1e3b35b22d1d4312da4 -size 1150974 +oid sha256:aa184084b598dac717e99fe9677f1fe9dd4f6b85ec123c075d4109c75b134841 +size 1150675 diff --git a/docs/notebooks/language-quantize-bert-with-output.rst b/docs/notebooks/language-quantize-bert-with-output.rst index 64f49c2b314811..21ecfe511f1b76 100644 --- a/docs/notebooks/language-quantize-bert-with-output.rst +++ b/docs/notebooks/language-quantize-bert-with-output.rst @@ -101,10 +101,10 @@ Imports .. parsed-literal:: - 2024-10-23 01:38:12.900514: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 01:38:12.934654: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-05 01:51:49.197259: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 01:51:49.231710: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 01:38:13.484434: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-05 01:51:49.783615: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT .. parsed-literal:: @@ -211,7 +211,7 @@ PyTorch model formats are supported: .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:4713: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:4713: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead warnings.warn( @@ -247,7 +247,7 @@ tokenizer from HuggingFace. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884 + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884 warnings.warn( @@ -505,9 +505,9 @@ Frames Per Second (FPS) for images. .. parsed-literal:: - PyTorch model on CPU: 0.068 seconds per sentence, SPS: 14.67 - IR FP32 model in OpenVINO Runtime/AUTO: 0.020 seconds per sentence, SPS: 49.46 - OpenVINO IR INT8 model in OpenVINO Runtime/AUTO: 0.009 seconds per sentence, SPS: 108.19 + PyTorch model on CPU: 0.068 seconds per sentence, SPS: 14.68 + IR FP32 model in OpenVINO Runtime/AUTO: 0.020 seconds per sentence, SPS: 49.24 + OpenVINO IR INT8 model in OpenVINO Runtime/AUTO: 0.009 seconds per sentence, SPS: 108.47 Finally, measure the inference performance of OpenVINO ``FP32`` and @@ -548,7 +548,7 @@ in OpenVINO. [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.LATENCY. [Step 4/11] Reading model files [ INFO ] Loading model files - [ INFO ] Read model took 18.86 ms + [ INFO ] Read model took 19.11 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] input_ids (node: input_ids) : i64 / [...] / [1,?] @@ -559,7 +559,7 @@ in OpenVINO. [Step 5/11] Resizing model to match image sizes and given batch [ INFO ] Model batch size: 1 [ INFO ] Reshaping model: 'input_ids': [1,128], '63': [1,128], 'token_type_ids': [1,128] - [ INFO ] Reshape model took 5.46 ms + [ INFO ] Reshape model took 5.55 ms [Step 6/11] Configuring input of the model [ INFO ] Model inputs: [ INFO ] input_ids (node: input_ids) : i64 / [...] / [1,128] @@ -568,7 +568,7 @@ in OpenVINO. [ INFO ] Model outputs: [ INFO ] logits (node: __module.classifier/aten::linear/Add) : f32 / [...] / [1,2] [Step 7/11] Loading the model to the device - [ INFO ] Compile model took 373.39 ms + [ INFO ] Compile model took 344.20 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: Model0 @@ -609,17 +609,17 @@ in OpenVINO. [ INFO ] Fill input 'token_type_ids' with random values [Step 10/11] Measuring performance (Start inference synchronously, limits: 120000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). - [ INFO ] First inference took 24.05 ms + [ INFO ] First inference took 22.90 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] - [ INFO ] Count: 5730 iterations - [ INFO ] Duration: 120000.60 ms + [ INFO ] Count: 6485 iterations + [ INFO ] Duration: 120011.48 ms [ INFO ] Latency: - [ INFO ] Median: 20.64 ms - [ INFO ] Average: 20.84 ms - [ INFO ] Min: 19.84 ms - [ INFO ] Max: 31.70 ms - [ INFO ] Throughput: 47.75 FPS + [ INFO ] Median: 18.09 ms + [ INFO ] Average: 18.41 ms + [ INFO ] Min: 17.32 ms + [ INFO ] Max: 26.49 ms + [ INFO ] Throughput: 54.04 FPS .. code:: ipython3 @@ -646,27 +646,27 @@ in OpenVINO. [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.LATENCY. [Step 4/11] Reading model files [ INFO ] Loading model files - [ INFO ] Read model took 25.60 ms + [ INFO ] Read model took 24.93 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] input_ids (node: input_ids) : i64 / [...] / [1,?] - [ INFO ] 63 , attention_mask (node: attention_mask) : i64 / [...] / [1,?] + [ INFO ] attention_mask , 63 (node: attention_mask) : i64 / [...] / [1,?] [ INFO ] token_type_ids (node: token_type_ids) : i64 / [...] / [1,?] [ INFO ] Model outputs: [ INFO ] logits (node: __module.classifier/aten::linear/Add) : f32 / [...] / [1,2] [Step 5/11] Resizing model to match image sizes and given batch [ INFO ] Model batch size: 1 [ INFO ] Reshaping model: 'input_ids': [1,128], '63': [1,128], 'token_type_ids': [1,128] - [ INFO ] Reshape model took 7.46 ms + [ INFO ] Reshape model took 7.14 ms [Step 6/11] Configuring input of the model [ INFO ] Model inputs: [ INFO ] input_ids (node: input_ids) : i64 / [...] / [1,128] - [ INFO ] 63 , attention_mask (node: attention_mask) : i64 / [...] / [1,128] + [ INFO ] attention_mask , 63 (node: attention_mask) : i64 / [...] / [1,128] [ INFO ] token_type_ids (node: token_type_ids) : i64 / [...] / [1,128] [ INFO ] Model outputs: [ INFO ] logits (node: __module.classifier/aten::linear/Add) : f32 / [...] / [1,2] [Step 7/11] Loading the model to the device - [ INFO ] Compile model took 1067.96 ms + [ INFO ] Compile model took 1080.21 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: Model0 @@ -707,15 +707,15 @@ in OpenVINO. [ INFO ] Fill input 'token_type_ids' with random values [Step 10/11] Measuring performance (Start inference synchronously, limits: 120000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). - [ INFO ] First inference took 17.45 ms + [ INFO ] First inference took 16.00 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] - [ INFO ] Count: 13316 iterations - [ INFO ] Duration: 120006.19 ms + [ INFO ] Count: 13181 iterations + [ INFO ] Duration: 120003.10 ms [ INFO ] Latency: - [ INFO ] Median: 8.92 ms - [ INFO ] Average: 8.92 ms - [ INFO ] Min: 7.66 ms - [ INFO ] Max: 14.16 ms - [ INFO ] Throughput: 110.96 FPS + [ INFO ] Median: 8.93 ms + [ INFO ] Average: 9.01 ms + [ INFO ] Min: 7.68 ms + [ INFO ] Max: 12.00 ms + [ INFO ] Throughput: 109.84 FPS diff --git a/docs/notebooks/latent-consistency-models-optimum-demo-with-output.rst b/docs/notebooks/latent-consistency-models-optimum-demo-with-output.rst index 3707d3f30d5f09..a0bce9d85c7196 100644 --- a/docs/notebooks/latent-consistency-models-optimum-demo-with-output.rst +++ b/docs/notebooks/latent-consistency-models-optimum-demo-with-output.rst @@ -9,7 +9,7 @@ and time required to generate an image for provided prompt. The notebook can be also used on other Intel hardware with minimal or no modifications. -|image0| +.. image:: https://github.com/openvinotoolkit/openvino_notebooks/assets/10940214/1858dae4-72fd-401e-b055-66d503d82446 Optimum Intel is an interface from Hugging Face between both diffusers and transformers libraries and various tools provided by Intel to @@ -48,8 +48,6 @@ need a Jupyter server to start. For details, please refer to `Installation Guide `__. -.. |image0| image:: https://github.com/openvinotoolkit/openvino_notebooks/assets/10940214/1858dae4-72fd-401e-b055-66d503d82446 - Prerequisites ~~~~~~~~~~~~~ @@ -67,9 +65,7 @@ Install required packages .. parsed-literal:: Note: you may need to restart the kernel to use updated packages. - Note: you may need to restart the kernel to use updated packages. - Note: you may need to restart the kernel to use updated packages. - + .. code:: ipython3 @@ -112,8 +108,12 @@ this .. parsed-literal:: - CPU: Intel(R) Core(TM) i9-10920X CPU @ 3.50GHz - + CPU: Intel(R) Core(TM) Ultra 7 155H + GNA.GNA_SW: GNA_SW + GNA.GNA_HW: GNA_HW + GPU: Intel(R) Arc(TM) Graphics (iGPU) + NPU: Intel(R) AI Boost + Using full precision model in CPU with ``LatentConsistencyModelPipeline`` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -132,14 +132,6 @@ https://huggingface.co/docs/diffusers/en/api/pipelines/latent_consistency_models pipeline = LatentConsistencyModelPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7") -.. parsed-literal:: - - 2024-10-23 01:44:02.155955: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 01:44:02.191160: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. - To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 01:44:02.863862: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT - - .. parsed-literal:: @@ -172,6 +164,15 @@ https://huggingface.co/docs/diffusers/en/api/pipelines/latent_consistency_models del pipeline gc.collect(); + + + +.. parsed-literal:: + + 345 + + + Select inference device for text-to-image generation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -190,15 +191,6 @@ Select inference device for text-to-image generation device - - - -.. parsed-literal:: - - Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO') - - - Running inference using Optimum Intel ``OVLatentConsistencyModelPipeline`` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -228,74 +220,6 @@ and there is no need to do it manually ov_pipeline.reshape(batch_size=1, height=512, width=512, num_images_per_prompt=1) - -.. parsed-literal:: - - Keyword arguments {'subfolder': '', 'trust_remote_code': False} are not expected by LatentConsistencyModelPipeline and will be ignored. - - - -.. parsed-literal:: - - Loading pipeline components...: 0%| | 0/7 [00:00 by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 . - - - - -.. parsed-literal:: - - OVLatentConsistencyModelPipeline { - "_class_name": "OVLatentConsistencyModelPipeline", - "_diffusers_version": "0.31.0", - "_name_or_path": "/tmp/tmpz3tx8cvr", - "feature_extractor": [ - "transformers", - "CLIPImageProcessor" - ], - "image_encoder": [ - null, - null - ], - "requires_safety_checker": true, - "safety_checker": [ - null, - null - ], - "scheduler": [ - "diffusers", - "LCMScheduler" - ], - "text_encoder": [ - "optimum.intel.openvino.modeling_diffusion", - "OVModelTextEncoder" - ], - "tokenizer": [ - "transformers", - "CLIPTokenizer" - ], - "unet": [ - "optimum.intel.openvino.modeling_diffusion", - "OVModelUnet" - ], - "vae": [ - "optimum.intel.openvino.modeling_diffusion", - "OVModelVae" - ] - } - - - .. code:: ipython3 ov_pipeline.to(device.value) diff --git a/docs/notebooks/latent-consistency-models-optimum-demo-with-output_files/latent-consistency-models-optimum-demo-with-output_15_1.jpg b/docs/notebooks/latent-consistency-models-optimum-demo-with-output_files/latent-consistency-models-optimum-demo-with-output_15_1.jpg index a19eb369148e10..25ee04df1c536d 100644 --- a/docs/notebooks/latent-consistency-models-optimum-demo-with-output_files/latent-consistency-models-optimum-demo-with-output_15_1.jpg +++ b/docs/notebooks/latent-consistency-models-optimum-demo-with-output_files/latent-consistency-models-optimum-demo-with-output_15_1.jpg @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:8ccbcf6c99b8d75b1c683375852111ce17983fbea50bd0b0bb294d06bbb317fb -size 38768 +oid sha256:7167bdd42f946c71dcff8f7c7f35e48df5434ed2c54b56505da9c61d25a0d740 +size 79839 diff --git a/docs/notebooks/latent-consistency-models-optimum-demo-with-output_files/latent-consistency-models-optimum-demo-with-output_15_1.png b/docs/notebooks/latent-consistency-models-optimum-demo-with-output_files/latent-consistency-models-optimum-demo-with-output_15_1.png index d27692124393df..d89126405ceff7 100644 --- a/docs/notebooks/latent-consistency-models-optimum-demo-with-output_files/latent-consistency-models-optimum-demo-with-output_15_1.png +++ b/docs/notebooks/latent-consistency-models-optimum-demo-with-output_files/latent-consistency-models-optimum-demo-with-output_15_1.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:b936a832e23c30affb1988828f17a16e988b42413ff7dfe4381fb723e068ed97 -size 456597 +oid sha256:7f216ac91b5737006142f8426f0716c9ab8e3ce5ddea222987c69e8a4f11ed3e +size 1034680 diff --git a/docs/notebooks/latent-consistency-models-optimum-demo-with-output_files/latent-consistency-models-optimum-demo-with-output_8_1.jpg b/docs/notebooks/latent-consistency-models-optimum-demo-with-output_files/latent-consistency-models-optimum-demo-with-output_8_1.jpg index e320b91964889a..f0f1cd042ef9b5 100644 --- a/docs/notebooks/latent-consistency-models-optimum-demo-with-output_files/latent-consistency-models-optimum-demo-with-output_8_1.jpg +++ b/docs/notebooks/latent-consistency-models-optimum-demo-with-output_files/latent-consistency-models-optimum-demo-with-output_8_1.jpg @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:0ab792ded8330c36072ec13fcfb0e0896ce3014413145167fd7a7c5b570919a4 -size 37604 +oid sha256:900339d0d0c9d4b8e25a5b72a159ca2c966f7e51dc112c30a7ac8636a01b1dd4 +size 81729 diff --git a/docs/notebooks/latent-consistency-models-optimum-demo-with-output_files/latent-consistency-models-optimum-demo-with-output_8_1.png b/docs/notebooks/latent-consistency-models-optimum-demo-with-output_files/latent-consistency-models-optimum-demo-with-output_8_1.png index e7a5d16aa88eb2..e083c8da654356 100644 --- a/docs/notebooks/latent-consistency-models-optimum-demo-with-output_files/latent-consistency-models-optimum-demo-with-output_8_1.png +++ b/docs/notebooks/latent-consistency-models-optimum-demo-with-output_files/latent-consistency-models-optimum-demo-with-output_8_1.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:f440a9e7cb3d6a9f6609165516be7e5025e26752004ca56baf570f49840af03c -size 470802 +oid sha256:89e0bc6c3f710c16cb1f81011848f41ad350e43ef9dc77961353897aa1d5b6b6 +size 1042433 diff --git a/docs/notebooks/llava-multimodal-chatbot-genai-with-output.rst b/docs/notebooks/llava-multimodal-chatbot-genai-with-output.rst index 435e7eaf62c53b..d035645fb27291 100644 --- a/docs/notebooks/llava-multimodal-chatbot-genai-with-output.rst +++ b/docs/notebooks/llava-multimodal-chatbot-genai-with-output.rst @@ -117,10 +117,25 @@ Install required dependencies .. code:: ipython3 + from pathlib import Path + import requests + %pip install -q "torch>=2.1.0" "torchvision" "torchaudio" --index-url https://download.pytorch.org/whl/cpu %pip install -q "git+https://github.com/eaidova/optimum-intel.git@ea/minicpmv" %pip install -q "nncf>=2.13.0" "sentencepiece" "tokenizers>=0.12.1" "transformers>=4.45.0" "gradio>=4.36" - %pip install -q -U --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly openvino_tokenizers openvino openvino-genai + %pip install -q -U --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly openvino-tokenizers openvino openvino-genai + + + utility_files = ["notebook_utils.py", "cmd_helper.py"] + + for utility in utility_files: + local_path = Path(utility) + if not local_path.exists(): + r = requests.get( + url=f"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/{local_path.name}", + ) + with local_path.open("w") as f: + f.write(r.text) Convert and Optimize Model -------------------------- @@ -172,13 +187,13 @@ documentation =2.1.0" "torchvision" "torchaudio" --index-url https://download.pytorch.org/whl/cpu %pip install -q "git+https://github.com/eaidova/optimum-intel.git@ea/minicpmv" %pip install -q "nncf>=2.13.0" "sentencepiece" "tokenizers>=0.12.1" "transformers>=4.45.0" "gradio>=4.36" - %pip install -q -U --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly openvino_tokenizers openvino openvino-genai + %pip install -q -U --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly openvino-tokenizers openvino openvino-genai + + utility_files = ["notebook_utils.py", "cmd_helper.py"] + + for utility in utility_files: + local_path = Path(utility) + if not local_path.exists(): + r = requests.get( + url=f"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/{local_path.name}", + ) + with local_path.open("w") as f: + f.write(r.text) Convert and Optimize Model -------------------------- @@ -172,13 +186,13 @@ documentation `__, -`blog `__, -`GitHub `__, and -`Documentation `__. +``Qwen2.5`` as LLM in agent pipeline. + +* **qwen2.5-3b-instruct/qwen2.5-7b-instruct/qwen2.5-14b-instruct** - + Qwen2.5 is the latest series of Qwen large language models. Comparing + with Qwen2, Qwen2.5 series brings significant improvements in coding, + mathematics and general knowledge skills. Additionally, it brings + long-context and multiple languages support including Chinese, English, + French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, + Vietnamese, Thai, Arabic, and more. For more details, please refer to + `model_card `__, + `blog `__, + `GitHub `__, and + `Documentation `__. .. code:: ipython3 import ipywidgets as widgets - + llm_model_ids = ["Qwen/Qwen2.5-3B-Instruct", "Qwen/Qwen2.5-7B-Instruct", "Qwen/qwen2.5-14b-instruct"] - + llm_model_id = widgets.Dropdown( options=llm_model_ids, value=llm_model_ids[0], description="Model:", disabled=False, ) - + llm_model_id @@ -146,9 +147,9 @@ Vietnamese, Thai, Arabic, and more. For more details, please refer to .. code:: ipython3 from pathlib import Path - + llm_model_path = llm_model_id.value.split("/")[-1] - + if not Path(llm_model_path).exists(): !optimum-cli export openvino --model {llm_model_id.value} --task text-generation-with-past --trust-remote-code --weight-format int4 --group-size 128 --ratio 1.0 --sym {llm_model_path} @@ -160,9 +161,9 @@ Select inference device for LLM .. code:: ipython3 from notebook_utils import device_widget - + llm_device = device_widget("CPU", exclude=["NPU"]) - + llm_device @@ -226,15 +227,15 @@ guide `__ import openvino.properties as props import openvino.properties.hint as hints import openvino.properties.streams as streams - + import json import json5 import torch - + tokenizer = AutoTokenizer.from_pretrained(llm_model_path, trust_remote_code=True) - + ov_config = {hints.performance_mode(): hints.PerformanceMode.LATENCY, streams.num(): "1", props.cache_dir(): ""} - + llm = OVModelForCausalLM.from_pretrained( llm_model_path, device=llm_device.value, @@ -242,7 +243,7 @@ guide `__ config=AutoConfig.from_pretrained(llm_model_path, trust_remote_code=True), trust_remote_code=True, ) - + llm.generation_config.top_k = 1 llm.generation_config.max_length = 2000 @@ -260,31 +261,31 @@ received from tool calling.. class StopSequenceCriteria(StoppingCriteria): """ This class can be used to stop generation whenever a sequence of tokens is encountered. - + Args: stop_sequences (`str` or `List[str]`): The sequence (or list of sequences) on which to stop execution. tokenizer: The tokenizer used to decode the model outputs. """ - + def __init__(self, stop_sequences, tokenizer): if isinstance(stop_sequences, str): stop_sequences = [stop_sequences] self.stop_sequences = stop_sequences self.tokenizer = tokenizer - + def __call__(self, input_ids, scores, **kwargs) -> bool: decoded_output = self.tokenizer.decode(input_ids.tolist()[0]) return any(decoded_output.endswith(stop_sequence) for stop_sequence in self.stop_sequences) - - + + def text_completion(prompt: str, stop_words) -> str: im_end = "<|im_end|>" if im_end not in stop_words: stop_words = stop_words + [im_end] streamer = TextStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) - + stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(stop_words, tokenizer)]) input_ids = torch.tensor([tokenizer.encode(prompt)]) generate_kwargs = dict( @@ -297,7 +298,7 @@ received from tool calling.. output = tokenizer.decode(output, errors="ignore") assert output.startswith(prompt) output = output[len(prompt) :].replace("<|endoftext|>", "").replace(im_end, "") - + for stop_str in stop_words: idx = output.find(stop_str) if idx != -1: @@ -339,13 +340,13 @@ parameter should be a sequence of messages that contains the .. code:: ipython3 TOOL_DESC = """{name_for_model}: Call this tool to interact with the {name_for_human} API. What is the {name_for_human} API useful for? {description_for_model} Parameters: {parameters}""" - + PROMPT_REACT = """Answer the following questions as best you can. You have access to the following APIs: - + {tools_text} - + Use the following format: - + Question: the input question you must answer Thought: you should always think about what to do Action: the action to take, should be one of [{tools_name_text}] @@ -354,9 +355,9 @@ parameter should be a sequence of messages that contains the ... (this Thought/Action/Action Input/Observation can be repeated zero or more times) Thought: I now know the final answer Final Answer: the final answer to the original input question - + Begin! - + Question: {query}""" Meanwhile we have to create function for consolidate the tools @@ -381,9 +382,9 @@ information and conversation history into the prompt template. raise NotImplementedError tools_text.append(tool) tools_text = "\n\n".join(tools_text) - + tools_name_text = ", ".join([tool_info["name_for_model"] for tool_info in list_of_tool_info]) - + messages = [{"role": "system", "content": "You are a helpful assistant."}] for i, (query, response) in enumerate(chat_history): if list_of_tool_info: @@ -397,9 +398,9 @@ information and conversation history into the prompt template. messages.append({"role": "user", "content": query}) if response: messages.append({"role": "assistant", "content": response}) - + prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False, return_tensors="pt") - + return prompt Create parser @@ -493,7 +494,7 @@ execute them according to the output of LLM. return str(ret) elif tool_name == "image_gen": import urllib.parse - + tool_args = tool_args.replace("(", "").replace(")", "") prompt = json5.loads(tool_args)["prompt"] prompt = urllib.parse.quote(prompt) @@ -503,11 +504,11 @@ execute them according to the output of LLM. ) else: raise NotImplementedError - - + + def llm_with_tool(prompt: str, history, list_of_tool_info=()): chat_history = [(x["user"], x["bot"]) for x in history] + [(prompt, "")] - + planning_prompt = build_input_text(chat_history, list_of_tool_info) text = "" while True: @@ -522,7 +523,7 @@ execute them according to the output of LLM. else: text += output break - + new_history = [] new_history.extend(history) new_history.append({"user": prompt, "bot": text}) @@ -537,7 +538,7 @@ Run agent history = [] query = "get the weather in London, and create a picture of Big Ben based on the weather information" - + response, history = llm_with_tool(prompt=query, history=history, list_of_tool_info=tools) diff --git a/docs/notebooks/meter-reader-with-output.rst b/docs/notebooks/meter-reader-with-output.rst index 7f539abf025ebb..c1317625880917 100644 --- a/docs/notebooks/meter-reader-with-output.rst +++ b/docs/notebooks/meter-reader-with-output.rst @@ -637,7 +637,7 @@ bounds of input batch size. .. parsed-literal:: - + diff --git a/docs/notebooks/minicpm-v-multimodal-chatbot-with-output.rst b/docs/notebooks/minicpm-v-multimodal-chatbot-with-output.rst index f6a22b6f160760..98f1217902a587 100644 --- a/docs/notebooks/minicpm-v-multimodal-chatbot-with-output.rst +++ b/docs/notebooks/minicpm-v-multimodal-chatbot-with-output.rst @@ -61,9 +61,15 @@ Prerequisites .. parsed-literal:: - Note: you may need to restart the kernel to use updated packages. - Note: you may need to restart the kernel to use updated packages. - + WARNING: Error parsing dependencies of torchsde: .* suffix can only be used with `==` or `!=` operators + numpy (>=1.19.*) ; python_version >= "3.7" + ~~~~~~~^ + Note: you may need to restart the kernel to use updated packages. + WARNING: Error parsing dependencies of torchsde: .* suffix can only be used with `==` or `!=` operators + numpy (>=1.19.*) ; python_version >= "3.7" + ~~~~~~~^ + Note: you may need to restart the kernel to use updated packages. + .. code:: ipython3 @@ -107,7 +113,16 @@ details.
+.. raw:: html + + + Click here for more detailed explanation of conversion steps + +.. raw:: html + + + MiniCPM-V2.6 is autoregressive transformer generative model, it means that each next model step depends from model output from previous step. The generation approach is based on the assumption that the probability @@ -205,11 +220,12 @@ Let’s convert each model part. .. parsed-literal:: - 2024-10-23 01:47:25.606377: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 01:47:25.640217: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-10-07 09:57:53.402018: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-10-07 09:57:53.403877: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used. + 2024-10-07 09:57:53.440490: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 01:47:26.161344: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT - + 2024-10-07 09:57:54.270302: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + .. code:: ipython3 @@ -222,157 +238,7 @@ Let’s convert each model part. ⌛ openbmb/MiniCPM-V-2_6 conversion started. Be patient, it may takes some time. ⌛ Load Original model - - - -.. parsed-literal:: - - Fetching 24 files: 0%| | 0/24 [00:00 self.max_seq_len_cached: - + .. parsed-literal:: - ✅ Language model successfully converted - ⌛ Convert Image embedding model ✅ Image embedding model successfully converted - ⌛ Convert Resamler model - - -.. parsed-literal:: - - /opt/home/k8sworker/.cache/huggingface/modules/transformers_modules/ckpt/resampler.py:421: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! - assert embed_dim == embed_dim_to_check, \ - /opt/home/k8sworker/.cache/huggingface/modules/transformers_modules/ckpt/resampler.py:428: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! - assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}" - /opt/home/k8sworker/.cache/huggingface/modules/transformers_modules/ckpt/resampler.py:434: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! - assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}" - /opt/home/k8sworker/.cache/huggingface/modules/transformers_modules/ckpt/resampler.py:520: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! - assert key_padding_mask.shape == (bsz, src_len), \ - /opt/home/k8sworker/.cache/huggingface/modules/transformers_modules/ckpt/resampler.py:539: TracerWarning: Converting a tensor to a Python float might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! - q_scaled = q / math.sqrt(E) - - -.. parsed-literal:: - - ✅ Resampler model successfully converted ✅ openbmb/MiniCPM-V-2_6 model sucessfully converted. You can find results in MiniCPM-V-2_6 - + Compress Language Model Weights to 4 bits ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -459,12 +288,21 @@ applied using `NNCF `__.
-Click here for more details about weight compression Weight compression -aims to reduce the memory footprint of a model. It can also lead to -significant performance improvement for large memory-bound models, such -as Large Language Models (LLMs). LLMs and other models, which require -extensive memory to store the weights during inference, can benefit from -weight compression in the following ways: +.. raw:: html + + + +Click here for more details about weight compression + +.. raw:: html + + + +Weight compression aims to reduce the memory footprint of a model. It +can also lead to significant performance improvement for large +memory-bound models, such as Large Language Models (LLMs). LLMs and +other models, which require extensive memory to store the weights during +inference, can benefit from weight compression in the following ways: - enabling the inference of exceptionally large models that cannot be accommodated in the memory of the device; @@ -547,33 +385,14 @@ documentation `__ - `Select model <#select-model>`__ @@ -62,9 +63,9 @@ Prerequisites .. code:: ipython3 from pathlib import Path - + repo_dir = Path("./ml-mobileclip") - + if not repo_dir.exists(): !git clone https://github.com/apple/ml-mobileclip.git @@ -76,15 +77,15 @@ Prerequisites remote: Counting objects: 100% (95/95), done. remote: Compressing objects: 100% (66/66), done. remote: Total 95 (delta 38), reused 85 (delta 28), pack-reused 0 (from 0) - Unpacking objects: 100% (95/95), 469.11 KiB | 3.91 MiB/s, done. + Unpacking objects: 100% (95/95), 469.11 KiB | 3.13 MiB/s, done. .. code:: ipython3 %pip install -q "./ml-mobileclip" --no-deps - + %pip install -q "clip-benchmark>=1.4.0" "datasets>=2.8.0" "open-clip-torch>=2.20.0" "timm>=0.9.5" "torch>=1.13.1" "torchvision>=0.14.1" --extra-index-url https://download.pytorch.org/whl/cpu - + %pip install -q "openvino>=2024.0.0" "gradio>=4.19" "matplotlib" "Pillow" "altair" "pandas" "opencv-python" "tqdm" "matplotlib>=3.4" @@ -141,9 +142,9 @@ comparison purposes, you can select different models among: .. code:: ipython3 import ipywidgets as widgets - + model_dir = Path("checkpoints") - + supported_models = { "MobileCLIP": { "mobileclip_s0": { @@ -184,17 +185,17 @@ comparison purposes, you can select different models among: "image_size": 224, }, "clip-vit-b-16": { - "image_name": "ViT-B-16", + "model_name": "ViT-B-16", "pretrained": "openai", "image_size": 224, }, "clip-vit-l-14": { - "image_name": "ViT-L-14", + "model_name": "ViT-L-14", "pretrained": "datacomp_xl_s13b_b90k", "image_size": 224, }, "clip-vit-h-14": { - "image_name": "ViT-H-14", + "model_name": "ViT-H-14", "pretrained": "laion2b_s32b_b79k", "image_size": 224, }, @@ -212,8 +213,8 @@ comparison purposes, you can select different models among: }, }, } - - + + model_type = widgets.Dropdown(options=supported_models.keys(), default="MobileCLIP", description="Model type:") model_type @@ -229,13 +230,13 @@ comparison purposes, you can select different models among: .. code:: ipython3 available_models = supported_models[model_type.value] - + model_checkpoint = widgets.Dropdown( options=available_models.keys(), default=list(available_models), description="Model:", ) - + model_checkpoint @@ -250,15 +251,15 @@ comparison purposes, you can select different models among: .. code:: ipython3 import requests - + r = requests.get( url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py", ) - + open("notebook_utils.py", "w").write(r.text) - + from notebook_utils import download_file, device_widget - + model_config = available_models[model_checkpoint.value] Run model inference @@ -293,8 +294,8 @@ Prepare image gallery import matplotlib.pyplot as plt import numpy as np from PIL import Image - - + + def visualize_result(images: List, query: str = "", selected: List[int] = None): """ Utility function for visualization classification results @@ -322,8 +323,8 @@ Prepare image gallery mask = np.ones_like(np.array(images[idx])) a.imshow(mask, "jet", interpolation="none", alpha=0.75) return fig - - + + images_urls = [ "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/282ce53e-912d-41aa-ab48-2a001c022d74", "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/9bb40168-82b5-4b11-ada6-d8df104c736c", @@ -333,17 +334,17 @@ Prepare image gallery image_names = ["red_panda.png", "cat.png", "raccoon.png", "dog.png"] sample_path = Path("data") sample_path.mkdir(parents=True, exist_ok=True) - + images = [] for image_name, image_url in zip(image_names, images_urls): image_path = sample_path / image_name if not image_path.exists(): download_file(image_url, filename=image_name, directory=sample_path) images.append(Image.open(image_path).convert("RGB").resize((640, 420))) - + input_labels = ["cat"] text_descriptions = [f"This is a photo of a {label}" for label in input_labels] - + visualize_result(images, "image gallery"); @@ -390,7 +391,7 @@ preprocessing utilities from PIL import Image import mobileclip import open_clip - + # instantiate model model_name = model_config["model_name"] pretrained = model_config["pretrained"] @@ -407,7 +408,7 @@ preprocessing utilities .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/timm/models/layers/__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/timm/models/layers/__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning) @@ -426,8 +427,8 @@ Perform search image_tensor = torch.stack([preprocess(image) for image in images]) text = tokenizer(text_descriptions) - - + + with torch.no_grad(): # calculate image embeddings image_encoding_start = time.perf_counter() @@ -439,22 +440,22 @@ Perform search text_features = model.encode_text(text) text_encoding_end = time.perf_counter() print(f"Text encoding took {text_encoding_end - text_encoding_start:.3} ms") - + # normalize embeddings image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) - + # calcualte similarity score image_probs = (100.0 * text_features @ image_features.T).softmax(dim=-1) selected_image = [torch.argmax(image_probs).item()] - + visualize_result(images, input_labels[0], selected_image); .. parsed-literal:: - Image encoding took 0.136 ms - Text encoding took 0.0123 ms + Image encoding took 0.114 ms + Text encoding took 0.0113 ms @@ -481,8 +482,8 @@ be used separately. Let’s convert each part to OpenVINO. import types import torch.nn.functional as F - - + + def se_block_forward(self, inputs): """Apply forward pass.""" b, c, h, w = inputs.size() @@ -498,12 +499,12 @@ be used separately. Let’s convert each part to OpenVINO. import openvino as ov import gc - + ov_models_dir = Path("ov_models") ov_models_dir.mkdir(exist_ok=True) - + image_encoder_path = ov_models_dir / f"{model_checkpoint.value}_im_encoder.xml" - + if not image_encoder_path.exists(): if "mobileclip_s" in model_name: model.image_encoder.model.conv_exp.se.forward = types.MethodType(se_block_forward, model.image_encoder.model.conv_exp.se) @@ -516,23 +517,23 @@ be used separately. Let’s convert each part to OpenVINO. ov.save_model(ov_image_encoder, image_encoder_path) del ov_image_encoder gc.collect() - + text_encoder_path = ov_models_dir / f"{model_checkpoint.value}_text_encoder.xml" - + if not text_encoder_path.exists(): model.forward = model.encode_text ov_text_encoder = ov.convert_model(model, example_input=text, input=[-1, text.shape[1]]) ov.save_model(ov_text_encoder, text_encoder_path) del ov_text_encoder gc.collect() - + del model gc.collect(); .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/mobileclip/modules/common/transformer.py:125: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/mobileclip/modules/common/transformer.py:125: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if seq_len != self.num_embeddings: @@ -549,9 +550,9 @@ Select device for image encoder .. code:: ipython3 core = ov.Core() - + device = device_widget() - + device @@ -608,17 +609,17 @@ Perform search print(f"Text encoding took {text_encoding_end - text_encoding_start:.3} ms") image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) - + image_probs = (100.0 * text_features @ image_features.T).softmax(dim=-1) selected_image = [torch.argmax(image_probs).item()] - + visualize_result(images, input_labels[0], selected_image); .. parsed-literal:: - Image encoding took 0.0297 ms - Text encoding took 0.00513 ms + Image encoding took 0.0294 ms + Text encoding took 0.00498 ms @@ -654,14 +655,14 @@ models can require different optimal threshold for search. ) from open_clip.transform import image_transform from typing import Optional - - + + current_device = device.value current_model = image_encoder_path.name.split("_im_encoder")[0] - + available_converted_models = [model_file.name.split("_im_encoder")[0] for model_file in ov_models_dir.glob("*_im_encoder.xml")] available_devices = list(core.available_devices) + ["AUTO"] - + download_file( "https://storage.openvinotoolkit.org/data/test_data/videos/car-detection.mp4", directory=sample_path, @@ -671,8 +672,8 @@ models can require different optimal threshold for search. directory=sample_path, filename="coco.mp4", ) - - + + def get_preprocess_and_tokenizer(model_name): if "mobileclip" in model_name: resolution = supported_models["MobileCLIP"][model_name]["image_size"] @@ -693,10 +694,10 @@ models can require different optimal threshold for search. resize_size = model_configs[model_name]["image_size"] preprocess = image_transform((resize_size, resize_size), is_train=False, resize_mode="longest") tokenizer = open_clip.get_tokenizer(model_configs[model_name]["model_name"]) - + return preprocess, tokenizer - - + + def run( path: str, text_search: str, @@ -715,7 +716,7 @@ models can require different optimal threshold for search. global tokenizer global ov_compiled_image_encoder global ov_compiled_text_encoder - + if current_model != model_name or device != current_device: ov_compiled_image_encoder = core.compile_model(ov_models_dir / f"{model_name}_im_encoder.xml", device) ov_compiled_text_encoder = core.compile_model(ov_models_dir / f"{model_name}_text_encoder.xml", device) @@ -725,7 +726,7 @@ models can require different optimal threshold for search. # Load video dataset = LoadVideo(path, transforms=preprocess, vid_stride=stride) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=0) - + # Get image query features if image_search: image = preprocess(image_search).unsqueeze(0) @@ -745,11 +746,11 @@ models can require different optimal threshold for search. for image, orig, frame, timestamp in dataloader: with torch.no_grad(): image_features = torch.from_numpy(ov_compiled_image_encoder(image)[0]) - + image_features /= image_features.norm(dim=-1, keepdim=True) probs = query_features.cpu().numpy() @ image_features.cpu().numpy().T probs = probs[0] - + # Save frame similarity values df = pd.DataFrame( { @@ -759,15 +760,15 @@ models can require different optimal threshold for search. } ) res = pd.concat([res, df]) - + # Check if frame is over threshold for i, p in enumerate(probs): if p > thresh: matches.append(to_pil_image(orig[i])) matches_probs.append(p) - + print(f"Frames: {frame.tolist()} - Probs: {probs}") - + # Create plot of similarity values lines = ( alt.Chart(res) @@ -778,16 +779,16 @@ models can require different optimal threshold for search. ) ).properties(width=600) rule = alt.Chart().mark_rule(strokeDash=[6, 3], size=2).encode(y=alt.datum(thresh)) - + selected_frames = np.argsort(-1 * np.array(matches_probs))[:20] matched_sorted_frames = [matches[idx] for idx in selected_frames] - + return ( lines + rule, matched_sorted_frames, ) # Only return up to 20 images to not crash the UI - - + + class LoadVideo(Dataset): def __init__(self, path, transforms, vid_stride=1): self.transforms = transforms @@ -795,27 +796,27 @@ models can require different optimal threshold for search. self.cur_frame = 0 self.cap = cv2.VideoCapture(path) self.total_frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride) - + def __getitem__(self, _): # Read video # Skip over frames for _ in range(self.vid_stride): self.cap.grab() self.cur_frame += 1 - + # Read frame _, img = self.cap.retrieve() timestamp = self.cap.get(cv2.CAP_PROP_POS_MSEC) - + # Convert to PIL img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = Image.fromarray(np.uint8(img)) - + # Apply transforms img_t = self.transforms(img) - + return img_t, to_tensor(img), self.cur_frame, timestamp - + def __len__(self): return self.total_frames @@ -837,15 +838,15 @@ models can require different optimal threshold for search. if not Path("gradio_helper.py").exists(): r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/notebooks/mobileclip-video-search/gradio_helper.py") open("gradio_helper.py", "w").write(r.text) - + from gradio_helper import make_demo, Option - + demo = make_demo( run=run, model_option=Option(choices=available_converted_models, value=model_checkpoint.value), device_option=Option(choices=available_devices, value=device.value), ) - + try: demo.launch(debug=False) except Exception: @@ -858,7 +859,7 @@ models can require different optimal threshold for search. .. parsed-literal:: Running on local URL: http://127.0.0.1:7860 - + To create a public link, set `share=True` in `launch()`. diff --git a/docs/notebooks/mobilevlm-language-assistant-with-output.rst b/docs/notebooks/mobilevlm-language-assistant-with-output.rst index 02efe16d9c0f4a..5902537e3026a5 100644 --- a/docs/notebooks/mobilevlm-language-assistant-with-output.rst +++ b/docs/notebooks/mobilevlm-language-assistant-with-output.rst @@ -119,13 +119,13 @@ Import required packages .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/utils/generic.py:311: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/utils/generic.py:311: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead. torch.utils._pytree._register_pytree_node( - 2024-10-23 01:57:03.532418: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 01:57:03.567584: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-05 02:02:06.143728: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 02:02:06.177889: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 01:57:04.078609: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/utils/generic.py:311: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead. + 2024-11-05 02:02:06.679118: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/utils/generic.py:311: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead. torch.utils._pytree._register_pytree_node( @@ -342,15 +342,15 @@ compression instead of INT8 weight compression. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py:595: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py:595: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if input_shape[-1] > 1: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py:119: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py:119: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if seq_len > self.max_seq_len_cached: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py:348: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py:348: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py:355: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py:355: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py:365: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py:365: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): @@ -416,7 +416,7 @@ compression instead of INT8 weight compression. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:165: UserWarning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the .grad field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations. (Triggered internally at aten/src/ATen/core/TensorBody.h:489.) + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:165: UserWarning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the .grad field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations. (Triggered internally at aten/src/ATen/core/TensorBody.h:489.) if a.grad is not None: diff --git a/docs/notebooks/music-generation-with-output.rst b/docs/notebooks/music-generation-with-output.rst index 566aa1c87a941c..4adc89b9ff79e7 100644 --- a/docs/notebooks/music-generation-with-output.rst +++ b/docs/notebooks/music-generation-with-output.rst @@ -124,13 +124,13 @@ Imports .. parsed-literal:: - 2024-10-23 01:59:20.725760: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 01:59:20.759494: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-05 02:04:23.419260: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 02:04:23.453089: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 01:59:21.367845: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/utils/generic.py:311: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead. + 2024-11-05 02:04:24.059462: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/utils/generic.py:311: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead. torch.utils._pytree._register_pytree_node( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/utils/generic.py:311: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/utils/generic.py:311: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead. torch.utils._pytree._register_pytree_node( @@ -170,11 +170,11 @@ generate a text-conditioned music sample. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/huggingface_hub/file_download.py:797: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/huggingface_hub/file_download.py:797: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`. warnings.warn( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/utils/generic.py:311: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/utils/generic.py:311: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead. torch.utils._pytree._register_pytree_node( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/nn/utils/weight_norm.py:28: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/nn/utils/weight_norm.py:28: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm. warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.") @@ -229,7 +229,7 @@ vocabulary. It helps the model understand the context of a sentence. @@ -655,7 +655,7 @@ We can now infer the pipeline backed by OpenVINO models. diff --git a/docs/notebooks/nano-llava-multimodal-chatbot-with-output.rst b/docs/notebooks/nano-llava-multimodal-chatbot-with-output.rst index 082b6613456e28..337458e35bbf0c 100644 --- a/docs/notebooks/nano-llava-multimodal-chatbot-with-output.rst +++ b/docs/notebooks/nano-llava-multimodal-chatbot-with-output.rst @@ -53,7 +53,7 @@ Prerequisites %pip install -q "torch>=2.1" "transformers>=4.40" "accelerate" "pillow" "gradio>=4.26" "tqdm" --extra-index-url https://download.pytorch.org/whl/cpu %pip install -q "nncf>=2.13" - %pip install -q -U --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly openvino_tokenizers[transformers] "openvino>=2024.4.0" + %pip install -q -U --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly "openvino-tokenizers[transformers]" "openvino>=2024.4.0" %pip install -q "git+https://github.com/eaidova/optimum-intel.git@ea/minicpmv" @@ -64,9 +64,10 @@ Prerequisites Note: you may need to restart the kernel to use updated packages. Note: you may need to restart the kernel to use updated packages. ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. - openvino-dev 2024.4.0 requires openvino==2024.4.0, but you have openvino 2024.5.0.dev20241014 which is incompatible. openvino-genai 2024.4.0.0 requires openvino_tokenizers~=2024.4.0.0.dev, but you have openvino-tokenizers 2024.5.0.0.dev20241022 which is incompatible. Note: you may need to restart the kernel to use updated packages. + ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. + mobileclip 0.1.0 requires torchvision==0.14.1, but you have torchvision 0.17.2+cpu which is incompatible. Note: you may need to restart the kernel to use updated packages. @@ -145,13 +146,13 @@ Download PyTorch model .. parsed-literal:: - example_1.png: 0%| | 0.00/200k [00:00 1 or self.sliding_window is not None) and self.is_causal: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/optimum/exporters/onnx/model_patcher.py:307: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/optimum/exporters/onnx/model_patcher.py:306: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if past_key_values_length > 0: - /opt/home/k8sworker/.cache/huggingface/modules/transformers_modules/qnguyen3/nanoLLaVA/1ea99cffcf50a27c5f06fe5d22a07046aba0bffe/modeling_llava_qwen2.py:939: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/.cache/huggingface/modules/transformers_modules/qnguyen3/nanoLLaVA/13d60cec183a86755afed64da495fcc2c382ea80/modeling_llava_qwen2.py:939: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if seq_len > self.max_seq_len_cached: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/cache_utils.py:432: TracerWarning: Using len to get tensor shape might cause the trace to be incorrect. Recommended usage would be tensor.shape[0]. Passing a tensor of different shape might lead to errors or silently give incorrect results. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/cache_utils.py:432: TracerWarning: Using len to get tensor shape might cause the trace to be incorrect. Recommended usage would be tensor.shape[0]. Passing a tensor of different shape might lead to errors or silently give incorrect results. elif len(self.key_cache[layer_idx]) == 0: # fills previously skipped layers; checking for tensor causes errors - /opt/home/k8sworker/.cache/huggingface/modules/transformers_modules/qnguyen3/nanoLLaVA/1ea99cffcf50a27c5f06fe5d22a07046aba0bffe/modeling_llava_qwen2.py:1499: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/.cache/huggingface/modules/transformers_modules/qnguyen3/nanoLLaVA/13d60cec183a86755afed64da495fcc2c382ea80/modeling_llava_qwen2.py:1499: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): - Unexpectedly found already patched module while applying ModuleExtension during PyTorch model conversion. Result of the conversion maybe broken. Depending on the exact issue it may lead to broken original model. OpenVINO and OpenVINO Tokenizers versions are not binary compatible. OpenVINO version: 2024.5.0-16993 OpenVINO Tokenizers version: 2024.5.0.0 @@ -579,18 +250,18 @@ documentation + File "/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/bin/optimum-cli", line 10, in sys.exit(main()) - File "/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/optimum/commands/optimum_cli.py", line 208, in main + File "/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/optimum/commands/optimum_cli.py", line 208, in main service.run() - File "/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/optimum/commands/export/openvino.py", line 349, in run + File "/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/optimum/commands/export/openvino.py", line 349, in run main_export( - File "/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/optimum/exporters/openvino/__main__.py", line 416, in main_export + File "/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/optimum/exporters/openvino/__main__.py", line 416, in main_export core = Core() - File "/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/openvino_tokenizers/__init__.py", line 53, in new_core_init + File "/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/openvino_tokenizers/__init__.py", line 53, in new_core_init self.add_extension(str(_ext_path)) # Core.add_extension doesn't support Path object RuntimeError: Exception from src/inference/src/cpp/core.cpp:158: - Cannot add extension. Cannot find entry point to the extension library. This error happened: Cannot load library '/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/openvino_tokenizers/lib/libopenvino_tokenizers.so': /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/openvino_tokenizers/lib/libopenvino_tokenizers.so: undefined symbol: _ZNK2ov4Node17can_constant_foldERKSt6vectorINS_6OutputIS0_EESaIS3_EE + Cannot add extension. Cannot find entry point to the extension library. This error happened: Cannot load library '/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/openvino_tokenizers/lib/libopenvino_tokenizers.so': /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/openvino_tokenizers/lib/libopenvino_tokenizers.so: undefined symbol: _ZNK2ov4Node17can_constant_foldERKSt6vectorINS_6OutputIS0_EESaIS3_EE @@ -709,12 +380,12 @@ image encoder model. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/quantization/quantize_model.py:432: FutureWarning: `CompressWeightsMode.INT8` is deprecated. Please, use `CompressWeightsMode.INT8_ASYM` as value instead. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/quantization/quantize_model.py:432: FutureWarning: `CompressWeightsMode.INT8` is deprecated. Please, use `CompressWeightsMode.INT8_ASYM` as value instead. warning_deprecated( - 2024-10-23 02:04:33.280788: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 02:04:33.314985: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-05 02:09:38.791476: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 02:09:38.825207: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 02:04:33.946816: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-05 02:09:39.427301: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT .. parsed-literal:: @@ -915,8 +586,8 @@ can use the same tokenizer and image processor that provided with model. Question: Describe this image in detail Answer: - The image portrays a charming and playful scene featuring a white lama. This adorable creature has a playful expression, with its eyes sparkling with joy and its nose in a playful smile. It is adorned with cute, tiny eyes that add a playful touch to its face. The lama's ears are also quite noticeable, with one of them sporting a tiny pink button. The lama's body is covered in fluffy, white fur, and it has its hind legs visible, adding a sense of movement to the image. - The lama is surrounded by a vivid display of fire. The flames are bright and lively, with some areas appearing more intense + The image features a small, adorable white lamb standing amidst a fire. The lamb's fur is fluffy and white, and it is adorned with tiny black eyes that are bright and lively. The lamb's face is cute, with a small black nose and a small mouth. It seems like the lamb is looking straight at the camera, making it appear even more adorable. + The lamb's right ear is visible, and it is white and pink. The lamb's right eye is also black and pink. The lamb's face is quite detailed, with the nose and mouth visible. There are also details like the lamb's right foot, which is white Interactive demo diff --git a/docs/notebooks/object-detection-with-output.rst b/docs/notebooks/object-detection-with-output.rst index b1db0093158982..a34f72f5d8ff1e 100644 --- a/docs/notebooks/object-detection-with-output.rst +++ b/docs/notebooks/object-detection-with-output.rst @@ -2,12 +2,10 @@ Live Object Detection with OpenVINO™ ==================================== This notebook demonstrates live object detection with OpenVINO, using -the `SSDLite -MobileNetV2 `__ -from `Open Model -Zoo `__. Final part -of this notebook shows live inference results from a webcam. -Additionally, you can also upload a video file. +the `Ultralytics +YOLOv8 `__. Final part of +this notebook shows live inference results from a webcam. Additionally, +you can also upload a video file. **NOTE**: To use this notebook with a webcam, you need to run the notebook on a computer with a webcam. If you run the notebook on a @@ -25,13 +23,12 @@ Additionally, you can also upload a video file. - `The Model <#the-model>`__ - - `Download the Model <#download-the-model>`__ - - `Convert the Model <#convert-the-model>`__ + - `Download and convert the + Model <#download-and-convert-the-model>`__ - `Load the Model <#load-the-model>`__ - `Processing <#processing>`__ - - `Process Results <#process-results>`__ - `Main Processing Function <#main-processing-function>`__ - `Run <#run>`__ @@ -62,8 +59,8 @@ Install requirements .. code:: ipython3 - %pip install -q "openvino-dev>=2024.0.0" - %pip install -q tensorflow + %pip install -q "openvino>=2024.4.0" + %pip install -q "ultralytics==8.3.0" --extra-index-url https://download.pytorch.org/whl/cpu %pip install -q opencv-python requests tqdm # Fetch `notebook_utils` module @@ -79,10 +76,6 @@ Install requirements .. parsed-literal:: Note: you may need to restart the kernel to use updated packages. - ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. - magika 0.5.1 requires numpy<2.0,>=1.24; python_version >= "3.8" and python_version < "3.9", but you have numpy 1.23.5 which is incompatible. - mobileclip 0.1.0 requires torchvision==0.14.1, but you have torchvision 0.17.2+cpu which is incompatible. - supervision 0.24.0 requires numpy<1.23.3,>=1.21.2; python_full_version <= "3.10.0", but you have numpy 1.23.5 which is incompatible. Note: you may need to restart the kernel to use updated packages. Note: you may need to restart the kernel to use updated packages. @@ -102,17 +95,10 @@ Imports .. code:: ipython3 - import collections - import tarfile - import time from pathlib import Path - - import cv2 - import numpy as np - from IPython import display + import gc import openvino as ov - from openvino.tools.mo.front import tf as ov_tf_front - from openvino.tools import mo + from ultralytics import YOLO import notebook_utils as utils @@ -121,92 +107,53 @@ The Model -Download the Model -~~~~~~~~~~~~~~~~~~ - +Download and convert the Model +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Use the ``download_file``, a function from the ``notebook_utils`` file. -It automatically creates a directory structure and downloads the -selected model. This step is skipped if the package is already -downloaded and unpacked. The chosen model comes from the public -directory, which means it must be converted into OpenVINO Intermediate -Representation (OpenVINO IR). - - **NOTE**: Using a model other than ``ssdlite_mobilenet_v2`` may - require different conversion parameters as well as pre- and - post-processing. .. code:: ipython3 # A directory where the model will be downloaded. - base_model_dir = Path("model") - - # The name of the model from Open Model Zoo - model_name = "ssdlite_mobilenet_v2" - archive_name = Path(f"{model_name}_coco_2018_05_09.tar.gz") - model_url = f"https://storage.openvinotoolkit.org/repositories/open_model_zoo/public/2022.1/{model_name}/{archive_name}" + # The name of the model + model_name = "yolov8n" - # Download the archive - downloaded_model_path = base_model_dir / archive_name - if not downloaded_model_path.exists(): - utils.download_file(model_url, downloaded_model_path.name, downloaded_model_path.parent) + det_model_path = Path(f"{model_name}_openvino_model/{model_name}.xml") - # Unpack the model - tf_model_path = base_model_dir / archive_name.with_suffix("").stem / "frozen_inference_graph.pb" - if not tf_model_path.exists(): - with tarfile.open(downloaded_model_path) as file: - file.extractall(base_model_dir) - + # export model to OpenVINO format using Ultralytics API + if not det_model_path.exists(): + pt_model = YOLO(f"{model_name}.pt") + pt_model.export(format="openvino", dynamic=True, half=True) + del pt_model + gc.collect() .. parsed-literal:: - model/ssdlite_mobilenet_v2_coco_2018_05_09.tar.gz: 0%| | 0.00/48.7M [00:00`__ -(``mo.convert_model`` function). If the model has been already -converted, this step is skipped. - -.. code:: ipython3 - - precision = "FP16" - # The output path for the conversion. - converted_model_path = Path("model") / f"{model_name}_{precision.lower()}.xml" - - # Convert it to IR if not previously converted - trans_config_path = Path(ov_tf_front.__file__).parent / "ssd_v2_support.json" - if not converted_model_path.exists(): - ov_model = mo.convert_model( - tf_model_path, - compress_to_fp16=(precision == "FP16"), - transformations_config=trans_config_path, - tensorflow_object_detection_api_pipeline_config=tf_model_path.parent / "pipeline.config", - reverse_input_channels=True, - ) - ov.save_model(ov_model, converted_model_path) - del ov_model + Downloading https://github.com/ultralytics/assets/releases/download/v8.3.0/yolov8n.pt to 'yolov8n.pt'... .. parsed-literal:: - [ INFO ] MO command line tool is considered as the legacy conversion API as of OpenVINO 2023.2 release. - In 2025.0 MO command line tool and openvino.tools.mo.convert_model() will be removed. Please use OpenVINO Model Converter (OVC) or openvino.convert_model(). OVC represents a lightweight alternative of MO and provides simplified model conversion API. - Find more information about transition from MO to OVC at https://docs.openvino.ai/2023.2/openvino_docs_OV_Converter_UG_prepare_model_convert_model_MO_OVC_transition.html + 100%|██████████| 6.25M/6.25M [00:00<00:00, 25.9MB/s] .. parsed-literal:: - [ WARNING ] The Preprocessor block has been removed. Only nodes performing mean value subtraction and scaling (if applicable) are kept. + Ultralytics 8.3.0 🚀 Python-3.8.10 torch-2.2.2+cpu CPU (Intel Core(TM) i9-10920X 3.50GHz) + YOLOv8n summary (fused): 168 layers, 3,151,904 parameters, 0 gradients, 8.7 GFLOPs + + PyTorch: starting from 'yolov8n.pt' with input shape (1, 3, 640, 640) BCHW and output shape(s) (1, 84, 8400) (6.2 MB) + + OpenVINO: starting export with openvino 2024.4.0-16579-c3152d32c9c-releases/2024/4... + OpenVINO: export success ✅ 1.3s, saved as 'yolov8n_openvino_model/' (6.4 MB) + + Export complete (1.5s) + Results saved to /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/object-detection-webcam + Predict: yolo predict task=detect model=yolov8n_openvino_model imgsz=640 half + Validate: yolo val task=detect model=yolov8n_openvino_model imgsz=640 data=coco.yaml half + Visualize: https://netron.app Load the Model @@ -241,208 +188,44 @@ best performance. For that purpose, just use ``AUTO``. .. code:: ipython3 - # Read the network and corresponding weights from a file. - model = core.read_model(model=converted_model_path) - # Compile the model for CPU (you can choose manually CPU, GPU etc.) - # or let the engine choose the best available device (AUTO). - compiled_model = core.compile_model(model=model, device_name=device.value) - - # Get the input and output nodes. - input_layer = compiled_model.input(0) - output_layer = compiled_model.output(0) - - # Get the input size. - height, width = list(input_layer.shape)[1:3] - -Input and output layers have the names of the input node and output node -respectively. In the case of SSDLite MobileNetV2, there is 1 input and 1 -output. - -.. code:: ipython3 - - input_layer.any_name, output_layer.any_name - - - - -.. parsed-literal:: - - ('image_tensor:0', 'detection_boxes:0') - - - -Processing ----------- - - - -Process Results -~~~~~~~~~~~~~~~ - - - -First, list all available classes and create colors for them. Then, in -the post-process stage, transform boxes with normalized coordinates -``[0, 1]`` into boxes with pixel coordinates ``[0, image_size_in_px]``. -Afterward, use `non-maximum -suppression `__ -to reject overlapping detections and those below the probability -threshold (0.5). Finally, draw boxes and labels inside them. - -.. code:: ipython3 - - # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ - classes = [ - "background", - "person", - "bicycle", - "car", - "motorcycle", - "airplane", - "bus", - "train", - "truck", - "boat", - "traffic light", - "fire hydrant", - "street sign", - "stop sign", - "parking meter", - "bench", - "bird", - "cat", - "dog", - "horse", - "sheep", - "cow", - "elephant", - "bear", - "zebra", - "giraffe", - "hat", - "backpack", - "umbrella", - "shoe", - "eye glasses", - "handbag", - "tie", - "suitcase", - "frisbee", - "skis", - "snowboard", - "sports ball", - "kite", - "baseball bat", - "baseball glove", - "skateboard", - "surfboard", - "tennis racket", - "bottle", - "plate", - "wine glass", - "cup", - "fork", - "knife", - "spoon", - "bowl", - "banana", - "apple", - "sandwich", - "orange", - "broccoli", - "carrot", - "hot dog", - "pizza", - "donut", - "cake", - "chair", - "couch", - "potted plant", - "bed", - "mirror", - "dining table", - "window", - "desk", - "toilet", - "door", - "tv", - "laptop", - "mouse", - "remote", - "keyboard", - "cell phone", - "microwave", - "oven", - "toaster", - "sink", - "refrigerator", - "blender", - "book", - "clock", - "vase", - "scissors", - "teddy bear", - "hair drier", - "toothbrush", - "hair brush", - ] - - # Colors for the classes above (Rainbow Color Map). - colors = cv2.applyColorMap( - src=np.arange(0, 255, 255 / len(classes), dtype=np.float32).astype(np.uint8), - colormap=cv2.COLORMAP_RAINBOW, - ).squeeze() + core = ov.Core() - def process_results(frame, results, thresh=0.6): - # The size of the original frame. - h, w = frame.shape[:2] - # The 'results' variable is a [1, 1, 100, 7] tensor. - results = results.squeeze() - boxes = [] - labels = [] - scores = [] - for _, label, score, xmin, ymin, xmax, ymax in results: - # Create a box with pixels coordinates from the box with normalized coordinates [0,1]. - boxes.append(tuple(map(int, (xmin * w, ymin * h, (xmax - xmin) * w, (ymax - ymin) * h)))) - labels.append(int(label)) - scores.append(float(score)) + def load_model(det_model_path, device): + compiled_model = compile_model(det_model_path, device) + det_model = YOLO(det_model_path.parent, task="detect") - # Apply non-maximum suppression to get rid of many overlapping entities. - # See https://paperswithcode.com/method/non-maximum-suppression - # This algorithm returns indices of objects to keep. - indices = cv2.dnn.NMSBoxes(bboxes=boxes, scores=scores, score_threshold=thresh, nms_threshold=0.6) + if det_model.predictor is None: + custom = {"conf": 0.25, "batch": 1, "save": False, "mode": "predict"} # method defaults + args = {**det_model.overrides, **custom} + det_model.predictor = det_model._smart_load("predictor")(overrides=args, _callbacks=det_model.callbacks) + det_model.predictor.setup_model(model=det_model.model) - # If there are no boxes. - if len(indices) == 0: - return [] + det_model.predictor.model.ov_compiled_model = compiled_model + return det_model - # Filter detected objects. - return [(labels[idx], scores[idx], boxes[idx]) for idx in indices.flatten()] + def compile_model(det_model_path, device): + det_ov_model = core.read_model(det_model_path) - def draw_boxes(frame, boxes): - for label, score, box in boxes: - # Choose color for the label. - color = tuple(map(int, colors[label])) - # Draw a box. - x2 = box[0] + box[2] - y2 = box[1] + box[3] - cv2.rectangle(img=frame, pt1=box[:2], pt2=(x2, y2), color=color, thickness=3) + ov_config = {} + if device != "CPU": + det_ov_model.reshape({0: [1, 3, 640, 640]}) + if "GPU" in device or ("AUTO" in device and "GPU" in core.available_devices): + ov_config = {"GPU_DISABLE_WINOGRAD_CONVOLUTION": "YES"} + det_compiled_model = core.compile_model(det_ov_model, device, ov_config) + return det_compiled_model - # Draw a label name inside the box. - cv2.putText( - img=frame, - text=f"{classes[label]} {score:.2f}", - org=(box[0] + 10, box[1] + 30), - fontFace=cv2.FONT_HERSHEY_COMPLEX, - fontScale=frame.shape[1] / 1000, - color=color, - thickness=1, - lineType=cv2.LINE_AA, - ) - return frame + det_model = load_model(det_model_path, device.value) + + +.. parsed-literal:: + + Ultralytics 8.3.0 🚀 Python-3.8.10 torch-2.2.2+cpu CPU (Intel Core(TM) i9-10920X 3.50GHz) + Loading yolov8n_openvino_model for OpenVINO inference... + Using OpenVINO LATENCY mode for batch=1 inference... + Main Processing Function ~~~~~~~~~~~~~~~~~~~~~~~~ @@ -454,8 +237,18 @@ file. .. code:: ipython3 + from IPython import display + import cv2 + import numpy as np + + # Main processing function to run object detection. - def run_object_detection(source=0, flip=False, use_popup=False, skip_first_frames=0): + def run_object_detection( + source=0, + flip=False, + use_popup=False, + skip_first_frames=0, + ): player = None try: # Create a video player to play with target fps. @@ -466,7 +259,6 @@ file. title = "Press ESC to Exit" cv2.namedWindow(winname=title, flags=cv2.WINDOW_GUI_NORMAL | cv2.WINDOW_AUTOSIZE) - processing_times = collections.deque() while True: # Grab the frame. frame = player.next() @@ -483,43 +275,10 @@ file. fy=scale, interpolation=cv2.INTER_AREA, ) - - # Resize the image and change dims to fit neural network input. - input_img = cv2.resize(src=frame, dsize=(width, height), interpolation=cv2.INTER_AREA) - # Create a batch of images (size = 1). - input_img = input_img[np.newaxis, ...] - - # Measure processing time. - - start_time = time.time() # Get the results. - results = compiled_model([input_img])[output_layer] - stop_time = time.time() - # Get poses from network results. - boxes = process_results(frame=frame, results=results) - - # Draw boxes on a frame. - frame = draw_boxes(frame=frame, boxes=boxes) - - processing_times.append(stop_time - start_time) - # Use processing times from last 200 frames. - if len(processing_times) > 200: - processing_times.popleft() - - _, f_width = frame.shape[:2] - # Mean processing time [ms]. - processing_time = np.mean(processing_times) * 1000 - fps = 1000 / processing_time - cv2.putText( - img=frame, - text=f"Inference time: {processing_time:.1f}ms ({fps:.1f} FPS)", - org=(20, 40), - fontFace=cv2.FONT_HERSHEY_COMPLEX, - fontScale=f_width / 1000, - color=(0, 0, 255), - thickness=1, - lineType=cv2.LINE_AA, - ) + input_image = np.array(frame) + detections = det_model(input_image, verbose=False) + frame = detections[0].plot() # Use this workaround if there is flickering. if use_popup: @@ -592,22 +351,10 @@ Run the object detection: -.. image:: object-detection-with-output_files/object-detection-with-output_19_0.png +.. image:: object-detection-with-output_files/object-detection-with-output_13_0.png .. parsed-literal:: Source ended - -References ----------- - - - -1. `SSDLite - MobileNetV2 `__ -2. `Open Model - Zoo `__ -3. `Non-Maximum - Suppression `__ diff --git a/docs/notebooks/object-detection-with-output_files/object-detection-with-output_13_0.png b/docs/notebooks/object-detection-with-output_files/object-detection-with-output_13_0.png new file mode 100644 index 00000000000000..1c548a0445636e --- /dev/null +++ b/docs/notebooks/object-detection-with-output_files/object-detection-with-output_13_0.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b3fca049d156843f0976e9386ece07d1846e92efcacc5c559de140e7733b67b3 +size 171752 diff --git a/docs/notebooks/object-detection-with-output_files/object-detection-with-output_19_0.png b/docs/notebooks/object-detection-with-output_files/object-detection-with-output_19_0.png deleted file mode 100644 index fb2b3b2abdf69f..00000000000000 --- a/docs/notebooks/object-detection-with-output_files/object-detection-with-output_19_0.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1d300cd81ce6f44a5ee2ded6f14b739b0a8ecd8d5d2e487743cd085b92b3533b -size 175076 diff --git a/docs/notebooks/openvino-api-with-output.rst b/docs/notebooks/openvino-api-with-output.rst index a837b88ac6976b..b2b4c8c0f04fdd 100644 --- a/docs/notebooks/openvino-api-with-output.rst +++ b/docs/notebooks/openvino-api-with-output.rst @@ -201,7 +201,7 @@ notebooks. .. parsed-literal:: - PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/openvino-api/model/classification.bin') + PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/openvino-api/model/classification.bin') @@ -250,7 +250,7 @@ points to the filename of an ONNX model. .. parsed-literal:: - PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/openvino-api/model/segmentation.onnx') + PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/openvino-api/model/segmentation.onnx') @@ -310,7 +310,7 @@ without any conversion step. Pass the filename with extension to .. parsed-literal:: - PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/openvino-api/model/inference.pdiparams') + PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/openvino-api/model/inference.pdiparams') @@ -354,7 +354,7 @@ TensorFlow models saved in frozen graph format can also be passed to .. parsed-literal:: - PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/openvino-api/model/classification.pb') + PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/openvino-api/model/classification.pb') @@ -497,7 +497,7 @@ Information about the inputs and outputs of the model are in .. parsed-literal:: - PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/openvino-api/model/classification.bin') + PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/openvino-api/model/classification.bin') @@ -703,7 +703,7 @@ produced data as values. .. parsed-literal:: - PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/openvino-api/model/classification.bin') + PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/openvino-api/model/classification.bin') @@ -892,7 +892,7 @@ input shape. .. parsed-literal:: - PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/openvino-api/model/segmentation.bin') + PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/openvino-api/model/segmentation.bin') @@ -1044,7 +1044,7 @@ the cache. .. parsed-literal:: - PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/openvino-api/model/classification.bin') + PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/openvino-api/model/classification.bin') diff --git a/docs/notebooks/openvoice-with-output.rst b/docs/notebooks/openvoice-with-output.rst index b73dd8059aa65b..2ee11fcded84dc 100644 --- a/docs/notebooks/openvoice-with-output.rst +++ b/docs/notebooks/openvoice-with-output.rst @@ -100,10 +100,11 @@ Clone repository and install requirements Cloning into 'OpenVoice'... remote: Enumerating objects: 438, done. remote: Total 438 (delta 0), reused 0 (delta 0), pack-reused 438 (from 1) - Receiving objects: 100% (438/438), 3.84 MiB | 19.30 MiB/s, done. + Receiving objects: 100% (438/438), 3.84 MiB | 21.51 MiB/s, done. Resolving deltas: 100% (207/207), done. ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. mobileclip 0.1.0 requires torchvision==0.14.1, but you have torchvision 0.17.2+cpu which is incompatible. + tensorflow 2.12.0 requires numpy<1.24,>=1.22, but you have numpy 1.24.4 which is incompatible. torchvision 0.17.2+cpu requires torch==2.2.2, but you have torch 2.4.1 which is incompatible. Note: you may need to restart the kernel to use updated packages. @@ -242,9 +243,9 @@ True .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/nn/utils/weight_norm.py:134: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/nn/utils/weight_norm.py:134: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`. WeightNorm.apply(module, name, dim) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/api.py:36: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/api.py:36: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint_dict = torch.load(ckpt_path, map_location=torch.device(self.device)) @@ -258,9 +259,9 @@ True .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/wavmark/__init__.py:16: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/wavmark/__init__.py:16: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(resume_path, map_location=torch.device('cpu')) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/api.py:36: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/api.py:36: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint_dict = torch.load(ckpt_path, map_location=torch.device(self.device)) @@ -410,40 +411,40 @@ documentation 0 No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/attentions.py:283: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/attentions.py:283: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert ( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/attentions.py:346: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/attentions.py:346: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! pad_length = max(length - (self.window_size + 1), 0) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/attentions.py:347: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/attentions.py:347: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! slice_start_position = max((self.window_size + 1) - length, 0) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/attentions.py:349: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/attentions.py:349: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if pad_length > 0: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/transforms.py:114: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/transforms.py:114: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if torch.min(inputs) < left or torch.max(inputs) > right: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/transforms.py:119: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/transforms.py:119: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if min_bin_width * num_bins > 1.0: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/transforms.py:121: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/transforms.py:121: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if min_bin_height * num_bins > 1.0: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/transforms.py:171: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/openvoice/OpenVoice/openvoice/transforms.py:171: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert (discriminant >= 0).all() - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:1303: TracerWarning: Trace had nondeterministic nodes. Did you forget call .eval() on your model? Nodes: - %3293 : Float(1, 2, 43, strides=[86, 43, 1], requires_grad=0, device=cpu) = aten::randn(%3288, %3289, %3290, %3291, %3292) # /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/torch/dynamic_graph/wrappers.py:86:0 - %5559 : Float(1, 192, 152, strides=[29184, 1, 192], requires_grad=0, device=cpu) = aten::randn_like(%m_p, %5554, %5555, %5556, %5557, %5558) # /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/torch/dynamic_graph/wrappers.py:86:0 + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:1303: TracerWarning: Trace had nondeterministic nodes. Did you forget call .eval() on your model? Nodes: + %3293 : Float(1, 2, 43, strides=[86, 43, 1], requires_grad=0, device=cpu) = aten::randn(%3288, %3289, %3290, %3291, %3292) # /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/torch/dynamic_graph/wrappers.py:86:0 + %5559 : Float(1, 192, 153, strides=[29376, 1, 192], requires_grad=0, device=cpu) = aten::randn_like(%m_p, %5554, %5555, %5556, %5557, %5558) # /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/torch/dynamic_graph/wrappers.py:86:0 This may cause errors in trace checking. To disable trace checking, pass check_trace=False to torch.jit.trace() _check_trace( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:1303: TracerWarning: Output nr 1. of the traced function does not match the corresponding output of the Python function. Detailed error: - The values for attribute 'shape' do not match: torch.Size([1, 1, 38656]) != torch.Size([1, 1, 39680]). + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:1303: TracerWarning: Output nr 1. of the traced function does not match the corresponding output of the Python function. Detailed error: + The values for attribute 'shape' do not match: torch.Size([1, 1, 39424]) != torch.Size([1, 1, 38656]). _check_trace( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:1303: TracerWarning: Output nr 2. of the traced function does not match the corresponding output of the Python function. Detailed error: - The values for attribute 'shape' do not match: torch.Size([1, 1, 151, 43]) != torch.Size([1, 1, 155, 43]). + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:1303: TracerWarning: Output nr 2. of the traced function does not match the corresponding output of the Python function. Detailed error: + The values for attribute 'shape' do not match: torch.Size([1, 1, 154, 43]) != torch.Size([1, 1, 151, 43]). _check_trace( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:1303: TracerWarning: Output nr 3. of the traced function does not match the corresponding output of the Python function. Detailed error: - The values for attribute 'shape' do not match: torch.Size([1, 1, 151]) != torch.Size([1, 1, 155]). + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:1303: TracerWarning: Output nr 3. of the traced function does not match the corresponding output of the Python function. Detailed error: + The values for attribute 'shape' do not match: torch.Size([1, 1, 154]) != torch.Size([1, 1, 151]). _check_trace( - 2024-10-23 02:08:53.401718: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-05 02:13:33.268258: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT .. parsed-literal:: @@ -476,16 +477,16 @@ documentation )`. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:836.) + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/nn/modules/module.py:1562: UserWarning: A window was not provided. A rectangular window will be applied,which is known to cause spectral leakage. Other windows such as torch.hann_window or torch.hamming_window can are recommended to reduce spectral leakage.To suppress this warning and use a rectangular window, explicitly set `window=torch.ones(n_fft, device=)`. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:836.) return forward_call(\*args, \*\*kwargs) @@ -713,7 +714,7 @@ Load speaker embeddings .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/functional.py:666: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/functional.py:666: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error. Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:873.) return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined] @@ -868,7 +869,7 @@ And finally, run voice tone conversion with OpenVINO optimized model @@ -886,7 +887,7 @@ And finally, run voice tone conversion with OpenVINO optimized model @@ -1075,7 +1076,7 @@ voice tone conversion online. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/gradio/components/dropdown.py:100: UserWarning: The `max_choices` parameter is ignored when `multiselect` is False. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/gradio/components/dropdown.py:100: UserWarning: The `max_choices` parameter is ignored when `multiselect` is False. warnings.warn( diff --git a/docs/notebooks/optical-character-recognition-with-output.rst b/docs/notebooks/optical-character-recognition-with-output.rst index 9efa8e8e7b87f2..7dae2290312e68 100644 --- a/docs/notebooks/optical-character-recognition-with-output.rst +++ b/docs/notebooks/optical-character-recognition-with-output.rst @@ -9,16 +9,9 @@ which shows only text detection. The `horizontal-text-detection-0001 `__ and -`text-recognition-resnet `__ +`text-recognition-0014 `__ models are used together for text detection and then text recognition. -In this tutorial, Open Model Zoo tools including Model Downloader, Model -Converter and Info Dumper are used to download and convert the models -from `Open Model -Zoo `__. For more -information, refer to the -`model-tools `__ tutorial. - **Table of contents:** @@ -26,7 +19,6 @@ information, refer to the - `Imports <#imports>`__ - `Settings <#settings>`__ - `Download Models <#download-models>`__ -- `Convert Models <#convert-models>`__ - `Select inference device <#select-inference-device>`__ - `Object Detection <#object-detection>`__ @@ -61,15 +53,12 @@ Guide =2024.0.0" "onnx<1.16.2" torch torchvision pillow opencv-python "matplotlib>=3.4" --extra-index-url https://download.pytorch.org/whl/cpu + # Install openvino package + %pip install -q "openvino>=2024.4.0" pillow opencv-python "matplotlib>=3.4" .. parsed-literal:: - ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. - mobileclip 0.1.0 requires torchvision==0.14.1, but you have torchvision 0.17.2+cpu which is incompatible. - torchaudio 2.4.1+cpu requires torch==2.4.1, but you have torch 2.2.2+cpu which is incompatible. Note: you may need to restart the kernel to use updated packages. @@ -111,7 +100,7 @@ Settings model_dir = Path("model") precision = "FP16" detection_model = "horizontal-text-detection-0001" - recognition_model = "text-recognition-resnet-fc" + recognition_model = "text-recognition-0014" model_dir.mkdir(exist_ok=True) @@ -120,274 +109,35 @@ Download Models -The next cells will run Model Downloader to download the detection and -recognition models. If the models have been downloaded before, they will -not be downloaded again. +The next cells will download the detection and recognition models. If +the models have been downloaded before, they will not be downloaded +again. .. code:: ipython3 - download_command = ( - f"omz_downloader --name {detection_model},{recognition_model} --output_dir {model_dir} --cache_dir {model_dir} --precision {precision} --num_attempts 5" - ) - display(Markdown(f"Download command: `{download_command}`")) - display(Markdown(f"Downloading {detection_model}, {recognition_model}...")) - !$download_command - display(Markdown(f"Finished downloading {detection_model}, {recognition_model}.")) - - detection_model_path = (model_dir / "intel/horizontal-text-detection-0001" / precision / detection_model).with_suffix(".xml") - recognition_model_path = (model_dir / "public/text-recognition-resnet-fc" / precision / recognition_model).with_suffix(".xml") - - - -Download command: -``omz_downloader --name horizontal-text-detection-0001,text-recognition-resnet-fc --output_dir model --cache_dir model --precision FP16 --num_attempts 5`` - - - -Downloading horizontal-text-detection-0001, text-recognition-resnet-fc… - - -.. parsed-literal:: - - ################|| Downloading horizontal-text-detection-0001 ||################ - - ========== Downloading model/intel/horizontal-text-detection-0001/FP16/horizontal-text-detection-0001.xml - - - ========== Downloading model/intel/horizontal-text-detection-0001/FP16/horizontal-text-detection-0001.bin - - - ################|| Downloading text-recognition-resnet-fc ||################ - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/__init__.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/builder.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/model.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/weight_init.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/registry.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/heads/__init__.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/heads/builder.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/heads/fc_head.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/heads/registry.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/__init__.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/builder.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/registry.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/body.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/component.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/sequences/__init__.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/sequences/builder.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/sequences/registry.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/__init__.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/builder.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/decoders/__init__.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/decoders/builder.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/decoders/registry.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/decoders/bricks/__init__.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/decoders/bricks/bricks.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/decoders/bricks/builder.py - + from notebook_utils import download_ir_model - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/decoders/bricks/registry.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/encoders/__init__.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/encoders/builder.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/encoders/backbones/__init__.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/encoders/backbones/builder.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/encoders/backbones/registry.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/encoders/backbones/resnet.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/encoders/enhance_modules/__init__.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/encoders/enhance_modules/builder.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/encoders/enhance_modules/registry.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/utils/__init__.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/utils/builder.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/utils/conv_module.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/utils/fc_module.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/utils/norm.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/models/utils/registry.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/utils/__init__.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/utils/common.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/utils/registry.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/utils/config.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/configs/resnet_fc.py - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/ckpt/resnet_fc.pth - - - ========== Downloading model/public/text-recognition-resnet-fc/vedastr/addict-2.4.0-py3-none-any.whl + detection_model_url = f"https://storage.openvinotoolkit.org/repositories/open_model_zoo/2023.0/models_bin/1/{detection_model}/{precision}/{detection_model}.xml" + recognition_model_url = ( + f"https://storage.openvinotoolkit.org/repositories/open_model_zoo/2023.0/models_bin/1/{recognition_model}/{precision}/{recognition_model}.xml" + ) - ========== Replacing text in model/public/text-recognition-resnet-fc/vedastr/models/heads/__init__.py - ========== Replacing text in model/public/text-recognition-resnet-fc/vedastr/models/bodies/__init__.py - ========== Replacing text in model/public/text-recognition-resnet-fc/vedastr/models/bodies/sequences/__init__.py - ========== Replacing text in model/public/text-recognition-resnet-fc/vedastr/models/bodies/component.py - ========== Replacing text in model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/decoders/__init__.py - ========== Replacing text in model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/decoders/bricks/__init__.py - ========== Replacing text in model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/encoders/backbones/__init__.py - ========== Replacing text in model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/encoders/enhance_modules/__init__.py - ========== Replacing text in model/public/text-recognition-resnet-fc/vedastr/models/utils/__init__.py - ========== Replacing text in model/public/text-recognition-resnet-fc/vedastr/utils/__init__.py - ========== Replacing text in model/public/text-recognition-resnet-fc/vedastr/utils/config.py - ========== Replacing text in model/public/text-recognition-resnet-fc/vedastr/utils/config.py - ========== Replacing text in model/public/text-recognition-resnet-fc/vedastr/utils/config.py - ========== Replacing text in model/public/text-recognition-resnet-fc/vedastr/utils/config.py - ========== Replacing text in model/public/text-recognition-resnet-fc/vedastr/utils/config.py - ========== Replacing text in model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/encoders/backbones/resnet.py - ========== Replacing text in model/public/text-recognition-resnet-fc/vedastr/models/bodies/feature_extractors/encoders/backbones/resnet.py - ========== Unpacking model/public/text-recognition-resnet-fc/vedastr/addict-2.4.0-py3-none-any.whl + detection_model_path = download_ir_model(detection_model_url, model_dir / detection_model / precision) + recognition_model_path = download_ir_model(recognition_model_url, model_dir / recognition_model / precision) -Finished downloading horizontal-text-detection-0001, -text-recognition-resnet-fc. - - -.. code:: ipython3 - - ### The text-recognition-resnet-fc model consists of many files. All filenames are printed in - ### the output of Model Downloader. Uncomment the next two lines to show this output. - - # for line in download_result: - # print(line) - -Convert Models --------------- - - - -The downloaded detection model is an Intel model, which is already in -OpenVINO Intermediate Representation (OpenVINO IR) format. The text -recognition model is a public model which needs to be converted to -OpenVINO IR. Since this model was downloaded from Open Model Zoo, use -Model Converter to convert the model to OpenVINO IR format. - -The output of Model Converter will be displayed. When the conversion is -successful, the last lines of output will include -``[ SUCCESS ] Generated IR version 11 model.`` - -.. code:: ipython3 - - convert_command = f"omz_converter --name {recognition_model} --precisions {precision} --download_dir {model_dir} --output_dir {model_dir}" - display(Markdown(f"Convert command: `{convert_command}`")) - display(Markdown(f"Converting {recognition_model}...")) - ! $convert_command - - - -Convert command: -``omz_converter --name text-recognition-resnet-fc --precisions FP16 --download_dir model --output_dir model`` - +.. parsed-literal:: + model/horizontal-text-detection-0001/FP16/horizontal-text-detection-0001.bin: 0%| | 0.00/3.70M [00:… -Converting text-recognition-resnet-fc… .. parsed-literal:: - ========== Converting text-recognition-resnet-fc to ONNX - Conversion to ONNX command: /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/bin/python -- /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/omz_tools/internal_scripts/pytorch_to_onnx.py --model-path=/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/omz_tools/models/public/text-recognition-resnet-fc --model-path=model/public/text-recognition-resnet-fc --model-name=get_model --import-module=model '--model-param=file_config=r"model/public/text-recognition-resnet-fc/vedastr/configs/resnet_fc.py"' '--model-param=weights=r"model/public/text-recognition-resnet-fc/vedastr/ckpt/resnet_fc.pth"' --input-shape=1,1,32,100 --input-names=input --output-names=output --output-file=model/public/text-recognition-resnet-fc/resnet_fc.onnx - - ONNX check passed successfully. - - ========== Converting text-recognition-resnet-fc to IR (FP16) - Conversion command: /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/bin/python -- /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/bin/mo --framework=onnx --output_dir=model/public/text-recognition-resnet-fc/FP16 --model_name=text-recognition-resnet-fc --input=input '--mean_values=input[127.5]' '--scale_values=input[127.5]' --output=output --input_model=model/public/text-recognition-resnet-fc/resnet_fc.onnx '--layout=input(NCHW)' '--input_shape=[1, 1, 32, 100]' --compress_to_fp16=True - - [ INFO ] MO command line tool is considered as the legacy conversion API as of OpenVINO 2023.2 release. - In 2025.0 MO command line tool and openvino.tools.mo.convert_model() will be removed. Please use OpenVINO Model Converter (OVC) or openvino.convert_model(). OVC represents a lightweight alternative of MO and provides simplified model conversion API. - Find more information about transition from MO to OVC at https://docs.openvino.ai/2023.2/openvino_docs_OV_Converter_UG_prepare_model_convert_model_MO_OVC_transition.html - [ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False. - Find more information about compression to FP16 at https://docs.openvino.ai/2023.0/openvino_docs_MO_DG_FP16_Compression.html - [ SUCCESS ] Generated IR version 11 model. - [ SUCCESS ] XML file: /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/optical-character-recognition/model/public/text-recognition-resnet-fc/FP16/text-recognition-resnet-fc.xml - [ SUCCESS ] BIN file: /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/optical-character-recognition/model/public/text-recognition-resnet-fc/FP16/text-recognition-resnet-fc.bin - + model/text-recognition-0014/FP16/text-recognition-0014.bin: 0%| | 0.00/17.4M [00:00 + @@ -384,7 +384,7 @@ may be specified is input data .. parsed-literal:: - + @@ -422,7 +422,7 @@ then such conversion will be added explicitly. .. parsed-literal:: - + @@ -636,6 +636,6 @@ Compare performance .. parsed-literal:: - IR model in OpenVINO Runtime/CPU with manual image preprocessing: 0.0154 seconds per image, FPS: 65.10 - IR model in OpenVINO Runtime/CPU with preprocessing API: 0.0142 seconds per image, FPS: 70.53 + IR model in OpenVINO Runtime/CPU with manual image preprocessing: 0.0153 seconds per image, FPS: 65.39 + IR model in OpenVINO Runtime/CPU with preprocessing API: 0.0166 seconds per image, FPS: 60.23 diff --git a/docs/notebooks/paddle-ocr-webcam-with-output.rst b/docs/notebooks/paddle-ocr-webcam-with-output.rst index e5c426d1920f33..9f7510cd5efe96 100644 --- a/docs/notebooks/paddle-ocr-webcam-with-output.rst +++ b/docs/notebooks/paddle-ocr-webcam-with-output.rst @@ -75,6 +75,8 @@ Guide =1.22, but you have numpy 1.24.4 which is incompatible. Note: you may need to restart the kernel to use updated packages. Note: you may need to restart the kernel to use updated packages. @@ -207,7 +209,7 @@ Download the Model for Text **Detection** .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-no… + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-no… .. parsed-literal:: @@ -253,7 +255,7 @@ Download the Model for Text **Recognition** .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-no… + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-no… .. parsed-literal:: diff --git a/docs/notebooks/paddle-ocr-webcam-with-output_files/paddle-ocr-webcam-with-output_30_0.png b/docs/notebooks/paddle-ocr-webcam-with-output_files/paddle-ocr-webcam-with-output_30_0.png index 43d5bfb39ed4e8..38a0d5d593351b 100644 --- a/docs/notebooks/paddle-ocr-webcam-with-output_files/paddle-ocr-webcam-with-output_30_0.png +++ b/docs/notebooks/paddle-ocr-webcam-with-output_files/paddle-ocr-webcam-with-output_30_0.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:e5f67b60f77e15fb0b7908ada4ff64ab506accc23f579c81193175e5044f8f3b -size 593679 +oid sha256:ac7efd85f2c50b0a189dbf00c0cd2252f362e6469cd014d8f255c53172152c3d +size 591373 diff --git a/docs/notebooks/paddle-to-openvino-classification-with-output.rst b/docs/notebooks/paddle-to-openvino-classification-with-output.rst index 576878a578a323..25feb9293ee93a 100644 --- a/docs/notebooks/paddle-to-openvino-classification-with-output.rst +++ b/docs/notebooks/paddle-to-openvino-classification-with-output.rst @@ -89,11 +89,11 @@ Imports .. parsed-literal:: - --2024-10-23 02:12:15-- http://nz2.archive.ubuntu.com/ubuntu/pool/main/o/openssl/libssl1.1_1.1.1f-1ubuntu2.19_amd64.deb + --2024-11-05 02:15:59-- http://nz2.archive.ubuntu.com/ubuntu/pool/main/o/openssl/libssl1.1_1.1.1f-1ubuntu2.19_amd64.deb Resolving proxy-dmz.intel.com (proxy-dmz.intel.com)... 10.241.208.166 Connecting to proxy-dmz.intel.com (proxy-dmz.intel.com)|10.241.208.166|:911... connected. Proxy request sent, awaiting response... 404 Not Found - 2024-10-23 02:12:15 ERROR 404: Not Found. + 2024-11-05 02:16:00 ERROR 404: Not Found. dpkg: error: cannot access archive 'libssl1.1_1.1.1f-1ubuntu2.19_amd64.deb': No such file or directory @@ -124,8 +124,8 @@ Imports .. parsed-literal:: - 2024-10-23 02:12:17 INFO: Loading faiss with AVX512 support. - 2024-10-23 02:12:17 INFO: Successfully loaded faiss with AVX512 support. + 2024-11-05 02:16:02 INFO: Loading faiss with AVX512 support. + 2024-11-05 02:16:02 INFO: Successfully loaded faiss with AVX512 support. Settings @@ -209,7 +209,7 @@ inference on that image, and then show the top three prediction results. .. parsed-literal:: - [2024/10/23 02:12:43] ppcls WARNING: The current running environment does not support the use of GPU. CPU has been used instead. + [2024/11/05 02:16:41] ppcls WARNING: The current running environment does not support the use of GPU. CPU has been used instead. Labrador retriever, 0.75138 German short-haired pointer, 0.02373 Great Dane, 0.01848 @@ -275,7 +275,7 @@ clipping values. .. parsed-literal:: - 2024-10-23 02:12:44 WARNING: Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). + 2024-11-05 02:16:42 WARNING: Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). .. parsed-literal:: @@ -287,7 +287,7 @@ clipping values. .. parsed-literal:: - + @@ -462,7 +462,7 @@ Note that many optimizations are possible to improve the performance. .. parsed-literal:: - PaddlePaddle model on CPU: 0.0073 seconds per image, FPS: 137.19 + PaddlePaddle model on CPU: 0.0074 seconds per image, FPS: 134.37 PaddlePaddle result: Labrador retriever, 0.75138 @@ -523,7 +523,7 @@ select device from dropdown list for running inference using OpenVINO .. parsed-literal:: - OpenVINO IR model in OpenVINO Runtime (AUTO): 0.0026 seconds per image, FPS: 382.97 + OpenVINO IR model in OpenVINO Runtime (AUTO): 0.0027 seconds per image, FPS: 373.31 OpenVINO result: Labrador retriever, 0.74909 diff --git a/docs/notebooks/parler-tts-text-to-speech-with-output.rst b/docs/notebooks/parler-tts-text-to-speech-with-output.rst index 3bbb67d2232c99..323959aa17e8ef 100644 --- a/docs/notebooks/parler-tts-text-to-speech-with-output.rst +++ b/docs/notebooks/parler-tts-text-to-speech-with-output.rst @@ -9,7 +9,7 @@ with synthetic annotations `__ by Dan Lyth and Simon King, from Stability AI and Edinburgh University respectively. -|image0| +.. image:: https://images.squarespace-cdn.com/content/v1/657816dfbefe0533e8a69d9a/30c96e25-acc5-4019-acdd-648da6142c4c/architecture_v3.png?format=2500w Text-to-speech models trained on large-scale datasets have demonstrated impressive in-context learning capabilities and naturalness. However, @@ -53,8 +53,6 @@ need a Jupyter server to start. For details, please refer to `Installation Guide `__. -.. |image0| image:: https://images.squarespace-cdn.com/content/v1/657816dfbefe0533e8a69d9a/30c96e25-acc5-4019-acdd-648da6142c4c/architecture_v3.png?format=2500w - Prerequisites ------------- @@ -69,23 +67,6 @@ Prerequisites %pip install -q "openvino>=2024.2.0" %pip install -q git+https://github.com/huggingface/parler-tts.git "gradio>=4.19" transformers "torch>=2.2" --extra-index-url https://download.pytorch.org/whl/cpu - -.. parsed-literal:: - - Note: you may need to restart the kernel to use updated packages. - ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. - googleapis-common-protos 1.65.0 requires protobuf!=3.20.0,!=3.20.1,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<6.0.0.dev0,>=3.20.2, but you have protobuf 3.19.6 which is incompatible. - mobileclip 0.1.0 requires torchvision==0.14.1, but you have torchvision 0.17.2+cpu which is incompatible. - onnx 1.16.1 requires protobuf>=3.20.2, but you have protobuf 3.19.6 which is incompatible. - paddlepaddle 2.6.2 requires protobuf>=3.20.2; platform_system != "Windows", but you have protobuf 3.19.6 which is incompatible. - tensorflow 2.12.0 requires protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3, but you have protobuf 3.19.6 which is incompatible. - tensorflow-datasets 4.9.2 requires protobuf>=3.20, but you have protobuf 3.19.6 which is incompatible. - tensorflow-metadata 1.14.0 requires protobuf<4.21,>=3.20.3, but you have protobuf 3.19.6 which is incompatible. - torchvision 0.17.2+cpu requires torch==2.2.2, but you have torch 2.4.1+cpu which is incompatible. - visualdl 2.5.3 requires protobuf>=3.20.0, but you have protobuf 3.19.6 which is incompatible. - Note: you may need to restart the kernel to use updated packages. - - Load the original model and inference ------------------------------------- @@ -114,19 +95,6 @@ Load the original model and inference audio_arr = generation.cpu().numpy().squeeze() sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate) - -.. parsed-literal:: - - 2024-10-23 02:13:22.641328: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 02:13:22.675982: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. - To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - Flash attention 2 is not installed - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/nn/utils/weight_norm.py:134: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`. - WeightNorm.apply(module, name, dim) - You set `add_prefix_space`. The tokenizer needs to be converted from the slow tokenizers - The attention mask is not set and cannot be inferred from input because pad token is same as eos token.As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results. - - .. code:: ipython3 import IPython.display as ipd @@ -140,10 +108,10 @@ Load the original model and inference - + @@ -191,13 +159,6 @@ and Decoder (``ParlerTTSDecoder``). Lets convert them one by one. text_encoder_ov_model = convert(model.text_encoder, TEXT_ENCODER_OV_PATH, example_input) - -.. parsed-literal:: - - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:4664: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead - warnings.warn( - - The Decoder Model performs in generation pipeline and we can separate it into two stage. In the first stage the model generates ``past_key_values`` into output for the second stage. In the second @@ -232,17 +193,6 @@ stage the model produces tokens during several runs. decoder_1_ov_model = convert(DecoderStage1Wrapper(model.decoder.model.decoder), DECODER_STAGE_1_OV_PATH, example_input) - -.. parsed-literal:: - - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/parler_tts/modeling_parler_tts.py:253: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! - if seq_len > self.weights.size(0): - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/parler_tts/modeling_parler_tts.py:1599: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! - if sequence_length != 1: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/parler_tts/modeling_parler_tts.py:802: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! - if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): - - .. code:: ipython3 DECODER_STAGE_2_OV_PATH = Path("models/decoder_stage_2_ir.xml") @@ -308,7 +258,7 @@ Select device from dropdown list for running inference using OpenVINO. .. parsed-literal:: - Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO') + Dropdown(description='Device:', index=4, options=('CPU', 'GPU.0', 'GPU.1', 'GPU.2', 'AUTO'), value='AUTO') @@ -410,10 +360,10 @@ and run inference. - + @@ -456,27 +406,13 @@ Interactive inference demo = make_demo(fn=infer) try: - demo.queue().launch(debug=False) + demo.queue().launch(debug=True) except Exception: - demo.queue().launch(share=True, debug=False) + demo.queue().launch(share=True, debug=True) # if you are launching remotely, specify server_name and server_port # demo.launch(server_name='your server name', server_port='server port in int') # Read more in the docs: https://gradio.app/docs/ - -.. parsed-literal:: - - Running on local URL: http://127.0.0.1:7860 - - To create a public link, set `share=True` in `launch()`. - - - - - - - - .. code:: ipython3 # please uncomment and run this cell for stopping gradio interface diff --git a/docs/notebooks/person-tracking-with-output.rst b/docs/notebooks/person-tracking-with-output.rst index 2b07305615f09e..653a9b376edf7e 100644 --- a/docs/notebooks/person-tracking-with-output.rst +++ b/docs/notebooks/person-tracking-with-output.rst @@ -128,7 +128,7 @@ Guide =2024.0.0" + %pip install -q "openvino>=2024.0.0" %pip install -q opencv-python requests scipy tqdm "matplotlib>=3.4" @@ -189,16 +189,6 @@ We will use pre-trained models from OpenVINO’s `Open Model Zoo `__ to start the test. -Use ``omz_downloader``, which is a command-line tool from the -``openvino-dev`` package. It automatically creates a directory structure -and downloads the selected model. This step is skipped if the model is -already downloaded. The selected model comes from the public directory, -which means it must be converted into OpenVINO Intermediate -Representation (OpenVINO IR). - - **NOTE**: Using a model outside the list can require different pre- - and post-processing. - In this case, `person detection model `__ is deployed to detect the person in each frame of the video, and @@ -207,60 +197,39 @@ model `__, -``person-reidentification-retail-xxx`` from `Reidentification Models -list `__), -replace the name of the model in the code below. - .. code:: ipython3 + from notebook_utils import download_ir_model + # A directory where the model will be downloaded. base_model_dir = "model" precision = "FP16" # The name of the model from Open Model Zoo detection_model_name = "person-detection-0202" - download_command = ( - f"omz_downloader " f"--name {detection_model_name} " f"--precisions {precision} " f"--output_dir {base_model_dir} " f"--cache_dir {base_model_dir}" - ) - ! $download_command - detection_model_path = f"model/intel/{detection_model_name}/{precision}/{detection_model_name}.xml" + download_det_model_url = ( + f"https://storage.openvinotoolkit.org/repositories/open_model_zoo/2023.0/models_bin/1/{detection_model_name}/{precision}/{detection_model_name}.xml" + ) + detection_model_path = download_ir_model(download_det_model_url, Path(base_model_dir) / detection_model_name / precision) reidentification_model_name = "person-reidentification-retail-0287" + download_reid_model_url = f"https://storage.openvinotoolkit.org/repositories/open_model_zoo/2023.0/models_bin/1/{reidentification_model_name}/{precision}/{reidentification_model_name}.xml" - download_command = ( - f"omz_downloader " f"--name {reidentification_model_name} " f"--precisions {precision} " f"--output_dir {base_model_dir} " f"--cache_dir {base_model_dir}" - ) - ! $download_command + reidentification_model_path = download_ir_model(download_reid_model_url, Path(base_model_dir) / reidentification_model_name / precision) - reidentification_model_path = f"model/intel/{reidentification_model_name}/{precision}/{reidentification_model_name}.xml" .. parsed-literal:: - ################|| Downloading person-detection-0202 ||################ - - ========== Downloading model/intel/person-detection-0202/FP16/person-detection-0202.xml + model/person-detection-0202/FP16/person-detection-0202.bin: 0%| | 0.00/3.47M [00:00`__ #### -Table of contents: +precision using `NNCF `__ + +**Table of contents:** - `Prerequisites <#prerequisites>`__ - `Select Model <#select-model>`__ @@ -56,11 +57,6 @@ install required packages and setup helper functions. .. parsed-literal:: - ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. - descript-audiotools 0.7.2 requires protobuf<3.20,>=3.9.2, but you have protobuf 5.28.2 which is incompatible. - open-clip-torch 2.22.0 requires protobuf<4, but you have protobuf 5.28.2 which is incompatible. - tensorflow 2.12.0 requires protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3, but you have protobuf 5.28.2 which is incompatible. - tensorflow-metadata 1.14.0 requires protobuf<4.21,>=3.20.3, but you have protobuf 5.28.2 which is incompatible. Note: you may need to restart the kernel to use updated packages. Note: you may need to restart the kernel to use updated packages. @@ -264,10 +260,10 @@ documentation 1 or self.sliding_window is not None) and self.is_causal: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:162: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:164: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if past_key_values_length > 0: /opt/home/k8sworker/.cache/huggingface/modules/transformers_modules/microsoft/Phi-3.5-vision-instruct/4a0d683eba9f1d0cbfb6151705d1ee73c25a80ca/modeling_phi3_v.py:444: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! seq_len = seq_len or torch.max(position_ids) + 1 /opt/home/k8sworker/.cache/huggingface/modules/transformers_modules/microsoft/Phi-3.5-vision-instruct/4a0d683eba9f1d0cbfb6151705d1ee73c25a80ca/modeling_phi3_v.py:445: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if seq_len > self.original_max_position_embeddings: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/torch/dynamic_graph/wrappers.py:86: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/torch/dynamic_graph/wrappers.py:86: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. op1 = operator(\*args, \*\*kwargs) + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/cache_utils.py:443: TracerWarning: Using len to get tensor shape might cause the trace to be incorrect. Recommended usage would be tensor.shape[0]. Passing a tensor of different shape might lead to errors or silently give incorrect results. + elif len(self.key_cache[layer_idx]) == 0: # fills previously skipped layers; checking for tensor causes errors /opt/home/k8sworker/.cache/huggingface/modules/transformers_modules/microsoft/Phi-3.5-vision-instruct/4a0d683eba9f1d0cbfb6151705d1ee73c25a80ca/modeling_phi3_v.py:683: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): /opt/home/k8sworker/.cache/huggingface/modules/transformers_modules/microsoft/Phi-3.5-vision-instruct/4a0d683eba9f1d0cbfb6151705d1ee73c25a80ca/modeling_phi3_v.py:690: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): /opt/home/k8sworker/.cache/huggingface/modules/transformers_modules/microsoft/Phi-3.5-vision-instruct/4a0d683eba9f1d0cbfb6151705d1ee73c25a80ca/modeling_phi3_v.py:702: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:165: UserWarning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the .grad field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations. (Triggered internally at aten/src/ATen/core/TensorBody.h:489.) + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:165: UserWarning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the .grad field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations. (Triggered internally at aten/src/ATen/core/TensorBody.h:489.) if a.grad is not None: @@ -505,12 +516,6 @@ arguments. For running model we will use ``generate`` method. generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args) -.. parsed-literal:: - - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/auto/image_processing_auto.py:513: FutureWarning: The image_processor_class argument is deprecated and will be removed in v4.42. Please use `slow_image_processor_class`, or `fast_image_processor_class` instead - warnings.warn( - - .. parsed-literal:: Answer: diff --git a/docs/notebooks/photo-maker-with-output.rst b/docs/notebooks/photo-maker-with-output.rst index fe49eb9217065e..1685e9c05ea9f1 100644 --- a/docs/notebooks/photo-maker-with-output.rst +++ b/docs/notebooks/photo-maker-with-output.rst @@ -94,13 +94,13 @@ Clone PhotoMaker repository .. parsed-literal:: Cloning into 'PhotoMaker'... - remote: Enumerating objects: 303, done. - remote: Counting objects: 100% (148/148), done. - remote: Compressing objects: 100% (95/95), done. - remote: Total 303 (delta 130), reused 53 (delta 53), pack-reused 155 (from 1) - Receiving objects: 100% (303/303), 10.23 MiB | 29.77 MiB/s, done. - Resolving deltas: 100% (162/162), done. - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/photo-maker/PhotoMaker + remote: Enumerating objects: 306, done. + remote: Counting objects: 100% (151/151), done. + remote: Compressing objects: 100% (98/98), done. + remote: Total 306 (delta 132), reused 53 (delta 53), pack-reused 155 (from 1) + Receiving objects: 100% (306/306), 10.24 MiB | 23.03 MiB/s, done. + Resolving deltas: 100% (164/164), done. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/photo-maker/PhotoMaker Note: switching to '1e78aa6514c11a84ef1be27b56c7c72d6c70f8fc'. You are in 'detached HEAD' state. You can look around, make experimental @@ -119,7 +119,7 @@ Clone PhotoMaker repository Turn off this advice by setting config variable advice.detachedHead to false HEAD is now at 1e78aa6 Update README.md - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/photo-maker + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/photo-maker Install required packages @@ -133,11 +133,9 @@ Install required packages .. parsed-literal:: ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. - descript-audiotools 0.7.2 requires protobuf<3.20,>=3.9.2, but you have protobuf 3.20.3 which is incompatible. - mobileclip 0.1.0 requires torchvision==0.14.1, but you have torchvision 0.17.2+cpu which is incompatible. paddleclas 2.5.2 requires gast==0.3.3, but you have gast 0.4.0 which is incompatible. paddleclas 2.5.2 requires opencv-python==4.6.0.66, but you have opencv-python 4.10.0.84 which is incompatible. - supervision 0.24.0 requires numpy<1.23.3,>=1.21.2; python_full_version <= "3.10.0", but you have numpy 1.24.4 which is incompatible. + parler-tts 0.2.1 requires protobuf>=4.0.0, but you have protobuf 3.20.3 which is incompatible. tensorflow 2.12.0 requires numpy<1.24,>=1.22, but you have numpy 1.24.4 which is incompatible. Note: you may need to restart the kernel to use updated packages. @@ -199,10 +197,10 @@ PhotoMaker to generate the original PhotoMaker pipeline. .. parsed-literal:: - 2024-10-23 02:19:25.748160: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 02:19:25.783265: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-05 02:22:09.727876: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 02:22:09.761823: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 02:19:26.449413: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-05 02:22:10.482979: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT .. code:: ipython3 @@ -391,9 +389,12 @@ output(text embeddings) which will be the input for U-Net model. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:4664: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:5006: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead warnings.warn( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/photo-maker/PhotoMaker/photomaker/model.py:84: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + `loss_type=None` was set in the config but it is unrecognised.Using the default loss: `ForCausalLMLoss`. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:243: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size): + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/photo-maker/PhotoMaker/photomaker/model.py:84: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert class_tokens_mask.sum() == stacked_id_embeds.shape[0], f"{class_tokens_mask.sum()} != {stacked_id_embeds.shape[0]}" @@ -468,9 +469,9 @@ sequence of latent text embeddings. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:86: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:88: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if input_shape[-1] > 1 or self.sliding_window is not None: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:162: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:164: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if past_key_values_length > 0: @@ -574,15 +575,15 @@ original Stable Diffusion XL model. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/unets/unet_2d_condition.py:1103: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/unets/unet_2d_condition.py:1103: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if dim % default_overall_up_factor != 0: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/downsampling.py:136: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/downsampling.py:136: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert hidden_states.shape[1] == self.channels - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/downsampling.py:145: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/downsampling.py:145: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert hidden_states.shape[1] == self.channels - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/upsampling.py:146: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/upsampling.py:146: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert hidden_states.shape[1] == self.channels - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/upsampling.py:162: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/upsampling.py:162: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if hidden_states.shape[0] >= 64: diff --git a/docs/notebooks/pixart-with-output.rst b/docs/notebooks/pixart-with-output.rst index ef008d1d82ee52..c1c9a4b4e8ec57 100644 --- a/docs/notebooks/pixart-with-output.rst +++ b/docs/notebooks/pixart-with-output.rst @@ -118,10 +118,10 @@ directly in latent space, achieving super fast inference with few steps. .. parsed-literal:: - 2024-10-23 02:27:23.824587: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 02:27:23.860019: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-05 02:30:04.644117: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 02:30:04.680089: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 02:27:24.531762: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-05 02:30:05.360275: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT @@ -130,17 +130,17 @@ directly in latent space, achieving super fast inference with few steps. Loading pipeline components...: 0%| | 0/5 [00:00. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565 +.. parsed-literal:: + Loading checkpoint shards: 0%| | 0/4 [00:00. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565 + Some weights of the model checkpoint were not used when initializing PixArtTransformer2DModel: + ['caption_projection.y_embedding'] @@ -229,8 +229,9 @@ Convert text encoder .. parsed-literal:: [ WARNING ] Please fix your imports. Module %s has been moved to %s. The old module will be deleted in version %s. - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:4664: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:5006: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead warnings.warn( + `loss_type=None` was set in the config but it is unrecognised.Using the default loss: `ForCausalLMLoss`. Convert transformer @@ -271,11 +272,11 @@ Convert transformer .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/embeddings.py:219: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/embeddings.py:219: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if self.height != height or self.width != width: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/attention_processor.py:682: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/attention_processor.py:682: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if current_length != target_length: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/attention_processor.py:697: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/attention_processor.py:697: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if attention_mask.shape[0] < batch_size * head_size: @@ -300,9 +301,9 @@ Convert VAE decoder .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/upsampling.py:146: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/upsampling.py:146: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert hidden_states.shape[1] == self.channels - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/upsampling.py:162: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/upsampling.py:162: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if hidden_states.shape[0] >= 64: @@ -448,7 +449,7 @@ And insert wrappers instances in the pipeline: .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/configuration_utils.py:140: FutureWarning: Accessing config attribute `_execution_device` directly via 'PixArtAlphaPipeline' object attribute is deprecated. Please access '_execution_device' over 'PixArtAlphaPipeline's config object instead, e.g. 'scheduler.config._execution_device'. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/configuration_utils.py:140: FutureWarning: Accessing config attribute `_execution_device` directly via 'PixArtAlphaPipeline' object attribute is deprecated. Please access '_execution_device' over 'PixArtAlphaPipeline's config object instead, e.g. 'scheduler.config._execution_device'. deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False) @@ -563,7 +564,7 @@ To collect intermediate model inputs for calibration we should customize .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/configuration_utils.py:140: FutureWarning: Accessing config attribute `_execution_device` directly via 'PixArtAlphaPipeline' object attribute is deprecated. Please access '_execution_device' over 'PixArtAlphaPipeline's config object instead, e.g. 'scheduler.config._execution_device'. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/configuration_utils.py:140: FutureWarning: Accessing config attribute `_execution_device` directly via 'PixArtAlphaPipeline' object attribute is deprecated. Please access '_execution_device' over 'PixArtAlphaPipeline's config object instead, e.g. 'scheduler.config._execution_device'. deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False) @@ -1621,16 +1622,16 @@ pipelines. Loading pipeline components...: 0%| | 0/5 [00:00=4.43.0, but you have transformers 4.45.2 which is incompatible. Note: you may need to restart the kernel to use updated packages. @@ -156,21 +153,21 @@ documentation 0.19. Please downgrade to tokenizers version <= 0.19 to export tokenizers to OpenVINO. + Exporting tokenizers to OpenVINO is not supported for tokenizers version > 0.19 and openvino version <= 2024.4. Please downgrade to tokenizers version <= 0.19 to export tokenizers to OpenVINO. INFO:nncf:Statistics of the bitwidth distribution: ┍━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┑ │ Num bits (N) │ % all parameters (layers) │ % ratio-defining parameters (layers) │ @@ -488,7 +485,7 @@ documentation target_length: + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/cache_utils.py:443: TracerWarning: Using len to get tensor shape might cause the trace to be incorrect. Recommended usage would be tensor.shape[0]. Passing a tensor of different shape might lead to errors or silently give incorrect results. elif len(self.key_cache[layer_idx]) == 0: # fills previously skipped layers; checking for tensor causes errors - Starting from v4.46, the `logits` model output will have the same type as the model (except at train time, where it will always be FP32) .. parsed-literal:: diff --git a/docs/notebooks/qwen2-vl-with-output.rst b/docs/notebooks/qwen2-vl-with-output.rst index 0ff882bb537ef2..a6f49a58ff0f25 100644 --- a/docs/notebooks/qwen2-vl-with-output.rst +++ b/docs/notebooks/qwen2-vl-with-output.rst @@ -139,10 +139,10 @@ using widget bellow: .. parsed-literal:: - 2024-10-23 04:32:38.810057: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 04:32:38.845114: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-05 04:37:28.225170: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 04:37:28.260034: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 04:32:39.399370: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-05 04:37:28.814599: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT @@ -335,26 +335,44 @@ documentation target_length: + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/cache_utils.py:443: TracerWarning: Using len to get tensor shape might cause the trace to be incorrect. Recommended usage would be tensor.shape[0]. Passing a tensor of different shape might lead to errors or silently give incorrect results. + elif len(self.key_cache[layer_idx]) == 0: # fills previously skipped layers; checking for tensor causes errors .. parsed-literal:: + ✅ Language model successfully converted ⌛ Weights compression with int4_asym mode started INFO:nncf:Statistics of the bitwidth distribution: ┍━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┑ │ Num bits (N) │ % all parameters (layers) │ % ratio-defining parameters (layers) │ ┝━━━━━━━━━━━━━━━━┿━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┿━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┥ - │ 8 │ 1% (1 / 130) │ 0% (0 / 129) │ + │ 8 │ 15% (1 / 197) │ 0% (0 / 196) │ ├────────────────┼─────────────────────────────┼────────────────────────────────────────┤ - │ 4 │ 99% (129 / 130) │ 100% (129 / 129) │ + │ 4 │ 85% (196 / 197) │ 100% (196 / 196) │ ┕━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┙ @@ -374,31 +392,15 @@ documentation =3.9.2, but you have protobuf 3.20.3 which is incompatible. mobileclip 0.1.0 requires torchvision==0.14.1, but you have torchvision 0.19.1+cpu which is incompatible. - parler-tts 0.2 requires transformers<=4.43.3,>=4.43.0, but you have transformers 4.45.2 which is incompatible. + parler-tts 0.2.1 requires protobuf>=4.0.0, but you have protobuf 3.20.3 which is incompatible. Note: you may need to restart the kernel to use updated packages. Collecting iopath>=0.1.10 Using cached iopath-0.1.10-py3-none-any.whl - Requirement already satisfied: pillow>=9.4.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (10.4.0) - Requirement already satisfied: hydra-core>=1.3.2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (1.3.2) - Requirement already satisfied: tqdm in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from iopath>=0.1.10) (4.66.5) - Requirement already satisfied: typing-extensions in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from iopath>=0.1.10) (4.12.2) - Requirement already satisfied: portalocker in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from iopath>=0.1.10) (2.10.1) - Requirement already satisfied: omegaconf<2.4,>=2.2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from hydra-core>=1.3.2) (2.3.0) - Requirement already satisfied: antlr4-python3-runtime==4.9.* in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from hydra-core>=1.3.2) (4.9.3) - Requirement already satisfied: packaging in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from hydra-core>=1.3.2) (24.1) - Requirement already satisfied: importlib-resources in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from hydra-core>=1.3.2) (6.4.5) - Requirement already satisfied: PyYAML>=5.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from omegaconf<2.4,>=2.2->hydra-core>=1.3.2) (6.0.2) - Requirement already satisfied: zipp>=3.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from importlib-resources->hydra-core>=1.3.2) (3.20.2) + Requirement already satisfied: pillow>=9.4.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (10.4.0) + Requirement already satisfied: hydra-core>=1.3.2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (1.3.2) + Requirement already satisfied: tqdm in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from iopath>=0.1.10) (4.66.6) + Requirement already satisfied: typing-extensions in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from iopath>=0.1.10) (4.12.2) + Requirement already satisfied: portalocker in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from iopath>=0.1.10) (2.10.1) + Requirement already satisfied: omegaconf<2.4,>=2.2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from hydra-core>=1.3.2) (2.3.0) + Requirement already satisfied: antlr4-python3-runtime==4.9.* in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from hydra-core>=1.3.2) (4.9.3) + Requirement already satisfied: packaging in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from hydra-core>=1.3.2) (24.1) + Requirement already satisfied: importlib-resources in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from hydra-core>=1.3.2) (6.4.5) + Requirement already satisfied: PyYAML>=5.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from omegaconf<2.4,>=2.2->hydra-core>=1.3.2) (6.0.2) + Requirement already satisfied: zipp>=3.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from importlib-resources->hydra-core>=1.3.2) (3.20.2) Installing collected packages: iopath Attempting uninstall: iopath Found existing installation: iopath 0.1.9 @@ -204,10 +203,10 @@ Clone and install segment-anything-2 .. parsed-literal:: env: SAM2_BUILD_CUDA=0 - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/sam2-image-segmentation/sam2 + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/sam2-image-segmentation/sam2 ERROR: Package 'sam-2' requires a different Python: 3.8.10 not in '>=3.10.0' Note: you may need to restart the kernel to use updated packages. - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/sam2-image-segmentation + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/sam2-image-segmentation .. code:: ipython3 diff --git a/docs/notebooks/siglip-zero-shot-image-classification-with-output.rst b/docs/notebooks/siglip-zero-shot-image-classification-with-output.rst index 298a30bf7b6d7a..50aa71af0082b8 100644 --- a/docs/notebooks/siglip-zero-shot-image-classification-with-output.rst +++ b/docs/notebooks/siglip-zero-shot-image-classification-with-output.rst @@ -126,10 +126,10 @@ tokenizer and preparing the images. .. parsed-literal:: - 2024-10-23 04:42:12.224179: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 04:42:12.258186: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-05 04:45:37.694278: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 04:45:37.728953: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 04:42:12.920282: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-05 04:45:38.384577: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT Run PyTorch model inference @@ -265,8 +265,9 @@ object ready to load on the device and start making predictions. .. parsed-literal:: [ WARNING ] Please fix your imports. Module %s has been moved to %s. The old module will be deleted in version %s. - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:4779: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:5006: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead warnings.warn( + `loss_type=None` was set in the config but it is unrecognised.Using the default loss: `ForCausalLMLoss`. Run OpenVINO model @@ -610,7 +611,7 @@ model are similar to the PyTorch model. .. parsed-literal:: - [{'dog': 0.99}, {'horse': 0.0}, {'cat': 0.0}, {'wolf': 0.0}, {'frog': 0.0}] + [{'dog': 0.99}, {'horse': 0.0}, {'cat': 0.0}, {'wolf': 0.0}, {'tiger': 0.0}] @@ -685,7 +686,7 @@ approximately estimate the speed up of the dynamic quantized models. .. parsed-literal:: - Performance speed up: 2.019 + Performance speed up: 2.491 Interactive inference diff --git a/docs/notebooks/siglip-zero-shot-image-classification-with-output_files/siglip-zero-shot-image-classification-with-output_24_1.png b/docs/notebooks/siglip-zero-shot-image-classification-with-output_files/siglip-zero-shot-image-classification-with-output_24_1.png index 76d6a6178cf64e..90392474870369 100644 --- a/docs/notebooks/siglip-zero-shot-image-classification-with-output_files/siglip-zero-shot-image-classification-with-output_24_1.png +++ b/docs/notebooks/siglip-zero-shot-image-classification-with-output_files/siglip-zero-shot-image-classification-with-output_24_1.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:2f3af06f927b6f5e643d37869bbe32651d9a0f23270d5f3426cebbc2f02765cb -size 580998 +oid sha256:1e64834a97582f6009d2c6f15fd109cba0bdc0d9577d3a7f0f31a4d9f4519d44 +size 581000 diff --git a/docs/notebooks/speculative-sampling-with-output.rst b/docs/notebooks/speculative-sampling-with-output.rst index 127f61ab35085c..a88201eb73453c 100644 --- a/docs/notebooks/speculative-sampling-with-output.rst +++ b/docs/notebooks/speculative-sampling-with-output.rst @@ -1,5 +1,5 @@ -Text Generation via Speculative Sampling, KV Caching, and OpenVINO™ -=================================================================== +Text Generation via Speculative Decoding and OpenVINO™ +====================================================== As model sizes grow, Generative AI implementations require significant inference resources. This not only increases the cost per generation @@ -18,42 +18,49 @@ summary, inference optimizations for text generation are essential to reduce costs and power consumption, while also improving the accuracy and speed of text generation. -Another necessary condition is that the optimizations are compatible -with each other. That is, implementing a certain optimization should not -preclude other optimizations. There are several levels of optimizations -that can provide significant speedup without “bumping into each other” -in a way that will compromise overall efficiency. +Speculative decoding (or +`assisted-generation `__) +is a recent technique, that allows to speed up token generation when an +additional smaller draft model is used alongside with the main model. -For details on this method, please refer to the paper by Chen et al, -http://arxiv.org/abs/2302.01318. Additionally, there’s an interesting -proof of correctness of speculative sampling (showing that the original -distribution is preserved) by Leviathan et al, -http://arxiv.org/abs/2211.17192 +Speculative decoding works the following way. The draft model predicts +the next K tokens one by one in an autoregressive manner, while the main +model validates these predictions and corrects them if necessary. We go +through each predicted token, and if a difference is detected between +the draft and main model, we stop and keep the last token predicted by +the main model. Then the draft model gets the latest main prediction and +again tries to predict the next K tokens, repeating the cycle. -Our blog article describing this implementation with OpenVino is -available at openvino.ai +This approach reduces the need for multiple infer requests to the main +model, enhancing performance. For instance, in more predictable parts of +text generation, the draft model can, in best-case scenarios, generate +the next K tokens that exactly match the target. In that case they are +validated in a single inference request to the main model (which is +bigger, more accurate but slower) instead of running K subsequent +requests. More details can be found in the original +`paper `__. + +|image0| + +In this tutorial we consider how to apply Speculative decoding using +OpenVINO GenAI. **Table of contents:** - `Prerequisites <#prerequisites>`__ +- `Prepare models <#prepare-models>`__ - `Select inference device <#select-inference-device>`__ -- `Create autoregressive and speculative forms of sampling with KV - Cache - support <#create-autoregressive-and-speculative-forms-of-sampling-with-kv-cache-support>`__ - - - `Setup imports <#setup-imports>`__ - - `Prepare autoregressive - sampling <#prepare-autoregressive-sampling>`__ - - `Prepare speculative sampling <#prepare-speculative-sampling>`__ - -- `Main generation function <#main-generation-function>`__ +- `Run target model without speculative + decoding <#run-target-model-without-speculative-decoding>`__ +- `Run Speculative decoding + pipeline <#run-speculative-decoding-pipeline>`__ - - `Download and Convert Model <#download-and-convert-model>`__ ### - Installation Instructions +Installation Instructions +~~~~~~~~~~~~~~~~~~~~~~~~~ This is a self-contained example that relies solely on its own code. @@ -62,29 +69,64 @@ need a Jupyter server to start. For details, please refer to `Installation Guide `__. +.. |image0| image:: https://github.com/user-attachments/assets/eb999dea-d98b-42bb-835e-28d3054e1a84 + Prerequisites ------------- -First, we should install the `Hugging Face -Optimum `__ library -accelerated by OpenVINO integration. The Hugging Face Optimum Intel API -is a high-level API that enables us to convert and quantize models from -the Hugging Face Transformers library to the OpenVINO™ IR format. For -more details, refer to the `Hugging Face Optimum Intel -documentation `__. +First, we should install the `OpenVINO +GenAI `__ for running +model inference. + +|image01| + +OpenVINO™ GenAI is a library of the most popular Generative AI model +pipelines, optimized execution methods, and samples that run on top of +highly performant `OpenVINO +Runtime `__. + +This library is friendly to PC and laptop execution, and optimized for +resource consumption. It requires no external dependencies to run +generative models as it already includes all the core functionality +(e.g. tokenization via openvino-tokenizers). -We will also need to install transformers (HuggingFace) and some other -useful modules. +.. |image01| image:: https://media.githubusercontent.com/media/openvinotoolkit/openvino.genai/refs/heads/master/src/docs/openvino_genai.svg .. code:: ipython3 - %pip install -Uq pip - %pip uninstall -q -y optimum optimum-intel - %pip install --pre -Uq "openvino>=2024.2.0" openvino-tokenizers[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly - %pip install -q --upgrade transformers "torch>=2.1" "torchvision" "gradio>=4.19" accelerate "onnx<1.16.2" ipywidgets --extra-index-url https://download.pytorch.org/whl/cpu - %pip install -q "git+https://github.com/huggingface/optimum-intel.git" + %pip install --pre -Uq "openvino>=2024.4.0" openvino-tokenizers openvino-genai huggingface_hub --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + +Prepare models +-------------- + + + +As example, we will use already converted LLMs from `OpenVINO +collection `__, +but in case, if you want run own models, you should convert them using +`Hugging Face +Optimum `__ +library accelerated by OpenVINO integration. More details about model +preparation can be found in `OpenVINO LLM inference +guide `__ + +.. code:: ipython3 + + from pathlib import Path + import huggingface_hub as hf_hub + + draft_model_id = "OpenVINO/dolly-v2-3b-int4-ov" + target_model_id = "OpenVINO/dolly-v2-7b-int8-ov" + + draft_model_path = Path(draft_model_id.split("/")[-1]) + target_model_path = Path(target_model_id.split("/")[-1]) + + if not draft_model_path.exists(): + hf_hub.snapshot_download(draft_model_id, local_dir=draft_model_path) + if not target_model_path.exists(): + hf_hub.snapshot_download(target_model_id, local_dir=target_model_path) Select inference device ~~~~~~~~~~~~~~~~~~~~~~~ @@ -97,336 +139,184 @@ OpenVINO. .. code:: ipython3 import requests - + r = requests.get( url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py", ) open("notebook_utils.py", "w").write(r.text) - + from notebook_utils import device_widget - - device = device_widget() - - device + device = device_widget(default="CPU", exclude=["NPU", "AUTO"]) + device -.. parsed-literal:: - Dropdown(description='Device:', options=('CPU', 'GPU.0', 'GPU.1', 'AUTO'), value='CPU') +.. parsed-literal:: + Dropdown(description='Device:', options=('CPU',), value='CPU') -Create autoregressive and speculative forms of sampling with KV Cache support ------------------------------------------------------------------------------ +Run target model without speculative decoding +--------------------------------------------- -Text generation is often done in an autoregressive fashion. We will all -support a KV cache (aka Past Value Cache) in the code. Note that we are -using greedy sampling. We do not adjust other text generation parameters -(e.g. temperature) so keep this illustration of speculative sampling as -simple and understandable as possible. -Setup imports -~~~~~~~~~~~~~ +OpenVINO GenAI provides easy-to-use API for running text generation. +Firstly we will create pipeline with ``LLMPipeline``. ``LLMPipeline`` is +the main object used for decoding. You can construct it straight away +from the folder with the converted model. It will automatically load the +``main model``, ``tokenizer``, ``detokenizer`` and default +``generation configuration``. After that we will configure parameters +for decoding. Then we just run ``generate`` method and get the output in +text format. We do not need to encode input prompt according to model +expected template or write post-processing code for logits decoder, it +will be done easily with LLMPipeline. +To obtain intermediate generation results without waiting until when +generation is finished, we will write streamer function. .. code:: ipython3 + import openvino_genai import time - import numpy as np - import openvino as ov -Prepare autoregressive sampling -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + pipe = openvino_genai.LLMPipeline(target_model_path, device.value) + config = openvino_genai.GenerationConfig() + config.max_new_tokens = 100 -.. code:: ipython3 + def streamer(subword): + print(subword, end="", flush=True) + # Return flag corresponds whether generation should be stopped. + # False means continue generation. + return False - def autoregressive_sampling_with_pkv(input, model, N=30): - input_ids, attention_mask = input.input_ids, input.attention_mask - seq_len = input_ids.shape[-1] - position_ids = np.arange(0, seq_len, dtype=np.int64).reshape([-1, seq_len]) - - # in all subsequent inferences we feed tokens one by one, - # but for the first one we feed the whole encoded prompt - request = model.create_infer_request() - request.infer((input_ids, attention_mask, position_ids, np.array([0]))) - next_token = np.argmax(request.results["logits"][:, -1]).reshape([1]) - - all_tokens = [] - all_tokens.extend(input_ids[0]) - all_tokens.append(next_token[0]) - - while seq_len < N: - input_ids = next_token.reshape([1, 1]) - attention_mask = np.concatenate((attention_mask, np.array([1]).reshape([1, 1])), axis=1) - position_ids = np.array([attention_mask.shape[1]]).reshape([1, 1]) - - request.infer((input_ids, attention_mask, position_ids, np.array([0]))) - next_token = np.argmax(request.results["logits"][:, -1]) - all_tokens.append(next_token) - seq_len += 1 - - return all_tokens - -Prepare speculative sampling -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -- Step 1: With speculative sampling, we first generate K samples from - the draft model (in an autoregressive manner). -- Step 2: These are now candidates to examine using the main model - (step 2) using a batch size of K. -- Step 3: We go through each K predicted tokens, and if tokens differ, - we stop and keep the last token predicted by the main model. -- Step 4: We update KV-cache dropping keys & values for differing - tokens and repeat Step 1. -.. code:: ipython3 + start_time = time.perf_counter() + pipe.generate(["Sun is yellow because"], config, streamer=streamer) + end_time = time.perf_counter() - def update_state(request, seq_len): - for state in request.query_state(): - old_seq_len = state.state.shape[2] - if seq_len >= old_seq_len: - continue - # After the inference request, key/values have shape [BATCH_SIZE, seq_len + K, vocab_size]. - # Increment the sequence length by the number of matched tokens, and - # trim the KV cache to match the new sequence length. - state.state = ov.Tensor(state.state.data[:, :, :seq_len]) - - - def speculative_sampling_with_pkv(input, draft_model, main_model, K, N=30, **kwargs): - input_ids, attention_mask = input.input_ids, input.attention_mask - # seq_len number of key/values or number of already processed input tokens - seq_len = input_ids.shape[-1] - position_ids = np.arange(0, seq_len, dtype=np.int64).reshape([-1, seq_len]) - - draft_request = draft_model.create_infer_request() - draft_request.infer((input_ids, attention_mask, position_ids, np.array([0]))) - - main_request = main_model.create_infer_request() - main_request.infer((input_ids, attention_mask, position_ids, np.array([0]))) - first_token = np.argmax(main_request.results["logits"][:, -1]).reshape([1]) - - all_tokens = [] - all_tokens.extend(input_ids[0]) - all_tokens.append(first_token[0]) - - accum_draft_tokens = [] - while seq_len < N: - next_token = first_token - for i in range(K): - input_ids = next_token.reshape([1, 1]) - attention_mask = np.concatenate((attention_mask, np.array([1]).reshape([1, 1])), axis=1) - position_ids = np.array([attention_mask.shape[1]]).reshape([1, 1]) - - draft_request.infer((input_ids, attention_mask, position_ids, np.array([0]))) - next_token = np.argmax(draft_request.results["logits"][:, -1]) - accum_draft_tokens.append(next_token) - - # main model will give also K out tokens - # feed the same first token to the main model and do not give the last token generated by the draft - input_ids = np.concatenate((first_token.reshape([1]), accum_draft_tokens[:-1])).reshape([1, -1]) - attention_mask = np.ones((1, seq_len + K)) - position_ids = np.arange(seq_len, seq_len + K, dtype=np.int64).reshape([1, -1]) - - main_request.infer((input_ids, attention_mask, position_ids, np.array([0]))) - next_tokens = np.argmax(main_request.results["logits"], axis=-1)[0] - - # if disagrees from the very beggining then context will be expanded only for one element - # all elements match then context will be expanded to K elements - for disagree_idx, (t1, t2) in enumerate(zip(accum_draft_tokens, next_tokens)): - if t1 != t2: - break - - first_token = next_tokens[disagree_idx] - all_tokens.extend(next_tokens[: disagree_idx + 1]) - seq_len += disagree_idx + 1 - - # cut key/values depending on the position where disagreement starts - update_state(draft_request, seq_len) - update_state(main_request, seq_len) - - attention_mask = np.ones((1, seq_len)) - accum_draft_tokens = [] - all_tokens.extend(accum_draft_tokens) - return all_tokens - -Main generation function ------------------------- - - - -Download and Convert Model -~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -Optimum Intel can be used to load optimized models from the `Hugging -Face Hub `__ and -create pipelines to run an inference with OpenVINO Runtime using Hugging -Face APIs. For speculative decoding we need to manually update states, -therefore we will use directly openvino inference api, and optimum only -for model conversion. >To download Llama-2-7b-chat-hf, you will need to -accept license agreement. You must be a registered user in Hugging -Face Hub. Please visit HuggingFace model -`card `__, -carefully read terms of usage and click accept button. You will need to -use an access token for the code below to run. For more information on -access tokens, refer to this section of the documentation. -.. code:: ipython3 +.. parsed-literal:: - from pathlib import Path - - main_model_id = "meta-llama/Llama-2-7b-chat-hf" - main_model_path = Path("Llama-2-7b-chat-hf") - draft_model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" - draft_model_path = Path("TinyLlama-1.1B-Chat-v1.0") - - from transformers import AutoTokenizer - - main_tokenizer = AutoTokenizer.from_pretrained(main_model_id) - draft_tokenizer = AutoTokenizer.from_pretrained(draft_model_id) + it is made of gas. The gas is heated to a high temperature and then cooled. The gas is yellow because it has a band of light called the "Bondeson Pendulum Effect." The Bondeson Pendulum Effect is caused by the light waves bouncing off of the gas molecules. The light waves bounce off of the gas molecules in different ways, some of the light waves get scattered, and some of the light waves get reflected. The light waves that get scattered and reflected combine to .. code:: ipython3 - # In order for speculative sampling to work, both main and draft tokenizers should be the same. - token_test_txt = "text to ensure tokenizers work the same, as of 2024" - tokens_1 = draft_tokenizer(token_test_txt, return_tensors="pt").input_ids - tokens_2 = main_tokenizer(token_test_txt, return_tensors="pt").input_ids - - assert all((tokens_1 - tokens_2)[0] == 0) + import gc -.. code:: ipython3 + print(f"Generation time: {end_time - start_time:.2f}s") + del pipe + gc.collect(); - if not main_model_path.exists(): - !optimum-cli export openvino --model $main_model_id --weight-format fp16 {main_model_path} - if not draft_model_path.exists(): - !optimum-cli export openvino --model $draft_model_id --weight-format fp16 {draft_model_path} -Infer directly using OpenVINO Inference Pipeline +.. parsed-literal:: -.. code:: ipython3 + Generation time: 18.44s - core = ov.Core() - draft_ov_model = core.read_model(draft_model_path / "openvino_model.xml") - draft_model = core.compile_model(draft_ov_model, device_name=device.value) - - main_ov_model = core.read_model(main_model_path / "openvino_model.xml") - main_model = core.compile_model(main_ov_model, device_name=device.value) -.. code:: ipython3 +Run Speculative decoding pipeline +--------------------------------- - def main( - prompt: str, - n_tokens_to_generate: int = 75, - K: int = 5, - seed: int = 5555, - ): - # seed numpy rng - np.random.seed(seed) - tokenized = main_tokenizer(prompt, return_tensors="pt") - - def run_autoregressive_sampling_fn(decode_fn, tokenized, **kwargs): - start = time.perf_counter() - output_ids = decode_fn(tokenized, **kwargs) - text = main_tokenizer.decode(output_ids, skip_special_tokens=True) - elapsed_time = time.perf_counter() - start - return text, elapsed_time - - def run_speculative_sampling_fn(decode_fn, input_ids, **kwargs): - start = time.perf_counter() - output_ids = decode_fn(input_ids, **kwargs) - text = main_tokenizer.decode(output_ids, skip_special_tokens=True) - elapsed_time = time.perf_counter() - start - return text, elapsed_time - - autoregressive_text, autoregressive_time = run_autoregressive_sampling_fn( - autoregressive_sampling_with_pkv, - tokenized, - model=main_model, - N=n_tokens_to_generate, - ) - - speculative_text, speculative_time = run_speculative_sampling_fn( - speculative_sampling_with_pkv, - tokenized, - main_model=main_model, - draft_model=draft_model, - N=n_tokens_to_generate, - K=K, - ) - - # Format results for output in gradio - out = "\n" + "Autoregressive Decode" + "\n" + "---------------------" + "\n" - out = out + f"Time = {autoregressive_time:.2f}s" + "\n" + f"Text = {autoregressive_text}" + "\n" - out = out + "\n" + "Speculative Decode" + "\n" + "------------------" + "\n" - out = out + f"Time = {speculative_time:.2f}s" + "\n" + f"Text = {speculative_text}" - return out + + +To enable Speculative decoding in ``LLMPipeline,`` we should +additionally provide the ``draft_model`` structure and +``SchedulerConfig`` for resource management. + +|image011| + +As shown in the figure above, speculative decoding works by splitting +the generative process into two stages. In the first stage, a fast, but +less accurate draft model (AKA assistant) autoregressively generates a +sequence of tokens. In the second stage, a large, but more accurate +target model conducts parallelized verification over the generated draft +tokens. This process allows the target model to produce multiple tokens +in a single forward pass and thus accelerate autoregressive decoding. +The success of speculative decoding largely hinges on the speculation +lookahead (SL), i.e. the number of tokens produced by the draft model in +each iteration. The straightforward method, based on `Leviathan et +al. `__, uses a static value of the +speculation lookahead and involves generating a constant number of +candidate tokens at each speculative iteration. You can adjust the +number of candidates using ``num_assistant_tokens`` parameter in +generation config. If the assistant model’s confidence in its prediction +for the current token is lower than this threshold, the assistant model +stops the current token generation iteration is not yet reached. + +.. |image011| image:: https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/dynamic_speculation_lookahead/spec_dec_diagram.png .. code:: ipython3 - res = main("Alan Turing was a", n_tokens_to_generate=100) - print(res) + scheduler_config = openvino_genai.SchedulerConfig() + # cache params + scheduler_config.cache_size = 2 + scheduler_config.block_size = 16 if "GPU" in device.value else 32 + + draft_model = openvino_genai.draft_model(draft_model_path, device.value) + + pipe = openvino_genai.LLMPipeline(target_model_path, device.value, draft_model=draft_model, scheduler_config=scheduler_config) + + config = openvino_genai.GenerationConfig() + config.max_new_tokens = 100 + config.num_assistant_tokens = 5 + start_time = time.perf_counter() + result = pipe.generate(["Sun is yellow because"], config, streamer=streamer) + end_time = time.perf_counter() .. parsed-literal:: - 2024-04-17 10:21:41.642283: I tensorflow/core/util/port.cc:111] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-04-17 10:21:41.644834: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used. - 2024-04-17 10:21:41.677055: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered - 2024-04-17 10:21:41.677093: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered - 2024-04-17 10:21:41.677119: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered - 2024-04-17 10:21:41.683198: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used. - 2024-04-17 10:21:41.683977: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. - To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-04-17 10:21:42.477656: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + it is made of gas. The gas is heated to a high temperature and then cooled. The gas changes from a hot gas to a cold gas and then from a cold gas to a hot gas. The gas is very hot when it changes from a hot gas to a cold gas and very cold when it changes from a cold gas to a hot gas. When the gas changes from a hot gas to a cold gas it becomes yellow. When the gas changes from a cold gas to a hot gas it + +.. code:: ipython3 + + print(f"Generation time: {end_time - start_time:.2f}s") .. parsed-literal:: - - Autoregressive Decode - --------------------- - Time = 44.39s - Text = Alan Turing was a British mathematician, computer scientist, and codebreaker who played a pivotal role in cracking the German Enigma code during World War II. He was also a pioneer in the field of artificial intelligence and made significant contributions to the development of computer science. - - Turing was born on June 23, 1912, in London, England. He was educated at Cambridge University, where he earned a degree in mathematics in - - Speculative Decode - ------------------ - Time = 22.96s - Text = Alan Turing was a British mathematician, computer scientist, and codebreaker who played a pivotal role in cracking the German Enigma code during World War II. He was also a pioneer in the field of artificial intelligence and made significant contributions to the development of computer science. - - Turing was born on June 23, 1912, in London, England. He was educated at Cambridge University, where he earned a degree in mathematics in 1 + Generation time: 15.62s +Alternative approach, Dynamic Speculative Decoding, described in the +`paper `__ is based on heuristics and +adjusts the number of candidate tokens for the next iteration based on +the acceptance rate of the current iteration. If all speculative tokens +are correct, the number of candidate tokens increases; otherwise, it +decreases. For adjusting number of tokens +``assistant_confidence_threshold`` parameters should be used. If the +assistant model’s confidence in its prediction for the current token is +lower than this threshold, the assistant model stops the current token +generation iteration, even if the number of ``num_assistant_tokens`` is +not yet reached. You can find more details in this `blog +post `__. + .. code:: ipython3 - if not Path("gradio_helper.py").exists(): - r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/notebooks/speculative-sampling/gradio_helper.py") - open("gradio_helper.py", "w").write(r.text) - - from gradio_helper import make_demo - - demo = make_demo(fn=main) - - try: - demo.launch(debug=False) - except Exception: - demo.launch(share=True, debug=False) - # If you are launching remotely, specify server_name and server_port - # EXAMPLE: `demo.launch(server_name='your server name', server_port='server port in int')` - # To learn more please refer to the Gradio docs: https://gradio.app/docs/ + config = openvino_genai.GenerationConfig() + config.max_new_tokens = 100 + config.assistant_confidence_threshold = 0.05 + start_time = time.perf_counter() + result = pipe.generate(["Sun is yellow because"], config, streamer) + end_time = time.perf_counter() + + +.. parsed-literal:: + + it is made of gas. The gas is heated to a high temperature and then cooled. The gas changes from a hot gas to a cold gas and then from a cold gas to a hot gas. The gas is very hot when it changes from a hot gas to a cold gas and very cold when it changes from a cold gas to a hot gas. The gas is very light and can float in the air. When the gas cools it becomes a liquid. The Sun is a huge sphere of .. code:: ipython3 - # please uncomment and run this cell for stopping gradio interface - # demo.close() + print(f"Generation time: {end_time - start_time:.2f}s") + + +.. parsed-literal:: + + Generation time: 17.97s + diff --git a/docs/notebooks/speech-recognition-quantization-wav2vec2-with-output.rst b/docs/notebooks/speech-recognition-quantization-wav2vec2-with-output.rst index be35e6d00f9293..b4a9cf92289306 100644 --- a/docs/notebooks/speech-recognition-quantization-wav2vec2-with-output.rst +++ b/docs/notebooks/speech-recognition-quantization-wav2vec2-with-output.rst @@ -57,47 +57,47 @@ Guide =0.11.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (1.5.0) - Requirement already satisfied: torch>=2.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (2.4.1+cpu) - Requirement already satisfied: filelock in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (3.16.1) - Requirement already satisfied: numpy>=1.17 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (1.24.4) - Requirement already satisfied: pyarrow>=15.0.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (17.0.0) - Requirement already satisfied: dill<0.3.9,>=0.3.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (0.3.8) - Requirement already satisfied: pandas in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (2.0.3) - Requirement already satisfied: requests>=2.32.2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (2.32.3) - Requirement already satisfied: tqdm>=4.66.3 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (4.66.5) - Requirement already satisfied: xxhash in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (3.5.0) - Requirement already satisfied: multiprocess<0.70.17 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (0.70.16) - Requirement already satisfied: fsspec<=2024.9.0,>=2023.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets) (2024.9.0) - Requirement already satisfied: aiohttp in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (3.10.10) - Requirement already satisfied: huggingface-hub>=0.23.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (0.26.1) - Requirement already satisfied: packaging in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (24.1) - Requirement already satisfied: pyyaml>=5.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (6.0.2) - Requirement already satisfied: lightning-utilities>=0.8.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torchmetrics>=0.11.0) (0.11.8) - Requirement already satisfied: typing-extensions in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torchmetrics>=0.11.0) (4.12.2) - Requirement already satisfied: sympy in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1.0) (1.13.3) - Requirement already satisfied: networkx in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1.0) (3.1) - Requirement already satisfied: jinja2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1.0) (3.1.4) - Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from aiohttp->datasets) (2.4.3) - Requirement already satisfied: aiosignal>=1.1.2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from aiohttp->datasets) (1.3.1) - Requirement already satisfied: attrs>=17.3.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from aiohttp->datasets) (24.2.0) - Requirement already satisfied: frozenlist>=1.1.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from aiohttp->datasets) (1.4.1) - Requirement already satisfied: multidict<7.0,>=4.5 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from aiohttp->datasets) (6.1.0) - Requirement already satisfied: yarl<2.0,>=1.12.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from aiohttp->datasets) (1.15.2) - Requirement already satisfied: async-timeout<5.0,>=4.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from aiohttp->datasets) (4.0.3) - Requirement already satisfied: setuptools in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from lightning-utilities>=0.8.0->torchmetrics>=0.11.0) (75.2.0) - Requirement already satisfied: charset-normalizer<4,>=2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.32.2->datasets) (3.4.0) - Requirement already satisfied: idna<4,>=2.5 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.32.2->datasets) (3.10) - Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.32.2->datasets) (2.2.3) - Requirement already satisfied: certifi>=2017.4.17 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.32.2->datasets) (2024.8.30) - Requirement already satisfied: MarkupSafe>=2.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from jinja2->torch>=2.1.0) (2.1.5) - Requirement already satisfied: python-dateutil>=2.8.2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from pandas->datasets) (2.9.0.post0) - Requirement already satisfied: pytz>=2020.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from pandas->datasets) (2024.2) - Requirement already satisfied: tzdata>=2022.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from pandas->datasets) (2024.2) - Requirement already satisfied: mpmath<1.4,>=1.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from sympy->torch>=2.1.0) (1.3.0) - Requirement already satisfied: six>=1.5 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from python-dateutil>=2.8.2->pandas->datasets) (1.16.0) - Requirement already satisfied: propcache>=0.2.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from yarl<2.0,>=1.12.0->aiohttp->datasets) (0.2.0) + Requirement already satisfied: datasets in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (3.1.0) + Requirement already satisfied: torchmetrics>=0.11.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (1.5.1) + Requirement already satisfied: torch>=2.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (2.4.1+cpu) + Requirement already satisfied: filelock in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (3.16.1) + Requirement already satisfied: numpy>=1.17 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (1.24.4) + Requirement already satisfied: pyarrow>=15.0.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (17.0.0) + Requirement already satisfied: dill<0.3.9,>=0.3.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (0.3.8) + Requirement already satisfied: pandas in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (2.0.3) + Requirement already satisfied: requests>=2.32.2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (2.32.3) + Requirement already satisfied: tqdm>=4.66.3 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (4.66.6) + Requirement already satisfied: xxhash in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (3.5.0) + Requirement already satisfied: multiprocess<0.70.17 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (0.70.16) + Requirement already satisfied: fsspec<=2024.9.0,>=2023.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets) (2024.9.0) + Requirement already satisfied: aiohttp in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (3.10.10) + Requirement already satisfied: huggingface-hub>=0.23.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (0.26.2) + Requirement already satisfied: packaging in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (24.1) + Requirement already satisfied: pyyaml>=5.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from datasets) (6.0.2) + Requirement already satisfied: lightning-utilities>=0.8.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torchmetrics>=0.11.0) (0.11.8) + Requirement already satisfied: typing-extensions in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torchmetrics>=0.11.0) (4.12.2) + Requirement already satisfied: sympy in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1.0) (1.13.3) + Requirement already satisfied: networkx in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1.0) (3.1) + Requirement already satisfied: jinja2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from torch>=2.1.0) (3.1.4) + Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from aiohttp->datasets) (2.4.3) + Requirement already satisfied: aiosignal>=1.1.2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from aiohttp->datasets) (1.3.1) + Requirement already satisfied: attrs>=17.3.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from aiohttp->datasets) (24.2.0) + Requirement already satisfied: frozenlist>=1.1.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from aiohttp->datasets) (1.5.0) + Requirement already satisfied: multidict<7.0,>=4.5 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from aiohttp->datasets) (6.1.0) + Requirement already satisfied: yarl<2.0,>=1.12.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from aiohttp->datasets) (1.15.2) + Requirement already satisfied: async-timeout<5.0,>=4.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from aiohttp->datasets) (4.0.3) + Requirement already satisfied: setuptools in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from lightning-utilities>=0.8.0->torchmetrics>=0.11.0) (75.3.0) + Requirement already satisfied: charset-normalizer<4,>=2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.32.2->datasets) (3.4.0) + Requirement already satisfied: idna<4,>=2.5 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.32.2->datasets) (3.10) + Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.32.2->datasets) (2.2.3) + Requirement already satisfied: certifi>=2017.4.17 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from requests>=2.32.2->datasets) (2024.8.30) + Requirement already satisfied: MarkupSafe>=2.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from jinja2->torch>=2.1.0) (2.1.5) + Requirement already satisfied: python-dateutil>=2.8.2 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from pandas->datasets) (2.9.0.post0) + Requirement already satisfied: pytz>=2020.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from pandas->datasets) (2024.2) + Requirement already satisfied: tzdata>=2022.1 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from pandas->datasets) (2024.2) + Requirement already satisfied: mpmath<1.4,>=1.1.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from sympy->torch>=2.1.0) (1.3.0) + Requirement already satisfied: six>=1.5 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from python-dateutil>=2.8.2->pandas->datasets) (1.16.0) + Requirement already satisfied: propcache>=0.2.0 in /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages (from yarl<2.0,>=1.12.0->aiohttp->datasets) (0.2.0) Note: you may need to restart the kernel to use updated packages. Note: you may need to restart the kernel to use updated packages. @@ -116,6 +116,15 @@ Imports from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor + +.. parsed-literal:: + + 2024-11-05 04:52:12.108210: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 04:52:12.142263: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. + 2024-11-05 04:52:12.803683: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + + Settings -------- @@ -163,9 +172,16 @@ IR). .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:4779: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead + WARNING:tensorflow:Please fix your imports. Module tensorflow.python.training.tracking.base has been moved to tensorflow.python.trackable.base. The old module will be deleted in version 2.11. + + +.. parsed-literal:: + + [ WARNING ] Please fix your imports. Module %s has been moved to %s. The old module will be deleted in version %s. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:5006: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead warnings.warn( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:871: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + `loss_type=None` was set in the config but it is unrecognised.Using the default loss: `ForCausalLMLoss`. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:872: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): @@ -272,14 +288,6 @@ steps: INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, tensorflow, onnx, openvino -.. parsed-literal:: - - 2024-10-23 04:48:23.521146: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 04:48:23.553631: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. - To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 04:48:24.182318: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT - - .. parsed-literal:: @@ -500,7 +508,7 @@ quantized model. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torchmetrics/utilities/prints.py:62: FutureWarning: Importing `WordErrorRate` from `torchmetrics` was deprecated and will be removed in 2.0. Import `WordErrorRate` from `torchmetrics.text` instead. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torchmetrics/utilities/prints.py:62: FutureWarning: Importing `WordErrorRate` from `torchmetrics` was deprecated and will be removed in 2.0. Import `WordErrorRate` from `torchmetrics.text` instead. _future_warning( @@ -570,23 +578,23 @@ models. [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT. [Step 4/11] Reading model files [ INFO ] Loading model files - [ INFO ] Read model took 17.90 ms + [ INFO ] Read model took 18.07 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: - [ INFO ] input_values , 45 (node: input_values) : f32 / [...] / [?,?] + [ INFO ] 45 , input_values (node: input_values) : f32 / [...] / [?,?] [ INFO ] Model outputs: [ INFO ] logits (node: __module.lm_head/aten::linear/Add) : f32 / [...] / [?,1..,32] [Step 5/11] Resizing model to match image sizes and given batch [ INFO ] Model batch size: 1 [ INFO ] Reshaping model: '45': [1,30480] - [ INFO ] Reshape model took 4.29 ms + [ INFO ] Reshape model took 4.26 ms [Step 6/11] Configuring input of the model [ INFO ] Model inputs: - [ INFO ] input_values , 45 (node: input_values) : f32 / [...] / [1,30480] + [ INFO ] 45 , input_values (node: input_values) : f32 / [...] / [1,30480] [ INFO ] Model outputs: [ INFO ] logits (node: __module.lm_head/aten::linear/Add) : f32 / [...] / [1,95,32] [Step 7/11] Loading the model to the device - [ INFO ] Compile model took 493.63 ms + [ INFO ] Compile model took 495.05 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: Model0 @@ -623,17 +631,17 @@ models. [ INFO ] Fill input '45' with random values [Step 10/11] Measuring performance (Start inference asynchronously, 6 inference requests, limits: 120000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). - [ INFO ] First inference took 69.32 ms + [ INFO ] First inference took 69.60 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] - [ INFO ] Count: 5400 iterations - [ INFO ] Duration: 120141.91 ms + [ INFO ] Count: 5406 iterations + [ INFO ] Duration: 120228.72 ms [ INFO ] Latency: - [ INFO ] Median: 131.56 ms - [ INFO ] Average: 133.32 ms - [ INFO ] Min: 88.10 ms - [ INFO ] Max: 314.58 ms - [ INFO ] Throughput: 44.95 FPS + [ INFO ] Median: 131.74 ms + [ INFO ] Average: 133.26 ms + [ INFO ] Min: 107.29 ms + [ INFO ] Max: 340.52 ms + [ INFO ] Throughput: 44.96 FPS .. code:: ipython3 @@ -660,7 +668,7 @@ models. [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT. [Step 4/11] Reading model files [ INFO ] Loading model files - [ INFO ] Read model took 24.51 ms + [ INFO ] Read model took 23.99 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] 45 , input_values (node: input_values) : f32 / [...] / [?,?] @@ -669,14 +677,14 @@ models. [Step 5/11] Resizing model to match image sizes and given batch [ INFO ] Model batch size: 1 [ INFO ] Reshaping model: '45': [1,30480] - [ INFO ] Reshape model took 5.99 ms + [ INFO ] Reshape model took 6.04 ms [Step 6/11] Configuring input of the model [ INFO ] Model inputs: [ INFO ] 45 , input_values (node: input_values) : f32 / [...] / [1,30480] [ INFO ] Model outputs: [ INFO ] logits (node: __module.lm_head/aten::linear/Add) : f32 / [...] / [1,95,32] [Step 7/11] Loading the model to the device - [ INFO ] Compile model took 1234.19 ms + [ INFO ] Compile model took 1203.24 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: Model0 @@ -713,15 +721,15 @@ models. [ INFO ] Fill input '45' with random values [Step 10/11] Measuring performance (Start inference asynchronously, 6 inference requests, limits: 120000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). - [ INFO ] First inference took 56.91 ms + [ INFO ] First inference took 53.37 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] - [ INFO ] Count: 7974 iterations - [ INFO ] Duration: 120125.59 ms + [ INFO ] Count: 8004 iterations + [ INFO ] Duration: 120086.07 ms [ INFO ] Latency: - [ INFO ] Median: 88.71 ms - [ INFO ] Average: 90.24 ms - [ INFO ] Min: 68.79 ms - [ INFO ] Max: 212.19 ms - [ INFO ] Throughput: 66.38 FPS + [ INFO ] Median: 88.68 ms + [ INFO ] Average: 89.86 ms + [ INFO ] Min: 68.86 ms + [ INFO ] Max: 235.63 ms + [ INFO ] Throughput: 66.65 FPS diff --git a/docs/notebooks/speechbrain-emotion-recognition-with-output.rst b/docs/notebooks/speechbrain-emotion-recognition-with-output.rst index 55e3b31765b191..42783b7d598b01 100644 --- a/docs/notebooks/speechbrain-emotion-recognition-with-output.rst +++ b/docs/notebooks/speechbrain-emotion-recognition-with-output.rst @@ -53,25 +53,6 @@ Installations %pip install -q "transformers>=4.30.0" "huggingface_hub>=0.8.0" "SoundFile" %pip install -q "openvino>=2024.1.0" - -.. parsed-literal:: - - Note: you may need to restart the kernel to use updated packages. - ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. - altair 5.4.1 requires typing-extensions>=4.10.0; python_version < "3.13", but you have typing-extensions 4.9.0 which is incompatible. - descript-audiotools 0.7.2 requires protobuf<3.20,>=3.9.2, but you have protobuf 3.20.3 which is incompatible. - detectron2 0.6 requires iopath<0.1.10,>=0.1.7, but you have iopath 0.1.10 which is incompatible. - mobileclip 0.1.0 requires torchvision==0.14.1, but you have torchvision 0.19.1+cpu which is incompatible. - modelscope-studio 0.5.0 requires gradio<5.0,>=4.0, but you have gradio 3.43.1 which is incompatible. - openvino-dev 2024.4.0 requires openvino==2024.4.0, but you have openvino 2024.5.0.dev20241014 which is incompatible. - parler-tts 0.2 requires transformers<=4.43.3,>=4.43.0, but you have transformers 4.45.2 which is incompatible. - tensorflow 2.12.0 requires numpy<1.24,>=1.22, but you have numpy 1.24.4 which is incompatible. - typeguard 4.3.0 requires typing-extensions>=4.10.0, but you have typing-extensions 4.9.0 which is incompatible. - Note: you may need to restart the kernel to use updated packages. - Note: you may need to restart the kernel to use updated packages. - Note: you may need to restart the kernel to use updated packages. - - Imports ~~~~~~~ @@ -85,6 +66,12 @@ Imports import openvino as ov + +.. parsed-literal:: + + torchvision is not available - cannot save figures + + Prepare base model ~~~~~~~~~~~~~~~~~~ @@ -116,42 +103,6 @@ SpeechBrain codebase. source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier" ) - - -.. parsed-literal:: - - config.json: 0%| | 0.00/1.84k [00:00=2.2" --extra-index-url https://download.pytorch.org/whl/cpu %pip install -q "stable-audio-tools" "nncf>=2.12.0" --extra-index-url https://download.pytorch.org/whl/cpu - %pip install -q "openvino>=2024.3.0" + if platform.system() == "Darwin": + %pip install -q "numpy>=1.26,<2.0.0" "pandas>2.0.2" + else: + %pip install -q "numpy>=1.26" "pandas>2.0.2" + %pip install -q "openvino>=2024.4.0" Load the original model and inference ------------------------------------- @@ -108,15 +114,28 @@ Load the original model and inference model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0") + +.. parsed-literal:: + + model_config.json: 0%| | 0.00/4.17k [00:00=t0 but got ta=0.29999998211860657 and t0=0.3. + /home/ea/work/py311/lib/python3.11/site-packages/torchsde/_brownian/brownian_interval.py:599: UserWarning: Should have ta>=t0 but got ta=0.29999998211860657 and t0=0.3. warnings.warn(f"Should have ta>=t0 but got ta={ta} and t0={self._start}.") @@ -210,7 +235,7 @@ Load the original model and inference @@ -287,7 +312,7 @@ documentation =t0 but got ta=0.29999998211860657 and t0=0.3. + /home/ea/work/py311/lib/python3.11/site-packages/torchsde/_brownian/brownian_interval.py:599: UserWarning: Should have ta>=t0 but got ta=0.29999998211860657 and t0=0.3. warnings.warn(f"Should have ta>=t0 but got ta={ta} and t0={self._start}.") @@ -679,7 +685,7 @@ and run inference. @@ -736,8 +742,3 @@ Interactive inference # If you are launching remotely, specify server_name and server_port # EXAMPLE: `demo.launch(server_name='your server name', server_port='server port in int')` # To learn more please refer to the Gradio docs: https://gradio.app/docs/ - -.. code:: ipython3 - - # please uncomment and run this cell for stopping gradio interface - # demo.close() diff --git a/docs/notebooks/stable-cascade-image-generation-with-output.rst b/docs/notebooks/stable-cascade-image-generation-with-output.rst index 969ed4e4dbe336..8bd358958e47b6 100644 --- a/docs/notebooks/stable-cascade-image-generation-with-output.rst +++ b/docs/notebooks/stable-cascade-image-generation-with-output.rst @@ -56,13 +56,8 @@ Prerequisites .. parsed-literal:: ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. - descript-audiotools 0.7.2 requires protobuf<3.20,>=3.9.2, but you have protobuf 5.28.3 which is incompatible. mobileclip 0.1.0 requires torchvision==0.14.1, but you have torchvision 0.19.1+cpu which is incompatible. - open-clip-torch 2.22.0 requires protobuf<4, but you have protobuf 5.28.3 which is incompatible. s3fs 2024.10.0 requires fsspec==2024.10.0.*, but you have fsspec 2024.9.0 which is incompatible. - tensorflow 2.12.0 requires protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3, but you have protobuf 5.28.3 which is incompatible. - tensorflow-metadata 1.14.0 requires protobuf<4.21,>=3.20.3, but you have protobuf 5.28.3 which is incompatible. - wandb 0.15.4 requires protobuf!=4.21.0,<5,>=3.12.0; python_version < "3.9" and sys_platform == "linux", but you have protobuf 5.28.3 which is incompatible. Note: you may need to restart the kernel to use updated packages. @@ -85,10 +80,10 @@ Load and run the original pipeline .. parsed-literal:: - 2024-10-23 04:56:18.757348: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 04:56:18.791430: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-05 05:00:13.157963: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 05:00:13.192172: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 04:56:19.346484: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-05 05:00:13.880563: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT @@ -257,11 +252,12 @@ here, we always use fixed shapes in conversion by using an .. parsed-literal:: [ WARNING ] Please fix your imports. Module %s has been moved to %s. The old module will be deleted in version %s. - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:4779: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:5006: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead warnings.warn( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:88: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + `loss_type=None` was set in the config but it is unrecognised.Using the default loss: `ForCausalLMLoss`. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:88: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if input_shape[-1] > 1 or self.sliding_window is not None: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:164: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:164: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if past_key_values_length > 0: @@ -310,7 +306,7 @@ here, we always use fixed shapes in conversion by using an .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/unets/unet_stable_cascade.py:548: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/unets/unet_stable_cascade.py:548: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)): diff --git a/docs/notebooks/stable-cascade-image-generation-with-output_files/stable-cascade-image-generation-with-output_29_2.jpg b/docs/notebooks/stable-cascade-image-generation-with-output_files/stable-cascade-image-generation-with-output_29_2.jpg index ff7c5a51fa8623..240c88c559da36 100644 --- a/docs/notebooks/stable-cascade-image-generation-with-output_files/stable-cascade-image-generation-with-output_29_2.jpg +++ b/docs/notebooks/stable-cascade-image-generation-with-output_files/stable-cascade-image-generation-with-output_29_2.jpg @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:8ea7494f5ec5eee5a399e31abce1aafc5b2df1e446414a4c8ece593b465608e2 -size 81605 +oid sha256:8f0845e937cadada4b26550b58858292fd42eebd18367b454b1401143e263338 +size 85254 diff --git a/docs/notebooks/stable-cascade-image-generation-with-output_files/stable-cascade-image-generation-with-output_29_2.png b/docs/notebooks/stable-cascade-image-generation-with-output_files/stable-cascade-image-generation-with-output_29_2.png index 81e228f915393f..349c8fa79af81f 100644 --- a/docs/notebooks/stable-cascade-image-generation-with-output_files/stable-cascade-image-generation-with-output_29_2.png +++ b/docs/notebooks/stable-cascade-image-generation-with-output_files/stable-cascade-image-generation-with-output_29_2.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:33518ccf125cee029c73380add209aae63208485ac340655ac3123d0e19c0426 -size 1629985 +oid sha256:d44cddd44f25458a49a6bf4a70431bbd39eecdc67d015c2c88aafa644f7c8ff9 +size 1644717 diff --git a/docs/notebooks/stable-diffusion-ip-adapter-with-output.rst b/docs/notebooks/stable-diffusion-ip-adapter-with-output.rst index 9f84e3178267ff..15c490942998d6 100644 --- a/docs/notebooks/stable-diffusion-ip-adapter-with-output.rst +++ b/docs/notebooks/stable-diffusion-ip-adapter-with-output.rst @@ -75,8 +75,6 @@ Prerequisites ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. botocore 1.35.36 requires urllib3<1.27,>=1.25.4; python_version < "3.10", but you have urllib3 2.2.3 which is incompatible. - tensorflow 2.12.0 requires protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3, but you have protobuf 5.28.3 which is incompatible. - wandb 0.15.4 requires protobuf!=4.21.0,<5,>=3.12.0; python_version < "3.9" and sys_platform == "linux", but you have protobuf 5.28.3 which is incompatible. Note: you may need to restart the kernel to use updated packages. Note: you may need to restart the kernel to use updated packages. @@ -197,10 +195,10 @@ Additionally, LCM requires using LCMScheduler for efficient generation. .. parsed-literal:: - 2024-10-23 05:07:50.575524: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 05:07:50.610025: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-05 05:11:37.931642: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 05:11:37.965522: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 05:07:51.160950: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-05 05:11:38.628517: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT @@ -211,7 +209,7 @@ Additionally, LCM requires using LCMScheduler for efficient generation. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/feature_extraction_clip.py:28: FutureWarning: The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please use CLIPImageProcessor instead. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/feature_extraction_clip.py:28: FutureWarning: The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please use CLIPImageProcessor instead. warnings.warn( @@ -293,8 +291,11 @@ extractor as input and returns image embeddings. .. parsed-literal:: [ WARNING ] Please fix your imports. Module %s has been moved to %s. The old module will be deleted in version %s. - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:4779: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:5006: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead warnings.warn( + `loss_type=None` was set in the config but it is unrecognised.Using the default loss: `ForCausalLMLoss`. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:243: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size): U-net @@ -355,17 +356,17 @@ Model predicts the ``sample`` state for the next step. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/unets/unet_2d_condition.py:1111: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/unets/unet_2d_condition.py:1111: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if dim % default_overall_up_factor != 0: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/embeddings.py:1801: FutureWarning: You have passed a tensor as `image_embeds`.This is deprecated and will be removed in a future release. Please make sure to update your script to pass `image_embeds` as a list of tensors to suppress this warning. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/embeddings.py:1801: FutureWarning: You have passed a tensor as `image_embeds`.This is deprecated and will be removed in a future release. Please make sure to update your script to pass `image_embeds` as a list of tensors to suppress this warning. deprecate("image_embeds not a list", "1.0.0", deprecation_message, standard_warn=False) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/downsampling.py:136: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/downsampling.py:136: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert hidden_states.shape[1] == self.channels - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/downsampling.py:145: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/downsampling.py:145: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert hidden_states.shape[1] == self.channels - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/upsampling.py:147: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/upsampling.py:147: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert hidden_states.shape[1] == self.channels - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/upsampling.py:162: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/models/upsampling.py:162: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if hidden_states.shape[0] >= 64: @@ -443,16 +444,16 @@ image in pipeline, we can discuss it in inference examples. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:1303: TracerWarning: Trace had nondeterministic nodes. Did you forget call .eval() on your model? Nodes: - %2506 : Float(1, 4, 64, 64, strides=[16384, 4096, 64, 1], requires_grad=0, device=cpu) = aten::randn(%2500, %2501, %2502, %2503, %2504, %2505) # /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/utils/torch_utils.py:81:0 + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:1303: TracerWarning: Trace had nondeterministic nodes. Did you forget call .eval() on your model? Nodes: + %2506 : Float(1, 4, 64, 64, strides=[16384, 4096, 64, 1], requires_grad=0, device=cpu) = aten::randn(%2500, %2501, %2502, %2503, %2504, %2505) # /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/utils/torch_utils.py:81:0 This may cause errors in trace checking. To disable trace checking, pass check_trace=False to torch.jit.trace() _check_trace( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:1303: TracerWarning: Output nr 1. of the traced function does not match the corresponding output of the Python function. Detailed error: + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/jit/_trace.py:1303: TracerWarning: Output nr 1. of the traced function does not match the corresponding output of the Python function. Detailed error: Tensor-likes are not close! - Mismatched elements: 10395 / 16384 (63.4%) - Greatest absolute difference: 0.0018606185913085938 at index (0, 1, 63, 63) (up to 1e-05 allowed) - Greatest relative difference: 0.005050937208143127 at index (0, 3, 63, 59) (up to 1e-05 allowed) + Mismatched elements: 10398 / 16384 (63.5%) + Greatest absolute difference: 0.0014954805374145508 at index (0, 1, 0, 63) (up to 1e-05 allowed) + Greatest relative difference: 0.004146566421115057 at index (0, 3, 63, 59) (up to 1e-05 allowed) _check_trace( @@ -498,9 +499,9 @@ hidden states. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:88: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:88: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if input_shape[-1] > 1 or self.sliding_window is not None: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:164: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:164: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if past_key_values_length > 0: diff --git a/docs/notebooks/stable-diffusion-ip-adapter-with-output_files/stable-diffusion-ip-adapter-with-output_22_1.png b/docs/notebooks/stable-diffusion-ip-adapter-with-output_files/stable-diffusion-ip-adapter-with-output_22_1.png index 9e41d1a02b25ee..b202db52895198 100644 --- a/docs/notebooks/stable-diffusion-ip-adapter-with-output_files/stable-diffusion-ip-adapter-with-output_22_1.png +++ b/docs/notebooks/stable-diffusion-ip-adapter-with-output_files/stable-diffusion-ip-adapter-with-output_22_1.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:0d5fa26a0d01a01557d2baf61229065adafcf06e97d796f49cad83cfeef8c42e -size 964520 +oid sha256:f9454f039912f132f1c278b4d58fddc6b737c8a6d56ddbc5358142ad1e9f987c +size 980237 diff --git a/docs/notebooks/stable-diffusion-ip-adapter-with-output_files/stable-diffusion-ip-adapter-with-output_25_0.png b/docs/notebooks/stable-diffusion-ip-adapter-with-output_files/stable-diffusion-ip-adapter-with-output_25_0.png index 45f0dc6e8e9e10..299ec38e04f457 100644 --- a/docs/notebooks/stable-diffusion-ip-adapter-with-output_files/stable-diffusion-ip-adapter-with-output_25_0.png +++ b/docs/notebooks/stable-diffusion-ip-adapter-with-output_files/stable-diffusion-ip-adapter-with-output_25_0.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:3b0f7041fd5c84ecde36f1036e957a5f64eb12507270cd300392042c8a703f6d -size 961384 +oid sha256:8e9b89ad55b5255e86b4a7e7d40984fa3e8ca7d64dc5cff8ca1367dcc0de5a72 +size 927436 diff --git a/docs/notebooks/stable-diffusion-ip-adapter-with-output_files/stable-diffusion-ip-adapter-with-output_28_0.png b/docs/notebooks/stable-diffusion-ip-adapter-with-output_files/stable-diffusion-ip-adapter-with-output_28_0.png index 8b9cea0390f80a..9f1e4c4d220755 100644 --- a/docs/notebooks/stable-diffusion-ip-adapter-with-output_files/stable-diffusion-ip-adapter-with-output_28_0.png +++ b/docs/notebooks/stable-diffusion-ip-adapter-with-output_files/stable-diffusion-ip-adapter-with-output_28_0.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:e434bcc6a4403efc3f9272a49882d42ea354dae2de6231c7d71458ea79fd6de9 -size 593289 +oid sha256:46120a84ef8334f29241e07bd43c8313977cd2318ce36a951f1f8ed3c626ba84 +size 598424 diff --git a/docs/notebooks/stable-diffusion-torchdynamo-backend-with-output.rst b/docs/notebooks/stable-diffusion-torchdynamo-backend-with-output.rst index e03a4ab614c769..151a5a5c30588d 100644 --- a/docs/notebooks/stable-diffusion-torchdynamo-backend-with-output.rst +++ b/docs/notebooks/stable-diffusion-torchdynamo-backend-with-output.rst @@ -117,8 +117,7 @@ torch.compile it goes through the following steps: 1. Graph acquisition - the model is rewritten as blocks of subgraphs that are either: - compiled by TorchDynamo and “flattened”, - - falling back to the eager-mode, due to unsupported Python constructs (like control-flow - code). + - falling back to the eager-mode, due to unsupported Python constructs (like control-flow code). 2. Graph lowering - all PyTorch operations are decomposed into their constituent kernels specific to the chosen backend. diff --git a/docs/notebooks/style-transfer-with-output.rst b/docs/notebooks/style-transfer-with-output.rst index dbbe6395574657..9b902aeb79f7a7 100644 --- a/docs/notebooks/style-transfer-with-output.rst +++ b/docs/notebooks/style-transfer-with-output.rst @@ -193,7 +193,7 @@ OpenVINO Intermediate Representation (IR) with ``FP16`` precision. .. parsed-literal:: - PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/style-transfer-webcam/model/mosaic-9.onnx') + PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/style-transfer-webcam/model/mosaic-9.onnx') diff --git a/docs/notebooks/style-transfer-with-output_files/style-transfer-with-output_25_0.png b/docs/notebooks/style-transfer-with-output_files/style-transfer-with-output_25_0.png index d9cfe3e6360a7a..69ebcfdd60f395 100644 --- a/docs/notebooks/style-transfer-with-output_files/style-transfer-with-output_25_0.png +++ b/docs/notebooks/style-transfer-with-output_files/style-transfer-with-output_25_0.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:0565650551a7561fb5450ec915c747ffad759c8cba258eec1d1cd2d30f85c812 -size 81718 +oid sha256:0aa8c4fc4dd201212c4b63e6436c2a5e9cd6f7994271244bfabe91a5cef7e675 +size 81862 diff --git a/docs/notebooks/table-question-answering-with-output.rst b/docs/notebooks/table-question-answering-with-output.rst index 88edfa22333b86..e1cad24a567f4b 100644 --- a/docs/notebooks/table-question-answering-with-output.rst +++ b/docs/notebooks/table-question-answering-with-output.rst @@ -80,10 +80,10 @@ Prerequisites .. parsed-literal:: - 2024-10-23 05:11:15.997414: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 05:11:16.031769: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-05 05:15:04.432298: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 05:15:04.467903: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 05:11:16.587915: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-05 05:15:05.158075: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT Use ``TapasForQuestionAnswering.from_pretrained`` to download a @@ -219,57 +219,58 @@ function to serialize the result of conversion. .. parsed-literal:: [ WARNING ] Please fix your imports. Module %s has been moved to %s. The old module will be deleted in version %s. - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:4779: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/modeling_utils.py:5006: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead warnings.warn( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1571: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + `loss_type=None` was set in the config but it is unrecognised.Using the default loss: `ForCausalLMLoss`. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1571: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. self.indices = torch.as_tensor(indices) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1572: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1572: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. self.num_segments = torch.as_tensor(num_segments, device=indices.device) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1674: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1674: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. batch_size = torch.prod(torch.tensor(list(index.batch_shape()))) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1750: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1750: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. [torch.as_tensor([-1], dtype=torch.long), torch.as_tensor(vector_shape, dtype=torch.long)], dim=0 - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1753: TracerWarning: Converting a tensor to a Python list might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1753: TracerWarning: Converting a tensor to a Python list might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! flat_values = values.reshape(flattened_shape.tolist()) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1755: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1755: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! out = torch.zeros(int(flat_index.num_segments), dtype=torch.float, device=flat_values.device) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1763: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1763: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. torch.as_tensor(index.batch_shape(), dtype=torch.long), - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1764: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1764: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. torch.as_tensor([index.num_segments], dtype=torch.long), - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1765: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1765: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. torch.as_tensor(vector_shape, dtype=torch.long), - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1770: TracerWarning: Converting a tensor to a Python list might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1770: TracerWarning: Converting a tensor to a Python list might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! output_values = segment_means.clone().view(new_shape.tolist()).to(values.dtype) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1701: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1701: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. batch_shape = torch.as_tensor( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1705: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1705: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. num_segments = torch.as_tensor(num_segments) # create a rank 0 tensor (scalar) containing num_segments (e.g. 64) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1716: TracerWarning: Converting a tensor to a Python list might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1716: TracerWarning: Converting a tensor to a Python list might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! new_shape = [int(x) for x in new_tensor.tolist()] - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1719: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1719: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. multiples = torch.cat([batch_shape, torch.as_tensor([1])], dim=0) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1720: TracerWarning: Converting a tensor to a Python list might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1720: TracerWarning: Converting a tensor to a Python list might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! indices = indices.repeat(multiples.tolist()) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:282: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:282: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. torch.as_tensor(self.config.max_position_embeddings - 1, device=device), position - first_position - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1231: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1231: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. indices=torch.min(row_ids, torch.as_tensor(self.config.max_num_rows - 1, device=row_ids.device)), - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1236: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1236: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. indices=torch.min(column_ids, torch.as_tensor(self.config.max_num_columns - 1, device=column_ids.device)), - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1928: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1928: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * torch.as_tensor( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1933: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1933: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * torch.as_tensor( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1969: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1969: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. labels_per_column, _ = reduce_sum(torch.as_tensor(labels, dtype=torch.float32, device=labels.device), col_index) - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1992: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1992: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. torch.as_tensor(labels, dtype=torch.long, device=labels.device), cell_index - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1999: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:1999: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. column_mask = torch.as_tensor( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:2024: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:2024: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. selected_column_id = torch.as_tensor( - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:2029: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/transformers/models/tapas/modeling_tapas.py:2029: TracerWarning: torch.as_tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. selected_column_mask = torch.as_tensor( diff --git a/docs/notebooks/tensorflow-classification-to-openvino-with-output.rst b/docs/notebooks/tensorflow-classification-to-openvino-with-output.rst index b2efda5f0aa31a..45eb4a96573be1 100644 --- a/docs/notebooks/tensorflow-classification-to-openvino-with-output.rst +++ b/docs/notebooks/tensorflow-classification-to-openvino-with-output.rst @@ -338,5 +338,5 @@ performance. .. parsed-literal:: - IR model in OpenVINO Runtime/CPU: 0.0010 seconds per image, FPS: 995.15 + IR model in OpenVINO Runtime/CPU: 0.0010 seconds per image, FPS: 959.64 diff --git a/docs/notebooks/tensorflow-instance-segmentation-to-openvino-with-output.rst b/docs/notebooks/tensorflow-instance-segmentation-to-openvino-with-output.rst index 0c0357fa707f9c..2410d1657c9b1c 100644 --- a/docs/notebooks/tensorflow-instance-segmentation-to-openvino-with-output.rst +++ b/docs/notebooks/tensorflow-instance-segmentation-to-openvino-with-output.rst @@ -391,7 +391,7 @@ Read the image, resize and convert it to the input shape of the network: .. parsed-literal:: - + diff --git a/docs/notebooks/tensorflow-instance-segmentation-to-openvino-with-output_files/tensorflow-instance-segmentation-to-openvino-with-output_39_0.png b/docs/notebooks/tensorflow-instance-segmentation-to-openvino-with-output_files/tensorflow-instance-segmentation-to-openvino-with-output_39_0.png index d91e735a1d6467..4940e220329fbf 100644 --- a/docs/notebooks/tensorflow-instance-segmentation-to-openvino-with-output_files/tensorflow-instance-segmentation-to-openvino-with-output_39_0.png +++ b/docs/notebooks/tensorflow-instance-segmentation-to-openvino-with-output_files/tensorflow-instance-segmentation-to-openvino-with-output_39_0.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:8492fcb14f954229b35321f809f600bc9c9fb445cf44cf1cab1dbae5473e2d78 -size 391367 +oid sha256:69ea6c54eefea173c120ff5666caa829b5a008727ebd3a83f7e10d1986de07bd +size 394182 diff --git a/docs/notebooks/tensorflow-object-detection-to-openvino-with-output.rst b/docs/notebooks/tensorflow-object-detection-to-openvino-with-output.rst index 970ff5dd5278ae..11dc1675dcfeb4 100644 --- a/docs/notebooks/tensorflow-object-detection-to-openvino-with-output.rst +++ b/docs/notebooks/tensorflow-object-detection-to-openvino-with-output.rst @@ -189,7 +189,7 @@ from TensorFlow Hub: .. parsed-literal:: - PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/tensorflow-object-detection-to-openvino/od-model/tf/faster_rcnn_resnet50_v1_640x640.tar.gz') + PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/tensorflow-object-detection-to-openvino/od-model/tf/faster_rcnn_resnet50_v1_640x640.tar.gz') @@ -368,7 +368,7 @@ Load and save an image: .. parsed-literal:: - PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/tensorflow-object-detection-to-openvino/data/coco_bike.jpg') + PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/tensorflow-object-detection-to-openvino/data/coco_bike.jpg') @@ -396,7 +396,7 @@ Read the image, resize and convert it to the input shape of the network: .. parsed-literal:: - + @@ -697,7 +697,7 @@ Zoo `__: .. parsed-literal:: - PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/tensorflow-object-detection-to-openvino/data/coco_91cl.txt') + PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/tensorflow-object-detection-to-openvino/data/coco_91cl.txt') diff --git a/docs/notebooks/tensorflow-object-detection-to-openvino-with-output_files/tensorflow-object-detection-to-openvino-with-output_38_0.png b/docs/notebooks/tensorflow-object-detection-to-openvino-with-output_files/tensorflow-object-detection-to-openvino-with-output_38_0.png index e3868b416ee4e5..41c96a6eeb7d0e 100644 --- a/docs/notebooks/tensorflow-object-detection-to-openvino-with-output_files/tensorflow-object-detection-to-openvino-with-output_38_0.png +++ b/docs/notebooks/tensorflow-object-detection-to-openvino-with-output_files/tensorflow-object-detection-to-openvino-with-output_38_0.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:dfdccf9cf18ab90165dbca452027d6afdd51d2f355b8cdc45d7431f9e88c5782 -size 392207 +oid sha256:63da618f6999e82c3f9e461cb912450186fbb00bc247ccd311a0dfd0bbc825b3 +size 390893 diff --git a/docs/notebooks/tensorflow-quantization-aware-training-with-output.rst b/docs/notebooks/tensorflow-quantization-aware-training-with-output.rst index 8fe9423b3dcc53..4a4285ca97cc9a 100644 --- a/docs/notebooks/tensorflow-quantization-aware-training-with-output.rst +++ b/docs/notebooks/tensorflow-quantization-aware-training-with-output.rst @@ -127,10 +127,10 @@ models will be stored. .. parsed-literal:: - 2024-10-23 05:14:10.399928: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 05:14:10.434579: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-05 05:17:59.724629: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 05:17:59.759583: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 05:14:11.041876: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-05 05:18:00.367471: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT .. parsed-literal:: @@ -140,7 +140,7 @@ models will be stored. Downloading data from https://storage.openvinotoolkit.org/repositories/nncf/openvino_notebook_ckpts/305_resnet18_imagenette_fp32_v1.h5 134604992/134604992 [==============================] - 2s 0us/step Absolute path where the model weights are saved: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/tensorflow-quantization-aware-training/model/ResNet-18_fp32.h5 + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/tensorflow-quantization-aware-training/model/ResNet-18_fp32.h5 Dataset Preprocessing @@ -175,13 +175,13 @@ Download and prepare Imagenette 160px dataset. .. parsed-literal:: - 2024-10-23 05:14:16.300917: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1956] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. + 2024-11-05 05:18:05.378970: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1956] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... - 2024-10-23 05:14:16.433616: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_2' with dtype string and shape [1] - [[{{node Placeholder/_2}}]] - 2024-10-23 05:14:16.434383: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [1] - [[{{node Placeholder/_0}}]] - 2024-10-23 05:14:16.493317: W tensorflow/core/kernels/data/cache_dataset_ops.cc:856] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead. + 2024-11-05 05:18:05.496251: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_3' with dtype int64 and shape [1] + [[{{node Placeholder/_3}}]] + 2024-11-05 05:18:05.496608: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_1' with dtype string and shape [1] + [[{{node Placeholder/_1}}]] + 2024-11-05 05:18:05.549189: W tensorflow/core/kernels/data/cache_dataset_ops.cc:856] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead. @@ -325,15 +325,15 @@ model and a training pipeline. .. parsed-literal:: - 2024-10-23 05:14:17.636634: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_2' with dtype string and shape [1] - [[{{node Placeholder/_2}}]] - 2024-10-23 05:14:17.637423: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_3' with dtype int64 and shape [1] - [[{{node Placeholder/_3}}]] + 2024-11-05 05:18:06.706690: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int64 and shape [1] + [[{{node Placeholder/_4}}]] + 2024-11-05 05:18:06.707393: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [1] + [[{{node Placeholder/_0}}]] .. parsed-literal:: - 4/4 [==============================] - 1s 250ms/sample - loss: 0.9807 - acc@1: 0.8220 + 4/4 [==============================] - 1s 241ms/sample - loss: 0.9807 - acc@1: 0.8220 Accuracy of FP32 model: 0.822 @@ -379,13 +379,13 @@ scenario and requires only 3 modifications. .. parsed-literal:: - 2024-10-23 05:14:20.291889: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_2' with dtype string and shape [1] + 2024-11-05 05:18:09.325779: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_2' with dtype string and shape [1] [[{{node Placeholder/_2}}]] - 2024-10-23 05:14:20.292274: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_1' with dtype string and shape [1] - [[{{node Placeholder/_1}}]] - 2024-10-23 05:14:21.242391: W tensorflow/core/kernels/data/cache_dataset_ops.cc:856] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead. - 2024-10-23 05:14:21.895899: W tensorflow/core/kernels/data/cache_dataset_ops.cc:856] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead. - 2024-10-23 05:14:30.320766: W tensorflow/core/kernels/data/cache_dataset_ops.cc:856] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead. + 2024-11-05 05:18:09.326170: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [1] + [[{{node Placeholder/_0}}]] + 2024-11-05 05:18:10.310403: W tensorflow/core/kernels/data/cache_dataset_ops.cc:856] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead. + 2024-11-05 05:18:10.931815: W tensorflow/core/kernels/data/cache_dataset_ops.cc:856] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead. + 2024-11-05 05:18:19.063128: W tensorflow/core/kernels/data/cache_dataset_ops.cc:856] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead. Evaluate the new model on the validation set after initialization of @@ -411,7 +411,7 @@ demonstrated here. .. parsed-literal:: - 4/4 [==============================] - 1s 306ms/sample - loss: 0.9766 - acc@1: 0.8120 + 4/4 [==============================] - 1s 305ms/sample - loss: 0.9766 - acc@1: 0.8120 Fine-tune the Compressed Model @@ -446,10 +446,10 @@ training pipeline are required. Here is a simple example. Accuracy of INT8 model after initialization: 0.812 Epoch 1/2 - 101/101 [==============================] - 49s 418ms/step - loss: 0.7134 - acc@1: 0.9299 + 101/101 [==============================] - 49s 416ms/step - loss: 0.7134 - acc@1: 0.9299 Epoch 2/2 - 101/101 [==============================] - 42s 415ms/step - loss: 0.6807 - acc@1: 0.9489 - 4/4 [==============================] - 1s 144ms/sample - loss: 0.9760 - acc@1: 0.8160 + 101/101 [==============================] - 42s 414ms/step - loss: 0.6807 - acc@1: 0.9489 + 4/4 [==============================] - 1s 141ms/sample - loss: 0.9760 - acc@1: 0.8160 Accuracy of INT8 model after fine-tuning: 0.816 @@ -559,10 +559,10 @@ Please select a benchmarking device using the dropdown list: .. parsed-literal:: Benchmark FP32 model (IR) - [ INFO ] Throughput: 2786.08 FPS + [ INFO ] Throughput: 2758.24 FPS Benchmark INT8 model (IR) - [ INFO ] Throughput: 10924.61 FPS + [ INFO ] Throughput: 11317.45 FPS Show Device Information for reference. diff --git a/docs/notebooks/tflite-selfie-segmentation-with-output.rst b/docs/notebooks/tflite-selfie-segmentation-with-output.rst index 9acc434aa435f6..cc8a203e4f15a9 100644 --- a/docs/notebooks/tflite-selfie-segmentation-with-output.rst +++ b/docs/notebooks/tflite-selfie-segmentation-with-output.rst @@ -143,7 +143,7 @@ Download pretrained model and test image .. parsed-literal:: - PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/tflite-selfie-segmentation/selfie_multiclass_256x256.tflite') + PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/tflite-selfie-segmentation/selfie_multiclass_256x256.tflite') diff --git a/docs/notebooks/tflite-selfie-segmentation-with-output_files/tflite-selfie-segmentation-with-output_33_0.png b/docs/notebooks/tflite-selfie-segmentation-with-output_files/tflite-selfie-segmentation-with-output_33_0.png index d0b2b849bf51c2..882a9d712dd7b0 100644 --- a/docs/notebooks/tflite-selfie-segmentation-with-output_files/tflite-selfie-segmentation-with-output_33_0.png +++ b/docs/notebooks/tflite-selfie-segmentation-with-output_files/tflite-selfie-segmentation-with-output_33_0.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:e2963c9b4c7dacdca6b1bbe9ea3ef832a19ba962c0a9980363722083e66b7358 -size 14233 +oid sha256:2cda2d6f5f72e6e7c24898ead882b6b26b696d1d1c61ff589d08fd55d98357ef +size 14403 diff --git a/docs/notebooks/tflite-to-openvino-with-output.rst b/docs/notebooks/tflite-to-openvino-with-output.rst index dcd7a98897f334..a70e10853c0dc7 100644 --- a/docs/notebooks/tflite-to-openvino-with-output.rst +++ b/docs/notebooks/tflite-to-openvino-with-output.rst @@ -274,7 +274,7 @@ GPU. [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT. [Step 4/11] Reading model files [ INFO ] Loading model files - [ INFO ] Read model took 9.48 ms + [ INFO ] Read model took 10.03 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] images (node: images) : f32 / [...] / [1,224,224,3] @@ -288,7 +288,7 @@ GPU. [ INFO ] Model outputs: [ INFO ] Softmax (node: 61) : f32 / [...] / [1,1000] [Step 7/11] Loading the model to the device - [ INFO ] Compile model took 157.24 ms + [ INFO ] Compile model took 165.61 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: TensorFlow_Lite_Frontend_IR @@ -325,15 +325,15 @@ GPU. [ INFO ] Fill input 'images' with random values [Step 10/11] Measuring performance (Start inference asynchronously, 6 inference requests, limits: 15000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). - [ INFO ] First inference took 7.14 ms + [ INFO ] First inference took 6.93 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] - [ INFO ] Count: 17436 iterations - [ INFO ] Duration: 15008.41 ms + [ INFO ] Count: 14982 iterations + [ INFO ] Duration: 15006.90 ms [ INFO ] Latency: - [ INFO ] Median: 4.99 ms - [ INFO ] Average: 5.03 ms - [ INFO ] Min: 2.84 ms - [ INFO ] Max: 24.60 ms - [ INFO ] Throughput: 1161.75 FPS + [ INFO ] Median: 5.47 ms + [ INFO ] Average: 5.91 ms + [ INFO ] Min: 3.02 ms + [ INFO ] Max: 34.80 ms + [ INFO ] Throughput: 998.34 FPS diff --git a/docs/notebooks/typo-detector-with-output.rst b/docs/notebooks/typo-detector-with-output.rst index 5c03dc870f8a69..94431f153ae72d 100644 --- a/docs/notebooks/typo-detector-with-output.rst +++ b/docs/notebooks/typo-detector-with-output.rst @@ -108,10 +108,10 @@ Imports .. parsed-literal:: - 2024-10-23 05:18:31.129817: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 05:18:31.163652: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-05 05:23:42.228206: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 05:23:42.262729: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 05:18:31.823748: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-05 05:23:42.928779: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT Methods @@ -255,8 +255,7 @@ your model. .. parsed-literal:: [ WARNING ] Please fix your imports. Module %s has been moved to %s. The old module will be deleted in version %s. - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/nncf/torch/dynamic_graph/wrappers.py:86: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. - op1 = operator(\*args, \*\*kwargs) + `loss_type=None` was set in the config but it is unrecognised.Using the default loss: `ForCausalLMLoss`. Load the tokenizer @@ -372,7 +371,7 @@ Let’s run a demo using the Hugging Face Optimum API. [Input]: I have been stuying for my math exam all week, but I'm stil not very confidet that I will pass it, because there are so many formuals to remeber. [Detected]: I have been stuying for my math exam all week, but I'm stil not very confidet that I will pass it, because there are so many formuals to remeber. ---------------------------------------------------------------------------------------------------------------------------------- - Time elapsed: 0.14796948432922363 + Time elapsed: 0.14881014823913574 2. Converting the model to OpenVINO IR @@ -618,5 +617,5 @@ Let’s run a demo using the converted OpenVINO IR model. [Input]: I have been stuying for my math exam all week, but I'm stil not very confidet that I will pass it, because there are so many formuals to remeber. [Detected]: I have been stuying for my math exam all week, but I'm stil not very confidet that I will pass it, because there are so many formuals to remeber. ---------------------------------------------------------------------------------------------------------------------------------- - Time elapsed: 0.10040116310119629 + Time elapsed: 0.10274600982666016 diff --git a/docs/notebooks/vision-background-removal-with-output.rst b/docs/notebooks/vision-background-removal-with-output.rst index 63e02d9c787aaf..4e79038a213347 100644 --- a/docs/notebooks/vision-background-removal-with-output.rst +++ b/docs/notebooks/vision-background-removal-with-output.rst @@ -195,7 +195,7 @@ next cell loads the model and the pre-trained weights. Downloading... From: https://drive.google.com/uc?id=1W8E4FHIlTVstfRkYmNOjbr0VDXTZm0jD To: <_io.BufferedWriter name='model/u2net_lite/u2net_lite.pth'> - 100%|██████████| 4.68M/4.68M [00:00<00:00, 34.0MB/s] + 100%|██████████| 4.68M/4.68M [00:00<00:00, 33.7MB/s] .. parsed-literal:: @@ -225,7 +225,7 @@ next cell loads the model and the pre-trained weights. .. parsed-literal:: - /tmp/ipykernel_2664614/1036642300.py:7: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. + /tmp/ipykernel_586189/1036642300.py:7: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. net.load_state_dict(state_dict=torch.load(model_path, map_location="cpu")) @@ -252,7 +252,7 @@ OpenVINO IR format. Executing the following command may take a while. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/vision-background-removal/model/u2net.py:23: UserWarning: `nn.functional.upsample` is deprecated. Use `nn.functional.interpolate` instead. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/vision-background-removal/model/u2net.py:23: UserWarning: `nn.functional.upsample` is deprecated. Use `nn.functional.interpolate` instead. src = F.upsample(src,size=tar.shape[2:],mode='bilinear') @@ -341,7 +341,7 @@ Load the OpenVINO IR model to OpenVINO Runtime and do inference. .. parsed-literal:: - Inference finished. Inference time: 0.107 seconds, FPS: 9.31. + Inference finished. Inference time: 0.106 seconds, FPS: 9.42. Visualize Results diff --git a/docs/notebooks/vision-monodepth-with-output.rst b/docs/notebooks/vision-monodepth-with-output.rst index ea81314fe49df7..dfb20643e991e7 100644 --- a/docs/notebooks/vision-monodepth-with-output.rst +++ b/docs/notebooks/vision-monodepth-with-output.rst @@ -309,7 +309,7 @@ original image shape. .. parsed-literal:: - /tmp/ipykernel_2664839/2076527990.py:15: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead. + /tmp/ipykernel_586416/2076527990.py:15: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead. cmap = matplotlib.cm.get_cmap(colormap) @@ -508,7 +508,7 @@ Do Inference on a Video and Create Monodepth Video .. parsed-literal:: - Processed 60 frames in 24.30 seconds. Total FPS (including video processing): 2.47.Inference FPS: 46.34 + Processed 60 frames in 25.55 seconds. Total FPS (including video processing): 2.35.Inference FPS: 48.61 Monodepth Video saved to 'output/Coco%20Walking%20in%20Berkeley_monodepth.mp4'. @@ -535,7 +535,7 @@ Display Monodepth Video .. parsed-literal:: Showing monodepth video saved at - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/vision-monodepth/output/Coco%20Walking%20in%20Berkeley_monodepth.mp4 + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/vision-monodepth/output/Coco%20Walking%20in%20Berkeley_monodepth.mp4 If you cannot see the video in your browser, please click on the following link to download the video diff --git a/docs/notebooks/wav2lip-with-output.rst b/docs/notebooks/wav2lip-with-output.rst index 3f6b510cf00374..c70015d2614d8d 100644 --- a/docs/notebooks/wav2lip-with-output.rst +++ b/docs/notebooks/wav2lip-with-output.rst @@ -140,7 +140,7 @@ Download example files. .. parsed-literal:: - PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/wav2lip/data_video_sun_5s.mp4') + PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/wav2lip/data_video_sun_5s.mp4') @@ -177,7 +177,7 @@ and will convert both model in OpenVINO format. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/wav2lip/ov_wav2lip_helper.py:43: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/wav2lip/ov_wav2lip_helper.py:43: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. model_weights = torch.load(path_to_detector) @@ -200,7 +200,7 @@ and will convert both model in OpenVINO format. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/wav2lip/ov_wav2lip_helper.py:16: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/wav2lip/ov_wav2lip_helper.py:16: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) @@ -263,7 +263,7 @@ python API and converted OpenVINO models. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/wav2lip/Wav2Lip/audio.py:100: FutureWarning: Pass sr=16000, n_fft=800 as keyword args. From version 0.10 passing these as positional arguments will result in an error + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/wav2lip/Wav2Lip/audio.py:100: FutureWarning: Pass sr=16000, n_fft=800 as keyword args. From version 0.10 passing these as positional arguments will result in an error return librosa.filters.mel(hp.sample_rate, hp.n_fft, n_mels=hp.num_mels, @@ -286,14 +286,14 @@ python API and converted OpenVINO models. 0%| | 0/8 [00:00 #0:0 (mpeg4 (native) -> h264 (libx264)) Stream #0:0 -> #0:1 (pcm_s16le (native) -> aac (native)) Press [q] to stop, [?] for help - [libx264 @ 0x56537dc66840] -qscale is ignored, -crf is recommended. - [libx264 @ 0x56537dc66840] using SAR=1/1 - [libx264 @ 0x56537dc66840] using cpu capabilities: MMX2 SSE2Fast SSSE3 SSE4.2 AVX FMA3 BMI2 AVX2 AVX512 - [libx264 @ 0x56537dc66840] profile High, level 3.1 - [libx264 @ 0x56537dc66840] 264 - core 155 r2917 0a84d98 - H.264/MPEG-4 AVC codec - Copyleft 2003-2018 - http://www.videolan.org/x264.html - options: cabac=1 ref=3 deblock=1:0:0 analyse=0x3:0x113 me=hex subme=7 psy=1 psy_rd=1.00:0.00 mixed_ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=-2 threads=24 lookahead_threads=4 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=2 b_adapt=1 b_bias=0 direct=1 weightb=1 open_gop=0 weightp=2 keyint=250 keyint_min=25 scenecut=40 intra_refresh=0 rc_lookahead=40 rc=crf mbtree=1 crf=23.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=1:1.00 + [libx264 @ 0x55edc3fbd840] -qscale is ignored, -crf is recommended. + [libx264 @ 0x55edc3fbd840] using SAR=1/1 + [libx264 @ 0x55edc3fbd840] using cpu capabilities: MMX2 SSE2Fast SSSE3 SSE4.2 AVX FMA3 BMI2 AVX2 AVX512 + [libx264 @ 0x55edc3fbd840] profile High, level 3.1 + [libx264 @ 0x55edc3fbd840] 264 - core 155 r2917 0a84d98 - H.264/MPEG-4 AVC codec - Copyleft 2003-2018 - http://www.videolan.org/x264.html - options: cabac=1 ref=3 deblock=1:0:0 analyse=0x3:0x113 me=hex subme=7 psy=1 psy_rd=1.00:0.00 mixed_ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=-2 threads=24 lookahead_threads=4 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=2 b_adapt=1 b_bias=0 direct=1 weightb=1 open_gop=0 weightp=2 keyint=250 keyint_min=25 scenecut=40 intra_refresh=0 rc_lookahead=40 rc=crf mbtree=1 crf=23.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=1:1.00 Output #0, mp4, to 'results/result_voice.mp4': Metadata: encoder : Lavf58.29.100 @@ -349,25 +349,25 @@ python API and converted OpenVINO models. encoder : Lavc58.54.100 aac frame= 123 fps=0.0 q=-1.0 Lsize= 621kB time=00:00:05.06 bitrate=1005.8kbits/s speed=10.8x video:573kB audio:43kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.827166% - [libx264 @ 0x56537dc66840] frame I:1 Avg QP:22.24 size: 31028 - [libx264 @ 0x56537dc66840] frame P:75 Avg QP:22.01 size: 6954 - [libx264 @ 0x56537dc66840] frame B:47 Avg QP:25.58 size: 718 - [libx264 @ 0x56537dc66840] consecutive B-frames: 38.2% 27.6% 14.6% 19.5% - [libx264 @ 0x56537dc66840] mb I I16..4: 14.0% 83.9% 2.1% - [libx264 @ 0x56537dc66840] mb P I16..4: 1.3% 3.3% 0.1% P16..4: 37.8% 8.2% 6.4% 0.0% 0.0% skip:43.0% - [libx264 @ 0x56537dc66840] mb B I16..4: 0.2% 0.7% 0.0% B16..8: 27.9% 0.4% 0.1% direct: 0.2% skip:70.6% L0:43.9% L1:54.2% BI: 1.9% - [libx264 @ 0x56537dc66840] 8x8 transform intra:73.3% inter:77.1% - [libx264 @ 0x56537dc66840] coded y,uvDC,uvAC intra: 56.9% 72.4% 8.1% inter: 11.4% 13.0% 0.2% - [libx264 @ 0x56537dc66840] i16 v,h,dc,p: 20% 23% 9% 48% - [libx264 @ 0x56537dc66840] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 25% 23% 36% 3% 3% 2% 2% 3% 3% - [libx264 @ 0x56537dc66840] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 39% 14% 14% 4% 6% 7% 4% 9% 3% - [libx264 @ 0x56537dc66840] i8c dc,h,v,p: 42% 25% 29% 4% - [libx264 @ 0x56537dc66840] Weighted P-Frames: Y:0.0% UV:0.0% - [libx264 @ 0x56537dc66840] ref P L0: 74.2% 10.4% 11.1% 4.3% - [libx264 @ 0x56537dc66840] ref B L0: 86.1% 11.2% 2.8% - [libx264 @ 0x56537dc66840] ref B L1: 98.3% 1.7% - [libx264 @ 0x56537dc66840] kb/s:953.36 - [aac @ 0x56537dc68140] Qavg: 121.673 + [libx264 @ 0x55edc3fbd840] frame I:1 Avg QP:22.24 size: 31028 + [libx264 @ 0x55edc3fbd840] frame P:75 Avg QP:22.01 size: 6954 + [libx264 @ 0x55edc3fbd840] frame B:47 Avg QP:25.58 size: 718 + [libx264 @ 0x55edc3fbd840] consecutive B-frames: 38.2% 27.6% 14.6% 19.5% + [libx264 @ 0x55edc3fbd840] mb I I16..4: 14.0% 83.9% 2.1% + [libx264 @ 0x55edc3fbd840] mb P I16..4: 1.3% 3.3% 0.1% P16..4: 37.8% 8.2% 6.4% 0.0% 0.0% skip:43.0% + [libx264 @ 0x55edc3fbd840] mb B I16..4: 0.2% 0.7% 0.0% B16..8: 27.9% 0.4% 0.1% direct: 0.2% skip:70.6% L0:43.9% L1:54.2% BI: 1.9% + [libx264 @ 0x55edc3fbd840] 8x8 transform intra:73.3% inter:77.1% + [libx264 @ 0x55edc3fbd840] coded y,uvDC,uvAC intra: 56.9% 72.4% 8.1% inter: 11.4% 13.0% 0.2% + [libx264 @ 0x55edc3fbd840] i16 v,h,dc,p: 20% 23% 9% 48% + [libx264 @ 0x55edc3fbd840] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 25% 23% 36% 3% 3% 2% 2% 3% 3% + [libx264 @ 0x55edc3fbd840] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 39% 14% 14% 4% 6% 7% 4% 9% 3% + [libx264 @ 0x55edc3fbd840] i8c dc,h,v,p: 42% 25% 29% 4% + [libx264 @ 0x55edc3fbd840] Weighted P-Frames: Y:0.0% UV:0.0% + [libx264 @ 0x55edc3fbd840] ref P L0: 74.2% 10.4% 11.1% 4.3% + [libx264 @ 0x55edc3fbd840] ref B L0: 86.1% 11.2% 2.8% + [libx264 @ 0x55edc3fbd840] ref B L1: 98.3% 1.7% + [libx264 @ 0x55edc3fbd840] kb/s:953.36 + [aac @ 0x55edc3fbf140] Qavg: 121.673 diff --git a/docs/notebooks/whisper-asr-genai-with-output.rst b/docs/notebooks/whisper-asr-genai-with-output.rst index 45cc8291b8acc2..3f4339e01b3acc 100644 --- a/docs/notebooks/whisper-asr-genai-with-output.rst +++ b/docs/notebooks/whisper-asr-genai-with-output.rst @@ -75,8 +75,8 @@ Prerequisites .. code:: ipython3 - %pip install -q "transformers>=4.35" "torch>=2.3" "torchvision>=0.18.1" "onnx>=1.16.1" --extra-index-url https://download.pytorch.org/whl/cpu - %pip install -q "git+https://github.com/huggingface/optimum-intel.git" + %pip install -q "torch>=2.3" "torchvision>=0.18.1" --extra-index-url https://download.pytorch.org/whl/cpu + %pip install -q "transformers>=4.45" "git+https://github.com/huggingface/optimum-intel.git" --extra-index-url https://download.pytorch.org/whl/cpu %pip install -q --pre -U "openvino" "openvino-tokenizers" "openvino-genai" --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly %pip install -q datasets "gradio>=4.0" "soundfile>=0.12" "librosa" "python-ffmpeg<=1.0.16" %pip install -q "nncf>=2.13.0" "jiwer" @@ -91,6 +91,12 @@ Prerequisites url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py", ) open("notebook_utils.py", "w").write(r.text) + + if not Path("cmd_helper.py").exists(): + r = requests.get( + url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/cmd_helper.py", + ) + open("cmd_helper.py", "w").write(r.text) Load PyTorch model ------------------ @@ -266,7 +272,7 @@ Let’s check how to work the ``transcribe`` task. .. parsed-literal:: - /home/labuser/work/notebook/genai_whisper/lib/python3.10/site-packages/transformers/models/whisper/generation_whisper.py:496: FutureWarning: The input name `inputs` is deprecated. Please make sure to use `input_features` instead. + /home/labuser/work/notebook/whisper_new/lib/python3.10/site-packages/transformers/models/whisper/generation_whisper.py:496: FutureWarning: The input name `inputs` is deprecated. Please make sure to use `input_features` instead. warnings.warn( @@ -349,8 +355,8 @@ be found in the `paper `__. Result: The blog is our tool that is prefilled to encourage collaboration and develop the learning of the students and to attract a normal school class. -Download and convert model to OpenVINO IR via Optimum Intel CLI ---------------------------------------------------------------- +Convert model to OpenVINO IR via Optimum Intel CLI +-------------------------------------------------- @@ -381,20 +387,13 @@ documentation `__. import logging import nncf - import os - from IPython.display import display, Markdown + from cmd_helper import optimum_cli nncf.set_log_level(logging.ERROR) model_path = Path(model_id.value.split("/")[1]) - export_command = f"optimum-cli export openvino --model {model_id.value} --library transformers --task automatic-speech-recognition-with-past --framework pt {str(model_path)}" - - display(Markdown("**Export command:**")) - display(Markdown(f"`{export_command}`")) - - exit_code = os.system(export_command) - if exit_code != 0: - raise Exception("Failed to load and convert model!") + optimum_cli(model_id.value, model_path) + print(f"✅ {model_id.value} model converted and can be found in {model_path}") Run inference OpenVINO model with WhisperPipeline ------------------------------------------------- @@ -604,9 +603,9 @@ Compare performance PyTorch vs OpenVINO .. parsed-literal:: - Mean torch openai/whisper-tiny generation time: 0.624s - Mean openvino openai/whisper-tiny generation time: 0.344s - Performance openai/whisper-tiny openvino speedup: 1.814 + Mean torch openai/whisper-tiny generation time: 0.564s + Mean openvino openai/whisper-tiny generation time: 0.311s + Performance openai/whisper-tiny openvino speedup: 1.815 Quantization @@ -934,7 +933,7 @@ for Word Error Rate. .. parsed-literal:: - Whole pipeline performance speedup: 1.499 + Whole pipeline performance speedup: 1.350 Whisper transcription word accuracy. Original model: 82.88%. Quantized model: 84.13%. Accuracy drop: -1.25%. @@ -960,7 +959,7 @@ upload button) or record using your microphone. pipe = ov_quantized_pipe if to_quantize.value else ov_pipe - gr_pipeline = GradioPipeline(pipe, multilingual=(not model_id.value.endswith(".en")), quantized=to_quantize.value) + gr_pipeline = GradioPipeline(pipe, model_id.value, quantized=to_quantize.value) demo = make_demo(gr_pipeline) diff --git a/docs/notebooks/whisper-subtitles-generation-with-output.rst b/docs/notebooks/whisper-subtitles-generation-with-output.rst index 8bfbfa8a6e86a3..b1e16ffa40c626 100644 --- a/docs/notebooks/whisper-subtitles-generation-with-output.rst +++ b/docs/notebooks/whisper-subtitles-generation-with-output.rst @@ -80,7 +80,7 @@ Install dependencies. %pip install -q "nncf>=2.13.0" %pip install -q --pre -U "openvino" "openvino-tokenizers" "openvino-genai" --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly - %pip install -q "python-ffmpeg<=1.0.16" "ffmpeg" "moviepy" "onnx!=1.16.2" "git+https://github.com/huggingface/optimum-intel.git" "torch>=2.1" --extra-index-url https://download.pytorch.org/whl/cpu + %pip install -q "python-ffmpeg<=1.0.16" "ffmpeg" "moviepy" "transformers>=4.45" "git+https://github.com/huggingface/optimum-intel.git" "torch>=2.1" --extra-index-url https://download.pytorch.org/whl/cpu %pip install -q -U "yt_dlp>=2024.8.6" soundfile librosa jiwer %pip install -q "gradio>=4.19" @@ -94,6 +94,12 @@ Install dependencies. url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py", ) open("notebook_utils.py", "w").write(r.text) + + if not Path("cmd_helper.py").exists(): + r = requests.get( + url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/cmd_helper.py", + ) + open("cmd_helper.py", "w").write(r.text) Instantiate model ----------------- @@ -184,10 +190,12 @@ documentation `__. .. code:: ipython3 + from cmd_helper import optimum_cli + model_dir = model_id.value.split("/")[-1] if not Path(model_dir).exists(): - !optimum-cli export openvino -m {model_id.value} {model_dir} --weight-format fp16 + optimum_cli(model_id.value, model_dir) Prepare inference pipeline -------------------------- @@ -218,13 +226,6 @@ select device from dropdown list for running inference using OpenVINO .. code:: ipython3 - import requests - - r = requests.get( - url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py", - ) - open("notebook_utils.py", "w").write(r.text) - from notebook_utils import device_widget device = device_widget(default="CPU", exclude=["NPU"]) diff --git a/docs/notebooks/wuerstchen-image-generation-with-output.rst b/docs/notebooks/wuerstchen-image-generation-with-output.rst index 342ddbafdc7edb..237bfb8b4bd943 100644 --- a/docs/notebooks/wuerstchen-image-generation-with-output.rst +++ b/docs/notebooks/wuerstchen-image-generation-with-output.rst @@ -229,7 +229,8 @@ parameter to generate a less memory-demanding model. Text encoder model has 2 inputs: -- ``input_ids``: vector of tokenized input sentence. Default tokenizer vector length is 77. +- ``input_ids``: vector of tokenized + input sentence. Default tokenizer vector length is 77. - ``attention_mask``: vector of same length as ``input_ids`` describing the attention mask. @@ -285,6 +286,7 @@ Decoder pipeline Decoder pipeline consists of 3 parts: decoder, text encoder and VQGAN. Decoder model is the WuerstchenDiffNeXt UNet decoder. Inputs are: + - ``x``: sample - ``r``: timestep - ``effnet``: interpolation block diff --git a/docs/notebooks/yolov11-instance-segmentation-with-output.rst b/docs/notebooks/yolov11-instance-segmentation-with-output.rst index 9d9b5e6bd15c0e..9cbca9fe4f1c37 100644 --- a/docs/notebooks/yolov11-instance-segmentation-with-output.rst +++ b/docs/notebooks/yolov11-instance-segmentation-with-output.rst @@ -143,7 +143,7 @@ Import required utility functions. The lower cell will download the .. parsed-literal:: - PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/coco_bike.jpg') + PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/coco_bike.jpg') @@ -216,14 +216,14 @@ Let us consider the examples: .. parsed-literal:: - 100%|██████████| 5.90M/5.90M [00:00<00:00, 25.1MB/s] + 100%|██████████| 5.90M/5.90M [00:00<00:00, 25.2MB/s] .. parsed-literal:: - image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/coco_bike.jpg: 480x640 3 bicycles, 2 cars, 1 motorcycle, 1 dog, 66.4ms - Speed: 1.8ms preprocess, 66.4ms inference, 2.8ms postprocess per image at shape (1, 3, 480, 640) + image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/coco_bike.jpg: 480x640 3 bicycles, 2 cars, 1 motorcycle, 1 dog, 69.6ms + Speed: 2.0ms preprocess, 69.6ms inference, 4.8ms postprocess per image at shape (1, 3, 480, 640) @@ -260,7 +260,7 @@ preserve dynamic shapes in the model. OpenVINO: export success ✅ 2.0s, saved as 'yolo11n-seg_openvino_model/' (6.0 MB) Export complete (2.2s) - Results saved to /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization + Results saved to /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization Predict: yolo predict task=segment model=yolo11n-seg_openvino_model imgsz=640 half Validate: yolo val task=segment model=yolo11n-seg_openvino_model imgsz=640 data=/ultralytics/ultralytics/cfg/datasets/coco.yaml half Visualize: https://netron.app @@ -345,8 +345,8 @@ Test on single image .. parsed-literal:: - image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/coco_bike.jpg: 640x640 3 bicycles, 2 cars, 1 dog, 23.2ms - Speed: 3.6ms preprocess, 23.2ms inference, 3.8ms postprocess per image at shape (1, 3, 640, 640) + image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/coco_bike.jpg: 640x640 3 bicycles, 2 cars, 1 dog, 23.2ms + Speed: 1.8ms preprocess, 23.2ms inference, 3.8ms postprocess per image at shape (1, 3, 640, 640) @@ -668,8 +668,8 @@ on the image. .. parsed-literal:: - image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/coco_bike.jpg: 640x640 2 bicycles, 2 cars, 1 dog, 17.7ms - Speed: 2.1ms preprocess, 17.7ms inference, 3.8ms postprocess per image at shape (1, 3, 640, 640) + image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/coco_bike.jpg: 640x640 2 bicycles, 2 cars, 1 dog, 11.2ms + Speed: 1.9ms preprocess, 11.2ms inference, 3.4ms postprocess per image at shape (1, 3, 640, 640) @@ -728,7 +728,7 @@ models. [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT. [Step 4/11] Reading model files [ INFO ] Loading model files - [ INFO ] Read model took 20.05 ms + [ INFO ] Read model took 19.61 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] x (node: x) : f32 / [...] / [?,3,?,?] @@ -738,7 +738,7 @@ models. [Step 5/11] Resizing model to match image sizes and given batch [ INFO ] Model batch size: 1 [ INFO ] Reshaping model: 'x': [1,3,640,640] - [ INFO ] Reshape model took 8.82 ms + [ INFO ] Reshape model took 8.69 ms [Step 6/11] Configuring input of the model [ INFO ] Model inputs: [ INFO ] x (node: x) : u8 / [N,C,H,W] / [1,3,640,640] @@ -746,7 +746,7 @@ models. [ INFO ] ***NO_NAME*** (node: __module.model.23/aten::cat/Concat_8) : f32 / [...] / [1,116,8400] [ INFO ] input.255 (node: __module.model.23.cv4.2.1.act/aten::silu_/Swish_46) : f32 / [...] / [1,32,160,160] [Step 7/11] Loading the model to the device - [ INFO ] Compile model took 387.38 ms + [ INFO ] Compile model took 390.55 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: Model0 @@ -783,17 +783,17 @@ models. [ INFO ] Fill input 'x' with random values [Step 10/11] Measuring performance (Start inference asynchronously, 6 inference requests, limits: 15000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). - [ INFO ] First inference took 36.42 ms + [ INFO ] First inference took 36.99 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] - [ INFO ] Count: 1788 iterations - [ INFO ] Duration: 15050.22 ms + [ INFO ] Count: 1806 iterations + [ INFO ] Duration: 15074.73 ms [ INFO ] Latency: - [ INFO ] Median: 49.80 ms - [ INFO ] Average: 50.35 ms - [ INFO ] Min: 33.27 ms - [ INFO ] Max: 104.15 ms - [ INFO ] Throughput: 118.80 FPS + [ INFO ] Median: 49.77 ms + [ INFO ] Average: 49.90 ms + [ INFO ] Min: 24.69 ms + [ INFO ] Max: 66.18 ms + [ INFO ] Throughput: 119.80 FPS .. code:: ipython3 @@ -819,7 +819,7 @@ models. [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT. [Step 4/11] Reading model files [ INFO ] Loading model files - [ INFO ] Read model took 29.13 ms + [ INFO ] Read model took 29.59 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] x (node: x) : f32 / [...] / [1,3,640,640] @@ -837,7 +837,7 @@ models. [ INFO ] ***NO_NAME*** (node: __module.model.23/aten::cat/Concat_8) : f32 / [...] / [1,116,8400] [ INFO ] input.255 (node: __module.model.23.cv4.2.1.act/aten::silu_/Swish_46) : f32 / [...] / [1,32,160,160] [Step 7/11] Loading the model to the device - [ INFO ] Compile model took 594.13 ms + [ INFO ] Compile model took 592.55 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: Model0 @@ -874,17 +874,17 @@ models. [ INFO ] Fill input 'x' with random values [Step 10/11] Measuring performance (Start inference asynchronously, 6 inference requests, limits: 15000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). - [ INFO ] First inference took 27.63 ms + [ INFO ] First inference took 24.82 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] - [ INFO ] Count: 3714 iterations - [ INFO ] Duration: 15026.92 ms + [ INFO ] Count: 3702 iterations + [ INFO ] Duration: 15040.97 ms [ INFO ] Latency: - [ INFO ] Median: 23.95 ms - [ INFO ] Average: 24.14 ms - [ INFO ] Min: 17.70 ms - [ INFO ] Max: 39.05 ms - [ INFO ] Throughput: 247.16 FPS + [ INFO ] Median: 24.15 ms + [ INFO ] Average: 24.25 ms + [ INFO ] Min: 20.10 ms + [ INFO ] Max: 43.05 ms + [ INFO ] Throughput: 246.13 FPS Other ways to optimize model diff --git a/docs/notebooks/yolov11-instance-segmentation-with-output_files/yolov11-instance-segmentation-with-output_46_0.png b/docs/notebooks/yolov11-instance-segmentation-with-output_files/yolov11-instance-segmentation-with-output_46_0.png index 011e13859e8a3e..737d0af981d026 100644 --- a/docs/notebooks/yolov11-instance-segmentation-with-output_files/yolov11-instance-segmentation-with-output_46_0.png +++ b/docs/notebooks/yolov11-instance-segmentation-with-output_files/yolov11-instance-segmentation-with-output_46_0.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:e393b8edd8a20af1aaab6b69932bf0e715bf4f9c35814dd766dfa74ae27f2ae4 -size 493271 +oid sha256:f7d6739facd4204cf94a8bb5d471ea56a2ce3eab4dcd1e3807ba40c8e43baa44 +size 502582 diff --git a/docs/notebooks/yolov11-keypoint-detection-with-output.rst b/docs/notebooks/yolov11-keypoint-detection-with-output.rst index 97c549e6751dd0..cf94af9ab1e794 100644 --- a/docs/notebooks/yolov11-keypoint-detection-with-output.rst +++ b/docs/notebooks/yolov11-keypoint-detection-with-output.rst @@ -143,7 +143,7 @@ Import required utility functions. The lower cell will download the .. parsed-literal:: - PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/intel_rnb.jpg') + PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/intel_rnb.jpg') @@ -214,14 +214,14 @@ Let us consider the examples: .. parsed-literal:: - 100%|██████████| 5.97M/5.97M [00:00<00:00, 25.3MB/s] + 100%|██████████| 5.97M/5.97M [00:00<00:00, 21.1MB/s] .. parsed-literal:: - image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/intel_rnb.jpg: 480x640 1 person, 59.6ms - Speed: 2.1ms preprocess, 59.6ms inference, 0.9ms postprocess per image at shape (1, 3, 480, 640) + image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/intel_rnb.jpg: 480x640 1 person, 62.6ms + Speed: 1.8ms preprocess, 62.6ms inference, 0.9ms postprocess per image at shape (1, 3, 480, 640) @@ -258,7 +258,7 @@ preserve dynamic shapes in the model. OpenVINO: export success ✅ 2.0s, saved as 'yolo11n-pose_openvino_model/' (6.0 MB) Export complete (2.1s) - Results saved to /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization + Results saved to /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization Predict: yolo predict task=pose model=yolo11n-pose_openvino_model imgsz=640 half Validate: yolo val task=pose model=yolo11n-pose_openvino_model imgsz=640 data=/ultralytics/ultralytics/cfg/datasets/coco-pose.yaml half Visualize: https://netron.app @@ -338,8 +338,8 @@ ready to check model prediction. Loading yolo11n-pose_openvino_model for OpenVINO inference... Using OpenVINO LATENCY mode for batch=1 inference... - image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/intel_rnb.jpg: 640x640 1 person, 19.9ms - Speed: 2.3ms preprocess, 19.9ms inference, 0.9ms postprocess per image at shape (1, 3, 640, 640) + image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/intel_rnb.jpg: 640x640 1 person, 20.1ms + Speed: 2.8ms preprocess, 20.1ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 640) @@ -686,8 +686,8 @@ on the image. Loading yolo11n-pose_openvino_model for OpenVINO inference... Using OpenVINO LATENCY mode for batch=1 inference... - image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/intel_rnb.jpg: 640x640 1 person, 28.0ms - Speed: 2.0ms preprocess, 28.0ms inference, 1.1ms postprocess per image at shape (1, 3, 640, 640) + image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/intel_rnb.jpg: 640x640 1 person, 31.4ms + Speed: 2.1ms preprocess, 31.4ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 640) @@ -748,7 +748,7 @@ models. [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT. [Step 4/11] Reading model files [ INFO ] Loading model files - [ INFO ] Read model took 19.55 ms + [ INFO ] Read model took 19.20 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] x (node: x) : f32 / [...] / [?,3,?,?] @@ -764,7 +764,7 @@ models. [ INFO ] Model outputs: [ INFO ] ***NO_NAME*** (node: __module.model.23/aten::cat/Concat_9) : f32 / [...] / [1,56,8400] [Step 7/11] Loading the model to the device - [ INFO ] Compile model took 329.35 ms + [ INFO ] Compile model took 338.50 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: Model0 @@ -801,17 +801,17 @@ models. [ INFO ] Fill input 'x' with random values [Step 10/11] Measuring performance (Start inference asynchronously, 6 inference requests, limits: 120000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). - [ INFO ] First inference took 33.67 ms + [ INFO ] First inference took 33.80 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] - [ INFO ] Count: 17280 iterations - [ INFO ] Duration: 120049.75 ms + [ INFO ] Count: 17082 iterations + [ INFO ] Duration: 120040.01 ms [ INFO ] Latency: - [ INFO ] Median: 40.74 ms - [ INFO ] Average: 41.55 ms - [ INFO ] Min: 24.20 ms - [ INFO ] Max: 98.48 ms - [ INFO ] Throughput: 143.94 FPS + [ INFO ] Median: 40.53 ms + [ INFO ] Average: 42.03 ms + [ INFO ] Min: 30.12 ms + [ INFO ] Max: 171.39 ms + [ INFO ] Throughput: 142.30 FPS .. code:: ipython3 @@ -838,7 +838,7 @@ models. [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT. [Step 4/11] Reading model files [ INFO ] Loading model files - [ INFO ] Read model took 28.39 ms + [ INFO ] Read model took 28.43 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] x (node: x) : f32 / [...] / [1,3,640,640] @@ -854,7 +854,7 @@ models. [ INFO ] Model outputs: [ INFO ] ***NO_NAME*** (node: __module.model.23/aten::cat/Concat_9) : f32 / [...] / [1,56,8400] [Step 7/11] Loading the model to the device - [ INFO ] Compile model took 556.59 ms + [ INFO ] Compile model took 573.24 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: Model0 @@ -891,17 +891,17 @@ models. [ INFO ] Fill input 'x' with random values [Step 10/11] Measuring performance (Start inference asynchronously, 12 inference requests, limits: 15000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). - [ INFO ] First inference took 30.44 ms + [ INFO ] First inference took 25.90 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] - [ INFO ] Count: 5160 iterations - [ INFO ] Duration: 15031.11 ms + [ INFO ] Count: 5124 iterations + [ INFO ] Duration: 15036.37 ms [ INFO ] Latency: - [ INFO ] Median: 34.62 ms - [ INFO ] Average: 34.76 ms - [ INFO ] Min: 25.46 ms - [ INFO ] Max: 51.89 ms - [ INFO ] Throughput: 343.29 FPS + [ INFO ] Median: 34.72 ms + [ INFO ] Average: 35.02 ms + [ INFO ] Min: 25.74 ms + [ INFO ] Max: 52.00 ms + [ INFO ] Throughput: 340.77 FPS Compare accuracy of the Original and Quantized Models diff --git a/docs/notebooks/yolov11-keypoint-detection-with-output_files/yolov11-keypoint-detection-with-output_43_0.png b/docs/notebooks/yolov11-keypoint-detection-with-output_files/yolov11-keypoint-detection-with-output_43_0.png index f4e1de3947dc95..24dd29e6b7751f 100644 --- a/docs/notebooks/yolov11-keypoint-detection-with-output_files/yolov11-keypoint-detection-with-output_43_0.png +++ b/docs/notebooks/yolov11-keypoint-detection-with-output_files/yolov11-keypoint-detection-with-output_43_0.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:44dd0441baec6d73d3cc7552c26d2878c806514edacb3da332031733686c654b -size 507432 +oid sha256:498642bae277603810b461dcd81b4e67eb3cce1e0f1099f346b8d832dde4720f +size 504317 diff --git a/docs/notebooks/yolov11-object-detection-with-output.rst b/docs/notebooks/yolov11-object-detection-with-output.rst index d987f4148e7265..b446d6d3c1d41e 100644 --- a/docs/notebooks/yolov11-object-detection-with-output.rst +++ b/docs/notebooks/yolov11-object-detection-with-output.rst @@ -141,7 +141,7 @@ Import required utility functions. The lower cell will download the .. parsed-literal:: - PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/coco_bike.jpg') + PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/coco_bike.jpg') @@ -207,14 +207,14 @@ Let us consider the examples: .. parsed-literal:: - 100%|██████████| 5.35M/5.35M [00:00<00:00, 23.2MB/s] + 100%|██████████| 5.35M/5.35M [00:00<00:00, 24.0MB/s] .. parsed-literal:: - image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/coco_bike.jpg: 480x640 2 bicycles, 2 cars, 2 dogs, 78.0ms - Speed: 2.3ms preprocess, 78.0ms inference, 0.9ms postprocess per image at shape (1, 3, 480, 640) + image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/coco_bike.jpg: 480x640 2 bicycles, 2 cars, 2 dogs, 80.3ms + Speed: 2.2ms preprocess, 80.3ms inference, 1.0ms postprocess per image at shape (1, 3, 480, 640) @@ -250,8 +250,8 @@ preserve dynamic shapes in the model. OpenVINO: starting export with openvino 2024.5.0-16993-9c432a3641a... OpenVINO: export success ✅ 1.8s, saved as 'yolo11n_openvino_model/' (5.4 MB) - Export complete (1.9s) - Results saved to /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization + Export complete (2.0s) + Results saved to /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization Predict: yolo predict task=detect model=yolo11n_openvino_model imgsz=640 half Validate: yolo val task=detect model=yolo11n_openvino_model imgsz=640 data=/usr/src/ultralytics/ultralytics/cfg/datasets/coco.yaml half Visualize: https://netron.app @@ -330,8 +330,8 @@ ready to check model prediction for object detection. Loading yolo11n_openvino_model for OpenVINO inference... Using OpenVINO LATENCY mode for batch=1 inference... - image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/coco_bike.jpg: 640x640 1 bicycle, 2 cars, 1 dog, 18.7ms - Speed: 2.0ms preprocess, 18.7ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 640) + image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/coco_bike.jpg: 640x640 1 bicycle, 2 cars, 1 dog, 19.9ms + Speed: 1.8ms preprocess, 19.9ms inference, 0.9ms postprocess per image at shape (1, 3, 640, 640) @@ -645,8 +645,8 @@ on the image. .. parsed-literal:: - image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/coco_bike.jpg: 640x640 1 bicycle, 2 cars, 1 dog, 19.7ms - Speed: 1.8ms preprocess, 19.7ms inference, 0.9ms postprocess per image at shape (1, 3, 640, 640) + image 1/1 /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/yolov11-optimization/data/coco_bike.jpg: 640x640 1 bicycle, 2 cars, 1 dog, 18.1ms + Speed: 1.8ms preprocess, 18.1ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 640) @@ -708,7 +708,7 @@ models. [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT. [Step 4/11] Reading model files [ INFO ] Loading model files - [ INFO ] Read model took 18.73 ms + [ INFO ] Read model took 18.52 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] x (node: x) : f32 / [...] / [?,3,?,?] @@ -724,7 +724,7 @@ models. [ INFO ] Model outputs: [ INFO ] ***NO_NAME*** (node: __module.model.23/aten::cat/Concat_7) : f32 / [...] / [1,84,8400] [Step 7/11] Loading the model to the device - [ INFO ] Compile model took 316.96 ms + [ INFO ] Compile model took 317.51 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: Model0 @@ -761,17 +761,17 @@ models. [ INFO ] Fill input 'x' with random values [Step 10/11] Measuring performance (Start inference asynchronously, 6 inference requests, limits: 120000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). - [ INFO ] First inference took 30.27 ms + [ INFO ] First inference took 30.05 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] - [ INFO ] Count: 18480 iterations - [ INFO ] Duration: 120044.94 ms + [ INFO ] Count: 18396 iterations + [ INFO ] Duration: 120062.14 ms [ INFO ] Latency: - [ INFO ] Median: 38.09 ms - [ INFO ] Average: 38.84 ms - [ INFO ] Min: 20.45 ms - [ INFO ] Max: 97.13 ms - [ INFO ] Throughput: 153.94 FPS + [ INFO ] Median: 38.20 ms + [ INFO ] Average: 39.02 ms + [ INFO ] Min: 22.85 ms + [ INFO ] Max: 99.30 ms + [ INFO ] Throughput: 153.22 FPS .. code:: ipython3 @@ -798,7 +798,7 @@ models. [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT. [Step 4/11] Reading model files [ INFO ] Loading model files - [ INFO ] Read model took 26.48 ms + [ INFO ] Read model took 26.57 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] x (node: x) : f32 / [...] / [1,3,640,640] @@ -814,7 +814,7 @@ models. [ INFO ] Model outputs: [ INFO ] ***NO_NAME*** (node: __module.model.23/aten::cat/Concat_7) : f32 / [...] / [1,84,8400] [Step 7/11] Loading the model to the device - [ INFO ] Compile model took 556.87 ms + [ INFO ] Compile model took 533.02 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: Model0 @@ -851,17 +851,17 @@ models. [ INFO ] Fill input 'x' with random values [Step 10/11] Measuring performance (Start inference asynchronously, 12 inference requests, limits: 15000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). - [ INFO ] First inference took 31.34 ms + [ INFO ] First inference took 29.56 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] - [ INFO ] Count: 5208 iterations - [ INFO ] Duration: 15031.88 ms + [ INFO ] Count: 5148 iterations + [ INFO ] Duration: 15046.93 ms [ INFO ] Latency: - [ INFO ] Median: 34.21 ms - [ INFO ] Average: 34.44 ms - [ INFO ] Min: 18.94 ms - [ INFO ] Max: 52.48 ms - [ INFO ] Throughput: 346.46 FPS + [ INFO ] Median: 34.51 ms + [ INFO ] Average: 34.87 ms + [ INFO ] Min: 24.28 ms + [ INFO ] Max: 69.01 ms + [ INFO ] Throughput: 342.13 FPS Next steps diff --git a/docs/notebooks/yolov11-object-detection-with-output_files/yolov11-object-detection-with-output_43_0.png b/docs/notebooks/yolov11-object-detection-with-output_files/yolov11-object-detection-with-output_43_0.png index 02e6e38bb12a7b..d5c2464840ad65 100644 --- a/docs/notebooks/yolov11-object-detection-with-output_files/yolov11-object-detection-with-output_43_0.png +++ b/docs/notebooks/yolov11-object-detection-with-output_files/yolov11-object-detection-with-output_43_0.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:0904f4ceeae66d4c516656b23389b16d93bc601214a4c9b8d1ee30f7b5366526 -size 572206 +oid sha256:4e54004e6e28473d61aacba64acb407291de3581ae9a0b792a3d8f96bd394f08 +size 572509 diff --git a/docs/notebooks/yolov8-object-detection-with-output.rst b/docs/notebooks/yolov8-object-detection-with-output.rst index 6b7dacd839a587..16648e4559f618 100644 --- a/docs/notebooks/yolov8-object-detection-with-output.rst +++ b/docs/notebooks/yolov8-object-detection-with-output.rst @@ -121,7 +121,7 @@ Install necessary packages. .. code:: ipython3 %pip install -q "openvino>=2024.0.0" "nncf>=2.9.0" - %pip install -q "torch>=2.1" "torchvision>=0.16" "ultralytics==8.3.0" onnx tqdm opencv-python --extra-index-url https://download.pytorch.org/whl/cpu + %pip install -q "torch>=2.1" "torchvision>=0.16" "ultralytics==8.2.24" onnx tqdm opencv-python --extra-index-url https://download.pytorch.org/whl/cpu Import required utility functions. The lower cell will download the ``notebook_utils`` Python module from GitHub. @@ -161,7 +161,7 @@ Import required utility functions. The lower cell will download the .. parsed-literal:: - PosixPath('/home/ea/work/openvino_notebooks_new_clone/openvino_notebooks/notebooks/yolov8-optimization/data/coco_bike.jpg') + PosixPath('/home/akash/intel/openvino_notebooks/notebooks/yolov8-optimization/data/coco_bike.jpg') @@ -194,10 +194,9 @@ Let us consider the examples: from PIL import Image from ultralytics import YOLO - DET_MODEL_NAME = "yolo11n" + DET_MODEL_NAME = "yolov8n" - det_model = YOLO(f"{DET_MODEL_NAME}.pt") - det_model.to("cpu") + det_model = YOLO(models_dir / f"{DET_MODEL_NAME}.pt") label_map = det_model.model.names res = det_model(IMAGE_PATH) @@ -206,14 +205,24 @@ Let us consider the examples: .. parsed-literal:: + Downloading https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt to 'models/yolov8n.pt'... - image 1/1 /home/ea/work/openvino_notebooks_new_clone/openvino_notebooks/notebooks/yolov8-optimization/data/coco_bike.jpg: 480x640 2 bicycles, 2 cars, 2 dogs, 101.6ms - Speed: 3.1ms preprocess, 101.6ms inference, 1.4ms postprocess per image at shape (1, 3, 480, 640) +.. parsed-literal:: + + 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 6.25M/6.25M [00:02<00:00, 2.29MB/s] + + +.. parsed-literal:: + image 1/1 /home/akash/intel/openvino_notebooks/notebooks/yolov8-optimization/data/coco_bike.jpg: 480x640 2 bicycles, 2 cars, 1 dog, 82.9ms + Speed: 2.4ms preprocess, 82.9ms inference, 475.6ms postprocess per image at shape (1, 3, 480, 640) -.. image:: yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_9_1.png + + + +.. image:: yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_9_3.png @@ -230,10 +239,27 @@ preserve dynamic shapes in the model. .. code:: ipython3 # object detection model - det_model_path = Path(f"{DET_MODEL_NAME}_openvino_model/{DET_MODEL_NAME}.xml") + det_model_path = models_dir / f"{DET_MODEL_NAME}_openvino_model/{DET_MODEL_NAME}.xml" if not det_model_path.exists(): det_model.export(format="openvino", dynamic=True, half=True) + +.. parsed-literal:: + + Ultralytics YOLOv8.2.24 🚀 Python-3.8.10 torch-2.1.0+cu121 CPU (Intel Core(TM) i9-10980XE 3.00GHz) + + PyTorch: starting from 'models/yolov8n.pt' with input shape (1, 3, 640, 640) BCHW and output shape(s) (1, 84, 8400) (6.2 MB) + + OpenVINO: starting export with openvino 2024.3.0-16041-1e3b88e4e3f-releases/2024/3... + OpenVINO: export success ✅ 1.7s, saved as 'models/yolov8n_openvino_model/' (6.4 MB) + + Export complete (3.1s) + Results saved to /home/akash/intel/openvino_notebooks/notebooks/yolov8-optimization/models + Predict: yolo predict task=detect model=models/yolov8n_openvino_model imgsz=640 half + Validate: yolo val task=detect model=models/yolov8n_openvino_model imgsz=640 data=coco.yaml half + Visualize: https://netron.app + + Verify model inference ~~~~~~~~~~~~~~~~~~~~~~ @@ -297,7 +323,6 @@ ready to check model prediction for object detection. det_model.predictor.inference = infer det_model.predictor.model.pt = False - det_model res = det_model(IMAGE_PATH) Image.fromarray(res[0].plot()[:, :, ::-1]) @@ -306,8 +331,8 @@ ready to check model prediction for object detection. .. parsed-literal:: - image 1/1 /home/ea/work/openvino_notebooks_new_clone/openvino_notebooks/notebooks/yolov8-optimization/data/coco_bike.jpg: 640x640 1 bicycle, 2 cars, 1 dog, 16.9ms - Speed: 3.7ms preprocess, 16.9ms inference, 1.7ms postprocess per image at shape (1, 3, 640, 640) + image 1/1 /home/akash/intel/openvino_notebooks/notebooks/yolov8-optimization/data/coco_bike.jpg: 640x640 2 bicycles, 2 cars, 1 dog, 16.1ms + Speed: 3.4ms preprocess, 16.1ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640) @@ -368,16 +393,245 @@ evaluation function. zip_ref.extractall(OUT_DIR / "coco/images") + +.. parsed-literal:: + + /home/akash/intel/NNCF/nncf/examples/post_training_quantization/openvino/yolov8/datasets/val2017.zip: 0%| … + + +.. parsed-literal:: + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + IOPub message rate exceeded. + The Jupyter server will temporarily stop sending output + to the client in order to avoid crashing it. + To change this limit, set the config variable + `--ServerApp.iopub_msg_rate_limit`. + + Current values: + ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec) + ServerApp.rate_limit_window=3.0 (secs) + + + .. parsed-literal:: - '/home/ea/work/openvino_notebooks_new_clone/openvino_notebooks/notebooks/yolov8-optimization/datasets/val2017.zip' already exists. - '/home/ea/work/openvino_notebooks_new_clone/openvino_notebooks/notebooks/yolov8-optimization/datasets/coco2017labels-segments.zip' already exists. + '/home/akash/intel/NNCF/nncf/examples/post_training_quantization/openvino/yolov8/datasets/coco2017labels-segments.zip' already exists. .. parsed-literal:: - /home/ea/work/openvino_notebooks_new_clone/openvino_notebooks/notebooks/yolov8-optimization/datasets/coco.yaml… + /home/akash/intel/NNCF/nncf/examples/post_training_quantization/openvino/yolov8/datasets/coco.yaml: 0%| … Define validation function @@ -520,7 +774,7 @@ validator class instance. .. parsed-literal:: - val: Scanning /home/ea/work/openvino_notebooks_new_clone/openvino_notebooks/notebooks/yolov8-optimization/datasets/coco/labels/val2017.cache... 4952 images, 48 backgrounds, 0 corrupt: 100%|██████████| 5000/5000 [00:00\ **Note**: Model evaluation is time consuming +process and can take several minutes, depending on the hardware. For +reducing calculation time, we define ``num_samples`` parameter with +evaluation subset size, but in this case, accuracy can be noncomparable +with originally reported by the authors of the model, due to validation +subset difference. *To validate the models on the full dataset set +``NUM_TEST_SAMPLES = None``.* + +.. code:: ipython3 + + NUM_TEST_SAMPLES = 300 + +.. code:: ipython3 + + fp_det_stats = test(det_ov_model, core, det_data_loader, det_validator, num_samples=NUM_TEST_SAMPLES) + + + +.. parsed-literal:: + + 0%| | 0/300 [00:00 ([1,640,640,3], [N,H,W,C], f32) convert layout [N,C,H,W]: ([1,640,640,3], [N,H,W,C], f32) -> ([1,3,640,640], [N,C,H,W], f32) @@ -1348,7 +1704,7 @@ Now, we can skip these preprocessing steps in detect function: -.. image:: yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_61_0.png +.. image:: yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_70_0.png @@ -1527,7 +1883,7 @@ Run the object detection: -.. image:: yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_67_0.png +.. image:: yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_76_0.png .. parsed-literal:: diff --git a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_16_1.jpg b/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_16_1.jpg deleted file mode 100644 index 7a742941b54c17..00000000000000 --- a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_16_1.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:394895a09cc413a6343edb2a6f6242258701b6911c09d8405eacc7c27f6fac62 -size 110819 diff --git a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_16_1.png b/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_16_1.png index 6d4bfe012b6187..703c1375a98784 100644 --- a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_16_1.png +++ b/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_16_1.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:7b18cc2e60a802c059cd5cc05598a06c4affd959216e03674eeb68e822295843 -size 913173 +oid sha256:e85f0434876997adc7cf2152fa667b4e271817a443a75ca350d284aee48f9145 +size 908034 diff --git a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_38_1.jpg b/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_38_1.jpg deleted file mode 100644 index 40ac3a8da0dc2a..00000000000000 --- a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_38_1.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:90d9079b877726f30f154885745b36d8bc281f4970ce10f86529b9739a56ac72 -size 112567 diff --git a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_38_1.png b/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_38_1.png deleted file mode 100644 index e7c4fb31035d98..00000000000000 --- a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_38_1.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6fad172495a797bc753d19d54bd4afaf8f08ed36dfd1b9761df7bfa948673aab -size 911538 diff --git a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_43_1.png b/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_43_1.png new file mode 100644 index 00000000000000..44e7623ec662d1 --- /dev/null +++ b/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_43_1.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6778bdd31a39722d8ce3fb9ddea6383e451ab1b32cf23fad23b556bd89c99707 +size 907722 diff --git a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_61_0.jpg b/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_61_0.jpg deleted file mode 100644 index 202af866d221dd..00000000000000 --- a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_61_0.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:02d585dcd341e2580baf166b6f35337d2da17561a251fb5475041e2a20d6e558 -size 110078 diff --git a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_61_0.png b/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_61_0.png deleted file mode 100644 index d0d2028049c4f3..00000000000000 --- a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_61_0.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:44c1e80aa859828b9aae3240fb544b483df8dbd8b7c7bca29479a2a0714612c2 -size 929124 diff --git a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_67_0.png b/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_67_0.png deleted file mode 100644 index cdae11c722ca65..00000000000000 --- a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_67_0.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c6c2609efd786cba1d9baac015d06040939ff8d1e7644f67d10d6df5c171a62 -size 569438 diff --git a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_70_0.png b/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_70_0.png new file mode 100644 index 00000000000000..3b025ea9323f25 --- /dev/null +++ b/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_70_0.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b44f35cf238dcd208fcebe73bb388947f5528a167b511c8098d040b05d9bb819 +size 931491 diff --git a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_76_0.png b/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_76_0.png new file mode 100644 index 00000000000000..6d628536486d93 --- /dev/null +++ b/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_76_0.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fc0d406144e3b07ae6bef629cd7b4973424847958b9865e7133bd0f0c7deeb5c +size 534154 diff --git a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_9_1.jpg b/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_9_1.jpg deleted file mode 100644 index bcf00f3d50dcb5..00000000000000 --- a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_9_1.jpg +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cc502c95e9f5526befe662fcc79a6a91d4f5ff0cfce09165436e91f4ef8224ad -size 113613 diff --git a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_9_1.png b/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_9_1.png deleted file mode 100644 index e886ccd29b47f9..00000000000000 --- a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_9_1.png +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2c7bb27d4264dbc22e0006e42fb2f1619992aeac7220232119578e42a0d8a083 -size 904352 diff --git a/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_9_3.png b/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_9_3.png new file mode 100644 index 00000000000000..5073fa9f3eca09 --- /dev/null +++ b/docs/notebooks/yolov8-object-detection-with-output_files/yolov8-object-detection-with-output_9_3.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:46d38bd078c6eeda706640d0e35907a9a504bf78f9dd8dbf2961de865c294802 +size 907783 diff --git a/docs/notebooks/yolov9-optimization-with-output.rst b/docs/notebooks/yolov9-optimization-with-output.rst index 39690ea292721d..b132215f390216 100644 --- a/docs/notebooks/yolov9-optimization-with-output.rst +++ b/docs/notebooks/yolov9-optimization-with-output.rst @@ -21,7 +21,6 @@ The tutorial consists of the following steps: - Compare performance of the FP32 and quantized models. - Run optimized model inference on video - **Table of contents:** - `Prerequisites <#prerequisites>`__ @@ -58,7 +57,6 @@ Guide =2023.3.0" "nncf>=2.8.1" "opencv-python" "matplotlib>=3.4" "seaborn" "pandas" "scikit-learn" "torch" "torchvision" "tqdm" --extra-index-url https://download.pytorch.org/whl/cpu @@ -93,9 +91,9 @@ Prerequisites Cloning into 'yolov9'... remote: Enumerating objects: 781, done. remote: Total 781 (delta 0), reused 0 (delta 0), pack-reused 781 (from 1) - Receiving objects: 100% (781/781), 3.27 MiB | 19.93 MiB/s, done. + Receiving objects: 100% (781/781), 3.27 MiB | 16.41 MiB/s, done. Resolving deltas: 100% (331/331), done. - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/yolov9-optimization/yolov9 + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/yolov9-optimization/yolov9 Get PyTorch model @@ -133,7 +131,7 @@ applicable for other models from YOLO V9 family. .. parsed-literal:: - PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/yolov9-optimization/yolov9/model/gelan-c.pt') + PosixPath('/opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/yolov9-optimization/yolov9/model/gelan-c.pt') @@ -188,11 +186,11 @@ using ``ov.save_model``. .. parsed-literal:: - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/yolov9-optimization/yolov9/models/experimental.py:243: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/yolov9-optimization/yolov9/models/experimental.py:243: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. ckpt = torch.load(attempt_download(w), map_location='cpu') # load Fusing layers... Model summary: 387 layers, 25288768 parameters, 0 gradients, 102.1 GFLOPs - /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/801/archive/.workspace/scm/ov-notebook/notebooks/yolov9-optimization/yolov9/models/yolo.py:108: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! + /opt/home/k8sworker/ci-ai/cibuilds/jobs/ov-notebook/jobs/OVNotebookOps/builds/810/archive/.workspace/scm/ov-notebook/notebooks/yolov9-optimization/yolov9/models/yolo.py:108: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! elif self.dynamic or self.shape != shape: @@ -573,10 +571,10 @@ asymmetric quantization of activations. .. parsed-literal:: - 2024-10-23 05:32:14.632848: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. - 2024-10-23 05:32:14.668324: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. + 2024-11-05 05:37:29.322072: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. + 2024-11-05 05:37:29.357249: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. - 2024-10-23 05:32:15.276616: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT + 2024-11-05 05:37:29.968269: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT @@ -675,7 +673,7 @@ models. [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT. [Step 4/11] Reading model files [ INFO ] Loading model files - [ INFO ] Read model took 26.16 ms + [ INFO ] Read model took 26.54 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] images (node: x) : f32 / [...] / [?,3,?,?] @@ -687,7 +685,7 @@ models. [Step 5/11] Resizing model to match image sizes and given batch [ INFO ] Model batch size: 1 [ INFO ] Reshaping model: 'images': [1,3,640,640] - [ INFO ] Reshape model took 7.97 ms + [ INFO ] Reshape model took 8.17 ms [Step 6/11] Configuring input of the model [ INFO ] Model inputs: [ INFO ] images (node: x) : u8 / [N,C,H,W] / [1,3,640,640] @@ -697,7 +695,7 @@ models. [ INFO ] xi.3 (node: __module.model.22/aten::cat/Concat_1) : f32 / [...] / [1,144,40,40] [ INFO ] xi (node: __module.model.22/aten::cat/Concat) : f32 / [...] / [1,144,20,20] [Step 7/11] Loading the model to the device - [ INFO ] Compile model took 475.37 ms + [ INFO ] Compile model took 499.10 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: Model0 @@ -734,17 +732,17 @@ models. [ INFO ] Fill input 'images' with random values [Step 10/11] Measuring performance (Start inference asynchronously, 6 inference requests, limits: 15000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). - [ INFO ] First inference took 182.45 ms + [ INFO ] First inference took 170.42 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] - [ INFO ] Count: 228 iterations - [ INFO ] Duration: 15670.39 ms + [ INFO ] Count: 222 iterations + [ INFO ] Duration: 15614.22 ms [ INFO ] Latency: - [ INFO ] Median: 412.82 ms - [ INFO ] Average: 410.86 ms - [ INFO ] Min: 309.65 ms - [ INFO ] Max: 431.51 ms - [ INFO ] Throughput: 14.55 FPS + [ INFO ] Median: 412.60 ms + [ INFO ] Average: 419.41 ms + [ INFO ] Min: 210.55 ms + [ INFO ] Max: 885.97 ms + [ INFO ] Throughput: 14.22 FPS .. code:: ipython3 @@ -769,7 +767,7 @@ models. [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT. [Step 4/11] Reading model files [ INFO ] Loading model files - [ INFO ] Read model took 41.07 ms + [ INFO ] Read model took 41.88 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] images (node: x) : f32 / [...] / [1,3,640,640] @@ -791,7 +789,7 @@ models. [ INFO ] xi.3 (node: __module.model.22/aten::cat/Concat_1) : f32 / [...] / [1,144,40,40] [ INFO ] xi (node: __module.model.22/aten::cat/Concat) : f32 / [...] / [1,144,20,20] [Step 7/11] Loading the model to the device - [ INFO ] Compile model took 943.07 ms + [ INFO ] Compile model took 946.19 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: Model0 @@ -828,17 +826,17 @@ models. [ INFO ] Fill input 'images' with random values [Step 10/11] Measuring performance (Start inference asynchronously, 6 inference requests, limits: 15000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). - [ INFO ] First inference took 64.84 ms + [ INFO ] First inference took 68.41 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] - [ INFO ] Count: 720 iterations - [ INFO ] Duration: 15158.98 ms + [ INFO ] Count: 726 iterations + [ INFO ] Duration: 15191.13 ms [ INFO ] Latency: - [ INFO ] Median: 119.92 ms - [ INFO ] Average: 125.90 ms - [ INFO ] Min: 80.89 ms - [ INFO ] Max: 277.84 ms - [ INFO ] Throughput: 47.50 FPS + [ INFO ] Median: 121.43 ms + [ INFO ] Average: 125.10 ms + [ INFO ] Min: 56.89 ms + [ INFO ] Max: 305.84 ms + [ INFO ] Throughput: 47.79 FPS Run Live Object Detection diff --git a/docs/notebooks/yolov9-optimization-with-output_files/yolov9-optimization-with-output_36_0.png b/docs/notebooks/yolov9-optimization-with-output_files/yolov9-optimization-with-output_36_0.png index d6b48379756722..ccb15ab8382b86 100644 --- a/docs/notebooks/yolov9-optimization-with-output_files/yolov9-optimization-with-output_36_0.png +++ b/docs/notebooks/yolov9-optimization-with-output_files/yolov9-optimization-with-output_36_0.png @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:014be25aa9fb5ebd46a7f69afca67c33d8059694ca54bc2e32c0abfa460cb825 -size 496427 +oid sha256:13788e6c93a735cf601513bf18c5e6cae29819bdff2bd506fa90a4d34ae4bcc5 +size 496199 From 84e683737918e8169ec0fe05132c5157ece7754c Mon Sep 17 00:00:00 2001 From: Alexander Kozlov Date: Tue, 5 Nov 2024 15:24:20 +0400 Subject: [PATCH 06/93] Added E2E LLM test (#26914) Co-authored-by: Alina Kladieva --- tests/llm/accuracy_conformance.py | 116 ++++++++++++++++++++++++++++++ tests/llm/requirements.txt | 6 ++ 2 files changed, 122 insertions(+) create mode 100644 tests/llm/accuracy_conformance.py create mode 100644 tests/llm/requirements.txt diff --git a/tests/llm/accuracy_conformance.py b/tests/llm/accuracy_conformance.py new file mode 100644 index 00000000000000..41015d7664ecc2 --- /dev/null +++ b/tests/llm/accuracy_conformance.py @@ -0,0 +1,116 @@ +import gc +import logging +import os +import shutil +import tempfile + +import pytest +import whowhatbench as wwb +from optimum.intel.openvino import (OVModelForCausalLM, + OVWeightQuantizationConfig) +from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed + +logging.basicConfig(level=logging.INFO) +logger = logging.getLogger(__name__) + +MODEL_IDS = [ + "TinyLlama/TinyLlama-1.1B-Chat-v1.0", + "Qwen/Qwen2-0.5B-Instruct", +] +DEVICES = [ + "CPU", + "GPU", +] +NUMBER_OF_SAMPLES = 15 +METRIC_OF_INTEREST = "similarity" + +REFERENCES = { + "llama": {"INT8": 0.95, "INT4": 0.95}, + "qwen2": {"INT8": 0.77, "INT4": 0.77}, +} +ACCURACY_THRESHOLDS = { + "INT8": 0.05, + "INT4": 0.05, +} + +tmp_dir = tempfile.mkdtemp() + + +def init_test_scope(): + test_scope = [] + + for model_id in MODEL_IDS: + logger.info(f"Downloading and quantizing model: {model_id}") + model = AutoModelForCausalLM.from_pretrained(model_id) + tokenizer = AutoTokenizer.from_pretrained(model_id) + model_type = model.config.model_type + model_path = os.path.join(tmp_dir, model_type) + model.save_pretrained(model_path) + tokenizer.save_pretrained(model_path) + + ov_model = OVModelForCausalLM.from_pretrained(model_path, load_in_8bit=True) + ov_model_path = model_path = os.path.join(tmp_dir, model_type + "_ov") + ov_model.save_pretrained(ov_model_path) + tokenizer.save_pretrained(ov_model_path) + del ov_model + gc.collect() + + quantization_config = OVWeightQuantizationConfig(bits=4, ratio=0.5) + quantized_model = OVModelForCausalLM.from_pretrained( + model_path, quantization_config=quantization_config + ) + quantized_model_path = model_path = os.path.join( + tmp_dir, model_type + "_ov_int4" + ) + quantized_model.save_pretrained(quantized_model_path) + tokenizer.save_pretrained(quantized_model_path) + del quantized_model + gc.collect() + + set_seed(42) + evaluator = wwb.Evaluator( + base_model=model, tokenizer=tokenizer, num_samples=NUMBER_OF_SAMPLES + ) + gt_path = os.path.join(tmp_dir, model_type + "_gt.json") + evaluator.dump_gt(gt_path) + [ + test_scope.append((ov_model_path, model_type, "INT8", gt_path, device)) + for device in DEVICES + ] + [ + test_scope.append((ov_model_path, model_type, "INT4", gt_path, device)) + for device in DEVICES + ] + + return test_scope + + +def teardown_module(): + logger.info("Remove models") + shutil.rmtree(tmp_dir) + + +test_scope = init_test_scope() + + +@pytest.mark.parametrize( + ("model_path", "model_type", "precision", "gt_data", "device"), + test_scope, +) +def test_accuracy_conformance(model_path, model_type, precision, gt_data, device): + target_model = OVModelForCausalLM.from_pretrained(model_path, device=device) + tokenizer = AutoTokenizer.from_pretrained(model_path) + + evaluator = wwb.Evaluator( + base_model=None, + tokenizer=tokenizer, + gt_data=gt_data, + num_samples=NUMBER_OF_SAMPLES, + ) + + set_seed(42) + _, all_metrics = evaluator.score(target_model) + metric = all_metrics[METRIC_OF_INTEREST].values[0] + abs_metric_diff = abs(REFERENCES[model_type][precision] - metric) + print(metric, REFERENCES[model_type][precision], model_type, precision) + assert abs_metric_diff <= ACCURACY_THRESHOLDS[precision] diff --git a/tests/llm/requirements.txt b/tests/llm/requirements.txt new file mode 100644 index 00000000000000..2d1912890910f5 --- /dev/null +++ b/tests/llm/requirements.txt @@ -0,0 +1,6 @@ +-c ../constraints.txt +--extra-index-url https://download.pytorch.org/whl/cpu +optimum-intel +nncf +whowhatbench @ git+https://github.com/openvinotoolkit/openvino.genai.git#subdirectory=tools/who_what_benchmark +pytest \ No newline at end of file From eb80f9b89c95c04b9e4b5ed459285fa075b7159e Mon Sep 17 00:00:00 2001 From: Anastasia Kuporosova Date: Tue, 5 Nov 2024 14:24:13 +0100 Subject: [PATCH 07/93] Use pyOv tests requirements (#27252) ### Details: - move dependency for torchvision preprocessing to the part where it tests - update numpy upperbound for testing PyOV & numpy 2.1 ### Tickets: - *ticket-id* --- .github/workflows/job_python_unit_tests.yml | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/.github/workflows/job_python_unit_tests.yml b/.github/workflows/job_python_unit_tests.yml index 1dd6ebbfc204d8..64be9ef4bbcc44 100644 --- a/.github/workflows/job_python_unit_tests.yml +++ b/.github/workflows/job_python_unit_tests.yml @@ -111,10 +111,7 @@ jobs: run: | # To enable pytest parallel features python3 -m pip install pytest-xdist[psutil] - # For torchvision to OpenVINO preprocessing converter - python3 -m pip install -r ${INSTALL_TEST_DIR}/python/preprocess/torchvision/requirements.txt - - # TODO: replace with Python API tests requirements + python3 -m pip install -r ${INSTALL_TEST_DIR}/bindings/python/requirements_test.txt python3 -m pip install -r ${INSTALL_TEST_DIR}/mo/requirements_dev.txt # @@ -158,6 +155,9 @@ jobs: - name: Install Python Layer tests dependencies run: | + # For torchvision to OpenVINO preprocessing converter + python3 -m pip install -r ${INSTALL_TEST_DIR}/python/preprocess/torchvision/requirements.txt + # layer test requirements python3 -m pip install -r ${LAYER_TESTS_INSTALL_DIR}/requirements.txt @@ -267,7 +267,7 @@ jobs: if: ${{ fromJSON(inputs.affected-components).Python_API.test }} run: | python3 -m pip uninstall -y numpy - python3 -m pip install "numpy>=2.0.0,<2.1.0" + python3 -m pip install "numpy>=2.0.0,<2.2.0" python3 -m pip install -r ${INSTALL_TEST_DIR}/bindings/python/requirements_test.txt # for 'template' extension export LD_LIBRARY_PATH=${INSTALL_TEST_DIR}:$LD_LIBRARY_PATH From 7171a7dd9baa726e7f2849a981a7666ca81e1f3c Mon Sep 17 00:00:00 2001 From: Pawel Raasz Date: Tue, 5 Nov 2024 14:29:33 +0100 Subject: [PATCH 08/93] [c-api] PPP add pad step (#27353) ### Details: - Add image padding support in PrePostProcessor for C API ### Continuation of PR: - #26730 ### Tickets: - CVS-152252 --------- Co-authored-by: panhaiqi --- .../c/include/openvino/c/ov_prepostprocess.h | 32 +++++++++ src/bindings/c/src/ov_prepostprocess.cpp | 26 +++++++ src/bindings/c/tests/ov_preprocess_test.cpp | 70 +++++++++++++++++++ src/common/util/src/weights_path.cpp | 1 - 4 files changed, 128 insertions(+), 1 deletion(-) diff --git a/src/bindings/c/include/openvino/c/ov_prepostprocess.h b/src/bindings/c/include/openvino/c/ov_prepostprocess.h index ea2a82943dd683..d7cbbdc26eb5cb 100644 --- a/src/bindings/c/include/openvino/c/ov_prepostprocess.h +++ b/src/bindings/c/include/openvino/c/ov_prepostprocess.h @@ -93,6 +93,18 @@ typedef enum { RESIZE_NEAREST //!< nearest algorithm } ov_preprocess_resize_algorithm_e; +/** + * @enum ov_padding_mode_e + * @ingroup ov_prepostprocess_c_api + * @brief This enum contains enumeration for padding mode. + */ +typedef enum { + CONSTANT = 0, //!< Pads with given constant value. + EDGE, //!< Pads with tensor edge values. + REFLECT, //!< Pads with reflection of tensor data along axis. Values on the edges are not duplicated. + SYMMETRIC //!< Pads similar like `REFLECT` but values on the edges are duplicated. +} ov_padding_mode_e; + /** * @brief Create a ov_preprocess_prepostprocessor_t instance. * @ingroup ov_prepostprocess_c_api @@ -512,3 +524,23 @@ ov_preprocess_input_model_info_set_layout(ov_preprocess_input_model_info_t* prep */ OPENVINO_C_API(ov_status_e) ov_preprocess_prepostprocessor_build(const ov_preprocess_prepostprocessor_t* preprocess, ov_model_t** model); + +/** + * @brief Add pad preprocess operation. Extends an input tensor on edges with constants. + * + * @param preprocess_input_process_steps A pointer to the ov_preprocess_preprocess_steps_t. + * @param pads_begin Number of padding elements to add at the beginning of each axis. + * @param pads_begin_size Pads begin size (number of axes). + * @param pads_end Number of padding elements to add at the end of each axis. + * @param pads_end_size Pads end size (number of axes). + * @param value Value to be populated in the padded area (mode=CONSTANT) + * @param mode Padding mode. + */ +OPENVINO_C_API(ov_status_e) +ov_preprocess_preprocess_steps_pad(const ov_preprocess_preprocess_steps_t* preprocess_input_process_steps, + const int* const pads_begin, + size_t pads_begin_size, + const int* const pads_end, + size_t pads_end_size, + float value, + ov_padding_mode_e mode); diff --git a/src/bindings/c/src/ov_prepostprocess.cpp b/src/bindings/c/src/ov_prepostprocess.cpp index 616883dd54e74c..8448e9daeb10b1 100644 --- a/src/bindings/c/src/ov_prepostprocess.cpp +++ b/src/bindings/c/src/ov_prepostprocess.cpp @@ -24,6 +24,12 @@ const std::map color_format_map {ov_color_format_e::RGBX, ov::preprocess::ColorFormat::RGBX}, {ov_color_format_e::BGRX, ov::preprocess::ColorFormat::BGRX}}; +const std::map padding_mode_map = { + {ov_padding_mode_e::CONSTANT, ov::preprocess::PaddingMode::CONSTANT}, + {ov_padding_mode_e::EDGE, ov::preprocess::PaddingMode::EDGE}, + {ov_padding_mode_e::REFLECT, ov::preprocess::PaddingMode::REFLECT}, + {ov_padding_mode_e::SYMMETRIC, ov::preprocess::PaddingMode::SYMMETRIC}}; + #define GET_OV_COLOR_FARMAT(a) \ (color_format_map.find(a) == color_format_map.end() ? ov::preprocess::ColorFormat::UNDEFINED \ : color_format_map.at(a)) @@ -524,3 +530,23 @@ ov_status_e ov_preprocess_prepostprocessor_build(const ov_preprocess_prepostproc return ov_status_e::OK; } + +ov_status_e ov_preprocess_preprocess_steps_pad(const ov_preprocess_preprocess_steps_t* preprocess_input_process_steps, + const int* const pads_begin, + size_t pads_begin_size, + const int* const pads_end, + size_t pads_end_size, + float value, + ov_padding_mode_e mode) { + if (!preprocess_input_process_steps) { + return ov_status_e::INVALID_C_PARAM; + } + try { + std::vector vec_begin(pads_begin, pads_begin + pads_begin_size); + std::vector vec_end(pads_end, pads_end + pads_end_size); + preprocess_input_process_steps->object->pad(vec_begin, vec_end, value, padding_mode_map.at(mode)); + } + CATCH_OV_EXCEPTIONS + + return ov_status_e::OK; +} diff --git a/src/bindings/c/tests/ov_preprocess_test.cpp b/src/bindings/c/tests/ov_preprocess_test.cpp index 94252bd3a3cbb9..aeb7a097af1352 100644 --- a/src/bindings/c/tests/ov_preprocess_test.cpp +++ b/src/bindings/c/tests/ov_preprocess_test.cpp @@ -1,6 +1,8 @@ // Copyright (C) 2018-2024 Intel Corporation // SPDX-License-Identifier: Apache-2.0 // +#include + #include "ov_test.hpp" class ov_preprocess_test : public ::testing::Test { @@ -596,3 +598,71 @@ TEST_F(ov_preprocess_test, ov_preprocess_prepostprocessor_for_nv12_input) { ov_layout_free(layout); } + +TEST_F(ov_preprocess_test, ov_preprocess_preprocess_steps_pad_constant) { + OV_EXPECT_OK(ov_preprocess_prepostprocessor_create(model, &preprocess)); + EXPECT_NE(nullptr, preprocess); + + OV_EXPECT_OK(ov_preprocess_prepostprocessor_get_input_info(preprocess, &input_info)); + EXPECT_NE(nullptr, input_info); + + OV_EXPECT_OK(ov_preprocess_input_info_get_tensor_info(input_info, &input_tensor_info)); + EXPECT_NE(nullptr, input_tensor_info); + + ov_shape_t shape; + int64_t dims[4] = {1, 1, 225, 230}; + OV_EXPECT_OK(ov_shape_create(4, dims, &shape)); + + OV_EXPECT_OK(ov_tensor_create(ov_element_type_e::F32, shape, &tensor)); + OV_EXPECT_OK(ov_preprocess_input_tensor_info_set_from(input_tensor_info, tensor)); + + OV_EXPECT_OK(ov_preprocess_input_info_get_preprocess_steps(input_info, &input_process)); + EXPECT_NE(nullptr, input_process); + + constexpr auto pads_begin = std::array{0, 1, 2, 0}; + constexpr auto pads_end = std::array{0, 1, 0, -3}; + + OV_EXPECT_OK(ov_preprocess_preprocess_steps_pad(input_process, + pads_begin.data(), + pads_begin.size(), + pads_end.data(), + pads_end.size(), + 1.0f, + ov_padding_mode_e::CONSTANT)); + OV_EXPECT_OK(ov_preprocess_prepostprocessor_build(preprocess, &ppp_model)); + EXPECT_NE(nullptr, ppp_model); +} + +TEST_F(ov_preprocess_test, ov_preprocess_preprocess_steps_pad_edge) { + OV_EXPECT_OK(ov_preprocess_prepostprocessor_create(model, &preprocess)); + EXPECT_NE(nullptr, preprocess); + + OV_EXPECT_OK(ov_preprocess_prepostprocessor_get_input_info(preprocess, &input_info)); + EXPECT_NE(nullptr, input_info); + + OV_EXPECT_OK(ov_preprocess_input_info_get_tensor_info(input_info, &input_tensor_info)); + EXPECT_NE(nullptr, input_tensor_info); + + ov_shape_t shape; + int64_t dims[4] = {1, 2, 225, 230}; + OV_EXPECT_OK(ov_shape_create(4, dims, &shape)); + + OV_EXPECT_OK(ov_tensor_create(ov_element_type_e::F32, shape, &tensor)); + OV_EXPECT_OK(ov_preprocess_input_tensor_info_set_from(input_tensor_info, tensor)); + + OV_EXPECT_OK(ov_preprocess_input_info_get_preprocess_steps(input_info, &input_process)); + EXPECT_NE(nullptr, input_process); + + constexpr auto pads_begin = std::array{0, 0, 2, 0}; + constexpr auto pads_end = std::array{0, 1, 0, -3}; + + OV_EXPECT_OK(ov_preprocess_preprocess_steps_pad(input_process, + pads_begin.data(), + pads_begin.size(), + pads_end.data(), + pads_end.size(), + 1.0f, + ov_padding_mode_e::EDGE)); + OV_EXPECT_OK(ov_preprocess_prepostprocessor_build(preprocess, &ppp_model)); + EXPECT_NE(nullptr, ppp_model); +} diff --git a/src/common/util/src/weights_path.cpp b/src/common/util/src/weights_path.cpp index 9cf2336f064dd0..56d0b56d643fa8 100644 --- a/src/common/util/src/weights_path.cpp +++ b/src/common/util/src/weights_path.cpp @@ -2,7 +2,6 @@ // SPDX-License-Identifier: Apache-2.0 // - #include "openvino/util/weights_path.hpp" bool ov::util::validate_weights_path(std::string& weights_path) { From 59ddd74211f0ccec4171a036c010aa162bc1cff8 Mon Sep 17 00:00:00 2001 From: Pawel Raasz Date: Tue, 5 Nov 2024 14:30:37 +0100 Subject: [PATCH 09/93] [core] Remove LSTM sequence v0 (#27330) ### Details: - Remove LSTM Sequence v0 operator ### Tickets: - CVS-156182 --------- Signed-off-by: Pawel Raasz --- .../src/openvino/runtime/opset1/__init__.py | 1 - .../python/src/openvino/runtime/opset1/ops.py | 89 ----- .../src/openvino/runtime/opset2/__init__.py | 1 - .../src/openvino/runtime/opset3/__init__.py | 1 - .../src/openvino/runtime/opset4/__init__.py | 1 - .../python/tests/test_graph/test_create_op.py | 258 ------------- .../include/openvino/op/lstm_sequence.hpp | 97 ----- src/core/include/openvino/opsets/opset1.hpp | 2 - .../include/openvino/opsets/opset1_tbl.hpp | 1 - src/core/include/openvino/opsets/opset2.hpp | 2 - .../include/openvino/opsets/opset2_tbl.hpp | 1 - src/core/include/openvino/opsets/opset3.hpp | 2 - .../include/openvino/opsets/opset3_tbl.hpp | 1 - .../include/openvino/reference/sequences.hpp | 125 ------ .../include/lstm_sequence_shape_inference.hpp | 26 -- src/core/src/op/lstm_sequence.cpp | 149 -------- src/core/src/pass/low_latency.cpp | 21 +- src/core/tests/opset.cpp | 6 +- src/core/tests/type_prop/lstm_sequence.cpp | 359 ------------------ src/core/tests/type_prop/rnn_seq_base.cpp | 17 +- src/core/tests/visitors/op/lstm_sequence.cpp | 60 --- src/frontends/onnx/frontend/src/op/lstm.cpp | 48 +-- .../models/lstm_bdir_short_input_seq.prototxt | 235 ------------ .../lstm_fwd_with_clip_peepholes.prototxt | 191 ---------- .../onnx/tests/onnx_import_rnn.in.cpp | 110 ------ .../onnx/tests/runtime/ie/unit_test.manifest | 3 - src/plugins/intel_cpu/src/nodes/rnn.cpp | 44 +-- .../src/shape_inference/shape_inference.cpp | 1 - .../pass/rnn_sequences_optimization.cpp | 4 +- .../lstm_seq_shape_inference_test.cpp | 178 --------- .../template/backend/evaluates_map.cpp | 2 - .../template/backend/ops/ops_evaluates.hpp | 8 +- .../template/backend/ops/sequences.cpp | 108 ------ .../template/backend/opset_int_tbl.hpp | 1 - .../functional/op_reference/lstm_sequence.cpp | 86 ----- .../src/op_impl_check/single_op_graph.cpp | 16 - 36 files changed, 37 insertions(+), 2218 deletions(-) delete mode 100644 src/frontends/onnx/tests/models/lstm_bdir_short_input_seq.prototxt delete mode 100644 src/frontends/onnx/tests/models/lstm_fwd_with_clip_peepholes.prototxt diff --git a/src/bindings/python/src/openvino/runtime/opset1/__init__.py b/src/bindings/python/src/openvino/runtime/opset1/__init__.py index 5bfa42f43f26b9..ca7e1aef385b2a 100644 --- a/src/bindings/python/src/openvino/runtime/opset1/__init__.py +++ b/src/bindings/python/src/openvino/runtime/opset1/__init__.py @@ -54,7 +54,6 @@ from openvino.runtime.opset1.ops import logical_xor from openvino.runtime.opset1.ops import lrn from openvino.runtime.opset1.ops import lstm_cell -from openvino.runtime.opset1.ops import lstm_sequence from openvino.runtime.opset1.ops import matmul from openvino.runtime.opset1.ops import max_pool from openvino.runtime.opset1.ops import maximum diff --git a/src/bindings/python/src/openvino/runtime/opset1/ops.py b/src/bindings/python/src/openvino/runtime/opset1/ops.py index c100a6c2db2cb4..54f32d404336d4 100644 --- a/src/bindings/python/src/openvino/runtime/opset1/ops.py +++ b/src/bindings/python/src/openvino/runtime/opset1/ops.py @@ -1532,95 +1532,6 @@ def lstm_cell( return _get_node_factory_opset1().create("LSTMCell", node_inputs, attributes) -@deprecated(version="2025.0", message="Use lstm_sequence from opset 5") -@nameable_op -def lstm_sequence( - X: NodeInput, - initial_hidden_state: NodeInput, - initial_cell_state: NodeInput, - sequence_lengths: NodeInput, - W: NodeInput, - R: NodeInput, - B: NodeInput, - hidden_size: int, - direction: str, - activations: Optional[List[str]] = None, - activations_alpha: Optional[List[float]] = None, - activations_beta: Optional[List[float]] = None, - clip: float = 0.0, - name: Optional[str] = None, -) -> Node: - """Return a node which performs LSTMSequence operation. - - :param X: The input tensor. Shape: [batch_size, seq_length, input_size]. - :param initial_hidden_state: The hidden state tensor. - Shape: [batch_size, num_directions, hidden_size]. - :param initial_cell_state: The cell state tensor. - Shape: [batch_size, num_directions, hidden_size]. - :param sequence_lengths: Specifies real sequence lengths for each batch element. - Shape: [batch_size]. Integer type. - :param W: Tensor with weights for matrix multiplication operation with input portion of data. - Shape: [num_directions, 4*hidden_size, input_size]. - :param R: The tensor with weights for matrix multiplication operation with hidden state. - Shape: [num_directions, 4*hidden_size, hidden_size]. - :param B: The tensor with biases. - Shape: [num_directions, 4*hidden_size]. - :param hidden_size: Specifies hidden state size. - :param direction: Specifies if the RNN is forward, reverse, or bidirectional. - :param activations: The list of three activation functions for gates. - :param activations_alpha: The list of alpha parameters for activation functions. - :param activations_beta: The list of beta parameters for activation functions. - :param clip: Specifies bound values [-C, C] for tensor clipping performed before activations. - :param name: An optional name of the output node. - - :return: The new node represents LSTMSequence. Node outputs count: 3. - """ - if activations is None: - activations = ["sigmoid", "tanh", "tanh"] - if activations_alpha is None: - activations_alpha = [] - if activations_beta is None: - activations_beta = [] - - node_inputs = as_nodes( - X, - initial_hidden_state, - initial_cell_state, - sequence_lengths, - W, - R, - B, - name=name, - ) - - # P - nGraph additional input, no such input in the OV spec - peepholes_count = 3 # nGraph default - if direction.lower() == "bidirectional": - num_directions = 2 - else: - num_directions = 1 - peepholes_shape = [num_directions, peepholes_count * hidden_size] - peepholes_array = np.zeros(peepholes_shape) # nGraph default - data_dtype = get_dtype(node_inputs[0].get_output_element_type(0)) - default_p = make_constant_node(peepholes_array, dtype=data_dtype) - node_inputs.append(default_p) - - weights_format = "fico" # OV LSTMWeightsFormat, no such attribute in the OV spec - input_forget = False # nGraph default, no such attribute in the OV spec - - attributes = { - "hidden_size": hidden_size, - "direction": direction.lower(), - "activations": activations, - "activations_alpha": activations_alpha, - "activations_beta": activations_beta, - "clip": clip, - "weights_format": weights_format, - "input_forget": input_forget, - } - return _get_node_factory_opset1().create("LSTMSequence", node_inputs, attributes) - - @nameable_op def matmul( data_a: NodeInput, diff --git a/src/bindings/python/src/openvino/runtime/opset2/__init__.py b/src/bindings/python/src/openvino/runtime/opset2/__init__.py index 34d0d9b6737709..6624149e157e9e 100644 --- a/src/bindings/python/src/openvino/runtime/opset2/__init__.py +++ b/src/bindings/python/src/openvino/runtime/opset2/__init__.py @@ -56,7 +56,6 @@ from openvino.runtime.opset1.ops import logical_xor from openvino.runtime.opset1.ops import lrn from openvino.runtime.opset1.ops import lstm_cell -from openvino.runtime.opset1.ops import lstm_sequence from openvino.runtime.opset1.ops import matmul from openvino.runtime.opset1.ops import max_pool from openvino.runtime.opset1.ops import maximum diff --git a/src/bindings/python/src/openvino/runtime/opset3/__init__.py b/src/bindings/python/src/openvino/runtime/opset3/__init__.py index 964acb15b34bbc..5bd68912cae807 100644 --- a/src/bindings/python/src/openvino/runtime/opset3/__init__.py +++ b/src/bindings/python/src/openvino/runtime/opset3/__init__.py @@ -65,7 +65,6 @@ from openvino.runtime.opset1.ops import logical_xor from openvino.runtime.opset1.ops import lrn from openvino.runtime.opset1.ops import lstm_cell -from openvino.runtime.opset1.ops import lstm_sequence from openvino.runtime.opset1.ops import matmul from openvino.runtime.opset1.ops import max_pool from openvino.runtime.opset1.ops import maximum diff --git a/src/bindings/python/src/openvino/runtime/opset4/__init__.py b/src/bindings/python/src/openvino/runtime/opset4/__init__.py index bf57172bed40e2..e7cef8eb216d17 100644 --- a/src/bindings/python/src/openvino/runtime/opset4/__init__.py +++ b/src/bindings/python/src/openvino/runtime/opset4/__init__.py @@ -70,7 +70,6 @@ from openvino.runtime.opset1.ops import logical_xor from openvino.runtime.opset1.ops import lrn from openvino.runtime.opset4.ops import lstm_cell -from openvino.runtime.opset1.ops import lstm_sequence from openvino.runtime.opset1.ops import matmul from openvino.runtime.opset1.ops import max_pool from openvino.runtime.opset1.ops import maximum diff --git a/src/bindings/python/tests/test_graph/test_create_op.py b/src/bindings/python/tests/test_graph/test_create_op.py index 98d0ec3583882c..f86ea4a18a8ca1 100644 --- a/src/bindings/python/tests/test_graph/test_create_op.py +++ b/src/bindings/python/tests/test_graph/test_create_op.py @@ -315,264 +315,6 @@ def test_lstm_cell_operator(dtype): assert list(node_param.get_output_shape(1)) == [1, 128] -@pytest.mark.parametrize("dtype", [np.float32, np.float64]) -@pytest.mark.parametrize("op_name", ["lstm", "lstmOpset1"]) -def test_lstm_cell_operator_opset1(dtype, op_name): - batch_size = 1 - input_size = 16 - hidden_size = 128 - - x_shape = [batch_size, input_size] - h_t_shape = [batch_size, hidden_size] - c_t_shape = [batch_size, hidden_size] - w_shape = [4 * hidden_size, input_size] - r_shape = [4 * hidden_size, hidden_size] - b_shape = [4 * hidden_size] - - parameter_x = ov.parameter(x_shape, name="X", dtype=dtype) - parameter_h_t = ov.parameter(h_t_shape, name="H_t", dtype=dtype) - parameter_c_t = ov.parameter(c_t_shape, name="C_t", dtype=dtype) - parameter_w = ov.parameter(w_shape, name="W", dtype=dtype) - parameter_r = ov.parameter(r_shape, name="R", dtype=dtype) - parameter_b = ov.parameter(b_shape, name="B", dtype=dtype) - - node_default = ov_opset1.lstm_cell( - parameter_x, parameter_h_t, parameter_c_t, parameter_w, parameter_r, parameter_b, hidden_size, name=op_name, - ) - - assert node_default.get_type_name() == "LSTMCell" - assert node_default.get_friendly_name() == op_name - assert node_default.get_output_size() == 2 - assert list(node_default.get_output_shape(0)) == [1, 128] - assert list(node_default.get_output_shape(1)) == [1, 128] - - activations = ["tanh", "Sigmoid", "RELU"] - activation_alpha = [1.0, 2.0, 3.0] - activation_beta = [3.0, 2.0, 1.0] - clip = 0.5 - - node_param = ov_opset1.lstm_cell( - parameter_x, - parameter_h_t, - parameter_c_t, - parameter_w, - parameter_r, - parameter_b, - hidden_size, - activations, - activation_alpha, - activation_beta, - clip, - ) - - assert node_param.get_type_name() == "LSTMCell" - assert node_param.get_output_size() == 2 - assert list(node_param.get_output_shape(0)) == [1, 128] - assert list(node_param.get_output_shape(1)) == [1, 128] - - -@pytest.mark.parametrize("dtype", [np.float32, np.float64]) -@pytest.mark.parametrize("op_name", ["lstm", "lstmOpset1"]) -def test_lstm_sequence_operator_bidirectional_opset1(dtype, op_name): - batch_size = 1 - input_size = 16 - hidden_size = 128 - num_directions = 2 - seq_length = 2 - - x_shape = [batch_size, seq_length, input_size] - h_t_shape = [batch_size, num_directions, hidden_size] - c_t_shape = [batch_size, num_directions, hidden_size] - seq_len_shape = [batch_size] - w_shape = [num_directions, 4 * hidden_size, input_size] - r_shape = [num_directions, 4 * hidden_size, hidden_size] - b_shape = [num_directions, 4 * hidden_size] - - parameter_x = ov.parameter(x_shape, name="X", dtype=dtype) - parameter_h_t = ov.parameter(h_t_shape, name="H_t", dtype=dtype) - parameter_c_t = ov.parameter(c_t_shape, name="C_t", dtype=dtype) - parameter_seq_len = ov.parameter(seq_len_shape, name="seq_len", dtype=np.int32) - parameter_w = ov.parameter(w_shape, name="W", dtype=dtype) - parameter_r = ov.parameter(r_shape, name="R", dtype=dtype) - parameter_b = ov.parameter(b_shape, name="B", dtype=dtype) - - direction = "BIDIRECTIONAL" - with pytest.warns(DeprecationWarning): - node = ov_opset1.lstm_sequence( - parameter_x, - parameter_h_t, - parameter_c_t, - parameter_seq_len, - parameter_w, - parameter_r, - parameter_b, - hidden_size, - direction, - name=op_name, - ) - - assert node.get_type_name() == "LSTMSequence" - assert node.get_friendly_name() == op_name - assert node.get_output_size() == 3 - - activations = ["RELU", "tanh", "Sigmoid"] - activation_alpha = [1.0, 2.0, 3.0] - activation_beta = [3.0, 2.0, 1.0] - clip = 1.22 - - with pytest.warns(DeprecationWarning): - node_param = ov_opset1.lstm_sequence( - parameter_x, - parameter_h_t, - parameter_c_t, - parameter_seq_len, - parameter_w, - parameter_r, - parameter_b, - hidden_size, - direction, - activations, - activation_alpha, - activation_beta, - clip, - ) - - assert node_param.get_type_name() == "LSTMSequence" - assert node_param.get_output_size() == 3 - - -@pytest.mark.parametrize("dtype", [np.float32, np.float64]) -def test_lstm_sequence_operator_reverse_opset1(dtype): - batch_size = 2 - input_size = 4 - hidden_size = 3 - num_directions = 1 - seq_length = 2 - - x_shape = [batch_size, seq_length, input_size] - h_t_shape = [batch_size, num_directions, hidden_size] - c_t_shape = [batch_size, num_directions, hidden_size] - seq_len_shape = [batch_size] - w_shape = [num_directions, 4 * hidden_size, input_size] - r_shape = [num_directions, 4 * hidden_size, hidden_size] - b_shape = [num_directions, 4 * hidden_size] - - parameter_x = ov.parameter(x_shape, name="X", dtype=dtype) - parameter_h_t = ov.parameter(h_t_shape, name="H_t", dtype=dtype) - parameter_c_t = ov.parameter(c_t_shape, name="C_t", dtype=dtype) - parameter_seq_len = ov.parameter(seq_len_shape, name="seq_len", dtype=np.int32) - parameter_w = ov.parameter(w_shape, name="W", dtype=dtype) - parameter_r = ov.parameter(r_shape, name="R", dtype=dtype) - parameter_b = ov.parameter(b_shape, name="B", dtype=dtype) - - direction = "REVERSE" - with pytest.warns(DeprecationWarning): - node_default = ov_opset1.lstm_sequence( - parameter_x, - parameter_h_t, - parameter_c_t, - parameter_seq_len, - parameter_w, - parameter_r, - parameter_b, - hidden_size, - direction, - ) - - assert node_default.get_type_name() == "LSTMSequence" - assert node_default.get_output_size() == 3 - - activations = ["RELU", "tanh", "Sigmoid"] - activation_alpha = [1.0, 2.0, 3.0] - activation_beta = [3.0, 2.0, 1.0] - clip = 1.22 - with pytest.warns(DeprecationWarning): - node_param = ov_opset1.lstm_sequence( - parameter_x, - parameter_h_t, - parameter_c_t, - parameter_seq_len, - parameter_w, - parameter_r, - parameter_b, - hidden_size, - direction, - activations, - activation_alpha, - activation_beta, - clip, - ) - - assert node_param.get_type_name() == "LSTMSequence" - assert node_param.get_output_size() == 3 - - -@pytest.mark.parametrize("dtype", [np.float32, np.float64]) -def test_lstm_sequence_operator_forward_opset1(dtype): - batch_size = 2 - input_size = 4 - hidden_size = 3 - num_directions = 1 - seq_length = 2 - - x_shape = [batch_size, seq_length, input_size] - h_t_shape = [batch_size, num_directions, hidden_size] - c_t_shape = [batch_size, num_directions, hidden_size] - seq_len_shape = [batch_size] - w_shape = [num_directions, 4 * hidden_size, input_size] - r_shape = [num_directions, 4 * hidden_size, hidden_size] - b_shape = [num_directions, 4 * hidden_size] - - parameter_x = ov.parameter(x_shape, name="X", dtype=dtype) - parameter_h_t = ov.parameter(h_t_shape, name="H_t", dtype=dtype) - parameter_c_t = ov.parameter(c_t_shape, name="C_t", dtype=dtype) - parameter_seq_len = ov.parameter(seq_len_shape, name="seq_len", dtype=np.int32) - parameter_w = ov.parameter(w_shape, name="W", dtype=dtype) - parameter_r = ov.parameter(r_shape, name="R", dtype=dtype) - parameter_b = ov.parameter(b_shape, name="B", dtype=dtype) - - direction = "forward" - with pytest.warns(DeprecationWarning): - node_default = ov_opset1.lstm_sequence( - parameter_x, - parameter_h_t, - parameter_c_t, - parameter_seq_len, - parameter_w, - parameter_r, - parameter_b, - hidden_size, - direction, - ) - - assert node_default.get_type_name() == "LSTMSequence" - assert node_default.get_output_size() == 3 - - activations = ["RELU", "tanh", "Sigmoid"] - activation_alpha = [2.0] - activation_beta = [1.0] - clip = 0.5 - with pytest.warns(DeprecationWarning): - node = ov_opset1.lstm_sequence( - parameter_x, - parameter_h_t, - parameter_c_t, - parameter_seq_len, - parameter_w, - parameter_r, - parameter_b, - hidden_size, - direction, - activations, - activation_alpha, - activation_beta, - clip, - ) - - assert node.get_type_name() == "LSTMSequence" - assert node.get_output_size() == 3 - - def test_gru_cell_operator(): batch_size = 1 input_size = 16 diff --git a/src/core/include/openvino/op/lstm_sequence.hpp b/src/core/include/openvino/op/lstm_sequence.hpp index 4d68b5ceb7f9c6..28f5a2b1b8bfaf 100644 --- a/src/core/include/openvino/op/lstm_sequence.hpp +++ b/src/core/include/openvino/op/lstm_sequence.hpp @@ -17,103 +17,6 @@ namespace ov { namespace op { -namespace v0 { - -/// -/// \brief Class for lstm sequence node. -/// -/// \note It follows notation and equations defined as in ONNX standard: -/// https://github.com/onnx/onnx/blob/master/docs/Operators.md#LSTM -/// -/// \sa LSTMCell, RNNCell, GRUCell -/// -/// -/// \ingroup ov_ops_cpp_api -class OPENVINO_API OPENVINO_DEPRECATED( - "The class ov::op::v0::LSTMSequence is deprecated. It will be removed in 2025.0 release. Use " - "ov::op::v5::LSTMSequence instead.") LSTMSequence : public util::RNNCellBase { -public: - OPENVINO_OP("LSTMSequence", "opset1", util::RNNCellBase); - LSTMSequence() = default; - - using direction = RecurrentSequenceDirection; - - size_t get_default_output_index() const override { - return no_default_index(); - } - explicit LSTMSequence(const Output& X, - const Output& initial_hidden_state, - const Output& initial_cell_state, - const Output& sequence_lengths, - const Output& W, - const Output& R, - const Output& B, - const Output& P, - const std::int64_t hidden_size, - const direction lstm_direction, - LSTMWeightsFormat weights_format = LSTMWeightsFormat::IFCO, - const std::vector activations_alpha = {}, - const std::vector activations_beta = {}, - const std::vector activations = {"sigmoid", "tanh", "tanh"}, - const float clip_threshold = 0, - const bool input_forget = false); - - explicit LSTMSequence(const Output& X, - const Output& initial_hidden_state, - const Output& initial_cell_state, - const Output& sequence_lengths, - const Output& W, - const Output& R, - const Output& B, - const std::int64_t hidden_size, - const direction lstm_direction, - LSTMWeightsFormat weights_format = LSTMWeightsFormat::IFCO, - const std::vector& activations_alpha = {}, - const std::vector& activations_beta = {}, - const std::vector& activations = {"sigmoid", "tanh", "tanh"}, - const float clip_threshold = 0, - const bool input_forget = false); - - void validate_and_infer_types() override; - bool visit_attributes(AttributeVisitor& visitor) override; - - std::shared_ptr clone_with_new_inputs(const OutputVector& new_args) const override; - - std::vector get_activations_alpha() const { - return m_activations_alpha; - } - std::vector get_activations_beta() const { - return m_activations_beta; - } - std::vector get_activations() const { - return m_activations; - } - float get_clip_threshold() const { - return m_clip; - } - direction get_direction() const { - return m_direction; - } - void set_direction(const direction& dir) { - m_direction = dir; - } - std::int64_t get_hidden_size() const { - return m_hidden_size; - } - bool get_input_forget() const { - return m_input_forget; - } - LSTMWeightsFormat get_weights_format() const { - return m_weights_format; - } - -private: - direction m_direction; - bool m_input_forget; - LSTMWeightsFormat m_weights_format; -}; -} // namespace v0 - namespace v5 { /// /// \brief Class for lstm sequence node. diff --git a/src/core/include/openvino/opsets/opset1.hpp b/src/core/include/openvino/opsets/opset1.hpp index 80ea1b517e4080..e2a7a159299ad3 100644 --- a/src/core/include/openvino/opsets/opset1.hpp +++ b/src/core/include/openvino/opsets/opset1.hpp @@ -9,9 +9,7 @@ namespace ov { namespace opset1 { #define _OPENVINO_OP_REG(a, b) using b::a; -OPENVINO_SUPPRESS_DEPRECATED_START #include "openvino/opsets/opset1_tbl.hpp" -OPENVINO_SUPPRESS_DEPRECATED_END #undef _OPENVINO_OP_REG } // namespace opset1 } // namespace ov diff --git a/src/core/include/openvino/opsets/opset1_tbl.hpp b/src/core/include/openvino/opsets/opset1_tbl.hpp index 089df5896e664c..3008e450065926 100644 --- a/src/core/include/openvino/opsets/opset1_tbl.hpp +++ b/src/core/include/openvino/opsets/opset1_tbl.hpp @@ -88,7 +88,6 @@ _OPENVINO_OP_REG(LogicalOr, ov::op::v1) _OPENVINO_OP_REG(LogicalXor, ov::op::v1) _OPENVINO_OP_REG(LRN, ov::op::v0) _OPENVINO_OP_REG(LSTMCell, ov::op::v0) -_OPENVINO_OP_REG(LSTMSequence, ov::op::v0) _OPENVINO_OP_REG(MatMul, ov::op::v0) _OPENVINO_OP_REG(MaxPool, ov::op::v1) _OPENVINO_OP_REG(Maximum, ov::op::v1) diff --git a/src/core/include/openvino/opsets/opset2.hpp b/src/core/include/openvino/opsets/opset2.hpp index 3c0888c0a88487..bcdaa6a1bc354b 100644 --- a/src/core/include/openvino/opsets/opset2.hpp +++ b/src/core/include/openvino/opsets/opset2.hpp @@ -9,9 +9,7 @@ namespace ov { namespace opset2 { #define _OPENVINO_OP_REG(a, b) using b::a; -OPENVINO_SUPPRESS_DEPRECATED_START #include "openvino/opsets/opset2_tbl.hpp" -OPENVINO_SUPPRESS_DEPRECATED_END #undef _OPENVINO_OP_REG } // namespace opset2 } // namespace ov diff --git a/src/core/include/openvino/opsets/opset2_tbl.hpp b/src/core/include/openvino/opsets/opset2_tbl.hpp index 1d7c55ea74549e..e14887aaced94b 100644 --- a/src/core/include/openvino/opsets/opset2_tbl.hpp +++ b/src/core/include/openvino/opsets/opset2_tbl.hpp @@ -57,7 +57,6 @@ _OPENVINO_OP_REG(LogicalOr, ov::op::v1) _OPENVINO_OP_REG(LogicalXor, ov::op::v1) _OPENVINO_OP_REG(LRN, ov::op::v0) _OPENVINO_OP_REG(LSTMCell, ov::op::v0) -_OPENVINO_OP_REG(LSTMSequence, ov::op::v0) _OPENVINO_OP_REG(MatMul, ov::op::v0) _OPENVINO_OP_REG(MaxPool, ov::op::v1) _OPENVINO_OP_REG(Maximum, ov::op::v1) diff --git a/src/core/include/openvino/opsets/opset3.hpp b/src/core/include/openvino/opsets/opset3.hpp index 29cd23b89c1111..a4e99a21e1c643 100644 --- a/src/core/include/openvino/opsets/opset3.hpp +++ b/src/core/include/openvino/opsets/opset3.hpp @@ -9,9 +9,7 @@ namespace ov { namespace opset3 { #define _OPENVINO_OP_REG(a, b) using b::a; -OPENVINO_SUPPRESS_DEPRECATED_START #include "openvino/opsets/opset3_tbl.hpp" -OPENVINO_SUPPRESS_DEPRECATED_END #undef _OPENVINO_OP_REG } // namespace opset3 } // namespace ov diff --git a/src/core/include/openvino/opsets/opset3_tbl.hpp b/src/core/include/openvino/opsets/opset3_tbl.hpp index 3c34a6999f2696..5c16414a02e987 100644 --- a/src/core/include/openvino/opsets/opset3_tbl.hpp +++ b/src/core/include/openvino/opsets/opset3_tbl.hpp @@ -60,7 +60,6 @@ _OPENVINO_OP_REG(LogicalOr, ov::op::v1) _OPENVINO_OP_REG(LogicalXor, ov::op::v1) _OPENVINO_OP_REG(LRN, ov::op::v0) _OPENVINO_OP_REG(LSTMCell, ov::op::v0) -_OPENVINO_OP_REG(LSTMSequence, ov::op::v0) _OPENVINO_OP_REG(MatMul, ov::op::v0) _OPENVINO_OP_REG(MaxPool, ov::op::v1) _OPENVINO_OP_REG(Maximum, ov::op::v1) diff --git a/src/core/reference/include/openvino/reference/sequences.hpp b/src/core/reference/include/openvino/reference/sequences.hpp index af1946fcbe72c9..42b4083793b63b 100644 --- a/src/core/reference/include/openvino/reference/sequences.hpp +++ b/src/core/reference/include/openvino/reference/sequences.hpp @@ -380,131 +380,6 @@ void lstm_sequence(const char* X, } } -template -void lstm_sequence_v1(const char* X, - const Shape& X_shape, - const char* H, - const Shape& H_shape, - const char* C, - const Shape& C_shape, - const char* seq_lengths, - const Shape& seq_lengths_shape, - const char* W, - const Shape& W_shape, - const char* R, - const Shape& R_shape, - const char* B, - const Shape& B_shape, - const char* P, - const Shape& P_shape, - char* Y, - char* Ho, - char* Co, - const std::string& activation_f, - const std::string& activation_g, - const std::string& activation_h, - float clip, - const ov::op::LSTMWeightsFormat weight_format, - bool input_forget, - op::RecurrentSequenceDirection direction) { - OutputVector results; - if (direction == op::RecurrentSequenceDirection::FORWARD || direction == op::RecurrentSequenceDirection::REVERSE) { - CellArgs args; - args.activation_f = activation_f; - args.activation_g = activation_g; - args.activation_h = activation_h; - args.clip = clip; - args.weight_format = weight_format; - args.input_forget = input_forget; - std::vector inputs = {X, seq_lengths, H, C, W, R, B, P}; - std::vector outputs = {Y, Ho, Co}; - std::vector shapes = {X_shape, seq_lengths_shape, H_shape, C_shape, W_shape, R_shape, B_shape, P_shape}; - cell_pass(CellType::LSTM_v1, - inputs, - shapes, - outputs, - args, - direction == op::RecurrentSequenceDirection::REVERSE); - } else if (direction == op::RecurrentSequenceDirection::BIDIRECTIONAL) { - // Split bidirectional case to forward + reverse passes. - // split inputs - std::vector> H_split(2, std::vector(sizeof(T) * shape_size(H_shape) / 2)); - std::vector> C_split(2, std::vector(sizeof(T) * shape_size(C_shape) / 2)); - std::vector> W_split(2, std::vector(sizeof(T) * shape_size(W_shape) / 2)); - std::vector> R_split(2, std::vector(sizeof(T) * shape_size(R_shape) / 2)); - std::vector> B_split(2, std::vector(sizeof(T) * shape_size(B_shape) / 2)); - std::vector> P_split(2, std::vector(sizeof(T) * shape_size(P_shape) / 2)); - char* h_pointers[2] = {H_split[0].data(), H_split[1].data()}; - char* c_pointers[2] = {C_split[0].data(), C_split[1].data()}; - char* w_pointers[2] = {W_split[0].data(), W_split[1].data()}; - char* r_pointers[2] = {R_split[0].data(), R_split[1].data()}; - char* b_pointers[2] = {B_split[0].data(), B_split[1].data()}; - char* p_pointers[2] = {P_split[0].data(), P_split[1].data()}; - reference::split(H, H_shape, sizeof(T), 1, 2, h_pointers); - reference::split(C, C_shape, sizeof(T), 1, 2, c_pointers); - reference::split(W, W_shape, sizeof(T), 0, 2, w_pointers); - reference::split(R, R_shape, sizeof(T), 0, 2, r_pointers); - reference::split(B, B_shape, sizeof(T), 0, 2, b_pointers); - reference::split(P, P_shape, sizeof(T), 0, 2, p_pointers); - std::vector forward_res_y(sizeof(T) * H_shape[0] * H_shape[2] * X_shape[1]); - std::vector reverse_res_y(sizeof(T) * H_shape[0] * H_shape[2] * X_shape[1]); - std::vector> forward_res(2, std::vector(sizeof(T) * H_shape[0] * H_shape[2])); - std::vector> reverse_res(2, std::vector(sizeof(T) * H_shape[0] * H_shape[2])); - - CellArgs args; - args.activation_f = activation_f; - args.activation_g = activation_g; - args.activation_h = activation_h; - args.clip = clip; - args.weight_format = weight_format; - args.input_forget = input_forget; - std::vector shapes = {X_shape, seq_lengths_shape, H_shape, C_shape, W_shape, R_shape, B_shape, P_shape}; - // update H,C,W,R,B,P shapes after split - shapes[2][1] = 1; - shapes[3][1] = 1; - for (size_t i = 4; i < shapes.size(); ++i) { - shapes[i][0] = 1; - } - // forward pass - cell_pass( - CellType::LSTM_v1, - {X, seq_lengths, h_pointers[0], c_pointers[0], w_pointers[0], r_pointers[0], b_pointers[0], p_pointers[0]}, - shapes, - {forward_res_y.data(), forward_res[0].data(), forward_res[1].data()}, - args, - false); - // reverse pass - cell_pass( - CellType::LSTM_v1, - {X, seq_lengths, h_pointers[1], c_pointers[1], w_pointers[1], r_pointers[1], b_pointers[1], p_pointers[1]}, - shapes, - {reverse_res_y.data(), reverse_res[0].data(), reverse_res[1].data()}, - args, - true); - - // Stack together respective outputs from both forward and reverse passes. - std::vector in_shapes_y = {{H_shape[0], 1, X_shape[1], H_shape[2]}, - {H_shape[0], 1, X_shape[1], H_shape[2]}}; - std::vector in_shapes_h_c = {{H_shape[0], 1, H_shape[2]}, {H_shape[0], 1, H_shape[2]}}; - Shape output_shape_y{H_shape[0], 2, X_shape[1], H_shape[2]}; - Shape output_shape_h_c{H_shape[0], 2, H_shape[2]}; - - reference::concat({forward_res_y.data(), reverse_res_y.data()}, Y, in_shapes_y, output_shape_y, 1, sizeof(T)); - reference::concat({forward_res[0].data(), reverse_res[0].data()}, - Ho, - in_shapes_h_c, - output_shape_h_c, - 1, - sizeof(T)); - reference::concat({forward_res[1].data(), reverse_res[1].data()}, - Co, - in_shapes_h_c, - output_shape_h_c, - 1, - sizeof(T)); - } -} - template void gru_sequence(const char* X, const Shape& X_shape, diff --git a/src/core/shape_inference/include/lstm_sequence_shape_inference.hpp b/src/core/shape_inference/include/lstm_sequence_shape_inference.hpp index c2b5f1389dee7b..8b0daeb27663fb 100644 --- a/src/core/shape_inference/include/lstm_sequence_shape_inference.hpp +++ b/src/core/shape_inference/include/lstm_sequence_shape_inference.hpp @@ -7,32 +7,6 @@ namespace ov { namespace op { -namespace v0 { -OPENVINO_SUPPRESS_DEPRECATED_START -template -std::vector> shape_infer(const LSTMSequence* op, const std::vector& input_shapes) { - OPENVINO_SUPPRESS_DEPRECATED_END - constexpr auto num_gates = 4; - constexpr auto num_state_nodes = 2; - const auto output_shapes = - rnn::seq_base_shape_infer(op, input_shapes, num_gates, num_state_nodes, op->get_direction()); - // Validate rank and dimension for P input (the input doesn't exists in the next version of LSTM or other RNN based - // ops) The checks are compatible with the original restrictions of the v0::LSTMSequence - const auto& hidden_size = output_shapes[0][3]; - if (input_shapes.size() > 7 && input_shapes[7].is_static() && hidden_size.is_static()) { - const auto& p_pshape = input_shapes[7]; - NODE_VALIDATION_CHECK(op, p_pshape.rank().compatible(2), "Input tensor P should have rank equal 2."); - NODE_VALIDATION_CHECK(op, - p_pshape[1].compatible(hidden_size * (num_gates - 1)), - "Inorrect shape of P input. Second dimension is: ", - p_pshape[1], - ", expected: ", - hidden_size.get_length() * (num_gates - 1), - "."); - } - return output_shapes; -} -} // namespace v0 namespace v5 { template std::vector> shape_infer(const LSTMSequence* op, const std::vector& input_shapes) { diff --git a/src/core/src/op/lstm_sequence.cpp b/src/core/src/op/lstm_sequence.cpp index 4d9afa58f469b3..3f70b74e5ef22a 100644 --- a/src/core/src/op/lstm_sequence.cpp +++ b/src/core/src/op/lstm_sequence.cpp @@ -10,155 +10,6 @@ #include "openvino/op/util/recurrent_sequence.hpp" namespace ov { -OPENVINO_SUPPRESS_DEPRECATED_START -op::v0::LSTMSequence::LSTMSequence(const Output& X, - const Output& initial_hidden_state, - const Output& initial_cell_state, - const Output& sequence_lengths, - const Output& W, - const Output& R, - const Output& B, - const Output& P, - const std::int64_t hidden_size, - const LSTMSequence::direction lstm_direction, - LSTMWeightsFormat weights_format, - const std::vector activations_alpha, - const std::vector activations_beta, - const std::vector activations, - const float clip_threshold, - const bool input_forget) - : RNNCellBase({X, initial_hidden_state, initial_cell_state, sequence_lengths, W, R, B, P}, - hidden_size, - clip_threshold, - activations, - activations_alpha, - activations_beta), - m_direction(lstm_direction), - m_input_forget(input_forget), - m_weights_format(weights_format) { - constructor_validate_and_infer_types(); -} - -op::v0::LSTMSequence::LSTMSequence(const Output& X, - const Output& initial_hidden_state, - const Output& initial_cell_state, - const Output& sequence_lengths, - const Output& W, - const Output& R, - const Output& B, - const std::int64_t hidden_size, - const LSTMSequence::direction lstm_direction, - LSTMWeightsFormat weights_format, - const std::vector& activations_alpha, - const std::vector& activations_beta, - const std::vector& activations, - const float clip_threshold, - const bool input_forget) - : op::v0::LSTMSequence( - X, - initial_hidden_state, - initial_cell_state, - sequence_lengths, - W, - R, - B, - Constant::create(element::f32, - Shape{(lstm_direction == LSTMSequence::direction::BIDIRECTIONAL ? 2UL : 1UL), - 3UL * static_cast(hidden_size)}, - std::vector{0.f}), - hidden_size, - lstm_direction, - weights_format, - activations_alpha, - activations_beta, - activations, - clip_threshold, - input_forget) {} - -bool op::v0::LSTMSequence::visit_attributes(AttributeVisitor& visitor) { - OV_OP_SCOPE(v0_LSTMSequence_visit_attributes); - visitor.on_attribute("hidden_size", m_hidden_size); - visitor.on_attribute("activations", m_activations); - visitor.on_attribute("activations_alpha", m_activations_alpha); - visitor.on_attribute("activations_beta", m_activations_beta); - visitor.on_attribute("clip", m_clip); - visitor.on_attribute("direction", m_direction); - - visitor.on_attribute("input_forget", m_input_forget); - visitor.on_attribute("weights_format", m_weights_format); - return true; -} - -std::shared_ptr op::v0::LSTMSequence::clone_with_new_inputs(const OutputVector& new_args) const { - OV_OP_SCOPE(v0_LSTMSequence_clone_with_new_inputs); - check_new_args_count(this, new_args); - if (new_args.size() == 8) { - return std::make_shared(new_args.at(0), // X - new_args.at(1), // initial_hidden_state - new_args.at(2), // initial_cell_state - new_args.at(3), // sequence_lengths - new_args.at(4), // W - new_args.at(5), // R - new_args.at(6), // B - new_args.at(7), // P - m_hidden_size, - m_direction, - m_weights_format, - m_activations_alpha, - m_activations_beta, - m_activations, - m_clip, - m_input_forget); - } else if (new_args.size() == 7) { - return std::make_shared(new_args.at(0), // X - new_args.at(1), // initial_hidden_state - new_args.at(2), // initial_cell_state - new_args.at(3), // sequence_lengths - new_args.at(4), // W - new_args.at(5), // R - new_args.at(6), // B - m_hidden_size, - m_direction, - m_weights_format, - m_activations_alpha, - m_activations_beta, - m_activations, - m_clip, - m_input_forget); - } else { - OPENVINO_THROW("Incorrect number of new arguments"); - } -} - -void op::v0::LSTMSequence::validate_and_infer_types() { - OV_OP_SCOPE(v0_LSTMSequence_validate_and_infer_types); - auto result_et = element::dynamic; - - // Validate input types and save result for output type - NODE_VALIDATION_CHECK(this, - element::Type::merge(result_et, result_et, get_input_element_type(0)) && - element::Type::merge(result_et, result_et, get_input_element_type(1)) && - element::Type::merge(result_et, result_et, get_input_element_type(2)) && - element::Type::merge(result_et, result_et, get_input_element_type(4)) && - element::Type::merge(result_et, result_et, get_input_element_type(5)) && - element::Type::merge(result_et, result_et, get_input_element_type(6)), - "Element types for X, initial_hidden_state, initial_cell_state, W, R and B inputs do " - "not match."); - - // Mark inputs which are relevant to output parameters - for (size_t i = 0; i <= 6; ++i) - set_input_is_relevant_to_shape(i); - - const auto input_shapes = ov::util::get_node_input_partial_shapes(*this); - auto output_shapes = shape_infer(this, input_shapes); - - // Set output size, type and shape - set_output_type(0, result_et, output_shapes[0]); - set_output_type(1, result_et, output_shapes[1]); - set_output_type(2, result_et, output_shapes[2]); -} -OPENVINO_SUPPRESS_DEPRECATED_END - bool op::v5::LSTMSequence::visit_attributes(AttributeVisitor& visitor) { OV_OP_SCOPE(v5_LSTMSequence_visit_attributes); visitor.on_attribute("direction", m_direction); diff --git a/src/core/src/pass/low_latency.cpp b/src/core/src/pass/low_latency.cpp index 7ef4fcd5e84cd8..4b9f606b3e4b28 100644 --- a/src/core/src/pass/low_latency.cpp +++ b/src/core/src/pass/low_latency.cpp @@ -158,26 +158,7 @@ std::vector> process_sequence(const std::sha std::shared_ptr cell; std::vector> new_assigns; bool unroll = false; - OPENVINO_SUPPRESS_DEPRECATED_START - if (auto lstm_seq_v0 = std::dynamic_pointer_cast(op)) { - unroll = need_unroll(op); - new_assigns = replace_with_memory(op, {1, 2}, m_use_const_initializer, to); - if (unroll) { - auto inputs = prepare_inputs(op, 3, to); - cell = to.make(inputs[0], - inputs[1], - inputs[2], - inputs[3], - inputs[4], - inputs[5], - lstm_seq_v0->get_hidden_size(), - lstm_seq_v0->get_activations(), - lstm_seq_v0->get_activations_alpha(), - lstm_seq_v0->get_activations_beta(), - lstm_seq_v0->get_clip_threshold()); - } - OPENVINO_SUPPRESS_DEPRECATED_END - } else if (auto lstm_seq_v5 = std::dynamic_pointer_cast(op)) { + if (auto lstm_seq_v5 = std::dynamic_pointer_cast(op)) { unroll = need_unroll(op); new_assigns = replace_with_memory(op, {1, 2}, m_use_const_initializer, to); if (unroll) { diff --git a/src/core/tests/opset.cpp b/src/core/tests/opset.cpp index 3a2a590de43edf..65c79dc9432439 100644 --- a/src/core/tests/opset.cpp +++ b/src/core/tests/opset.cpp @@ -61,9 +61,9 @@ TEST_P(OpsetTests, opset_dump) { INSTANTIATE_TEST_SUITE_P(opset, OpsetTests, - testing::Values(OpsetTestParams{ov::get_opset1, 110}, - OpsetTestParams{ov::get_opset2, 112}, - OpsetTestParams{ov::get_opset3, 127}, + testing::Values(OpsetTestParams{ov::get_opset1, 109}, + OpsetTestParams{ov::get_opset2, 111}, + OpsetTestParams{ov::get_opset3, 126}, OpsetTestParams{ov::get_opset4, 137}, OpsetTestParams{ov::get_opset5, 145}, OpsetTestParams{ov::get_opset6, 152}, diff --git a/src/core/tests/type_prop/lstm_sequence.cpp b/src/core/tests/type_prop/lstm_sequence.cpp index 698206e25a5562..80da26340fd144 100644 --- a/src/core/tests/type_prop/lstm_sequence.cpp +++ b/src/core/tests/type_prop/lstm_sequence.cpp @@ -89,42 +89,6 @@ shared_ptr lstm_seq_direction_initialization(const recurre return lstm_sequence; } - -OPENVINO_SUPPRESS_DEPRECATED_START -shared_ptr lstm_seq_v0_tensor_initialization(const recurrent_sequence_parameters& param) { - auto batch_size = param.batch_size; - auto seq_length = param.seq_length; - auto input_size = param.input_size; - auto num_directions = param.num_directions; - auto hidden_size = param.hidden_size; - auto et = param.et; - - const auto X = make_shared(et, PartialShape{batch_size, seq_length, input_size}); - const auto initial_hidden_state = - make_shared(et, PartialShape{batch_size, num_directions, hidden_size}); - const auto initial_cell_state = - make_shared(et, PartialShape{batch_size, num_directions, hidden_size}); - const auto sequence_lengths = make_shared(et, PartialShape{batch_size}); - const auto W = make_shared(et, PartialShape{num_directions, hidden_size * 4, input_size}); - const auto R = make_shared(et, PartialShape{num_directions, hidden_size * 4, hidden_size}); - const auto B = make_shared(et, PartialShape{num_directions, hidden_size * 4}); - const auto P = make_shared(et, PartialShape{num_directions, hidden_size * 3}); - - const auto lstm_sequence = make_shared(); - - lstm_sequence->set_argument(0, X); - lstm_sequence->set_argument(1, initial_hidden_state); - lstm_sequence->set_argument(2, initial_cell_state); - lstm_sequence->set_argument(3, sequence_lengths); - lstm_sequence->set_argument(4, W); - lstm_sequence->set_argument(5, R); - lstm_sequence->set_argument(6, B); - lstm_sequence->set_argument(7, P); - - return lstm_sequence; -} -OPENVINO_SUPPRESS_DEPRECATED_END - } // namespace TEST(type_prop, lstm_sequence_forward) { @@ -173,56 +137,6 @@ TEST(type_prop, lstm_sequence_forward) { EXPECT_EQ(lstm_sequence->get_output_shape(2), (Shape{batch_size, num_directions, hidden_size})); } -TEST(type_prop, lstm_sequence_v0_forward) { - const size_t batch_size = 8; - const size_t num_directions = 1; - const size_t seq_length = 6; - const size_t input_size = 4; - const size_t hidden_size = 128; - - const auto X = make_shared(element::f32, Shape{batch_size, seq_length, input_size}); - const auto initial_hidden_state = - make_shared(element::f32, Shape{batch_size, num_directions, hidden_size}); - const auto initial_cell_state = - make_shared(element::f32, Shape{batch_size, num_directions, hidden_size}); - const auto sequence_lengths = make_shared(element::i32, Shape{batch_size}); - const auto W = make_shared(element::f32, Shape{num_directions, 4 * hidden_size, input_size}); - const auto R = make_shared(element::f32, Shape{num_directions, 4 * hidden_size, hidden_size}); - const auto B = make_shared(element::f32, Shape{num_directions, 4 * hidden_size}); - const auto P = make_shared(element::f32, Shape{num_directions, 3 * hidden_size}); - - const auto lstm_direction = op::RecurrentSequenceDirection::FORWARD; - - OPENVINO_SUPPRESS_DEPRECATED_START - const auto lstm_sequence = make_shared(X, - initial_hidden_state, - initial_cell_state, - sequence_lengths, - W, - R, - B, - P, - hidden_size, - lstm_direction); - - EXPECT_EQ(lstm_sequence->get_hidden_size(), hidden_size); - EXPECT_EQ(lstm_sequence->get_direction(), op::RecurrentSequenceDirection::FORWARD); - EXPECT_TRUE(lstm_sequence->get_activations_alpha().empty()); - EXPECT_TRUE(lstm_sequence->get_activations_beta().empty()); - EXPECT_EQ(lstm_sequence->get_activations()[0], "sigmoid"); - EXPECT_EQ(lstm_sequence->get_activations()[1], "tanh"); - EXPECT_EQ(lstm_sequence->get_activations()[2], "tanh"); - EXPECT_EQ(lstm_sequence->get_clip_threshold(), 0.f); - EXPECT_EQ(lstm_sequence->get_output_element_type(0), element::f32); - EXPECT_EQ(lstm_sequence->outputs().size(), 3); - EXPECT_EQ(lstm_sequence->get_output_shape(0), (Shape{batch_size, num_directions, seq_length, hidden_size})); - EXPECT_EQ(lstm_sequence->get_output_element_type(1), element::f32); - EXPECT_EQ(lstm_sequence->get_output_shape(1), (Shape{batch_size, num_directions, hidden_size})); - EXPECT_EQ(lstm_sequence->get_output_element_type(2), element::f32); - EXPECT_EQ(lstm_sequence->get_output_shape(2), (Shape{batch_size, num_directions, hidden_size})); - OPENVINO_SUPPRESS_DEPRECATED_END -} - TEST(type_prop, lstm_sequence_bidirectional) { const size_t batch_size = 24; const size_t num_directions = 2; @@ -273,68 +187,6 @@ TEST(type_prop, lstm_sequence_bidirectional) { EXPECT_EQ(lstm_sequence->get_output_shape(2), (Shape{batch_size, num_directions, hidden_size})); } -TEST(type_prop, lstm_sequence_v0_bidirectional) { - const size_t batch_size = 24; - const size_t num_directions = 2; - const size_t seq_length = 12; - const size_t input_size = 8; - const size_t hidden_size = 256; - const bool input_forget = true; - const ov::op::LSTMWeightsFormat weights_format = ov::op::LSTMWeightsFormat::FICO; - const float clip_threshold = 3.5f; - - const auto X = make_shared(element::f32, Shape{batch_size, seq_length, input_size}); - const auto initial_hidden_state = - make_shared(element::f32, Shape{batch_size, num_directions, hidden_size}); - const auto initial_cell_state = - make_shared(element::f32, Shape{batch_size, num_directions, hidden_size}); - const auto sequence_lengths = make_shared(element::i32, Shape{batch_size}); - const auto W = make_shared(element::f32, Shape{num_directions, 4 * hidden_size, input_size}); - const auto R = make_shared(element::f32, Shape{num_directions, 4 * hidden_size, hidden_size}); - const auto B = make_shared(element::f32, Shape{num_directions, 4 * hidden_size}); - const auto P = make_shared(element::f32, Shape{num_directions, 3 * hidden_size}); - - const auto lstm_direction = opset5::LSTMSequence::direction::BIDIRECTIONAL; - const std::vector activations_alpha = {2.7f, 7.0f, 32.367f}; - const std::vector activations_beta = {0.0f, 5.49f, 6.0f}; - const std::vector activations = {"tanh", "sigmoid", "sigmoid"}; - - OPENVINO_SUPPRESS_DEPRECATED_START - const auto lstm_sequence = make_shared(X, - initial_hidden_state, - initial_cell_state, - sequence_lengths, - W, - R, - B, - hidden_size, - lstm_direction, - weights_format, - activations_alpha, - activations_beta, - activations, - clip_threshold, - input_forget); - - EXPECT_EQ(lstm_sequence->get_hidden_size(), hidden_size); - EXPECT_EQ(lstm_sequence->get_direction(), opset5::LSTMSequence::direction::BIDIRECTIONAL); - EXPECT_EQ(lstm_sequence->get_activations_alpha(), activations_alpha); - EXPECT_EQ(lstm_sequence->get_activations_beta(), activations_beta); - EXPECT_EQ(lstm_sequence->get_activations()[0], "tanh"); - EXPECT_EQ(lstm_sequence->get_activations()[1], "sigmoid"); - EXPECT_EQ(lstm_sequence->get_activations()[2], "sigmoid"); - EXPECT_EQ(lstm_sequence->get_clip_threshold(), 3.5f); - EXPECT_EQ(lstm_sequence->get_input_forget(), true); - EXPECT_EQ(lstm_sequence->get_weights_format(), ov::op::LSTMWeightsFormat::FICO); - EXPECT_EQ(lstm_sequence->get_output_element_type(0), element::f32); - EXPECT_EQ(lstm_sequence->get_output_shape(0), (Shape{batch_size, num_directions, seq_length, hidden_size})); - EXPECT_EQ(lstm_sequence->get_output_element_type(1), element::f32); - EXPECT_EQ(lstm_sequence->get_output_shape(1), (Shape{batch_size, num_directions, hidden_size})); - EXPECT_EQ(lstm_sequence->get_output_element_type(2), element::f32); - EXPECT_EQ(lstm_sequence->get_output_shape(2), (Shape{batch_size, num_directions, hidden_size})); - OPENVINO_SUPPRESS_DEPRECATED_END -} - TEST(type_prop, lstm_sequence_dynamic_batch_size) { recurrent_sequence_parameters param; @@ -573,214 +425,3 @@ TEST(type_prop, lstm_sequence_invalid_input_direction_num_mismatch) { check_error(op::RecurrentSequenceDirection::FORWARD, 2); check_error(op::RecurrentSequenceDirection::REVERSE, 2); } - -OPENVINO_SUPPRESS_DEPRECATED_START -TEST(type_prop, lstm_sequence_v0_dynamic_num_directions) { - recurrent_sequence_parameters param; - - param.batch_size = 24; - param.num_directions = Dimension::dynamic(); - param.seq_length = 12; - param.input_size = 8; - param.hidden_size = 256; - param.et = element::f32; - - auto lstm_sequence = lstm_seq_v0_tensor_initialization(param); - lstm_sequence->validate_and_infer_types(); - - EXPECT_EQ(lstm_sequence->get_output_partial_shape(0), - (PartialShape{param.batch_size, 1, param.seq_length, param.hidden_size})); - EXPECT_EQ(lstm_sequence->get_output_partial_shape(1), (PartialShape{param.batch_size, 1, param.hidden_size})); - EXPECT_EQ(lstm_sequence->get_output_partial_shape(2), (PartialShape{param.batch_size, 1, param.hidden_size})); - EXPECT_EQ(lstm_sequence->get_output_element_type(0), param.et); - EXPECT_EQ(lstm_sequence->get_output_element_type(1), param.et); - EXPECT_EQ(lstm_sequence->get_output_element_type(2), param.et); -} - -TEST(type_prop, lstm_sequence_v0_dynamic_seq_length) { - recurrent_sequence_parameters param; - - param.batch_size = 24; - param.num_directions = 1; - param.seq_length = Dimension::dynamic(); - param.input_size = 8; - param.hidden_size = 256; - param.et = element::f32; - - auto lstm_sequence = lstm_seq_v0_tensor_initialization(param); - lstm_sequence->validate_and_infer_types(); - - EXPECT_EQ(lstm_sequence->get_output_partial_shape(0), - (PartialShape{param.batch_size, param.num_directions, param.seq_length, param.hidden_size})); - EXPECT_EQ(lstm_sequence->get_output_partial_shape(1), - (PartialShape{param.batch_size, param.num_directions, param.hidden_size})); - EXPECT_EQ(lstm_sequence->get_output_partial_shape(2), - (PartialShape{param.batch_size, param.num_directions, param.hidden_size})); - EXPECT_EQ(lstm_sequence->get_output_element_type(0), param.et); - EXPECT_EQ(lstm_sequence->get_output_element_type(1), param.et); - EXPECT_EQ(lstm_sequence->get_output_element_type(2), param.et); -} - -TEST(type_prop, lstm_sequence_v0_dynamic_hidden_size) { - recurrent_sequence_parameters param; - - param.batch_size = 24; - param.num_directions = 1; - param.seq_length = 12; - param.input_size = 8; - param.hidden_size = Dimension::dynamic(); - param.et = element::f32; - - auto lstm_sequence = lstm_seq_v0_tensor_initialization(param); - lstm_sequence->validate_and_infer_types(); - - EXPECT_EQ(lstm_sequence->get_output_partial_shape(0), - (PartialShape{param.batch_size, param.num_directions, param.seq_length, param.hidden_size})); - EXPECT_EQ(lstm_sequence->get_output_partial_shape(1), - (PartialShape{param.batch_size, param.num_directions, param.hidden_size})); - EXPECT_EQ(lstm_sequence->get_output_partial_shape(2), - (PartialShape{param.batch_size, param.num_directions, param.hidden_size})); - EXPECT_EQ(lstm_sequence->get_output_element_type(0), param.et); - EXPECT_EQ(lstm_sequence->get_output_element_type(1), param.et); - EXPECT_EQ(lstm_sequence->get_output_element_type(2), param.et); -} - -TEST(type_prop, lstm_sequence_v0_dynamic_inputs) { - recurrent_sequence_parameters param; - - param.batch_size = Dimension::dynamic(); - param.input_size = Dimension::dynamic(); - param.hidden_size = Dimension::dynamic(); - param.num_directions = Dimension::dynamic(); - param.seq_length = Dimension::dynamic(); - param.et = element::f32; - - auto lstm_sequence = lstm_seq_v0_tensor_initialization(param); - lstm_sequence->validate_and_infer_types(); - - EXPECT_EQ(lstm_sequence->get_output_partial_shape(0), - (PartialShape{param.batch_size, 1, param.seq_length, param.hidden_size})); - EXPECT_EQ(lstm_sequence->get_output_partial_shape(1), (PartialShape{param.batch_size, 1, param.hidden_size})); - EXPECT_EQ(lstm_sequence->get_output_partial_shape(2), (PartialShape{param.batch_size, 1, param.hidden_size})); - EXPECT_EQ(lstm_sequence->get_output_element_type(0), param.et); - EXPECT_EQ(lstm_sequence->get_output_element_type(1), param.et); - EXPECT_EQ(lstm_sequence->get_output_element_type(2), param.et); -} - -TEST(type_prop, lstm_sequence_v0_invalid_input_dimension) { - recurrent_sequence_parameters param; - - param.batch_size = 24; - param.num_directions = 2; - param.seq_length = 12; - param.input_size = 8; - param.hidden_size = 256; - param.et = element::f32; - - auto lstm_sequence = lstm_seq_v0_tensor_initialization(param); - auto invalid_rank0_tensor = make_shared(param.et, PartialShape{}); - - // Validate invalid rank0 tensor for all inputs: X, initial_hidden_state, initial_cell_state W, - // R, B - for (size_t i = 0; i < lstm_sequence->get_input_size(); i++) { - lstm_sequence = lstm_seq_v0_tensor_initialization(param); - lstm_sequence->set_argument(i, invalid_rank0_tensor); - ASSERT_THROW(lstm_sequence->validate_and_infer_types(), ov::AssertFailure) - << "LSTMSequence node was created with invalid data."; - } -} - -TEST(type_prop, lstm_sequence_v0_input_dynamic_rank) { - recurrent_sequence_parameters param; - param.batch_size = 24; - param.num_directions = 1; - param.seq_length = 12; - param.input_size = 8; - param.hidden_size = 256; - param.et = element::f32; - - auto op = lstm_seq_tensor_initialization(param); - auto dynamic_tensor = make_shared(param.et, PartialShape::dynamic(Rank::dynamic())); - - for (size_t i = 0; i < op->get_input_size(); i++) { - auto op = lstm_seq_v0_tensor_initialization(param); - op->set_argument(i, dynamic_tensor); - op->validate_and_infer_types(); - if (i == 0) { // X input - EXPECT_EQ(op->get_output_partial_shape(0), - (PartialShape{param.batch_size, param.num_directions, -1, param.hidden_size})); - } else { - EXPECT_EQ(op->get_output_partial_shape(0), - (PartialShape{param.batch_size, param.num_directions, param.seq_length, param.hidden_size})); - } - EXPECT_EQ(op->get_output_partial_shape(1), - (PartialShape{param.batch_size, param.num_directions, param.hidden_size})); - EXPECT_EQ(op->get_output_partial_shape(2), - (PartialShape{param.batch_size, param.num_directions, param.hidden_size})); - - EXPECT_EQ(op->get_output_element_type(0), param.et); - EXPECT_EQ(op->get_output_element_type(1), param.et); - } -} - -TEST(type_prop, lstm_sequence_v0_invalid_input_direction) { - recurrent_sequence_parameters param; - - param.batch_size = 24; - param.num_directions = 3; - param.seq_length = 12; - param.input_size = 8; - param.hidden_size = 256; - param.et = element::f32; - - auto lstm_sequence = lstm_seq_v0_tensor_initialization(param); - try { - lstm_sequence->validate_and_infer_types(); - FAIL() << "LSTMSequence node was created with invalid data."; - } catch (const NodeValidationFailure& error) { - EXPECT_HAS_SUBSTRING( - error.what(), - std::string("Dimension `num_directions` doesn't match to other inputs or `direction` attribute")); - } - - param.num_directions = 2; // 2 is also not allowed for default 'm_direction' = FORWARD - lstm_sequence = lstm_seq_v0_tensor_initialization(param); - try { - lstm_sequence->validate_and_infer_types(); - FAIL() << "LSTMSequence node was created with invalid data."; - } catch (const NodeValidationFailure& error) { - EXPECT_HAS_SUBSTRING( - error.what(), - std::string("Dimension `num_directions` doesn't match to other inputs or `direction` attribute")); - } -} - -TEST(type_prop, lstm_sequence_v0_invalid_input_P) { - recurrent_sequence_parameters param; - - param.batch_size = 24; - param.num_directions = 1; - param.seq_length = 12; - param.input_size = 8; - param.hidden_size = 256; - param.et = element::f32; - - auto lstm_sequence = lstm_seq_v0_tensor_initialization(param); - auto P = make_shared(element::f32, PartialShape{param.hidden_size * 5}); - lstm_sequence->set_argument(7, P); - try { - lstm_sequence->validate_and_infer_types(); - FAIL() << "LSTMSequence node was created with invalid data."; - } catch (const NodeValidationFailure& error) { - EXPECT_HAS_SUBSTRING(error.what(), "Input tensor P should have rank equal 2"); - } - P = make_shared(element::f32, PartialShape{param.num_directions, param.hidden_size * 5}); - lstm_sequence->set_argument(7, P); - try { - lstm_sequence->validate_and_infer_types(); - FAIL() << "LSTMSequence node was created with invalid data."; - } catch (const NodeValidationFailure& error) { - EXPECT_HAS_SUBSTRING(error.what(), "Inorrect shape of P input. Second dimension is: 1280, expected: 768"); - } - OPENVINO_SUPPRESS_DEPRECATED_END -} diff --git a/src/core/tests/type_prop/rnn_seq_base.cpp b/src/core/tests/type_prop/rnn_seq_base.cpp index 9b3c1b7f8f25df..db38622333d67f 100644 --- a/src/core/tests/type_prop/rnn_seq_base.cpp +++ b/src/core/tests/type_prop/rnn_seq_base.cpp @@ -83,11 +83,7 @@ class RNNSeqBaseTest : public TypePropOpTest { return std::make_shared(X, H_t, sequence_lengths, W, R, B, p.hidden_size.get_max_length(), p.direction); } - OPENVINO_SUPPRESS_DEPRECATED_START - template < - typename T = TOp, - typename std::enable_if::value || std::is_same::value, - bool>::type = true> + template ::value, bool>::type = true> std::shared_ptr make_rnn_seq_based_op(RNNSeqParams& p, bool use_default_ctor = false) { p.gates_count = 4; p.outputs_size = 3; @@ -109,19 +105,12 @@ class RNNSeqBaseTest : public TypePropOpTest { op->set_direction(p.direction); op->set_hidden_size(p.hidden_size.get_max_length()); auto inputs = OutputVector{X, H_t, C_t, sequence_lengths, W, R, B}; - if (ov::is_type(op)) { - const auto P = - make_shared(p.et, - PartialShape{p.num_directions, p.hidden_size * (p.gates_count - 1)}); - inputs.push_back(P); - } op->set_arguments(inputs); op->validate_and_infer_types(); return op; } return std::make_shared(X, H_t, C_t, sequence_lengths, W, R, B, p.hidden_size.get_max_length(), p.direction); } - OPENVINO_SUPPRESS_DEPRECATED_END }; TYPED_TEST_SUITE_P(RNNSeqBaseTest); @@ -284,9 +273,7 @@ REGISTER_TYPED_TEST_SUITE_P(RNNSeqBaseTest, interval_symbols_dims_shape_infer_REVERSE, interval_symbols_dims_shape_infer_BIDIRECTIONAL); -OPENVINO_SUPPRESS_DEPRECATED_START -using RNNSeqBaseTypes = Types; -OPENVINO_SUPPRESS_DEPRECATED_END +using RNNSeqBaseTypes = Types; INSTANTIATE_TYPED_TEST_SUITE_P(type_prop, RNNSeqBaseTest, RNNSeqBaseTypes); } // namespace rnn_seq_test diff --git a/src/core/tests/visitors/op/lstm_sequence.cpp b/src/core/tests/visitors/op/lstm_sequence.cpp index 0d386ba7bc4ccf..f9819d9ae84bc9 100644 --- a/src/core/tests/visitors/op/lstm_sequence.cpp +++ b/src/core/tests/visitors/op/lstm_sequence.cpp @@ -61,63 +61,3 @@ TEST(attributes, lstm_sequence_op) { EXPECT_EQ(g_lstm_sequence->get_clip(), lstm_sequence->get_clip()); EXPECT_EQ(g_lstm_sequence->get_direction(), lstm_sequence->get_direction()); } - -OPENVINO_SUPPRESS_DEPRECATED_START -TEST(attributes, lstm_sequence_v1_op) { - NodeBuilder::opset().insert(); - - const size_t batch_size = 4; - const size_t num_directions = 2; - const size_t seq_length = 8; - const size_t input_size = 16; - const size_t hidden_size = 64; - - const auto X = make_shared(element::f32, Shape{batch_size, seq_length, input_size}); - const auto initial_hidden_state = - make_shared(element::f32, Shape{batch_size, num_directions, hidden_size}); - const auto initial_cell_state = - make_shared(element::f32, Shape{batch_size, num_directions, hidden_size}); - const auto sequence_lengths = make_shared(element::i32, Shape{batch_size}); - const auto W = make_shared(element::f32, Shape{num_directions, 4 * hidden_size, input_size}); - const auto R = - make_shared(element::f32, Shape{num_directions, 4 * hidden_size, hidden_size}); - const auto B = make_shared(element::f32, Shape{num_directions, 4 * hidden_size}); - const auto P = make_shared(element::f32, Shape{num_directions, 3 * hidden_size}); - - const auto lstm_direction = op::RecurrentSequenceDirection::BIDIRECTIONAL; - const ov::op::LSTMWeightsFormat weights_format = ov::op::LSTMWeightsFormat::FICO; - const std::vector activations_alpha = {1, 2, 3}; - const std::vector activations_beta = {4, 5, 6}; - const std::vector activations = {"tanh", "sigmoid", "tanh"}; - const float clip_threshold = 0.5f; - const bool input_forget = true; - - const auto lstm_sequence = make_shared(X, - initial_hidden_state, - initial_cell_state, - sequence_lengths, - W, - R, - B, - P, - hidden_size, - lstm_direction, - weights_format, - activations_alpha, - activations_beta, - activations, - clip_threshold, - input_forget); - NodeBuilder builder(lstm_sequence, {X, initial_hidden_state, initial_cell_state, sequence_lengths, W, R, B, P}); - auto g_lstm_sequence = ov::as_type_ptr(builder.create()); - - EXPECT_EQ(g_lstm_sequence->get_hidden_size(), lstm_sequence->get_hidden_size()); - EXPECT_EQ(g_lstm_sequence->get_activations(), lstm_sequence->get_activations()); - EXPECT_EQ(g_lstm_sequence->get_activations_alpha(), lstm_sequence->get_activations_alpha()); - EXPECT_EQ(g_lstm_sequence->get_activations_beta(), lstm_sequence->get_activations_beta()); - EXPECT_EQ(g_lstm_sequence->get_clip_threshold(), lstm_sequence->get_clip_threshold()); - EXPECT_EQ(g_lstm_sequence->get_direction(), lstm_sequence->get_direction()); - EXPECT_EQ(g_lstm_sequence->get_input_forget(), lstm_sequence->get_input_forget()); - EXPECT_EQ(g_lstm_sequence->get_weights_format(), lstm_sequence->get_weights_format()); -} -OPENVINO_SUPPRESS_DEPRECATED_END diff --git a/src/frontends/onnx/frontend/src/op/lstm.cpp b/src/frontends/onnx/frontend/src/op/lstm.cpp index 6b934db7d13071..1c0efbbe6b9454 100644 --- a/src/frontends/onnx/frontend/src/op/lstm.cpp +++ b/src/frontends/onnx/frontend/src/op/lstm.cpp @@ -211,41 +211,19 @@ ov::OutputVector lstm(const ov::frontend::onnx::Node& node) { LSTMAttributes attributes{node}; std::shared_ptr lstm_sequence; - if ((input_map.at(LSTMInput::LSTM_INPUT_P).get_names() != std::unordered_set({"P_blank"})) || - (attributes.m_input_forget == true)) { - OPENVINO_SUPPRESS_DEPRECATED_START - lstm_sequence = std::make_shared(input_map.at(LSTMInput::LSTM_INPUT_X), - input_map.at(LSTMInput::LSTM_INPUT_INIT_H), - input_map.at(LSTMInput::LSTM_INPUT_INIT_C), - input_map.at(LSTMInput::LSTM_INPUT_SEQ_LENGTHS), - input_map.at(LSTMInput::LSTM_INPUT_W), - input_map.at(LSTMInput::LSTM_INPUT_R), - input_map.at(LSTMInput::LSTM_INPUT_B), - input_map.at(LSTMInput::LSTM_INPUT_P), - attributes.m_hidden_size, - attributes.m_direction, - ov::op::LSTMWeightsFormat::FICO, - attributes.m_activation_alpha, - attributes.m_activation_beta, - attributes.m_activations, - attributes.m_clip_threshold, - attributes.m_input_forget); - OPENVINO_SUPPRESS_DEPRECATED_END - } else { - lstm_sequence = std::make_shared(input_map.at(LSTMInput::LSTM_INPUT_X), - input_map.at(LSTMInput::LSTM_INPUT_INIT_H), - input_map.at(LSTMInput::LSTM_INPUT_INIT_C), - input_map.at(LSTMInput::LSTM_INPUT_SEQ_LENGTHS), - input_map.at(LSTMInput::LSTM_INPUT_W), - input_map.at(LSTMInput::LSTM_INPUT_R), - input_map.at(LSTMInput::LSTM_INPUT_B), - attributes.m_hidden_size, - attributes.m_direction, - attributes.m_activation_alpha, - attributes.m_activation_beta, - attributes.m_activations, - attributes.m_clip_threshold); - } + lstm_sequence = std::make_shared(input_map.at(LSTMInput::LSTM_INPUT_X), + input_map.at(LSTMInput::LSTM_INPUT_INIT_H), + input_map.at(LSTMInput::LSTM_INPUT_INIT_C), + input_map.at(LSTMInput::LSTM_INPUT_SEQ_LENGTHS), + input_map.at(LSTMInput::LSTM_INPUT_W), + input_map.at(LSTMInput::LSTM_INPUT_R), + input_map.at(LSTMInput::LSTM_INPUT_B), + attributes.m_hidden_size, + attributes.m_direction, + attributes.m_activation_alpha, + attributes.m_activation_beta, + attributes.m_activations, + attributes.m_clip_threshold); const auto Y = lstm_sequence->output(0); const auto Y_h = lstm_sequence->output(1); diff --git a/src/frontends/onnx/tests/models/lstm_bdir_short_input_seq.prototxt b/src/frontends/onnx/tests/models/lstm_bdir_short_input_seq.prototxt deleted file mode 100644 index 57b723e44b6914..00000000000000 --- a/src/frontends/onnx/tests/models/lstm_bdir_short_input_seq.prototxt +++ /dev/null @@ -1,235 +0,0 @@ -ir_version: 5 -graph { - node { - input: "X" - input: "W" - input: "R" - input: "B" - input: "sequence_lens" - input: "initial_h" - input: "initial_c" - input: "P" - output: "Y" - output: "Y_h" - output: "" - name: "node1" - op_type: "LSTM" - attribute { - name: "direction" - s: "bidirectional" - type: STRING - } - attribute { - name: "input_forget" - i: 0 - type: INT - } - attribute { - name: "activations" - strings: "sigmoid" - strings: "tanh" - strings: "tanh" - strings: "sigmoid" - strings: "tanh" - strings: "tanh" - type: STRINGS - } - attribute { - name: "hidden_size" - i: 2 - type: INT - } - attribute { - name: "clip" - f: 9999 - type: FLOAT - } - doc_string: "LSTM" - domain: "" - } - input { - name: "X" - type { - tensor_type { - elem_type: 1 - shape { - dim { - dim_value: 2 - } - dim { - dim_value: 1 - } - dim { - dim_value: 2 - } - } - } - } - } - input { - name: "W" - type { - tensor_type { - elem_type: 1 - shape { - dim { - dim_value: 2 - } - dim { - dim_value: 8 - } - dim { - dim_value: 2 - } - } - } - } - } - input { - name: "R" - type { - tensor_type { - elem_type: 1 - shape { - dim { - dim_value: 2 - } - dim { - dim_value: 8 - } - dim { - dim_value: 2 - } - } - } - } - } - input { - name: "B" - type { - tensor_type { - elem_type: 1 - shape { - dim { - dim_value: 2 - } - dim { - dim_value: 16 - } - } - } - } - } - input { - name: "sequence_lens" - type { - tensor_type { - elem_type: 6 - shape { - dim { - dim_value: 1 - } - } - } - } - } - input { - name: "initial_h" - type { - tensor_type { - elem_type: 1 - shape { - dim { - dim_value: 2 - } - dim { - dim_value: 1 - } - dim { - dim_value: 2 - } - } - } - } - } - input { - name: "initial_c" - type { - tensor_type { - elem_type: 1 - shape { - dim { - dim_value: 2 - } - dim { - dim_value: 1 - } - dim { - dim_value: 2 - } - } - } - } - } - input { - name: "P" - type { - tensor_type { - elem_type: 1 - shape { - dim { - dim_value: 2 - } - dim { - dim_value: 6 - } - } - } - } - } - output { - name: "Y" - type { - tensor_type { - elem_type: 1 - shape { - dim { - dim_value: 2 - } - dim { - dim_value: 2 - } - dim { - dim_value: 1 - } - dim { - dim_value: 2 - } - } - } - } - } - output { - name: "Y_h" - type { - tensor_type { - elem_type: 1 - shape { - dim { - dim_value: 2 - } - dim { - dim_value: 1 - } - dim { - dim_value: 2 - } - } - } - } - } -} -opset_import { - domain: "" - version: 7 -} diff --git a/src/frontends/onnx/tests/models/lstm_fwd_with_clip_peepholes.prototxt b/src/frontends/onnx/tests/models/lstm_fwd_with_clip_peepholes.prototxt deleted file mode 100644 index 2a218f089240a5..00000000000000 --- a/src/frontends/onnx/tests/models/lstm_fwd_with_clip_peepholes.prototxt +++ /dev/null @@ -1,191 +0,0 @@ -ir_version: 4 -producer_name: "OpenVINO ONNX Frontend" -graph { - node { - input: "X" - input: "W" - input: "R" - input: "B" - input: "" - input: "" - input: "" - input: "P" - output: "Y" - output: "Y_h" - output: "Y_c" - op_type: "LSTM" - attribute { - name: "clip" - f: 0.10000000149011612 - type: FLOAT - } - attribute { - name: "direction" - s: "forward" - type: STRING - } - attribute { - name: "hidden_size" - i: 2 - type: INT - } - attribute { - name: "input_forget" - i: 0 - type: INT - } - } - name: "compute_graph" - input { - name: "X" - type { - tensor_type { - elem_type: 1 - shape { - dim { - dim_value: 2 - } - dim { - dim_value: 1 - } - dim { - dim_value: 2 - } - } - } - } - } - input { - name: "W" - type { - tensor_type { - elem_type: 1 - shape { - dim { - dim_value: 1 - } - dim { - dim_value: 8 - } - dim { - dim_value: 2 - } - } - } - } - } - input { - name: "R" - type { - tensor_type { - elem_type: 1 - shape { - dim { - dim_value: 1 - } - dim { - dim_value: 8 - } - dim { - dim_value: 2 - } - } - } - } - } - input { - name: "B" - type { - tensor_type { - elem_type: 1 - shape { - dim { - dim_value: 1 - } - dim { - dim_value: 16 - } - } - } - } - } - input { - name: "P" - type { - tensor_type { - elem_type: 1 - shape { - dim { - dim_value: 1 - } - dim { - dim_value: 6 - } - } - } - } - } - output { - name: "Y" - type { - tensor_type { - elem_type: 1 - shape { - dim { - dim_value: 2 - } - dim { - dim_value: 1 - } - dim { - dim_value: 1 - } - dim { - dim_value: 2 - } - } - } - } - } - output { - name: "Y_h" - type { - tensor_type { - elem_type: 1 - shape { - dim { - dim_value: 1 - } - dim { - dim_value: 1 - } - dim { - dim_value: 2 - } - } - } - } - } - output { - name: "Y_c" - type { - tensor_type { - elem_type: 1 - shape { - dim { - dim_value: 1 - } - dim { - dim_value: 1 - } - dim { - dim_value: 2 - } - } - } - } - } -} -opset_import { - version: 7 -} diff --git a/src/frontends/onnx/tests/onnx_import_rnn.in.cpp b/src/frontends/onnx/tests/onnx_import_rnn.in.cpp index 5979466849d5e6..b61fd1d36f99e0 100644 --- a/src/frontends/onnx/tests/onnx_import_rnn.in.cpp +++ b/src/frontends/onnx/tests/onnx_import_rnn.in.cpp @@ -202,72 +202,6 @@ OPENVINO_TEST(${BACKEND_NAME}, onnx_model_lstm_bidir_mixed_seq_const) { test_case.run(DEFAULT_FLOAT_TOLERANCE_BITS + 1); } -OPENVINO_TEST(${BACKEND_NAME}, onnx_model_lstm_fwd_with_clip_peepholes) { - auto model = convert_model("lstm_fwd_with_clip_peepholes.onnx"); - - auto test_case = ov::test::TestCase(model, s_device); - test_case.add_input({-0.455351f, -0.276391f, -0.185934f, -0.269585f}); // X - test_case.add_input({-0.494659f, // W - 0.0453352f, - -0.487793f, - 0.417264f, - -0.0175329f, - 0.489074f, - -0.446013f, - 0.414029f, - -0.0091708f, - -0.255364f, - -0.106952f, - -0.266717f, - -0.0888852f, - -0.428709f, - -0.283349f, - 0.208792f}); // W - test_case.add_input({0.146626f, - -0.0620289f, - -0.0815302f, - 0.100482f, - -0.219535f, - -0.306635f, - -0.28515f, - -0.314112f, - -0.228172f, - 0.405972f, - 0.31576f, - 0.281487f, - -0.394864f, - 0.42111f, - -0.386624f, - -0.390225f}); // R - - test_case.add_input({0.381619f, - 0.0323954f, - -0.14449f, - 0.420804f, - -0.258721f, - 0.45056f, - -0.250755f, - 0.0967895f, - 0.0f, - 0.0f, - 0.0f, - 0.0f, - 0.0f, - 0.0f, - 0.0f, - 0.0f}); // B - test_case.add_input({0.2345f, 0.5235f, 0.4378f, 0.3475f, 0.8927f, 0.3456f}); // P - - test_case.add_expected_output(Shape{2, 1, 1, 2}, - {-0.02280854f, 0.02744377f, -0.03516197f, 0.03875681f}); // Y_data - test_case.add_expected_output(Shape{1, 1, 2}, {-0.03516197f, 0.03875681f}); // Y_h_data - test_case.add_expected_output(Shape{1, 1, 2}, {-0.07415761f, 0.07395997f}); // Y_c_data - - // We have to enlarge tolerance bits to 3 - it's only one bit more than default value. - // The discrepancies may occur at most on 7th decimal position. - test_case.run(DEFAULT_FLOAT_TOLERANCE_BITS + 3); -} - OPENVINO_TEST(${BACKEND_NAME}, onnx_model_lstm_fwd_mixed_seq) { auto model = convert_model("lstm_fwd_mixed_seq.onnx"); @@ -397,50 +331,6 @@ OPENVINO_TEST(${BACKEND_NAME}, onnx_model_lstm_fwd_large_batch_no_clip) { test_case.run(); } -OPENVINO_TEST(${BACKEND_NAME}, onnx_model_lstm_bdir_short_input_seq_peepholes) { - auto model = convert_model("lstm_bdir_short_input_seq.onnx"); - - auto test_case = ov::test::TestCase(model, s_device); - - // X - test_case.add_input({-0.455351f, -0.276391f, -0.185934f, -0.269585f}); - // W - test_case.add_input( - {-0.494659f, 0.0453352f, -0.487793f, 0.417264f, -0.0175329f, 0.489074f, -0.446013f, 0.414029f, - -0.0091708f, -0.255364f, -0.106952f, -0.266717f, -0.0888852f, -0.428709f, -0.283349f, 0.208792f, - -0.494659f, 0.0453352f, -0.487793f, 0.417264f, -0.0175329f, 0.489074f, -0.446013f, 0.414029f, - -0.0091708f, -0.255364f, -0.106952f, -0.266717f, -0.0888852f, -0.428709f, -0.283349f, 0.208792f}); - // R - test_case.add_input({0.146626f, -0.0620289f, -0.0815302f, 0.100482f, -0.219535f, -0.306635f, -0.28515f, - -0.314112f, -0.228172f, 0.405972f, 0.31576f, 0.281487f, -0.394864f, 0.42111f, - -0.386624f, -0.390225f, 0.146626f, -0.0620289f, -0.0815302f, 0.100482f, -0.219535f, - -0.306635f, -0.28515f, -0.314112f, -0.228172f, 0.405972f, 0.31576f, 0.281487f, - -0.394864f, 0.42111f, -0.386624f, -0.390225f}); - // B - test_case.add_input({0.381619f, 0.0323954f, -0.14449f, 0.420804f, -0.258721f, 0.45056f, -0.250755f, - 0.0967895f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, - 0.0f, 0.0f, 0.381619f, 0.0323954f, -0.14449f, 0.420804f, -0.258721f, - 0.45056f, -0.250755f, 0.0967895f, 0.0f, 0.0f, 0.0f, 0.0f, - 0.0f, 0.0f, 0.0f, 0.0f}); - // sequence_lens - test_case.add_input({1}); - // initial_h - test_case.add_input({0.0f, 0.0f, -0.0306872f, 0.028035f}); - // initial_c - test_case.add_input({0.0f, 0.0f, -0.07243599f, 0.0467052f}); - // P - test_case.add_input( - {0.2345f, 0.5235f, 0.4378f, 0.3475f, 0.8927f, 0.3456f, 0.2345f, 0.5235f, 0.4378f, 0.3475f, 0.8927f, 0.3456f}); - - // Y - test_case.add_expected_output(Shape{2, 2, 1, 2}, - {-0.0251062f, 0.0561262f, -0.0318928f, 0.0762679f, 0.0f, 0.0f, 0.0f, 0.0f}); - // Y_h - test_case.add_expected_output(Shape{2, 1, 2}, {-0.0251062f, 0.0561262f, -0.0318928f, 0.0762679f}); - - test_case.run(DEFAULT_FLOAT_TOLERANCE_BITS + 3); -} - OPENVINO_TEST(${BACKEND_NAME}, onnx_model_lstm_mixed_seq_reverse) { auto model = convert_model("lstm_mixed_seq_reverse.onnx"); diff --git a/src/frontends/onnx/tests/runtime/ie/unit_test.manifest b/src/frontends/onnx/tests/runtime/ie/unit_test.manifest index b2e87a2588ec65..3eadb698ca0a03 100644 --- a/src/frontends/onnx/tests/runtime/ie/unit_test.manifest +++ b/src/frontends/onnx/tests/runtime/ie/unit_test.manifest @@ -121,9 +121,6 @@ onnx_model_lp_norm_default_dynamic onnx_instance_normalization_dynamic # Legacy tests with unsupported features from opset4 LSTM/GRU/RNN -# Peepholes input unsupported -onnx_model_lstm_fwd_with_clip_peepholes -onnx_model_lstm_bdir_short_input_seq_peepholes # Activation function hardsigmoid is not supported onnx_model_gru_fwd_activations_relu_hardsigmoid onnx_model_lstm_fwd_hardsigmoid_activation diff --git a/src/plugins/intel_cpu/src/nodes/rnn.cpp b/src/plugins/intel_cpu/src/nodes/rnn.cpp index cab8bb3ad46325..679907c2d9cf28 100644 --- a/src/plugins/intel_cpu/src/nodes/rnn.cpp +++ b/src/plugins/intel_cpu/src/nodes/rnn.cpp @@ -33,8 +33,6 @@ static rnn_direction ieDirection2dnnl(const std::shared_ptr& op) ov::op::RecurrentSequenceDirection direction = ov::op::RecurrentSequenceDirection::FORWARD; if (ov::is_type(op)) { direction = ov::as_type_ptr(op)->get_direction(); - } else if (ov::is_type(op)) { - direction = ov::as_type_ptr(op)->get_direction(); } else if (ov::is_type(op)) { direction = ov::as_type_ptr(op)->get_direction(); } else if (ov::is_type(op)) { @@ -75,14 +73,13 @@ static dnnl::algorithm ie2dnnl(const std::shared_ptr& op) { else return dnnl::algorithm::vanilla_augru; } else if (one_of(op->get_type_info(), - ov::op::v0::LSTMCell::get_type_info_static(), - ov::op::v4::LSTMCell::get_type_info_static(), - ov::op::v0::LSTMSequence::get_type_info_static(), - ov::op::v5::LSTMSequence::get_type_info_static())) { + ov::op::v0::LSTMCell::get_type_info_static(), + ov::op::v4::LSTMCell::get_type_info_static(), + ov::op::v5::LSTMSequence::get_type_info_static())) { return dnnl::algorithm::vanilla_lstm; } else if (one_of(op->get_type_info(), - ov::op::v0::RNNCell::get_type_info_static(), - ov::op::v5::RNNSequence::get_type_info_static())) { + ov::op::v0::RNNCell::get_type_info_static(), + ov::op::v5::RNNSequence::get_type_info_static())) { return dnnl::algorithm::vanilla_rnn; } else { OPENVINO_THROW("Operation ", @@ -201,16 +198,15 @@ bool RNNKey::operator==(const RNNKey& rhs) const { bool RNN::isSupportedOperation(const std::shared_ptr& op, std::string& errorMessage) noexcept { try { if (!one_of(op->get_type_info(), - ov::op::v3::GRUCell::get_type_info_static(), - ov::op::internal::AUGRUCell::get_type_info_static(), - ov::op::internal::AUGRUSequence::get_type_info_static(), - ov::op::v0::LSTMCell::get_type_info_static(), - ov::op::v4::LSTMCell::get_type_info_static(), - ov::op::v0::RNNCell::get_type_info_static(), - ov::op::v5::GRUSequence::get_type_info_static(), - ov::op::v0::LSTMSequence::get_type_info_static(), - ov::op::v5::LSTMSequence::get_type_info_static(), - ov::op::v5::RNNSequence::get_type_info_static())) { + ov::op::v3::GRUCell::get_type_info_static(), + ov::op::internal::AUGRUCell::get_type_info_static(), + ov::op::internal::AUGRUSequence::get_type_info_static(), + ov::op::v0::LSTMCell::get_type_info_static(), + ov::op::v4::LSTMCell::get_type_info_static(), + ov::op::v0::RNNCell::get_type_info_static(), + ov::op::v5::GRUSequence::get_type_info_static(), + ov::op::v5::LSTMSequence::get_type_info_static(), + ov::op::v5::RNNSequence::get_type_info_static())) { errorMessage = "Unsupported sequence operation."; return false; } @@ -239,9 +235,7 @@ bool RNN::isSupportedOperation(const std::shared_ptr& op, std::s errorMessage = "Node expects 6 inputs. Actual: " + std::to_string(op->get_input_size()); return false; } - } else if (one_of(op->get_type_info(), - ov::op::v0::LSTMSequence::get_type_info_static(), - ov::op::v5::LSTMSequence::get_type_info_static())) { + } else if (one_of(op->get_type_info(), ov::op::v5::LSTMSequence::get_type_info_static())) { if (op->get_input_size() != 7) { errorMessage = "Node expects 7 inputs. Actual: " + std::to_string(op->get_input_size()); return false; @@ -264,7 +258,6 @@ bool RNN::isSupportedOperation(const std::shared_ptr& op, std::s if (one_of(rnnCellBase->get_type_info(), ov::op::v0::LSTMCell::get_type_info_static(), ov::op::v4::LSTMCell::get_type_info_static(), - ov::op::v0::LSTMSequence::get_type_info_static(), ov::op::v5::LSTMSequence::get_type_info_static())) { if (rnnCellBase->get_activations() != std::vector{"sigmoid", "tanh", "tanh"}) { errorMessage = "Not supported activation functions"; @@ -294,9 +287,6 @@ bool RNN::isSupportedOperation(const std::shared_ptr& op, std::s if (auto gru_seq = ov::as_type_ptr(op)) { direction = gru_seq->get_direction(); seqLenIdx = 2; - } else if (auto lstm_seq = ov::as_type_ptr(op)) { - direction = lstm_seq->get_direction(); - seqLenIdx = 3; } else if (auto lstm_seq = ov::as_type_ptr(op)) { direction = lstm_seq->get_direction(); seqLenIdx = 3; @@ -441,9 +431,7 @@ RNN::RNN(const std::shared_ptr& op, const GraphContext::CPtr context) } else if (op->get_type_info() == ov::op::internal::AUGRUSequence::get_type_info_static()) { sIdx = 2; wIdx = 3; rIdx = 4; bIdx = 5; aIdx = 6; yIdx = 0; hoIdx = 1; - } else if (one_of(op->get_type_info(), - ov::op::v0::LSTMSequence::get_type_info_static(), - ov::op::v5::LSTMSequence::get_type_info_static())) { + } else if (one_of(op->get_type_info(), ov::op::v5::LSTMSequence::get_type_info_static())) { sIdx = 3; wIdx = 4; rIdx = 5; bIdx = 6; yIdx = 0; hoIdx = 1; coIdx = 2; } diff --git a/src/plugins/intel_cpu/src/shape_inference/shape_inference.cpp b/src/plugins/intel_cpu/src/shape_inference/shape_inference.cpp index 1921169f83afd7..8e2e794eacc939 100644 --- a/src/plugins/intel_cpu/src/shape_inference/shape_inference.cpp +++ b/src/plugins/intel_cpu/src/shape_inference/shape_inference.cpp @@ -532,7 +532,6 @@ const IStaticShapeInferFactory::TRegistry IStaticShapeInferFactory::registry{ _OV_OP_SHAPE_INFER_MASK_REG(opset1::GroupConvolutionBackpropData, ShapeInferPaddingTA, util::bit::mask(2)), _OV_OP_SHAPE_INFER_MASK_REG(opset1::Interpolate, ShapeInferTA, util::bit::mask(1)), _OV_OP_SHAPE_INFER_MASK_REG(opset1::LSTMCell, ShapeInferTA, util::bit::mask()), - _OV_OP_SHAPE_INFER_MASK_REG(opset1::LSTMSequence, ShapeInferTA, util::bit::mask()), _OV_OP_SHAPE_INFER_MASK_REG(opset1::MatMul, ShapeInferTA, util::bit::mask()), _OV_OP_SHAPE_INFER_MASK_REG(opset1::MaxPool, ShapeInferPaddingTA, util::bit::mask()), _OV_OP_SHAPE_INFER_MASK_REG(opset1::NonMaxSuppression, ShapeInferTA, util::bit::mask(2)), diff --git a/src/plugins/intel_cpu/src/transformations/cpu_opset/common/pass/rnn_sequences_optimization.cpp b/src/plugins/intel_cpu/src/transformations/cpu_opset/common/pass/rnn_sequences_optimization.cpp index 72ca09a8152298..916e7b21ffa484 100644 --- a/src/plugins/intel_cpu/src/transformations/cpu_opset/common/pass/rnn_sequences_optimization.cpp +++ b/src/plugins/intel_cpu/src/transformations/cpu_opset/common/pass/rnn_sequences_optimization.cpp @@ -124,14 +124,12 @@ ov::intel_cpu::OptimizeRNNSequenceTransposes::OptimizeRNNSequenceTransposes() { ov::intel_cpu::OptimizeLSTMSequenceTransposes::OptimizeLSTMSequenceTransposes() { MATCHER_SCOPE(OptimizeLSTMSequenceTransposes); - auto lstmSequenceNgraph = ov::pass::pattern::wrap_type(); + auto lstmSequenceNgraph = ov::pass::pattern::wrap_type(); ov::matcher_pass_callback callback = [](ov::pass::pattern::Matcher &m) { auto checkSequence = [](const std::shared_ptr& node) { if (auto lstm5 = ov::as_type_ptr(node)) { return lstm5->get_direction() != ov::op::RecurrentSequenceDirection::BIDIRECTIONAL; - } else if (auto lstm1 = ov::as_type_ptr(node)) { - return lstm1->get_direction() != ov::op::RecurrentSequenceDirection::BIDIRECTIONAL; } else { return false; } diff --git a/src/plugins/intel_cpu/tests/unit/shape_inference_test/lstm_seq_shape_inference_test.cpp b/src/plugins/intel_cpu/tests/unit/shape_inference_test/lstm_seq_shape_inference_test.cpp index 067477e146f509..a8b4160f405fd1 100644 --- a/src/plugins/intel_cpu/tests/unit/shape_inference_test/lstm_seq_shape_inference_test.cpp +++ b/src/plugins/intel_cpu/tests/unit/shape_inference_test/lstm_seq_shape_inference_test.cpp @@ -9,184 +9,6 @@ using namespace ov; using namespace ov::intel_cpu; -class LSTMSequenceV0StaticShapeInferenceTest : public OpStaticShapeInferenceTest { -protected: - void SetUp() override { - this->output_shapes = ShapeVector(3); - } -}; - -TEST_F(LSTMSequenceV0StaticShapeInferenceTest, default_ctor) { - constexpr size_t batch_size = 2; - constexpr size_t input_size = 3; - constexpr size_t hidden_size = 5; - constexpr size_t seq_len = 4; - constexpr size_t num_directions = 1; - constexpr size_t gates_count = 4; - - const auto op = make_op(); - - input_shapes = {StaticShape{batch_size, seq_len, input_size}, // X - StaticShape{batch_size, num_directions, hidden_size}, // H_t - StaticShape{batch_size, num_directions, hidden_size}, // C_t - StaticShape{batch_size}, // seq_lengths - StaticShape{num_directions, gates_count * hidden_size, input_size}, // W - StaticShape{num_directions, gates_count * hidden_size, hidden_size}, // R - StaticShape{num_directions, gates_count * hidden_size}, // B - StaticShape{num_directions, (gates_count - 1) * hidden_size}}; // P - - output_shapes = shape_inference(op.get(), input_shapes); - - EXPECT_EQ(output_shapes.size(), 3); - EXPECT_EQ(output_shapes[0], StaticShape({batch_size, num_directions, seq_len, hidden_size})); - EXPECT_EQ(output_shapes[1], StaticShape({batch_size, num_directions, hidden_size})); - EXPECT_EQ(output_shapes[2], StaticShape({batch_size, num_directions, hidden_size})); -} - -TEST_F(LSTMSequenceV0StaticShapeInferenceTest, FORWARD_without_P) { - constexpr size_t batch_size = 2; - constexpr size_t input_size = 3; - constexpr size_t hidden_size = 5; - constexpr size_t seq_len = 4; - constexpr size_t num_directions = 1; - constexpr size_t gates_count = 4; - - constexpr auto direction = op::RecurrentSequenceDirection::FORWARD; - - const auto X = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto H_t = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto C_t = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto seq_lengths = std::make_shared(element::f32, PartialShape::dynamic(1)); - const auto W = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto R = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto B = std::make_shared(element::f32, PartialShape::dynamic(2)); - - const auto op = make_op(X, H_t, C_t, seq_lengths, W, R, B, hidden_size, direction); - - input_shapes = {StaticShape{batch_size, seq_len, input_size}, // X - StaticShape{batch_size, num_directions, hidden_size}, // H_t - StaticShape{batch_size, num_directions, hidden_size}, // C_t - StaticShape{batch_size}, // seq_lengths - StaticShape{num_directions, gates_count * hidden_size, input_size}, // W - StaticShape{num_directions, gates_count * hidden_size, hidden_size}, // R - StaticShape{num_directions, gates_count * hidden_size}}; // B - - output_shapes = shape_inference(op.get(), input_shapes); - - EXPECT_EQ(output_shapes.size(), 3); - EXPECT_EQ(output_shapes[0], StaticShape({batch_size, num_directions, seq_len, hidden_size})); - EXPECT_EQ(output_shapes[1], StaticShape({batch_size, num_directions, hidden_size})); - EXPECT_EQ(output_shapes[2], StaticShape({batch_size, num_directions, hidden_size})); -} - -TEST_F(LSTMSequenceV0StaticShapeInferenceTest, FORWARD_with_P) { - constexpr size_t batch_size = 2; - constexpr size_t input_size = 3; - constexpr size_t hidden_size = 5; - constexpr size_t seq_len = 4; - constexpr size_t num_directions = 1; - constexpr size_t gates_count = 4; - - constexpr auto direction = op::RecurrentSequenceDirection::FORWARD; - - const auto X = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto H_t = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto C_t = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto seq_lengths = std::make_shared(element::f32, PartialShape::dynamic(1)); - const auto W = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto R = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto B = std::make_shared(element::f32, PartialShape::dynamic(2)); - const auto P = std::make_shared(element::f32, PartialShape::dynamic(2)); - - const auto op = make_op(X, H_t, C_t, seq_lengths, W, R, B, P, hidden_size, direction); - - input_shapes = {StaticShape{batch_size, seq_len, input_size}, // X - StaticShape{batch_size, num_directions, hidden_size}, // H_t - StaticShape{batch_size, num_directions, hidden_size}, // C_t - StaticShape{batch_size}, // seq_lengths - StaticShape{num_directions, gates_count * hidden_size, input_size}, // W - StaticShape{num_directions, gates_count * hidden_size, hidden_size}, // R - StaticShape{num_directions, gates_count * hidden_size}, // B - StaticShape{num_directions, (gates_count - 1) * hidden_size}}; // P - - output_shapes = shape_inference(op.get(), input_shapes); - - EXPECT_EQ(output_shapes.size(), 3); - EXPECT_EQ(output_shapes[0], StaticShape({batch_size, num_directions, seq_len, hidden_size})); - EXPECT_EQ(output_shapes[1], StaticShape({batch_size, num_directions, hidden_size})); - EXPECT_EQ(output_shapes[2], StaticShape({batch_size, num_directions, hidden_size})); -} - -TEST_F(LSTMSequenceV0StaticShapeInferenceTest, REVERSE) { - constexpr size_t batch_size = 2; - constexpr size_t input_size = 3; - constexpr size_t hidden_size = 5; - constexpr size_t seq_len = 4; - constexpr size_t num_directions = 1; - constexpr size_t gates_count = 4; - - constexpr auto direction = op::RecurrentSequenceDirection::REVERSE; - - const auto X = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto H_t = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto C_t = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto seq_lengths = std::make_shared(element::f32, PartialShape::dynamic(1)); - const auto W = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto R = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto B = std::make_shared(element::f32, PartialShape::dynamic(2)); - - const auto op = make_op(X, H_t, C_t, seq_lengths, W, R, B, hidden_size, direction); - - input_shapes = {StaticShape{batch_size, seq_len, input_size}, // X - StaticShape{batch_size, num_directions, hidden_size}, // H_t - StaticShape{batch_size, num_directions, hidden_size}, // C_t - StaticShape{batch_size}, // seq_lengths - StaticShape{num_directions, gates_count * hidden_size, input_size}, // W - StaticShape{num_directions, gates_count * hidden_size, hidden_size}, // R - StaticShape{num_directions, gates_count * hidden_size}}; // B - - output_shapes = shape_inference(op.get(), input_shapes); - EXPECT_EQ(output_shapes.size(), 3); - EXPECT_EQ(output_shapes[0], StaticShape({batch_size, num_directions, seq_len, hidden_size})); - EXPECT_EQ(output_shapes[1], StaticShape({batch_size, num_directions, hidden_size})); - EXPECT_EQ(output_shapes[2], StaticShape({batch_size, num_directions, hidden_size})); -} - -TEST_F(LSTMSequenceV0StaticShapeInferenceTest, BIDIRECTIONAL) { - constexpr size_t batch_size = 2; - constexpr size_t input_size = 3; - constexpr size_t hidden_size = 5; - constexpr size_t seq_len = 4; - constexpr size_t num_directions = 2; - constexpr size_t gates_count = 4; - - constexpr auto direction = op::RecurrentSequenceDirection::BIDIRECTIONAL; - - const auto X = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto H_t = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto C_t = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto seq_lengths = std::make_shared(element::f32, PartialShape::dynamic(1)); - const auto W = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto R = std::make_shared(element::f32, PartialShape::dynamic(3)); - const auto B = std::make_shared(element::f32, PartialShape::dynamic(2)); - - const auto op = make_op(X, H_t, C_t, seq_lengths, W, R, B, hidden_size, direction); - - input_shapes = {StaticShape{batch_size, seq_len, input_size}, // X - StaticShape{batch_size, num_directions, hidden_size}, // H_t - StaticShape{batch_size, num_directions, hidden_size}, // C_t - StaticShape{batch_size}, // seq_lengths - StaticShape{num_directions, gates_count * hidden_size, input_size}, // W - StaticShape{num_directions, gates_count * hidden_size, hidden_size}, // R - StaticShape{num_directions, gates_count * hidden_size}}; // B - - output_shapes = shape_inference(op.get(), input_shapes); - EXPECT_EQ(output_shapes.size(), 3); - EXPECT_EQ(output_shapes[0], StaticShape({batch_size, num_directions, seq_len, hidden_size})); - EXPECT_EQ(output_shapes[1], StaticShape({batch_size, num_directions, hidden_size})); - EXPECT_EQ(output_shapes[2], StaticShape({batch_size, num_directions, hidden_size})); -} - class LSTMSequenceV5StaticShapeInferenceTest : public OpStaticShapeInferenceTest { protected: void SetUp() override { diff --git a/src/plugins/template/backend/evaluates_map.cpp b/src/plugins/template/backend/evaluates_map.cpp index 134decae3badce..3c9e008ccb5ee0 100644 --- a/src/plugins/template/backend/evaluates_map.cpp +++ b/src/plugins/template/backend/evaluates_map.cpp @@ -105,7 +105,6 @@ std::vector get_signal_size(const ov::TensorVector& inputs, size_t num_ } ov::runtime::interpreter::EvaluatorsMap& ov::runtime::interpreter::get_evaluators_map() { - OPENVINO_SUPPRESS_DEPRECATED_START static runtime::interpreter::EvaluatorsMap evaluatorsMap{ #define _OPENVINO_OP_REG(NAME, NAMESPACE) {NAMESPACE::NAME::get_type_info_static(), evaluate_node}, @@ -113,6 +112,5 @@ ov::runtime::interpreter::EvaluatorsMap& ov::runtime::interpreter::get_evaluator #undef _OPENVINO_OP_REG }; - OPENVINO_SUPPRESS_DEPRECATED_END return evaluatorsMap; } diff --git a/src/plugins/template/backend/ops/ops_evaluates.hpp b/src/plugins/template/backend/ops/ops_evaluates.hpp index 54d2e0cb7c8c63..e63c7aa8b4f9e4 100644 --- a/src/plugins/template/backend/ops/ops_evaluates.hpp +++ b/src/plugins/template/backend/ops/ops_evaluates.hpp @@ -77,12 +77,6 @@ extern template bool evaluate_node(std::shared_ptr(std::shared_ptr node, - ov::TensorVector& outputs, - const ov::TensorVector& inputs); -OPENVINO_SUPPRESS_DEPRECATED_END - extern template bool evaluate_node(std::shared_ptr node, ov::TensorVector& outputs, const ov::TensorVector& inputs); @@ -555,4 +549,4 @@ extern template bool evaluate_node(std::shared_pt extern template bool evaluate_node(std::shared_ptr node, ov::TensorVector& outputs, - const ov::TensorVector& inputs); \ No newline at end of file + const ov::TensorVector& inputs); diff --git a/src/plugins/template/backend/ops/sequences.cpp b/src/plugins/template/backend/ops/sequences.cpp index 633ec5bcab3329..c8e57c846c8b73 100644 --- a/src/plugins/template/backend/ops/sequences.cpp +++ b/src/plugins/template/backend/ops/sequences.cpp @@ -54,44 +54,6 @@ bool evaluate(const std::shared_ptr& op, return true; } -namespace lstm_seq_v1 { -OPENVINO_SUPPRESS_DEPRECATED_START -template -inline void evaluate(const std::shared_ptr& op, - ov::TensorVector& outputs, - const ov::TensorVector& inputs) { - OPENVINO_SUPPRESS_DEPRECATED_END - using T1 = typename ov::element_type_traits::value_type; - using T2 = typename ov::element_type_traits::value_type; - ov::reference::lstm_sequence_v1(static_cast(inputs[0].data()), - inputs[0].get_shape(), - static_cast(inputs[1].data()), - inputs[1].get_shape(), - static_cast(inputs[2].data()), - inputs[2].get_shape(), - static_cast(inputs[3].data()), - inputs[3].get_shape(), - static_cast(inputs[4].data()), - inputs[4].get_shape(), - static_cast(inputs[5].data()), - inputs[5].get_shape(), - static_cast(inputs[6].data()), - inputs[6].get_shape(), - static_cast(inputs[7].data()), - inputs[7].get_shape(), - static_cast(outputs[0].data()), - static_cast(outputs[1].data()), - static_cast(outputs[2].data()), - op->get_activations()[0], - op->get_activations()[1], - op->get_activations()[2], - op->get_clip_threshold(), - op->get_weights_format(), - op->get_input_forget(), - op->get_direction()); -} -} // namespace lstm_seq_v1 - namespace lstm_seq_v5 { template inline void evaluate(const std::shared_ptr& op, @@ -124,27 +86,6 @@ inline void evaluate(const std::shared_ptr& op, } } // namespace lstm_seq_v5 -OPENVINO_SUPPRESS_DEPRECATED_START -template -bool evaluate(const std::shared_ptr& op, - ov::TensorVector& outputs, - const ov::TensorVector& inputs) { - OPENVINO_SUPPRESS_DEPRECATED_END - switch (inputs[3].get_element_type()) { - case ov::element::i64: - case ov::element::u64: - lstm_seq_v1::evaluate(op, outputs, inputs); - break; - case ov::element::i32: - case ov::element::u32: - lstm_seq_v1::evaluate(op, outputs, inputs); - break; - default: - return false; - } - return true; -} - template bool evaluate(const std::shared_ptr& op, ov::TensorVector& outputs, @@ -402,55 +343,6 @@ bool evaluate_node(std::shared_ptr node, } } -OPENVINO_SUPPRESS_DEPRECATED_START -template <> -bool evaluate_node(std::shared_ptr node, - ov::TensorVector& outputs, - const ov::TensorVector& inputs) { - auto element_type = node->get_output_element_type(0); - if (ov::is_type(node) || ov::is_type(node)) - element_type = node->get_input_element_type(1); - - switch (element_type) { - case ov::element::boolean: - return evaluate(ov::as_type_ptr(node), outputs, inputs); - case ov::element::bf16: - return evaluate(ov::as_type_ptr(node), outputs, inputs); - case ov::element::f16: - return evaluate(ov::as_type_ptr(node), outputs, inputs); - case ov::element::f64: - return evaluate(ov::as_type_ptr(node), outputs, inputs); - case ov::element::f32: - return evaluate(ov::as_type_ptr(node), outputs, inputs); - case ov::element::i4: - return evaluate(ov::as_type_ptr(node), outputs, inputs); - case ov::element::i8: - return evaluate(ov::as_type_ptr(node), outputs, inputs); - case ov::element::i16: - return evaluate(ov::as_type_ptr(node), outputs, inputs); - case ov::element::i32: - return evaluate(ov::as_type_ptr(node), outputs, inputs); - case ov::element::i64: - return evaluate(ov::as_type_ptr(node), outputs, inputs); - case ov::element::u1: - return evaluate(ov::as_type_ptr(node), outputs, inputs); - case ov::element::u4: - return evaluate(ov::as_type_ptr(node), outputs, inputs); - case ov::element::u8: - return evaluate(ov::as_type_ptr(node), outputs, inputs); - case ov::element::u16: - return evaluate(ov::as_type_ptr(node), outputs, inputs); - case ov::element::u32: - return evaluate(ov::as_type_ptr(node), outputs, inputs); - case ov::element::u64: - return evaluate(ov::as_type_ptr(node), outputs, inputs); - default: - OPENVINO_THROW(std::string("Unhandled data type ") + node->get_element_type().get_type_name() + - std::string("in evaluate_node()")); - } -} -OPENVINO_SUPPRESS_DEPRECATED_END - template <> bool evaluate_node(std::shared_ptr node, ov::TensorVector& outputs, diff --git a/src/plugins/template/backend/opset_int_tbl.hpp b/src/plugins/template/backend/opset_int_tbl.hpp index 5f4e5737fcb567..42dfa2797031f1 100644 --- a/src/plugins/template/backend/opset_int_tbl.hpp +++ b/src/plugins/template/backend/opset_int_tbl.hpp @@ -22,7 +22,6 @@ _OPENVINO_OP_REG(HardSigmoid, op::v0) _OPENVINO_OP_REG(Interpolate, op::v0) _OPENVINO_OP_REG(LRN, op::v0) _OPENVINO_OP_REG(LSTMCell, op::v0) -_OPENVINO_OP_REG(LSTMSequence, op::v0) _OPENVINO_OP_REG(MVN, op::v0) _OPENVINO_OP_REG(NormalizeL2, op::v0) _OPENVINO_OP_REG(PriorBox, op::v0) diff --git a/src/plugins/template/tests/functional/op_reference/lstm_sequence.cpp b/src/plugins/template/tests/functional/op_reference/lstm_sequence.cpp index fe9ad2ddde743f..999c7f5c6692ac 100644 --- a/src/plugins/template/tests/functional/op_reference/lstm_sequence.cpp +++ b/src/plugins/template/tests/functional/op_reference/lstm_sequence.cpp @@ -241,90 +241,10 @@ class ReferenceLSTMSequenceTest : public testing::TestWithParam, public CommonReferenceTest { -public: - void SetUp() override { - legacy_compare = true; - auto params = GetParam(); - function = CreateFunction(params); - inputData = {params.X.data, - params.H_t.data, - params.C_t.data, - params.S_t.data, - params.W.data, - params.R.data, - params.B.data, - params.P.data}; - refOutData = {params.Y.data, params.Ho.data, params.Co.data}; - } - - static std::string getTestCaseName(const testing::TestParamInfo& obj) { - auto param = obj.param; - std::ostringstream result; - result << "iType=" << param.iType << "_"; - result << "xShape=" << param.X.shape << "_"; - result << "htShape=" << param.H_t.shape << "_"; - result << "ctShape=" << param.C_t.shape << "_"; - result << "stShape=" << param.S_t.shape << "_"; - result << "wShape=" << param.W.shape << "_"; - result << "rShape=" << param.R.shape << "_"; - result << "bShape=" << param.B.shape << "_"; - result << "pShape=" << param.P.shape << "_"; - result << "YShape=" << param.Y.shape << "_"; - result << "hoShape=" << param.Ho.shape << "_"; - result << "coShape=" << param.Co.shape << "_"; - result << "clip=" << param.clip << "_"; - result << "input_forget=" << param.input_forget << "_"; - result << "LSTMdirection=" << param.lstm_direction; - if (!param.testcaseName.empty()) - result << "_" << param.testcaseName; - - return result.str(); - } - -private: - static std::shared_ptr CreateFunction(const LSTMSequenceV1Params& params) { - const auto X = std::make_shared(params.X.type, params.X.shape); - const auto H_t = std::make_shared(params.H_t.type, params.H_t.shape); - const auto C_t = std::make_shared(params.C_t.type, params.C_t.shape); - const auto S_t = std::make_shared(params.S_t.type, params.S_t.shape); - const auto W = std::make_shared(params.W.type, params.W.shape); - const auto R = std::make_shared(params.R.type, params.R.shape); - const auto B = std::make_shared(params.B.type, params.B.shape); - const auto P = std::make_shared(params.P.type, params.P.shape); - - const auto lstm_sequence = - std::make_shared(X, - H_t, - C_t, - S_t, - W, - R, - B, - P, - params.hiddenSize, - params.lstm_direction, - ov::op::LSTMWeightsFormat::FICO, - std::vector{}, - std::vector{}, - std::vector{"sigmoid", "tanh", "tanh"}, - params.clip, - params.input_forget); - - auto function = - std::make_shared(lstm_sequence->outputs(), ParameterVector{X, H_t, C_t, S_t, W, R, B, P}); - return function; - } -}; - TEST_P(ReferenceLSTMSequenceTest, CompareWithRefs) { Exec(); } -TEST_P(ReferenceLSTMSequenceV1Test, CompareWithRefs) { - Exec(); -} - template std::vector generateParams() { using T = typename element_type_traits::value_type; @@ -3481,10 +3401,4 @@ INSTANTIATE_TEST_SUITE_P(smoke_LSTMSequence_With_Hardcoded_Refs, ReferenceLSTMSequenceTest, testing::ValuesIn(generateCombinedParams()), ReferenceLSTMSequenceTest::getTestCaseName); - -INSTANTIATE_TEST_SUITE_P(smoke_LSTMSequence_With_Hardcoded_Refs, - ReferenceLSTMSequenceV1Test, - testing::ValuesIn(generateV1CombinedParams()), - ReferenceLSTMSequenceV1Test::getTestCaseName); - } // namespace diff --git a/src/tests/functional/plugin/conformance/test_runner/op_conformance_runner/src/op_impl_check/single_op_graph.cpp b/src/tests/functional/plugin/conformance/test_runner/op_conformance_runner/src/op_impl_check/single_op_graph.cpp index bcb259cd49b60f..fb192e0ac40223 100644 --- a/src/tests/functional/plugin/conformance/test_runner/op_conformance_runner/src/op_impl_check/single_op_graph.cpp +++ b/src/tests/functional/plugin/conformance/test_runner/op_conformance_runner/src/op_impl_check/single_op_graph.cpp @@ -2017,22 +2017,6 @@ std::shared_ptr generateRNNCellBase(const std::shared_ptr ov::op::RecurrentSequenceDirection::FORWARD); ov::ResultVector results{std::make_shared(gru_sequence)}; return std::make_shared(results, params, "GRUSequence"); - } else if (ov::is_type(node)) { - ov::ParameterVector params{std::make_shared(ov::element::f32, ov::Shape{{5, 10, 10}}), - std::make_shared(ov::element::f32, ov::Shape{{5, 1, 10}}), - std::make_shared(ov::element::f32, ov::Shape{{5, 1, 10}}), - std::make_shared(ov::element::i64, ov::Shape{5})}; - - const auto W = std::make_shared(utils::create_and_fill_tensor(ov::element::f32, ov::Shape{1, 40, 10})); - const auto R = std::make_shared(utils::create_and_fill_tensor(ov::element::f32, ov::Shape{1, 40, 10})); - const auto B = std::make_shared(utils::create_and_fill_tensor(ov::element::f32, ov::Shape{1, 40})); - const auto P = std::make_shared(utils::create_and_fill_tensor(ov::element::f32, ov::Shape{1, 30})); - RNNCellBaseNode = std::make_shared(params.at(0), params.at(1), params.at(2), params.at(3), - W, R, B, 10, ov::op::RecurrentSequenceDirection::FORWARD); - ov::ResultVector results{std::make_shared(RNNCellBaseNode->output(0)), - std::make_shared(RNNCellBaseNode->output(1)), - std::make_shared(RNNCellBaseNode->output(2))}; - return std::make_shared(results, params, "LSTMSeq1BaseGraph"); } else if (ov::is_type(node)) { ov::ParameterVector params{std::make_shared(ov::element::f32, ov::Shape{{5, 10, 10}}), std::make_shared(ov::element::f32, ov::Shape{{5, 1, 10}}), From 2725b163623bca9d3ba37eb1261e21cb9812031e Mon Sep 17 00:00:00 2001 From: Pawel Raasz Date: Tue, 5 Nov 2024 14:30:58 +0100 Subject: [PATCH 10/93] [core] Remove legacy tensor name (#27307) ### Details: - Remove legacy name from tensor descriptor ### Related PR: - #26855 ### Tickets: - CVS-156182 --------- Signed-off-by: Pawel Raasz --- .../include/transformations/utils/utils.hpp | 16 +++------ .../control_flow/unroll_if.cpp | 7 ---- .../control_flow/unroll_tensor_iterator.cpp | 25 +------------- .../src/transformations/convert_precision.cpp | 6 ---- .../convert_maxpool_downgrade.cpp | 4 --- .../transpose_sinking/ts_utils.cpp | 6 ---- .../unroll_tensor_iterator_test.cpp | 32 ++++++++--------- .../tests/utils/convert_precision.cpp | 10 ------ .../openvino/core/descriptor_tensor.hpp | 9 ----- .../openvino/core/descriptor/tensor.hpp | 3 -- src/core/src/descriptor/tensor.cpp | 13 ------- src/core/src/graph_util.cpp | 20 ----------- src/core/src/node.cpp | 4 --- src/core/src/node_output.cpp | 19 ----------- src/core/src/preprocess/preprocess_impls.cpp | 7 ---- .../onnx/frontend/src/core/graph.cpp | 4 --- src/plugins/intel_cpu/src/utils/serialize.cpp | 34 +++++-------------- .../src/subgraph_simple.cpp | 8 ----- 18 files changed, 28 insertions(+), 199 deletions(-) diff --git a/src/common/transformations/include/transformations/utils/utils.hpp b/src/common/transformations/include/transformations/utils/utils.hpp index fed812ecc864ca..6bcc50e29b3733 100644 --- a/src/common/transformations/include/transformations/utils/utils.hpp +++ b/src/common/transformations/include/transformations/utils/utils.hpp @@ -64,18 +64,10 @@ inline bool has_decompression_converts(const std::shared_ptr& f OPENVINO_DEPRECATED("Plugins should use ov::ISyncInferRequest::find_port") inline std::string create_ie_output_name(const Output& output) { - std::string out_name; - OPENVINO_SUPPRESS_DEPRECATED_START - auto tensor_name = ov::descriptor::get_ov_tensor_legacy_name(output.get_tensor()); - OPENVINO_SUPPRESS_DEPRECATED_END - if (!tensor_name.empty()) { - out_name = std::move(tensor_name); - } else { - const auto& prev_layer = output.get_node_shared_ptr(); - out_name = prev_layer->get_friendly_name(); - if (prev_layer->get_output_size() != 1) { - out_name += "." + std::to_string(output.get_index()); - } + const auto& prev_layer = output.get_node_shared_ptr(); + auto out_name = prev_layer->get_friendly_name(); + if (prev_layer->get_output_size() != 1) { + out_name += "." + std::to_string(output.get_index()); } return out_name; } diff --git a/src/common/transformations/src/transformations/control_flow/unroll_if.cpp b/src/common/transformations/src/transformations/control_flow/unroll_if.cpp index 6ef5536495e663..14d28a3a3fcfa3 100644 --- a/src/common/transformations/src/transformations/control_flow/unroll_if.cpp +++ b/src/common/transformations/src/transformations/control_flow/unroll_if.cpp @@ -54,14 +54,7 @@ bool ov::pass::UnrollIf::run_on_model(const std::shared_ptr& f) { } for (const auto& output_desc : output_descriptions) { std::shared_ptr result = body->get_results()[output_desc->m_body_value_index]; - const auto& in_value = result->input_value(0); - // set output name to Tensor to store it for openvino to cnn conversion - OPENVINO_SUPPRESS_DEPRECATED_START - ov::descriptor::set_ov_tensor_legacy_name( - in_value.get_tensor(), - op::util::create_ie_output_name(if_node->output(output_desc->m_output_index))); - OPENVINO_SUPPRESS_DEPRECATED_END for (const auto& input : if_node->output(output_desc->m_output_index).get_target_inputs()) { input.replace_source_output(result->get_input_source_output(0)); } diff --git a/src/common/transformations/src/transformations/control_flow/unroll_tensor_iterator.cpp b/src/common/transformations/src/transformations/control_flow/unroll_tensor_iterator.cpp index 431527ade998a1..dde1ab35898b67 100644 --- a/src/common/transformations/src/transformations/control_flow/unroll_tensor_iterator.cpp +++ b/src/common/transformations/src/transformations/control_flow/unroll_tensor_iterator.cpp @@ -115,21 +115,6 @@ bool ov::pass::UnrollTensorIterator::run_on_model(const std::shared_ptrget_output_descriptions()) { - // we need to insert tensor_name to the outputs of TensorIterator if they directly connected to - // Results ops. It's necessary to save original TensorIterator name when we use CNNNetwork. - auto insert_tensor_name = [&](const ov::Output& ti_output, const ov::Output& insert_to) { - auto target_inputs = ti_output.get_target_inputs(); - if (target_inputs.empty() || - std::any_of(target_inputs.begin(), target_inputs.end(), [](const ov::Input& target_inp) { - return ov::as_type(target_inp.get_node()) != nullptr; - })) { - OPENVINO_SUPPRESS_DEPRECATED_START - ov::descriptor::set_ov_tensor_legacy_name(insert_to.get_tensor(), - ov::op::util::create_ie_output_name(ti_output)); - OPENVINO_SUPPRESS_DEPRECATED_END - } - }; - if (const auto& concat_desc = std::dynamic_pointer_cast(desc)) { if (!concat_desc) { @@ -155,9 +140,6 @@ bool ov::pass::UnrollTensorIterator::run_on_model(const std::shared_ptr(to_concat, concat_desc->m_axis); copy_runtime_info(sub_graph_op, concat); - // set output name to Tensor to store it for openvino to cnn conversion - insert_tensor_name(sub_graph_op->output(concat_desc->m_output_index), concat->output(0)); - // connect the Concat layer to the corresponding TI outputs for (auto& input : sub_graph_op->output(concat_desc->m_output_index).get_target_inputs()) { input.replace_source_output(concat); @@ -167,8 +149,6 @@ bool ov::pass::UnrollTensorIterator::run_on_model(const std::shared_ptr result = body_functions[0]->get_results().at(concat_desc->m_body_value_index); const auto& input_to_res = result->get_input_source_output(0); - // set output name to Tensor to store it for openvino to cnn conversion - insert_tensor_name(sub_graph_op->output(concat_desc->m_output_index), input_to_res); for (auto& input : sub_graph_op->output(concat_desc->m_output_index).get_target_inputs()) { input.replace_source_output(input_to_res); @@ -179,11 +159,8 @@ bool ov::pass::UnrollTensorIterator::run_on_model(const std::shared_ptrm_iteration; iter = iter >= 0 ? iter : num_iter - 1; - std::shared_ptr result = - body_functions[iter]->get_results()[output_desc->m_body_value_index]; - const auto& in_value = result->input_value(0); + auto result = body_functions[iter]->get_results()[output_desc->m_body_value_index]; - insert_tensor_name(sub_graph_op->output(output_desc->m_output_index), in_value); for (const auto& input : sub_graph_op->output(output_desc->m_output_index).get_target_inputs()) { input.replace_source_output(result->get_input_source_output(0)); } diff --git a/src/common/transformations/src/transformations/convert_precision.cpp b/src/common/transformations/src/transformations/convert_precision.cpp index 3ab2c694be40ef..d8fd21699a5c20 100644 --- a/src/common/transformations/src/transformations/convert_precision.cpp +++ b/src/common/transformations/src/transformations/convert_precision.cpp @@ -332,12 +332,6 @@ bool convert_function_precision(const std::shared_ptr& f, auto& convert_output_tensor = convert->get_output_tensor(0); convert_output_tensor.set_names(result_input.get_names()); - OPENVINO_SUPPRESS_DEPRECATED_START - const auto& legacy_name = ov::descriptor::get_ov_tensor_legacy_name(result_input.get_tensor()); - if (!legacy_name.empty()) { - ov::descriptor::set_ov_tensor_legacy_name(convert_output_tensor, legacy_name); - } - OPENVINO_SUPPRESS_DEPRECATED_END result_input.set_names({}); result->input(0).replace_source_output(convert->output(0)); diff --git a/src/common/transformations/src/transformations/op_conversions/convert_maxpool_downgrade.cpp b/src/common/transformations/src/transformations/op_conversions/convert_maxpool_downgrade.cpp index 50a49202742bde..0e0865b3845f48 100644 --- a/src/common/transformations/src/transformations/op_conversions/convert_maxpool_downgrade.cpp +++ b/src/common/transformations/src/transformations/op_conversions/convert_maxpool_downgrade.cpp @@ -57,10 +57,6 @@ ov::pass::ConvertMaxPool8ToMaxPool1::ConvertMaxPool8ToMaxPool1() { ov::copy_runtime_info(maxpool_v8_node, maxpool_v1_node); maxpool_v8_node->clear_control_dependencies(); - OPENVINO_SUPPRESS_DEPRECATED_START - ov::descriptor::set_ov_tensor_legacy_name(maxpool_v1_node->output(0).get_tensor(), out_name); - OPENVINO_SUPPRESS_DEPRECATED_END - return true; }; diff --git a/src/common/transformations/src/transformations/transpose_sinking/ts_utils.cpp b/src/common/transformations/src/transformations/transpose_sinking/ts_utils.cpp index ba950ad93bf501..ae40ca869c7dcc 100644 --- a/src/common/transformations/src/transformations/transpose_sinking/ts_utils.cpp +++ b/src/common/transformations/src/transformations/transpose_sinking/ts_utils.cpp @@ -122,12 +122,6 @@ void SwapOutputNames(Output output1, Output output2) { const auto node2_output_names = output2.get_names(); output2.set_names(output1.get_names()); output1.set_names(node2_output_names); - - OPENVINO_SUPPRESS_DEPRECATED_START - const auto node2_legacy_output_names = get_ov_tensor_legacy_name(output2.get_tensor()); - set_ov_tensor_legacy_name(output2.get_tensor(), get_ov_tensor_legacy_name(output1.get_tensor())); - set_ov_tensor_legacy_name(output1.get_tensor(), node2_legacy_output_names); - OPENVINO_SUPPRESS_DEPRECATED_END } void SwapFriendlyNames(const NodePtr& node1, const NodePtr& node2) { diff --git a/src/common/transformations/tests/control_flow/unroll_tensor_iterator_test.cpp b/src/common/transformations/tests/control_flow/unroll_tensor_iterator_test.cpp index 9ff2be2e754e95..fb4891d1590cc7 100644 --- a/src/common/transformations/tests/control_flow/unroll_tensor_iterator_test.cpp +++ b/src/common/transformations/tests/control_flow/unroll_tensor_iterator_test.cpp @@ -491,14 +491,12 @@ TEST(TransformationTests, UnrollTensorIteratorLSTMCellSingleIterationSingleItera ASSERT_TRUE(res.first) << res.second; } -void collect_legacy_tensor_names(const std::shared_ptr& model, std::vector& holder) { +void collect_tensor_names(const std::shared_ptr& model, + std::vector>& holder) { for (const auto& op : model->get_ordered_ops()) { for (const auto& out : op->outputs()) { - OPENVINO_SUPPRESS_DEPRECATED_START - auto tensor_name = ov::descriptor::get_ov_tensor_legacy_name(out.get_tensor()); - OPENVINO_SUPPRESS_DEPRECATED_END - if (!tensor_name.empty() && ov::as_type_ptr(op)) - holder.emplace_back(tensor_name); + if (!out.get_tensor().get_names().empty() && ov::as_type_ptr(op)) + holder.emplace_back(out.get_tensor().get_names()); } } } @@ -538,8 +536,8 @@ TEST(TransformationTests, CheckTensorNamesAfterConvertToTIAndUnrolling) { f = std::make_shared(NodeVector{Y_out, Ho}, ParameterVector{X, Y}); } - std::vector names_before; - collect_legacy_tensor_names(f, names_before); + std::vector> names_before; + collect_tensor_names(f, names_before); pass::Manager m; m.register_pass(); @@ -548,8 +546,8 @@ TEST(TransformationTests, CheckTensorNamesAfterConvertToTIAndUnrolling) { m.run_passes(f); OV_ASSERT_NO_THROW(check_rt_info(f)); - std::vector names_after; - collect_legacy_tensor_names(f, names_after); + std::vector> names_after; + collect_tensor_names(f, names_after); EXPECT_EQ(names_before, names_after); } @@ -605,8 +603,8 @@ TEST(TransformationTests, CheckTensorNamesAfterUnrolling) { f = std::make_shared(NodeVector{res_ti_1, res_ti_2}, ParameterVector{X, Y, Z}); } - std::vector names_before; - collect_legacy_tensor_names(f, names_before); + std::vector> names_before; + collect_tensor_names(f, names_before); pass::Manager m; m.register_pass(); @@ -614,11 +612,9 @@ TEST(TransformationTests, CheckTensorNamesAfterUnrolling) { m.run_passes(f); OV_ASSERT_NO_THROW(check_rt_info(f)); - std::vector names_after; - collect_legacy_tensor_names(f, names_after); + std::vector> names_after; + collect_tensor_names(f, names_after); - EXPECT_NE(names_before, names_after); - EXPECT_EQ(names_after.size(), 2); - EXPECT_EQ(names_after[0], "TensorIterator.0"); - EXPECT_EQ(names_after[1], "TensorIterator.1"); + ASSERT_EQ(names_after.size(), 0); + EXPECT_EQ(names_before, names_after); } diff --git a/src/common/transformations/tests/utils/convert_precision.cpp b/src/common/transformations/tests/utils/convert_precision.cpp index 2aa4d4d2fac9e9..318f15ab1a64dc 100644 --- a/src/common/transformations/tests/utils/convert_precision.cpp +++ b/src/common/transformations/tests/utils/convert_precision.cpp @@ -2304,11 +2304,6 @@ TEST(TransformationTests, ConvertPrecisionExplicitConvertsSingleNodeMultipleOutp split->get_output_tensor(0).add_names({"split:0"}); split->get_output_tensor(1).add_names({"split:1"}); split->get_output_tensor(2).add_names({"split:2"}); - OPENVINO_SUPPRESS_DEPRECATED_START - ov::descriptor::set_ov_tensor_legacy_name(split->get_output_tensor(0), "legacy_split:0"); - ov::descriptor::set_ov_tensor_legacy_name(split->get_output_tensor(1), "legacy_split:1"); - ov::descriptor::set_ov_tensor_legacy_name(split->get_output_tensor(2), "legacy_split:2"); - OPENVINO_SUPPRESS_DEPRECATED_END model = make_shared(split->outputs(), ParameterVector{param_1}); type_to_fuse_map empty_type_to_fuse_map = {}; @@ -2345,11 +2340,6 @@ TEST(TransformationTests, ConvertPrecisionExplicitConvertsSingleNodeMultipleOutp ASSERT_EQ("split.0", results[0]->get_input_node_ptr(0)->get_friendly_name()); ASSERT_EQ("split.1", results[1]->get_input_node_ptr(0)->get_friendly_name()); ASSERT_EQ("split.2", results[2]->get_input_node_ptr(0)->get_friendly_name()); - OPENVINO_SUPPRESS_DEPRECATED_START - ASSERT_EQ("legacy_split:0", ov::descriptor::get_ov_tensor_legacy_name(results[0]->get_input_tensor(0))); - ASSERT_EQ("legacy_split:1", ov::descriptor::get_ov_tensor_legacy_name(results[1]->get_input_tensor(0))); - ASSERT_EQ("legacy_split:2", ov::descriptor::get_ov_tensor_legacy_name(results[2]->get_input_tensor(0))); - OPENVINO_SUPPRESS_DEPRECATED_END } TEST(TransformationTests, ConvertPrecisionExplicitConvertsMultiSubgraphs) { diff --git a/src/core/dev_api/openvino/core/descriptor_tensor.hpp b/src/core/dev_api/openvino/core/descriptor_tensor.hpp index 4c7c0ad8c3c972..9418183a1189fc 100644 --- a/src/core/dev_api/openvino/core/descriptor_tensor.hpp +++ b/src/core/dev_api/openvino/core/descriptor_tensor.hpp @@ -14,14 +14,5 @@ void set_element_type(Tensor& tensor, const element::Type& elemenet_type); // To change Tensor type please change the Parameter type. OPENVINO_API void set_tensor_type(Tensor& tensor, const element::Type& element_type, const PartialShape& pshape); - -OPENVINO_DEPRECATED("get_ov_tensor_legacy_name() is deprecated. Please don't use this function.") -OPENVINO_API -std::string get_ov_tensor_legacy_name(const Tensor& tensor); - -OPENVINO_DEPRECATED("set_ov_tensor_legacy_name() is deprecated. Please don't use this function.") -OPENVINO_API -void set_ov_tensor_legacy_name(Tensor& tensor, const std::string& tensor_name); - } // namespace descriptor } // namespace ov diff --git a/src/core/include/openvino/core/descriptor/tensor.hpp b/src/core/include/openvino/core/descriptor/tensor.hpp index edf2e690e8c860..a1cac56fa64e01 100644 --- a/src/core/include/openvino/core/descriptor/tensor.hpp +++ b/src/core/include/openvino/core/descriptor/tensor.hpp @@ -98,14 +98,11 @@ class OPENVINO_API Tensor { PartialShape m_partial_shape; ov::Tensor m_lower_value, m_upper_value; TensorSymbol m_value_symbol; - std::string m_legacy_name; std::unordered_set m_names; std::unordered_set::const_iterator m_name_it; RTMap m_rt_info; - friend OPENVINO_API std::string get_ov_tensor_legacy_name(const Tensor& tensor); - friend OPENVINO_API void set_ov_tensor_legacy_name(Tensor& tensor, const std::string& tensor_name); friend OPENVINO_API void set_element_type(Tensor& tensor, const element::Type& elemenet_type); friend OPENVINO_API void set_tensor_type(Tensor& tensor, const element::Type& element_type, diff --git a/src/core/src/descriptor/tensor.cpp b/src/core/src/descriptor/tensor.cpp index 31509605003fdb..ae3f7c6e77cd4f 100644 --- a/src/core/src/descriptor/tensor.cpp +++ b/src/core/src/descriptor/tensor.cpp @@ -116,18 +116,9 @@ void ov::descriptor::Tensor::clone_from(const ov::descriptor::Tensor& old) { m_lower_value = old.get_lower_value(); m_upper_value = old.get_upper_value(); m_value_symbol = old.get_value_symbol(); - m_legacy_name = old.m_legacy_name; m_rt_info = old.get_rt_info(); } -std::string ov::descriptor::get_ov_tensor_legacy_name(const ov::descriptor::Tensor& tensor) { - return tensor.m_legacy_name; -} - -void ov::descriptor::set_ov_tensor_legacy_name(ov::descriptor::Tensor& tensor, const std::string& tensor_name) { - tensor.m_legacy_name = tensor_name; -} - void ov::descriptor::set_tensor_type(ov::descriptor::Tensor& tensor, const element::Type& element_type, const PartialShape& pshape) { @@ -148,10 +139,6 @@ std::ostream& ov::descriptor::operator<<(std::ostream& out, const ov::descriptor names += ", "; names += name; } - OPENVINO_SUPPRESS_DEPRECATED_START - if (names.empty()) - names = get_ov_tensor_legacy_name(tensor); - OPENVINO_SUPPRESS_DEPRECATED_END out << "Tensor(" << names << ")"; return out; } diff --git a/src/core/src/graph_util.cpp b/src/core/src/graph_util.cpp index 17780f7751d52e..4a8f4598f55cc3 100644 --- a/src/core/src/graph_util.cpp +++ b/src/core/src/graph_util.cpp @@ -273,36 +273,16 @@ bool replace_output_update_name(Output output, const Output& replace }); }; - bool preserve_legacy_output_name = false; if (has_result_consumers(output)) { - preserve_legacy_output_name = true; if (output.get_node()->get_output_size() != 1 || replacement.get_node()->get_output_size() != 1 || is_type(replacement.get_node()) || has_result_consumers(replacement)) { return false; } - } - - OPENVINO_SUPPRESS_DEPRECATED_START - if (preserve_legacy_output_name) { replacement.get_node()->set_friendly_name(output.get_node()->get_friendly_name()); - // Update output tensor name - const auto& output_tensor_name = ov::descriptor::get_ov_tensor_legacy_name(output.get_tensor()); - if (!output_tensor_name.empty()) { - ov::descriptor::set_ov_tensor_legacy_name(replacement.get_tensor(), output_tensor_name); - } else { - ov::descriptor::set_ov_tensor_legacy_name(replacement.get_tensor(), output.get_node()->get_friendly_name()); - } } - // Save replacement tensor name before replacement as they will be overridden by the output tensor name - const auto tensor_name = ov::descriptor::get_ov_tensor_legacy_name(replacement.get_tensor()); - output.replace(replacement); - // Restore back original replacement tensor name - ov::descriptor::set_ov_tensor_legacy_name(replacement.get_tensor(), tensor_name); - OPENVINO_SUPPRESS_DEPRECATED_END - copy_runtime_info({replacement.get_node_shared_ptr(), output.get_node_shared_ptr()}, replacement.get_node_shared_ptr()); return true; diff --git a/src/core/src/node.cpp b/src/core/src/node.cpp index 8b9936b5496e7c..ec9197a5a337cb 100644 --- a/src/core/src/node.cpp +++ b/src/core/src/node.cpp @@ -157,10 +157,6 @@ std::shared_ptr ov::Node::copy_with_new_inputs( } for (size_t i = 0; i < get_output_size(); i++) { clone->get_output_tensor(i).set_names(get_output_tensor(i).get_names()); - OPENVINO_SUPPRESS_DEPRECATED_START - ov::descriptor::set_ov_tensor_legacy_name(clone->get_output_tensor(i), - ov::descriptor::get_ov_tensor_legacy_name(get_output_tensor(i))); - OPENVINO_SUPPRESS_DEPRECATED_END } return clone; } diff --git a/src/core/src/node_output.cpp b/src/core/src/node_output.cpp index 3608abe13f3953..a2ea865b2ec84e 100644 --- a/src/core/src/node_output.cpp +++ b/src/core/src/node_output.cpp @@ -73,25 +73,6 @@ void Output::replace(const Output& replacement) { input.replace_source_output(replacement); } replacement.get_tensor_ptr()->add_names(get_tensor_ptr()->get_names()); - OPENVINO_SUPPRESS_DEPRECATED_START - // In legacy API we rely on output port tensor name and use it as an input or output name for the model - // Due to m_name is just a string, and we can't store multiple aliases for single output port we have to - // handle two situations during replacement: - // 1. When we replace consumers to Parameter output port we can't change its name, so we skip this part - // 2. In other cases when we replace consumers to another output port we should set name. For example: - // if we eliminate Node2 from Node1->Node2->Result we have to set Node2 output port name to Node1 - // output port name, so the output name for model won't be changed. - // But there are some cases when output name can not be preserved, so the replacement shouldn't be used: - // 1. Parameter->Node->Result - if we eliminate Node we will lose output name - // 2. Node1-->Node2->Result - if we eliminate Node2 we will lose Result output name - // `->Result - // In both of these cases please use replace_output_update_name() method which automatically prevents the - // replacement for cases when we can not preserve input/output names of model. - if (!is_type(replacement.get_node())) { - ov::descriptor::set_ov_tensor_legacy_name(replacement.get_tensor(), - ov::descriptor::get_ov_tensor_legacy_name(get_tensor())); - } - OPENVINO_SUPPRESS_DEPRECATED_END ov::copy_output_runtime_info({*this, replacement}, {replacement}); } diff --git a/src/core/src/preprocess/preprocess_impls.cpp b/src/core/src/preprocess/preprocess_impls.cpp index 13a4c6f1353312..cbe18a78beb575 100644 --- a/src/core/src/preprocess/preprocess_impls.cpp +++ b/src/core/src/preprocess/preprocess_impls.cpp @@ -385,13 +385,6 @@ void OutputInfo::OutputInfoImpl::build(ov::ResultVector& results) { std::to_string(result->get_input_source_output(0).get_index())); } - OPENVINO_SUPPRESS_DEPRECATED_START - const auto tensor_name = ov::descriptor::get_ov_tensor_legacy_name(result->get_input_tensor(0)); - if (!tensor_name.empty()) { - ov::descriptor::set_ov_tensor_legacy_name(node.get_tensor(), tensor_name); - } - OPENVINO_SUPPRESS_DEPRECATED_END - // Reset friendly name of input node to avoid names collision // when there is at a new node inserted by post-processing steps // If no new nodes are inserted by post-processing, then we need to preserve friendly name of input diff --git a/src/frontends/onnx/frontend/src/core/graph.cpp b/src/frontends/onnx/frontend/src/core/graph.cpp index ad755c958703cb..80ec9c6c9f390c 100644 --- a/src/frontends/onnx/frontend/src/core/graph.cpp +++ b/src/frontends/onnx/frontend/src/core/graph.cpp @@ -446,10 +446,6 @@ void Graph::set_friendly_names(const Node& onnx_node, const ov::OutputVector& ov // null node does not have tensor if (!ov::op::util::is_null(ov_subgraph_outputs[i])) { ov_subgraph_outputs[i].get_tensor().set_names({onnx_node.output(static_cast(i))}); - OPENVINO_SUPPRESS_DEPRECATED_START - ov::descriptor::set_ov_tensor_legacy_name(ov_subgraph_outputs[i].get_tensor(), - onnx_node.output(static_cast(i))); - OPENVINO_SUPPRESS_DEPRECATED_END } } } diff --git a/src/plugins/intel_cpu/src/utils/serialize.cpp b/src/plugins/intel_cpu/src/utils/serialize.cpp index f7fd337afa932e..814e8d19311a8c 100644 --- a/src/plugins/intel_cpu/src/utils/serialize.cpp +++ b/src/plugins/intel_cpu/src/utils/serialize.cpp @@ -20,12 +20,7 @@ void ModelSerializer::operator<<(const std::shared_ptr& model) { auto serialize_info = [&](std::ostream& stream) { pugi::xml_document xml_doc; pugi::xml_node root = xml_doc.append_child("cnndata"); - pugi::xml_node outputs = root.append_child("outputs"); - for (const auto& out : model->get_results()) { - auto out_node = outputs.append_child("out"); - const auto name = ov::descriptor::get_ov_tensor_legacy_name(out->input_value(0).get_tensor()); - out_node.append_attribute("name").set_value(name.c_str()); - } + root.append_child("outputs"); xml_doc.save(stream); }; @@ -44,26 +39,15 @@ ModelDeserializer::ModelDeserializer(std::istream& model_stream, ModelBuilder fn } } -void ModelDeserializer::set_info(pugi::xml_node& root, std::shared_ptr& model) { - pugi::xml_node outputs = root.child("outputs"); - auto nodes_it = outputs.children("out").begin(); - size_t size = model->outputs().size(); - for (size_t i = 0lu; i < size; ++nodes_it, i++) { - std::string name = nodes_it->attribute("name").value(); - if (name.empty()) - continue; - auto result = model->output(i).get_node_shared_ptr(); - ov::descriptor::set_ov_tensor_legacy_name(result->input_value(0).get_tensor(), name); - } -} + void ModelDeserializer::set_info(pugi::xml_node& root, std::shared_ptr& model) {} -void ModelDeserializer::operator>>(std::shared_ptr& model) { - if (auto mmap_buffer = dynamic_cast(m_istream.rdbuf())) { - auto buffer = mmap_buffer->get_buffer(); - process_mmap(model, buffer); - } else { - process_stream(model); - } + void ModelDeserializer::operator>>(std::shared_ptr& model) { + if (auto mmap_buffer = dynamic_cast(m_istream.rdbuf())) { + auto buffer = mmap_buffer->get_buffer(); + process_mmap(model, buffer); + } else { + process_stream(model); + } } void ModelDeserializer::process_mmap(std::shared_ptr& model, diff --git a/src/tests/ov_helpers/ov_snippets_models/src/subgraph_simple.cpp b/src/tests/ov_helpers/ov_snippets_models/src/subgraph_simple.cpp index 12758a90c07652..b15007aca13e0c 100644 --- a/src/tests/ov_helpers/ov_snippets_models/src/subgraph_simple.cpp +++ b/src/tests/ov_helpers/ov_snippets_models/src/subgraph_simple.cpp @@ -218,15 +218,11 @@ std::shared_ptr EltwiseTwoResultsFunction::initOriginal() const { auto relu = std::make_shared(hswish); relu->set_friendly_name("relu"); - OPENVINO_SUPPRESS_DEPRECATED_START auto& out_tensor0 = add->get_output_tensor(0); - ov::descriptor::set_ov_tensor_legacy_name(out_tensor0, "add_out"); out_tensor0.set_names({"add_out", "y0"}); auto& out_tensor1 = relu->get_output_tensor(0); - ov::descriptor::set_ov_tensor_legacy_name(out_tensor1, "relu_out"); out_tensor1.set_names({"relu_out", "y1"}); - OPENVINO_SUPPRESS_DEPRECATED_END auto res0 = std::make_shared(add); res0->set_friendly_name("res0"); @@ -257,15 +253,11 @@ std::shared_ptr EltwiseTwoResultsFunction::initReference() const { std::make_shared(NodeVector{relu}, ParameterVector{indata2})); subgraph1->set_friendly_name("relu"); - OPENVINO_SUPPRESS_DEPRECATED_START auto& out_tensor0 = subgraph0->get_output_tensor(0); - ov::descriptor::set_ov_tensor_legacy_name(out_tensor0, "add_out"); out_tensor0.set_names({"add_out", "y0"}); auto& out_tensor1 = subgraph1->get_output_tensor(0); - ov::descriptor::set_ov_tensor_legacy_name(out_tensor1, "relu_out"); out_tensor1.set_names({"relu_out", "y1"}); - OPENVINO_SUPPRESS_DEPRECATED_END auto res0 = std::make_shared(subgraph0->output(0)); res0->set_friendly_name("res0"); From fd2d6dcc2e9131f1b507adcd5413eefea915d190 Mon Sep 17 00:00:00 2001 From: Mikhail Ryzhov Date: Tue, 5 Nov 2024 15:16:01 +0100 Subject: [PATCH 11/93] [GHA] Set commit action versions (#27384) ### Details: - Use commit action versions as security requirement ### Tickets: - *ticket-id* --- .github/actions/handle_docker/action.yml | 8 ++++---- .github/actions/setup_python/action.yml | 2 +- .github/actions/smart-ci/action.yml | 6 +++--- .github/dockerfiles/docker_tag | 2 +- 4 files changed, 9 insertions(+), 9 deletions(-) diff --git a/.github/actions/handle_docker/action.yml b/.github/actions/handle_docker/action.yml index 204e4266729c34..f79bc06afa9f5c 100644 --- a/.github/actions/handle_docker/action.yml +++ b/.github/actions/handle_docker/action.yml @@ -27,17 +27,17 @@ runs: using: 'composite' steps: - name: Checkout head - uses: actions/checkout@v4 + uses: actions/checkout@eef61447b9ff4aafe5dcd4e0bbf5d482be7e7871 # v4.2.1 - name: Checkout base - uses: actions/checkout@v4 + uses: actions/checkout@eef61447b9ff4aafe5dcd4e0bbf5d482be7e7871 # v4.2.1 with: ref: ${{ github.base_ref || github.event.merge_group.base_ref }} sparse-checkout: ${{ inputs.dockerfiles_root_dir }}/docker_tag path: base - name: Install Python dependencies - uses: py-actions/py-dependency-install@v4 + uses: py-actions/py-dependency-install@30aa0023464ed4b5b116bd9fbdab87acf01a484e # v4.1.0 with: path: "${{ github.action_path }}/requirements.txt" update-setuptools: "false" @@ -45,7 +45,7 @@ runs: - name: Set up Docker Buildx id: buildx - uses: docker/setup-buildx-action@v3 + uses: docker/setup-buildx-action@c47758b77c9736f4b2ef4073d4d51994fabfe349 # v3.7.1 with: driver-opts: | image=${{ inputs.registry }}/dockerio/moby/buildkit:buildx-stable-1 diff --git a/.github/actions/setup_python/action.yml b/.github/actions/setup_python/action.yml index 0d9138bc643d2a..80e22866170535 100644 --- a/.github/actions/setup_python/action.yml +++ b/.github/actions/setup_python/action.yml @@ -56,7 +56,7 @@ runs: - if: ${{ runner.os == 'macOS' || runner.os == 'Windows' || (runner.os == 'Linux' && runner.arch != 'ARM64' && steps.check_python.outputs.installed == 'false' ) }} name: Setup Python ${{ inputs.version }} - uses: actions/setup-python@v5 + uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0 with: python-version: ${{ inputs.version }} env: diff --git a/.github/actions/smart-ci/action.yml b/.github/actions/smart-ci/action.yml index 4d772c8f0eeb03..ec65d2f1e9e82c 100644 --- a/.github/actions/smart-ci/action.yml +++ b/.github/actions/smart-ci/action.yml @@ -65,7 +65,7 @@ runs: using: "composite" steps: - name: Wait for labeler to finish - uses: lewagon/wait-on-check-action@v1.3.1 + uses: lewagon/wait-on-check-action@ccfb013c15c8afb7bf2b7c028fb74dc5a068cccc # v1.3.4 if: ${{ github.event_name == 'pull_request' }} with: ref: ${{ github.event.pull_request.head.sha }} @@ -74,13 +74,13 @@ runs: wait-interval: 10 - name: checkout components file - uses: actions/checkout@v4 + uses: actions/checkout@eef61447b9ff4aafe5dcd4e0bbf5d482be7e7871 # v4.2.1 with: sparse-checkout: .github/components.yml sparse-checkout-cone-mode: false - name: Install Python dependencies - uses: py-actions/py-dependency-install@v4 + uses: py-actions/py-dependency-install@30aa0023464ed4b5b116bd9fbdab87acf01a484e # v4.1.0 with: path: "${{ github.action_path }}/requirements.txt" update-setuptools: "false" diff --git a/.github/dockerfiles/docker_tag b/.github/dockerfiles/docker_tag index cdd92779f658e7..5a4f7795ea4a44 100644 --- a/.github/dockerfiles/docker_tag +++ b/.github/dockerfiles/docker_tag @@ -1 +1 @@ -pr-27380 +pr-27384 From 7daf8009109f46596cb018607dc1451d3290518a Mon Sep 17 00:00:00 2001 From: Mikhail Ryzhov Date: Tue, 5 Nov 2024 16:13:53 +0100 Subject: [PATCH 12/93] [GHA] Switch coverity pipeline to internal docker image (#27385) ### Details: - Moved pipeline to ubuntu 20.04 image - Enabled sccache - ### Tickets: -156658 --- .github/workflows/coverity.yml | 80 +++++++++++++++++++++++++++++----- 1 file changed, 69 insertions(+), 11 deletions(-) diff --git a/.github/workflows/coverity.yml b/.github/workflows/coverity.yml index d87de4257e0270..9797414cde56c8 100644 --- a/.github/workflows/coverity.yml +++ b/.github/workflows/coverity.yml @@ -25,7 +25,56 @@ env: TARGET_BRANCH: ${{ github.base_ref || github.event.merge_group.base_ref || github.ref }} jobs: + + Smart_CI: + runs-on: ubuntu-latest + outputs: + affected_components: "${{ steps.smart_ci.outputs.affected_components }}" + changed_components: "${{ steps.smart_ci.outputs.changed_components }}" + skip_workflow: "${{ steps.smart_ci.outputs.skip_workflow }}" + steps: + - name: checkout action + uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 + with: + sparse-checkout: .github/actions/smart-ci + + - name: Get affected components + id: smart_ci + uses: ./.github/actions/smart-ci + with: + repository: ${{ github.repository }} + pr: ${{ github.event.number }} + commit_sha: ${{ github.sha }} + ref_name: ${{ github.ref_name }} + component_pattern: "category: (.*)" + repo_token: ${{ secrets.GITHUB_TOKEN }} + skip_when_only_listed_labels_set: 'docs' + skip_when_only_listed_files_changed: '*.md,*.rst,*.png,*.jpg,*.svg' + + Docker: + needs: Smart_CI + runs-on: aks-linux-4-cores-16gb-docker-build + container: + image: openvinogithubactions.azurecr.io/docker_build:0.2 + volumes: + - /mount:/mount + outputs: + images: "${{ steps.handle_docker.outputs.images }}" + steps: + - name: Checkout + uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 + + - uses: ./.github/actions/handle_docker + id: handle_docker + with: + images: | + ov_build/ubuntu_20_04_x64 + registry: 'openvinogithubactions.azurecr.io' + dockerfiles_root_dir: '.github/dockerfiles' + changed_components: ${{ needs.smart_ci.outputs.changed_components }} + Build: + needs: Docker timeout-minutes: 150 defaults: run: @@ -33,7 +82,10 @@ jobs: runs-on: aks-linux-16-cores-32gb if: ${{ github.repository_owner == 'openvinotoolkit' }} container: - image: openvinogithubactions.azurecr.io/dockerhub/ubuntu:20.04 + image: ${{ fromJSON(needs.docker.outputs.images).ov_build.ubuntu_20_04_x64 }} + volumes: + - /mount:/mount + options: -e SCCACHE_AZURE_BLOB_CONTAINER -e SCCACHE_AZURE_CONNECTION_STRING env: DEBIAN_FRONTEND: noninteractive # to prevent apt-get from waiting user input CMAKE_BUILD_TYPE: 'Release' @@ -43,13 +95,16 @@ jobs: OPENVINO_CONTRIB_REPO: /__w/openvino/openvino/openvino_contrib BUILD_DIR: /__w/openvino/openvino/openvino_build COVERITY_TOOL_DIR: /__w/openvino/openvino/coverity_tool + CMAKE_CXX_COMPILER_LAUNCHER: sccache + CMAKE_C_COMPILER_LAUNCHER: sccache + SCCACHE_IGNORE_SERVER_IO_ERROR: 1 + SCCACHE_SERVER_PORT: 35555 + SCCACHE_ERROR_LOG: /__w/openvino/sccache_log.txt + SCCACHE_LOG: warn + SCCACHE_AZURE_KEY_PREFIX: coverity_lin + SCCACHE_CACHE_SIZE: 50G steps: - - name: Install git - run: | - apt-get update - apt-get install --assume-yes --no-install-recommends git ca-certificates - - name: Clone OpenVINO uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 with: @@ -86,7 +141,9 @@ jobs: # # Build # - + - name: Clean sccache stats + run: ${SCCACHE_PATH} --zero-stats + - name: CMake configure - OpenVINO run: | cmake \ @@ -108,12 +165,13 @@ jobs: - name: Cmake build - OpenVINO with Coverity run: ${COVERITY_TOOL_DIR}/cov-analysis*/bin/cov-build --dir ${BUILD_DIR}/cov-int cmake --build ${BUILD_DIR} --parallel --config ${{ env.CMAKE_BUILD_TYPE }} + + - name: Show sccache stats + run: ${SCCACHE_PATH} --show-stats - name: Pack Artefacts - run: | - pushd ${BUILD_DIR} - tar -cvf - cov-int | pigz > openvino.tgz - popd + run: tar -cvf - cov-int | pigz > openvino.tgz + working-directory: ${{ env.BUILD_DIR }} - name: Submit artefacts run: | From 0a3f439953766ff279cc8fcf5a65c3c3039a8c32 Mon Sep 17 00:00:00 2001 From: Roman Kazantsev Date: Tue, 5 Nov 2024 19:57:52 +0400 Subject: [PATCH 13/93] [TF FE] Check OV and FW outputs shapes and types in layer tests (#27375) **Details:** Check OV and FW outputs shapes and types in layer tests **Ticket:** TBD --------- Signed-off-by: Kazantsev, Roman --- .../src/op/tensor_list_operations.cpp | 9 +- .../tensorflow_common/src/op/tobool.cpp | 52 ++++--- .../src/op/unique_with_counts.cpp | 6 +- .../layer_tests/common/tf_layer_test_class.py | 139 +++++++++++++++++- .../tensorflow_tests/test_tf_Equal.py | 7 +- .../tensorflow_tests/test_tf_ToBool.py | 18 ++- 6 files changed, 192 insertions(+), 39 deletions(-) diff --git a/src/frontends/tensorflow_common/src/op/tensor_list_operations.cpp b/src/frontends/tensorflow_common/src/op/tensor_list_operations.cpp index 5cbf4c92b8a35c..e082be4943977c 100644 --- a/src/frontends/tensorflow_common/src/op/tensor_list_operations.cpp +++ b/src/frontends/tensorflow_common/src/op/tensor_list_operations.cpp @@ -199,8 +199,13 @@ OutputVector translate_tensor_list_length_op(const NodeContext& node) { auto tensor_list_shape = make_shared(input_handle, element::i32); auto list_length = make_shared(tensor_list_shape, zero_const, one_const, one_const); - set_node_name(node.get_name(), list_length); - return {list_length}; + // output of TensorListLength must be a scalar + // after Slice operation it is a 1D tensor with one element + auto scalar_shape = make_shared(element::i32, Shape{0}, std::vector{}); + auto list_length_scalar = make_shared(list_length, scalar_shape, false); + + set_node_name(node.get_name(), list_length_scalar); + return {list_length_scalar}; } OutputVector translate_tensor_list_concat_v2_op(const NodeContext& node) { diff --git a/src/frontends/tensorflow_common/src/op/tobool.cpp b/src/frontends/tensorflow_common/src/op/tobool.cpp index 9f1082d5df87da..9025a35f549799 100644 --- a/src/frontends/tensorflow_common/src/op/tobool.cpp +++ b/src/frontends/tensorflow_common/src/op/tobool.cpp @@ -9,6 +9,8 @@ #include "openvino/op/logical_and.hpp" #include "openvino/op/logical_or.hpp" #include "openvino/op/not_equal.hpp" +#include "openvino/op/range.hpp" +#include "openvino/op/reduce_logical_and.hpp" #include "openvino/op/reduce_prod.hpp" #include "openvino/op/select.hpp" #include "openvino/op/shape_of.hpp" @@ -22,47 +24,49 @@ namespace tensorflow { namespace op { OutputVector translate_tobool_op(const NodeContext& node) { // (rank(x) == 0 && x != 0) || (rank > 0 && ReduceProd(ShapeOf(x))) > 0 - default_op_checks(node, 1, {"ToBool"}); auto x = node.get_input(0); // prepare auxiliary zero and zero constants of the same type as the inputs - auto zero = create_same_type_const_scalar(x, 0); - auto zero_2 = make_shared(element::i32, Shape{}, 0); - auto true_const = make_shared(element::boolean, Shape{}, true); + auto zero_x = create_same_type_const_scalar(x, 0); + auto zero_i64 = make_shared(element::i64, Shape{}, 0); + auto one_i64 = make_shared(element::i64, Shape{}, 1); auto false_const = make_shared(element::boolean, Shape{}, false); // compute a mask to get rank(x) == 0 - auto x_rank = compute_subgraph_scalar_rank(x, element::i32); + auto x_rank = compute_subgraph_scalar_rank(x, element::i64, true); + // 1. try to evaluate if it satisfy non-zero scalar input // compute rank(x) == 0 - auto is_zero = make_shared(x_rank, zero_2); - + auto is_rank_zero = make_shared(x_rank, zero_i64); // compute mask to get x != 0 - auto is_not_zero = make_shared(x, zero); - + auto is_x_not_zero = make_shared(x, zero_x)->output(0); // compute (rank(x) == 0 && x != 0) - auto logical_and = make_shared(is_zero, is_not_zero); - // compute rank(x) > 0 - auto greater_than_zero = make_shared(x_rank, zero_2); + auto scalar_cond = make_shared(is_rank_zero, is_x_not_zero)->output(0); + // generate reduce_axes + auto reduce_axes = make_shared(zero_i64, x_rank, one_i64); + scalar_cond = make_shared(scalar_cond, reduce_axes, false); + // correct result for empty tensor, for which scalar_cond is still equal to True + scalar_cond = make_shared(is_rank_zero, scalar_cond, false_const); + // 2. try to evaluate if it is non-scalar input tensor and not empty tensor + // compute rank(x) > 0 + auto rank_greater_than_zero = make_shared(x_rank, zero_i64); // compute ShapeOf(x) - auto cond_shape = make_shared(x, element::i32); + auto x_shape = make_shared(x, element::i64); // compute ReduceProd(ShapeOf(x))) and axis - auto axis = make_shared(element::i32, Shape{}, 0); - auto reduce_prod = make_shared(cond_shape, axis); - + auto reduce_axis = make_shared(element::i32, Shape{}, 0); + auto num_elems = make_shared(x_shape, reduce_axis, false); // compute ReduceProd(ShapeOf(x))) > 0 - auto greater_than__zero_2 = make_shared(reduce_prod, zero_2); + auto num_elems_greater_than_zero = make_shared(num_elems, zero_i64); // compute (rank > 0 && ReduceProd(ShapeOf(x))) > 0 - auto logical_and_2 = make_shared(greater_than_zero, greater_than__zero_2); - - auto logical_or = make_shared(logical_and, logical_and_2); + // it will be a scalar + auto non_scalar_tensor_not_empty = make_shared(rank_greater_than_zero, num_elems_greater_than_zero); - auto tobool = make_shared(logical_or, true_const, false_const); - set_node_name(node.get_name(), tobool); - return tobool->outputs(); + auto to_bool = make_shared(scalar_cond, non_scalar_tensor_not_empty); + set_node_name(node.get_name(), to_bool); + return to_bool->outputs(); } } // namespace op } // namespace tensorflow } // namespace frontend -} // namespace ov \ No newline at end of file +} // namespace ov diff --git a/src/frontends/tensorflow_common/src/op/unique_with_counts.cpp b/src/frontends/tensorflow_common/src/op/unique_with_counts.cpp index 7c5c0a196aa018..d3ca3156ed1347 100644 --- a/src/frontends/tensorflow_common/src/op/unique_with_counts.cpp +++ b/src/frontends/tensorflow_common/src/op/unique_with_counts.cpp @@ -6,6 +6,7 @@ #include "openvino/op/unique.hpp" using namespace std; +using namespace ov; using namespace ov::op; namespace ov { @@ -19,8 +20,9 @@ OutputVector translate_unique_with_counts_op(const NodeContext& node) { // get input 'x' from node and node name auto x = node.get_input(0); auto node_name = node.get_name(); + auto out_idx = node.get_attribute("out_idx", element::i32); - auto unique = make_shared(x, false, ov::element::i32, ov::element::i32); + auto unique = make_shared(x, false, out_idx, out_idx); set_node_name(node_name, unique); // story 'y', 'idx', and 'count' outputs from Unique in separate variables @@ -34,4 +36,4 @@ OutputVector translate_unique_with_counts_op(const NodeContext& node) { } // namespace op } // namespace tensorflow } // namespace frontend -} // namespace ov \ No newline at end of file +} // namespace ov diff --git a/tests/layer_tests/common/tf_layer_test_class.py b/tests/layer_tests/common/tf_layer_test_class.py index 99ade1737721fa..98f47af542ab63 100644 --- a/tests/layer_tests/common/tf_layer_test_class.py +++ b/tests/layer_tests/common/tf_layer_test_class.py @@ -1,14 +1,18 @@ # Copyright (C) 2018-2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 -from common.layer_test_class import CommonLayerTest +import numpy as np +from common.layer_utils import InferAPI +from common.utils.common_utils import generate_ir_python_api +from common.utils.tf_utils import save_to_pb from common.utils.tf_utils import summarize_graph - from common.utils.tflite_utils import get_tflite_results, save_pb_to_tflite -from common.utils.tf_utils import save_to_pb +from pathlib import Path + +class CommonTFLayerTest: + input_model_key = "input_model" -class CommonTFLayerTest(CommonLayerTest): def prepare_tf_inputs(self, inputs_dict): input = dict() for key in inputs_dict.keys(): @@ -62,3 +66,130 @@ def get_framework_results(self, inputs_dict, model_path): else: # get results from tflite return get_tflite_results(self.use_legacy_frontend, inputs_dict, model_path) + + def _test(self, framework_model, ref_net, ie_device, precision, ir_version, temp_dir, + use_legacy_frontend=False, infer_timeout=60, **kwargs): + model_path = self.produce_model_path(framework_model=framework_model, save_path=temp_dir) + self.use_legacy_frontend = use_legacy_frontend + + compress_to_fp16 = False if precision == 'FP32' else True + + if use_legacy_frontend: + mo_params = {self.input_model_key: model_path, + "output_dir": temp_dir, + "compress_to_fp16": compress_to_fp16, + "model_name": 'model'} + + if 'input_shapes' in kwargs and len(kwargs['input_shapes']): + input_shapes_str = [] + for ishape in kwargs['input_shapes']: + input_shapes_str.append('[' + ','.join([str(i) for i in ishape]) + ']') + mo_params.update(dict(input_shape=','.join(input_shapes_str))) + + if 'input_names' in kwargs and len(kwargs['input_names']): + mo_params.update(dict(input=','.join(kwargs['input_names']))) + mo_params["use_legacy_frontend"] = True + else: + # pack input parameters for convert_model of OVC + # that are different from MO + mo_params = {"input_model": model_path, + "output_dir": temp_dir, + "compress_to_fp16": compress_to_fp16 + } + + if 'input_shapes' in kwargs and 'input_names' in kwargs: + input_shapes = kwargs['input_shapes'] + input_names = kwargs['input_names'] + assert len(input_shapes) == len(input_names) + input_dict = {} + for input_name, input_shape in zip(input_names, input_shapes): + input_dict[input_name] = input_shape + mo_params.update(dict(input=input_dict)) + elif 'input_names' in kwargs: + mo_params.update(dict(input=kwargs['input_names'])) + elif 'input_shapes' in kwargs: + mo_params.update(dict(input=kwargs['input_shapes'])) + + exit_code, stderr = generate_ir_python_api(**mo_params) + assert not exit_code, ( + "IR generation failed with {} exit code: {}".format(exit_code, stderr)) + + path_to_xml = Path(temp_dir, 'model.xml') + path_to_bin = Path(temp_dir, 'model.bin') + + config = None + # GPU default execution precision is FP16, so if we want to check FP32 inference + # we need to set explicit precision hint + if ie_device == 'GPU' and precision == 'FP32': + config = {'INFERENCE_PRECISION_HINT': 'f32'} + + ie_engine = InferAPI(model=path_to_xml, + weights=path_to_bin, + device=ie_device, + use_legacy_frontend=use_legacy_frontend) + # Prepare feed dict + if 'kwargs_to_prepare_input' in kwargs and kwargs['kwargs_to_prepare_input']: + inputs_dict = self._prepare_input(ie_engine.get_inputs_info(precision), + kwargs['kwargs_to_prepare_input']) + else: + inputs_dict = self._prepare_input(ie_engine.get_inputs_info(precision)) + + # Infer using OpenVINO + infer_res = ie_engine.infer(input_data=inputs_dict, infer_timeout=infer_timeout, config=config) + + # Infer using the original framework (TensorFlow or TFLite) + fw_res = self.get_framework_results(inputs_dict=inputs_dict, model_path=model_path) + + if 'custom_eps' in kwargs and kwargs['custom_eps'] is not None: + custom_eps = kwargs['custom_eps'] + else: + if precision == 'FP32': + custom_eps = 1e-4 + else: + custom_eps = 5e-2 + # Compare Ie results with Framework results + assert self.compare_ie_results_with_framework(infer_res=infer_res, framework_res=fw_res, + framework_eps=custom_eps), \ + "Comparing with Framework failed: ie_res={}; framework_res={}.".format(infer_res, + fw_res) + + # Feed dict for each input is filled with random number. + # It is possible to redefine this function and generate your own input + def _prepare_input(self, inputs_dict): + for input in inputs_dict.keys(): + inputs_dict[input] = np.random.randint(-10, 10, inputs_dict[input]).astype(np.float32) + return inputs_dict + + def compare_ie_results_with_framework(self, infer_res, framework_res, framework_eps): + is_ok = True + from common.utils.common_utils import allclose + for framework_out_name in framework_res: + if framework_out_name not in infer_res and len(infer_res) == 1: + ov_res = list(infer_res.values())[0] + else: + ov_res = infer_res[framework_out_name] + + fw_res = np.array(framework_res[framework_out_name]) + + assert fw_res.dtype == ov_res.dtype or \ + ov_res.dtype.type == str or \ + ov_res.dtype.type == np.str_, 'Outputs types are different: ' \ + 'OpenVINO output type - {}, ' \ + 'Framework output type - {}'.format(ov_res.dtype, fw_res.dtype) + assert fw_res.shape == ov_res.shape, 'Outputs shapes are different: ' \ + 'OpenVINO output shape - {}, ' \ + 'Framework output shape - {}'.format(ov_res.shape, fw_res.shape) + + if not allclose(ov_res, fw_res, + atol=framework_eps, + rtol=framework_eps): + is_ok = False + if ov_res.dtype != bool: + diff = np.array(abs(ov_res - fw_res)).max() + print("Max diff is {}".format(diff)) + else: + print("Boolean results are not equal") + else: + print("Accuracy validation successful!\n") + print("absolute eps: {}, relative eps: {}".format(framework_eps, framework_eps)) + return is_ok diff --git a/tests/layer_tests/tensorflow_tests/test_tf_Equal.py b/tests/layer_tests/tensorflow_tests/test_tf_Equal.py index 8c0b496a7b4c42..4db05e00b589ea 100644 --- a/tests/layer_tests/tensorflow_tests/test_tf_Equal.py +++ b/tests/layer_tests/tensorflow_tests/test_tf_Equal.py @@ -1,9 +1,8 @@ # Copyright (C) 2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 -import platform - import numpy as np +import platform import pytest import tensorflow as tf from common.tf_layer_test_class import CommonTFLayerTest @@ -233,7 +232,7 @@ def create_equal_net(self, x_shape, y_shape): tf.compat.v1.reset_default_graph() with tf.compat.v1.Session() as sess: x = tf.compat.v1.placeholder(tf.string, x_shape, 'x') - y = tf.compat.v1.placeholder(tf.string, x_shape, 'y') + y = tf.compat.v1.placeholder(tf.string, y_shape, 'y') tf.raw_ops.Equal(x=x, y=y) tf.compat.v1.global_variables_initializer() tf_net = sess.graph_def @@ -253,6 +252,8 @@ def create_equal_net(self, x_shape, y_shape): def test_equal_str(self, x_shape, y_shape, ie_device, precision, ir_version, temp_dir, use_legacy_frontend): + if x_shape == [] and y_shape == []: + pytest.skip("156746: EqualStr operation outputs 1D tensor for two input scalars") if ie_device == 'GPU' or run_in_jenkins(): pytest.skip("operation extension is not supported on GPU") self._test(*self.create_equal_net(x_shape=x_shape, y_shape=y_shape), diff --git a/tests/layer_tests/tensorflow_tests/test_tf_ToBool.py b/tests/layer_tests/tensorflow_tests/test_tf_ToBool.py index 1beab798e14d1f..789cc820502cdf 100644 --- a/tests/layer_tests/tensorflow_tests/test_tf_ToBool.py +++ b/tests/layer_tests/tensorflow_tests/test_tf_ToBool.py @@ -13,10 +13,16 @@ def _prepare_input(self, inputs_info): x_shape = inputs_info['x:0'] inputs_data = {} inputs_data['x:0'] = np.random.randint(-10, 10, x_shape).astype(np.float32) - + if self.input_shape == [] and self.with_zero: + inputs_data['x:0'] = np.array(0, dtype=np.float32) + elif self.input_shape == [] and not self.with_zero: + inputs_data['x:0'] = np.array(1, dtype=np.float32) + return inputs_data - def create_tobool_net(self, input_shape, input_type): + def create_tobool_net(self, input_shape, input_type, with_zero=None): + self.with_zero = with_zero + self.input_shape = input_shape self.input_type = input_type tf.compat.v1.reset_default_graph() # Create the graph and model @@ -29,6 +35,10 @@ def create_tobool_net(self, input_shape, input_type): return tf_net, None test_data_basic = [ + dict(input_shape=[], input_type=np.float32, with_zero=True), + dict(input_shape=[], input_type=np.float32, with_zero=False), + dict(input_shape=[0], input_type=np.float32), + dict(input_shape=[4, 2, 0], input_type=np.float32), dict(input_shape=[10, 20], input_type=np.float32), dict(input_shape=[2, 3, 4], input_type=np.float32), ] @@ -37,7 +47,7 @@ def create_tobool_net(self, input_shape, input_type): @pytest.mark.precommit @pytest.mark.nightly def test_to_bool_basic(self, params, ie_device, precision, ir_version, temp_dir, - use_legacy_frontend): + use_legacy_frontend): self._test(*self.create_tobool_net(**params), ie_device, precision, ir_version, temp_dir=temp_dir, - use_legacy_frontend=use_legacy_frontend) \ No newline at end of file + use_legacy_frontend=use_legacy_frontend) From c81a17f465d1d0a680c539c72f9e43ff4126dec3 Mon Sep 17 00:00:00 2001 From: Pawel Raasz Date: Tue, 5 Nov 2024 17:21:16 +0100 Subject: [PATCH 14/93] [core] Remove deprecated element Type ctor (#27333) ### Details: - Removed deprecated and not used element Type constructor ### Tickets: - CVS-156179 --- .../openvino/core/type/element_type.hpp | 3 -- src/core/src/type/element_type.cpp | 45 ------------------- 2 files changed, 48 deletions(-) diff --git a/src/core/include/openvino/core/type/element_type.hpp b/src/core/include/openvino/core/type/element_type.hpp index e579e8ba83210b..2af2fd272a890d 100644 --- a/src/core/include/openvino/core/type/element_type.hpp +++ b/src/core/include/openvino/core/type/element_type.hpp @@ -129,9 +129,6 @@ class OPENVINO_API Type { // Return element type in string representation std::string to_string() const; - OPENVINO_DEPRECATED("This constructor is deprecated. It will be removed in 2025.0") - Type(size_t bitwidth, bool is_real, bool is_signed, bool is_quantized, const std::string& cname); - private: Type_t m_type{Type_t::undefined}; }; diff --git a/src/core/src/type/element_type.cpp b/src/core/src/type/element_type.cpp index c0fad90285e3f6..3e664335033d80 100644 --- a/src/core/src/type/element_type.cpp +++ b/src/core/src/type/element_type.cpp @@ -164,51 +164,6 @@ std::vector ov::element::Type::get_known_types() { return rc; } -ov::element::Type::Type(size_t bitwidth, - bool is_real, - bool is_signed, - bool is_quantized, - const std::string& /* cname */) { - const ElementTypes::ElementsMap elements_map{ - {ov::element::Type_t::undefined, - {std::numeric_limits::max(), false, false, false, "undefined", "undefined"}}, - {ov::element::Type_t::dynamic, {0, false, false, false, "dynamic", "dynamic"}}, - {ov::element::Type_t::boolean, {8, false, true, false, "char", "boolean"}}, - {ov::element::Type_t::bf16, {16, true, true, false, "bfloat16", "bf16"}}, - {ov::element::Type_t::f16, {16, true, true, false, "float16", "f16"}}, - {ov::element::Type_t::f32, {32, true, true, false, "float", "f32"}}, - {ov::element::Type_t::f64, {64, true, true, false, "double", "f64"}}, - {ov::element::Type_t::i4, {4, false, true, true, "int4_t", "i4"}}, - {ov::element::Type_t::i8, {8, false, true, true, "int8_t", "i8"}}, - {ov::element::Type_t::i16, {16, false, true, false, "int16_t", "i16"}}, - {ov::element::Type_t::i32, {32, false, true, true, "int32_t", "i32"}}, - {ov::element::Type_t::i64, {64, false, true, false, "int64_t", "i64"}}, - {ov::element::Type_t::u1, {1, false, false, false, "uint1_t", "u1"}}, - {ov::element::Type_t::u2, {2, false, false, false, "uint2_t", "u2"}}, - {ov::element::Type_t::u3, {3, false, false, false, "uint3_t", "u3"}}, - {ov::element::Type_t::u4, {4, false, false, false, "uint4_t", "u4"}}, - {ov::element::Type_t::u6, {6, false, false, false, "uint6_t", "u6"}}, - {ov::element::Type_t::u8, {8, false, false, true, "uint8_t", "u8"}}, - {ov::element::Type_t::u16, {16, false, false, false, "uint16_t", "u16"}}, - {ov::element::Type_t::u32, {32, false, false, false, "uint32_t", "u32"}}, - {ov::element::Type_t::u64, {64, false, false, false, "uint64_t", "u64"}}, - {ov::element::Type_t::nf4, {4, false, false, true, "nfloat4", "nf4"}}, - {ov::element::Type_t::f8e4m3, {8, true, true, true, "f8e4m3", "f8e4m3"}}, - {ov::element::Type_t::f8e5m2, {8, true, true, true, "f8e5m2", "f8e5m2"}}, - {ov::element::Type_t::string, {8 * sizeof(std::string), false, false, false, "string", "string"}}, - {ov::element::Type_t::f4e2m1, {4, true, true, true, "f4e2m1", "f4e2m1"}}, - {ov::element::Type_t::f8e8m0, {4, true, true, true, "f8e8m0", "f8e8m0"}}, - }; - for (const auto& t : elements_map) { - const TypeInfo& info = t.second; - if (bitwidth == info.m_bitwidth && is_real == info.m_is_real && is_signed == info.m_is_signed && - is_quantized == info.m_is_quantized) { - m_type = t.first; - return; - } - } -} - ov::element::Type::Type(const std::string& type) : Type(type_from_string(type)) {} std::string ov::element::Type::c_type_string() const { From 1221a97c7213bd6cb3eb3e64595ecceb4b021653 Mon Sep 17 00:00:00 2001 From: Alina Kladieva Date: Tue, 5 Nov 2024 20:35:56 +0100 Subject: [PATCH 15/93] Bump OV version 2025.0 (#27412) Signed-off-by: Alina Kladieva --- cmake/packaging/debian.cmake | 1 + cmake/packaging/rpm.cmake | 1 + src/core/include/openvino/core/version.hpp | 4 ++-- 3 files changed, 4 insertions(+), 2 deletions(-) diff --git a/cmake/packaging/debian.cmake b/cmake/packaging/debian.cmake index 0eb020a5584f1c..59b312963c180d 100644 --- a/cmake/packaging/debian.cmake +++ b/cmake/packaging/debian.cmake @@ -98,6 +98,7 @@ macro(ov_cpack_settings) 2024.2.0 2024.3.0 2024.4.0 + 2024.5.0 ) ov_check_conflicts_versions(conflicting_versions) diff --git a/cmake/packaging/rpm.cmake b/cmake/packaging/rpm.cmake index cf915ee852417e..a4a63c35858bf9 100644 --- a/cmake/packaging/rpm.cmake +++ b/cmake/packaging/rpm.cmake @@ -86,6 +86,7 @@ macro(ov_cpack_settings) 2024.2.0 2024.3.0 2024.4.0 + 2024.5.0 ) ov_check_conflicts_versions(conflicting_versions) diff --git a/src/core/include/openvino/core/version.hpp b/src/core/include/openvino/core/version.hpp index db1595f7addcb6..79f688795ce37c 100644 --- a/src/core/include/openvino/core/version.hpp +++ b/src/core/include/openvino/core/version.hpp @@ -19,8 +19,8 @@ * @brief Defines OpenVINO patch version */ -#define OPENVINO_VERSION_MAJOR 2024 -#define OPENVINO_VERSION_MINOR 5 +#define OPENVINO_VERSION_MAJOR 2025 +#define OPENVINO_VERSION_MINOR 0 #define OPENVINO_VERSION_PATCH 0 namespace ov { From 9204a20d24aabd9276d26e150572981996090ec4 Mon Sep 17 00:00:00 2001 From: Pawel Raasz Date: Tue, 5 Nov 2024 18:55:44 +0100 Subject: [PATCH 16/93] [core] Remove deprecated members of Concat operator (#27339) ### Details: - Remove deprecated members of Concat operator: * get_concatenation_axis * set_concatenation_axis ### Tickets: - CVS-156181 --- src/core/include/openvino/op/concat.hpp | 11 ----------- 1 file changed, 11 deletions(-) diff --git a/src/core/include/openvino/op/concat.hpp b/src/core/include/openvino/op/concat.hpp index 0e8fa67c54dfae..d32171c9facbc1 100644 --- a/src/core/include/openvino/op/concat.hpp +++ b/src/core/include/openvino/op/concat.hpp @@ -36,17 +36,6 @@ class OPENVINO_API Concat : public Op { std::shared_ptr clone_with_new_inputs(const OutputVector& new_args) const override; - /// \return The concatenation axis. - OPENVINO_DEPRECATED("The function get_concatenation_axis() is deprecated. Will be removed in 2025.0 release. Use " - "get_axis() instead.") - int64_t get_concatenation_axis() const { - return m_concat_axis; - } - OPENVINO_DEPRECATED("The function set_concatenation_axis() is deprecated. Will be removed in 2025.0 release. Use " - "set_axis() instead.") - void set_concatenation_axis(int64_t concatenation_axis) { - m_concat_axis = concatenation_axis; - } /// \return The concatenation axis. int64_t get_axis() const { return m_axis; From 41b2093a1db2846d68bc1591044dcb728b5e9fd9 Mon Sep 17 00:00:00 2001 From: Pawel Raasz Date: Tue, 5 Nov 2024 19:02:29 +0100 Subject: [PATCH 17/93] [docs] Update LSTM sequence specification (version update) (#27355) ### Details: - Align LSTM sequence version in specification, after LSTM sequence v0 removal from OV opset. ### Blocked by: - #27330 ### Tickets: - CVS-156182 --- .../operation-sets/available-opsets/opset1.rst | 3 --- .../operation-sets/available-opsets/opset10.rst | 3 +-- .../operation-sets/available-opsets/opset11.rst | 3 +-- .../operation-sets/available-opsets/opset12.rst | 3 +-- .../operation-sets/available-opsets/opset13.rst | 3 +-- .../operation-sets/available-opsets/opset14.rst | 2 +- .../operation-sets/available-opsets/opset15.rst | 2 +- .../operation-sets/available-opsets/opset2.rst | 3 --- .../operation-sets/available-opsets/opset3.rst | 2 -- .../operation-sets/available-opsets/opset5.rst | 4 +--- .../operation-sets/available-opsets/opset6.rst | 3 +-- .../operation-sets/available-opsets/opset7.rst | 3 +-- .../operation-sets/available-opsets/opset8.rst | 4 +--- .../operation-sets/available-opsets/opset9.rst | 3 +-- .../sequence/{lstm-sequence-1.rst => lstm-sequence-5.rst} | 5 ++--- 15 files changed, 13 insertions(+), 33 deletions(-) rename docs/articles_en/documentation/openvino-ir-format/operation-sets/operation-specs/sequence/{lstm-sequence-1.rst => lstm-sequence-5.rst} (98%) diff --git a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset1.rst b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset1.rst index 55b29d30fa8502..1ce95152c20c90 100644 --- a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset1.rst +++ b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset1.rst @@ -66,7 +66,6 @@ Table of Contents * :doc:`LogicalXor <../operation-specs/logical/logical-xor-1>` * :doc:`LRN <../operation-specs/normalization/lrn-1>` * :doc:`LSTMCell <../operation-specs/sequence/lstm-cell-1>` -* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-1>` * :doc:`MatMul <../operation-specs/matrix/matmul-1>` * :doc:`MaxPool <../operation-specs/pooling/max-pool-1>` * :doc:`Maximum <../operation-specs/arithmetic/maximum-1>` @@ -122,5 +121,3 @@ Table of Contents * :doc:`Transpose <../operation-specs/movement/transpose-1>` * :doc:`Unsqueeze <../operation-specs/shape/unsqueeze-1>` * :doc:`VariadicSplit <../operation-specs/movement/variadic-split-1>` - - diff --git a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset10.rst b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset10.rst index 04f151a3e26b84..56397ecd852305 100644 --- a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset10.rst +++ b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset10.rst @@ -107,7 +107,7 @@ Table of Contents * :doc:`Loop <../operation-specs/infrastructure/loop-5>` * :doc:`LRN <../operation-specs/normalization/lrn-1>` * :doc:`LSTMCell <../operation-specs/sequence/lstm-cell-1>` -* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-1>` +* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-5>` * :doc:`MatMul <../operation-specs/matrix/matmul-1>` * :doc:`MatrixNMS <../operation-specs/sort/matrix-non-max-suppression-8>` * :doc:`MaxPool <../operation-specs/pooling/max-pool-8>` @@ -192,4 +192,3 @@ Table of Contents * :doc:`Unique <../operation-specs/movement/unique-10>` * :doc:`Unsqueeze <../operation-specs/shape/unsqueeze-1>` * :doc:`VariadicSplit <../operation-specs/movement/variadic-split-1>` - diff --git a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset11.rst b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset11.rst index 6ae5882e2e4fd7..8a918bde06ebb1 100644 --- a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset11.rst +++ b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset11.rst @@ -107,7 +107,7 @@ Table of Contents * :doc:`Loop <../operation-specs/infrastructure/loop-5>` * :doc:`LRN <../operation-specs/normalization/lrn-1>` * :doc:`LSTMCell <../operation-specs/sequence/lstm-cell-1>` -* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-1>` +* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-5>` * :doc:`MatMul <../operation-specs/matrix/matmul-1>` * :doc:`MatrixNMS <../operation-specs/sort/matrix-non-max-suppression-8>` * :doc:`MaxPool <../operation-specs/pooling/max-pool-8>` @@ -192,4 +192,3 @@ Table of Contents * :doc:`Unique <../operation-specs/movement/unique-10>` * :doc:`Unsqueeze <../operation-specs/shape/unsqueeze-1>` * :doc:`VariadicSplit <../operation-specs/movement/variadic-split-1>` - diff --git a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset12.rst b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset12.rst index 6e6ddd61ba1e0e..06cfaa7f8f6a20 100644 --- a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset12.rst +++ b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset12.rst @@ -108,7 +108,7 @@ Table of Contents * :doc:`Loop <../operation-specs/infrastructure/loop-5>` * :doc:`LRN <../operation-specs/normalization/lrn-1>` * :doc:`LSTMCell <../operation-specs/sequence/lstm-cell-1>` -* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-1>` +* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-5>` * :doc:`MatMul <../operation-specs/matrix/matmul-1>` * :doc:`MatrixNMS <../operation-specs/sort/matrix-non-max-suppression-8>` * :doc:`MaxPool <../operation-specs/pooling/max-pool-8>` @@ -193,4 +193,3 @@ Table of Contents * :doc:`Unique <../operation-specs/movement/unique-10>` * :doc:`Unsqueeze <../operation-specs/shape/unsqueeze-1>` * :doc:`VariadicSplit <../operation-specs/movement/variadic-split-1>` - diff --git a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset13.rst b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset13.rst index 87396dfd542203..6bcea43cdeb103 100644 --- a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset13.rst +++ b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset13.rst @@ -113,7 +113,7 @@ Table of Contents * :doc:`Loop <../operation-specs/infrastructure/loop-5>` * :doc:`LRN <../operation-specs/normalization/lrn-1>` * :doc:`LSTMCell <../operation-specs/sequence/lstm-cell-1>` -* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-1>` +* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-5>` * :doc:`MatMul <../operation-specs/matrix/matmul-1>` * :doc:`MatrixNMS <../operation-specs/sort/matrix-non-max-suppression-8>` * :doc:`MaxPool <../operation-specs/pooling/max-pool-8>` @@ -201,4 +201,3 @@ Table of Contents * :doc:`Unique <../operation-specs/movement/unique-10>` * :doc:`Unsqueeze <../operation-specs/shape/unsqueeze-1>` * :doc:`VariadicSplit <../operation-specs/movement/variadic-split-1>` - diff --git a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset14.rst b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset14.rst index 05131a907d15b4..eb967a6fc94e11 100644 --- a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset14.rst +++ b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset14.rst @@ -115,7 +115,7 @@ Table of Contents * :doc:`Loop <../operation-specs/infrastructure/loop-5>` * :doc:`LRN <../operation-specs/normalization/lrn-1>` * :doc:`LSTMCell <../operation-specs/sequence/lstm-cell-1>` -* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-1>` +* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-5>` * :doc:`MatMul <../operation-specs/matrix/matmul-1>` * :doc:`MatrixNMS <../operation-specs/sort/matrix-non-max-suppression-8>` * :doc:`MaxPool <../operation-specs/pooling/max-pool-14>` diff --git a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset15.rst b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset15.rst index 1dbb0a9101bb99..12368033a1fa20 100644 --- a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset15.rst +++ b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset15.rst @@ -120,7 +120,7 @@ Table of Contents * :doc:`Loop <../operation-specs/infrastructure/loop-5>` * :doc:`LRN <../operation-specs/normalization/lrn-1>` * :doc:`LSTMCell <../operation-specs/sequence/lstm-cell-1>` -* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-1>` +* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-5>` * :doc:`MatMul <../operation-specs/matrix/matmul-1>` * :doc:`MatrixNMS <../operation-specs/sort/matrix-non-max-suppression-8>` * :doc:`MaxPool <../operation-specs/pooling/max-pool-14>` diff --git a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset2.rst b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset2.rst index 5ea1c3bde54018..41170ad2036a25 100644 --- a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset2.rst +++ b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset2.rst @@ -68,7 +68,6 @@ Table of Contents * :doc:`LogicalXor <../operation-specs/logical/logical-xor-1>` * :doc:`LRN <../operation-specs/normalization/lrn-1>` * :doc:`LSTMCell <../operation-specs/sequence/lstm-cell-1>` -* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-1>` * :doc:`MatMul <../operation-specs/matrix/matmul-1>` * :doc:`MaxPool <../operation-specs/pooling/max-pool-1>` * :doc:`Maximum <../operation-specs/arithmetic/maximum-1>` @@ -128,5 +127,3 @@ Table of Contents * :doc:`Transpose <../operation-specs/movement/transpose-1>` * :doc:`Unsqueeze <../operation-specs/shape/unsqueeze-1>` * :doc:`VariadicSplit <../operation-specs/movement/variadic-split-1>` - - diff --git a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset3.rst b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset3.rst index fcce876e6944df..9b2992db18cc36 100644 --- a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset3.rst +++ b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset3.rst @@ -76,7 +76,6 @@ Table of Contents * :doc:`LogicalXor <../operation-specs/logical/logical-xor-1>` * :doc:`LRN <../operation-specs/normalization/lrn-1>` * :doc:`LSTMCell <../operation-specs/sequence/lstm-cell-1>` -* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-1>` * :doc:`MatMul <../operation-specs/matrix/matmul-1>` * :doc:`MaxPool <../operation-specs/pooling/max-pool-1>` * :doc:`Maximum <../operation-specs/arithmetic/maximum-1>` @@ -144,4 +143,3 @@ Table of Contents * :doc:`Transpose <../operation-specs/movement/transpose-1>` * :doc:`Unsqueeze <../operation-specs/shape/unsqueeze-1>` * :doc:`VariadicSplit <../operation-specs/movement/variadic-split-1>` - diff --git a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset5.rst b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset5.rst index 0c0ae150b1d21d..fdada28b6bdc06 100644 --- a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset5.rst +++ b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset5.rst @@ -86,7 +86,7 @@ Table of Contents * :doc:`Loop <../operation-specs/infrastructure/loop-5>` * :doc:`LRN <../operation-specs/normalization/lrn-1>` * :doc:`LSTMCell <../operation-specs/sequence/lstm-cell-1>` -* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-1>` +* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-5>` * :doc:`MatMul <../operation-specs/matrix/matmul-1>` * :doc:`MaxPool <../operation-specs/pooling/max-pool-1>` * :doc:`Maximum <../operation-specs/arithmetic/maximum-1>` @@ -162,5 +162,3 @@ Table of Contents * :doc:`Transpose <../operation-specs/movement/transpose-1>` * :doc:`Unsqueeze <../operation-specs/shape/unsqueeze-1>` * :doc:`VariadicSplit <../operation-specs/movement/variadic-split-1>` - - diff --git a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset6.rst b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset6.rst index 8d626c71be2d89..d587370800aa9e 100644 --- a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset6.rst +++ b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset6.rst @@ -93,7 +93,7 @@ Table of Contents * :doc:`Loop <../operation-specs/infrastructure/loop-5>` * :doc:`LRN <../operation-specs/normalization/lrn-1>` * :doc:`LSTMCell <../operation-specs/sequence/lstm-cell-1>` -* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-1>` +* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-5>` * :doc:`MatMul <../operation-specs/matrix/matmul-1>` * :doc:`MaxPool <../operation-specs/pooling/max-pool-1>` * :doc:`Maximum <../operation-specs/arithmetic/maximum-1>` @@ -168,4 +168,3 @@ Table of Contents * :doc:`Transpose <../operation-specs/movement/transpose-1>` * :doc:`Unsqueeze <../operation-specs/shape/unsqueeze-1>` * :doc:`VariadicSplit <../operation-specs/movement/variadic-split-1>` - diff --git a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset7.rst b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset7.rst index 7dd5d8fbba14d7..6de9bccf5921b7 100644 --- a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset7.rst +++ b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset7.rst @@ -96,7 +96,7 @@ Table of Contents * :doc:`Loop <../operation-specs/infrastructure/loop-5>` * :doc:`LRN <../operation-specs/normalization/lrn-1>` * :doc:`LSTMCell <../operation-specs/sequence/lstm-cell-1>` -* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-1>` +* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-5>` * :doc:`MatMul <../operation-specs/matrix/matmul-1>` * :doc:`MaxPool <../operation-specs/pooling/max-pool-1>` * :doc:`Maximum <../operation-specs/arithmetic/maximum-1>` @@ -172,4 +172,3 @@ Table of Contents * :doc:`Transpose <../operation-specs/movement/transpose-1>` * :doc:`Unsqueeze <../operation-specs/shape/unsqueeze-1>` * :doc:`VariadicSplit <../operation-specs/movement/variadic-split-1>` - diff --git a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset8.rst b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset8.rst index 0bb5b336f9e2f2..f35299c9f4c97a 100644 --- a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset8.rst +++ b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset8.rst @@ -101,7 +101,7 @@ Table of Contents * :doc:`Loop <../operation-specs/infrastructure/loop-5>` * :doc:`LRN <../operation-specs/normalization/lrn-1>` * :doc:`LSTMCell <../operation-specs/sequence/lstm-cell-1>` -* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-1>` +* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-5>` * :doc:`MatMul <../operation-specs/matrix/matmul-1>` * :doc:`MatrixNMS <../operation-specs/sort/matrix-non-max-suppression-8>` * :doc:`MaxPool <../operation-specs/pooling/max-pool-8>` @@ -183,5 +183,3 @@ Table of Contents * :doc:`Transpose <../operation-specs/movement/transpose-1>` * :doc:`Unsqueeze <../operation-specs/shape/unsqueeze-1>` * :doc:`VariadicSplit <../operation-specs/movement/variadic-split-1>` - - diff --git a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset9.rst b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset9.rst index ebb5dfdbdc6555..2421e4b9bc53c1 100644 --- a/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset9.rst +++ b/docs/articles_en/documentation/openvino-ir-format/operation-sets/available-opsets/opset9.rst @@ -105,7 +105,7 @@ Table of Contents * :doc:`Loop <../operation-specs/infrastructure/loop-5>` * :doc:`LRN <../operation-specs/normalization/lrn-1>` * :doc:`LSTMCell <../operation-specs/sequence/lstm-cell-1>` -* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-1>` +* :doc:`LSTMSequence <../operation-specs/sequence/lstm-sequence-5>` * :doc:`MatMul <../operation-specs/matrix/matmul-1>` * :doc:`MatrixNMS <../operation-specs/sort/matrix-non-max-suppression-8>` * :doc:`MaxPool <../operation-specs/pooling/max-pool-8>` @@ -189,4 +189,3 @@ Table of Contents * :doc:`Transpose <../operation-specs/movement/transpose-1>` * :doc:`Unsqueeze <../operation-specs/shape/unsqueeze-1>` * :doc:`VariadicSplit <../operation-specs/movement/variadic-split-1>` - diff --git a/docs/articles_en/documentation/openvino-ir-format/operation-sets/operation-specs/sequence/lstm-sequence-1.rst b/docs/articles_en/documentation/openvino-ir-format/operation-sets/operation-specs/sequence/lstm-sequence-5.rst similarity index 98% rename from docs/articles_en/documentation/openvino-ir-format/operation-sets/operation-specs/sequence/lstm-sequence-1.rst rename to docs/articles_en/documentation/openvino-ir-format/operation-sets/operation-specs/sequence/lstm-sequence-5.rst index dcc21ca5321451..c00b4c819cc66a 100644 --- a/docs/articles_en/documentation/openvino-ir-format/operation-sets/operation-specs/sequence/lstm-sequence-1.rst +++ b/docs/articles_en/documentation/openvino-ir-format/operation-sets/operation-specs/sequence/lstm-sequence-5.rst @@ -3,10 +3,10 @@ LSTMSequence .. meta:: - :description: Learn about LSTMSequence-1 - a sequence processing operation, which + :description: Learn about LSTMSequence-5 - a sequence processing operation, which can be performed on seven required input tensors. -**Versioned name**: *LSTMSequence-1* +**Versioned name**: *LSTMSequence-5* **Category**: *Sequence processing* @@ -145,4 +145,3 @@ A single cell in the sequence is implemented in the same way as in :doc:`LSTM Ce - From 7cf2bbb83910abda73689b27a418b91dff43e5c2 Mon Sep 17 00:00:00 2001 From: Pavel Durandin Date: Tue, 5 Nov 2024 22:19:05 +0400 Subject: [PATCH 18/93] [GPU] clean oneDNN cache by release memory method (#27403) ### Details: - Partial fix for https://jira.devtools.intel.com/browse/CVS-156022 - explicit call for release memory is required ### Tickets: - *ticket-id* --- .../intel_gpu/include/intel_gpu/plugin/compiled_model.hpp | 2 ++ src/plugins/intel_gpu/src/plugin/compiled_model.cpp | 8 ++++++++ 2 files changed, 10 insertions(+) diff --git a/src/plugins/intel_gpu/include/intel_gpu/plugin/compiled_model.hpp b/src/plugins/intel_gpu/include/intel_gpu/plugin/compiled_model.hpp index 640cc82c2c8c2a..0d78b480b733b0 100644 --- a/src/plugins/intel_gpu/include/intel_gpu/plugin/compiled_model.hpp +++ b/src/plugins/intel_gpu/include/intel_gpu/plugin/compiled_model.hpp @@ -61,6 +61,8 @@ class CompiledModel : public ov::ICompiledModel { const std::vector>& get_graphs() const; std::shared_ptr get_graph(size_t n) const; + void release_memory() override; + private: RemoteContextImpl::Ptr m_context; ExecutionConfig m_config; diff --git a/src/plugins/intel_gpu/src/plugin/compiled_model.cpp b/src/plugins/intel_gpu/src/plugin/compiled_model.cpp index 527e08f07432ef..18e7a88fc42f3e 100644 --- a/src/plugins/intel_gpu/src/plugin/compiled_model.cpp +++ b/src/plugins/intel_gpu/src/plugin/compiled_model.cpp @@ -293,5 +293,13 @@ std::shared_ptr CompiledModel::create_sync_infer_request( return std::make_shared(std::static_pointer_cast(shared_from_this())); } + +void CompiledModel::release_memory() { +#ifdef ENABLE_ONEDNN_FOR_GPU + auto capacity = dnnl::get_primitive_cache_capacity(); + dnnl::set_primitive_cache_capacity(0); + dnnl::set_primitive_cache_capacity(capacity); +#endif +} } // namespace intel_gpu } // namespace ov From 7666e39cf30d53f8b2e93bc31558b7b5624cf43c Mon Sep 17 00:00:00 2001 From: Roman Lyamin Date: Wed, 6 Nov 2024 09:40:06 +0400 Subject: [PATCH 19/93] [GPU] Disable crop fusing (#27417) ### Details: - *Disable crop fusing that was enabled in the https://github.com/openvinotoolkit/openvino/pull/26951* ### Tickets: - *[156367](https://jira.devtools.intel.com/browse/CVS-156367)* --- .../graph/graph_optimizer/prepare_primitive_fusing.cpp | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/src/plugins/intel_gpu/src/graph/graph_optimizer/prepare_primitive_fusing.cpp b/src/plugins/intel_gpu/src/graph/graph_optimizer/prepare_primitive_fusing.cpp index 39cbc1aa89b4e2..c323109850c489 100644 --- a/src/plugins/intel_gpu/src/graph/graph_optimizer/prepare_primitive_fusing.cpp +++ b/src/plugins/intel_gpu/src/graph/graph_optimizer/prepare_primitive_fusing.cpp @@ -736,8 +736,6 @@ void prepare_primitive_fusing::fuse_simple_primitives(program &p) { should_fuse |= input.is_type(); - should_fuse |= input.is_type(); - bool legacy_fusion = activation_node.get_dependencies().size() == 1 && !input.can_be_optimized() && !activation_node.is_constant() && @@ -922,8 +920,7 @@ void prepare_primitive_fusing::fuse_simple_primitives(program &p) { (parents[i].first->is_type()) || (parents[i].first->is_type() && reduce_supports_fusings(parents[i].first->as())) || - (parents[i].first->is_type()) || - (parents[i].first->is_type()); + (parents[i].first->is_type()); } // Disable fusion to a node on constant path when second input is in data flow @@ -1063,6 +1060,9 @@ void prepare_primitive_fusing::fuse_simple_primitives(program &p) { fused_node->get_input_pshape().rbegin()->is_dynamic(); if (is_fc_lora || is_conv_lora || is_gemm_lora) { + if (!can_fuse_parents[peer_idx]) { + return; + } std::swap(peer_node, fused_node); } } From 8a3277fa7121509148a7a03c19e53cae1b1712d4 Mon Sep 17 00:00:00 2001 From: Mikhail Ryzhov Date: Wed, 6 Nov 2024 09:03:50 +0100 Subject: [PATCH 20/93] [GHA] Changed android runner (#27414) ### Details: - Increased RAM ### Tickets: - *156361* --------- Co-authored-by: Alina Kladieva --- .github/workflows/android_x64.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/android_x64.yml b/.github/workflows/android_x64.yml index 1cdb2023784979..47ea6d2cd90ffe 100644 --- a/.github/workflows/android_x64.yml +++ b/.github/workflows/android_x64.yml @@ -73,7 +73,7 @@ jobs: defaults: run: shell: bash - runs-on: aks-linux-16-cores-32gb + runs-on: aks-linux-16-cores-64gb container: image: ${{ fromJSON(needs.docker.outputs.images).ov_build.ubuntu_22_04_android }} volumes: From cd15be95e3bb2b3581661180a851aaeeb4977642 Mon Sep 17 00:00:00 2001 From: Anastasia Kuporosova Date: Wed, 6 Nov 2024 09:43:46 +0100 Subject: [PATCH 21/93] [PyOV] Test for export-import via file (#27320) ### Details: - add a test where exported model saved to file and then imported from file - fix a problem with `inc_ref` and `dec_ref` when python callbacks are passed ### Tickets: - *ticket-id* --- .../python/src/pyopenvino/utils/utils.cpp | 23 +++++++--- .../python/tests/test_graph/test_custom_op.py | 4 +- .../python/tests/test_graph/test_manager.py | 6 +-- .../tests/test_runtime/test_compiled_model.py | 43 ++++++++++++++++++- .../python/tests/test_runtime/test_core.py | 16 +++---- .../python/tests/test_runtime/test_model.py | 6 +-- .../test_transformations/test_compression.py | 4 +- .../test_transformations/test_offline_api.py | 30 ++++++------- .../test_public_transformations.py | 10 ++--- src/bindings/python/tests/utils/helpers.py | 13 ++++-- 10 files changed, 105 insertions(+), 50 deletions(-) diff --git a/src/bindings/python/src/pyopenvino/utils/utils.cpp b/src/bindings/python/src/pyopenvino/utils/utils.cpp index e165c2e00b4808..c747e2d3b81166 100644 --- a/src/bindings/python/src/pyopenvino/utils/utils.cpp +++ b/src/bindings/python/src/pyopenvino/utils/utils.cpp @@ -258,20 +258,31 @@ std::map properties_to_any_map(const std::map(property_value)) { OPENVINO_THROW("The value type of ov::cache_encryption_callbacks property is expected list"); } + auto property_list = property_value.cast(); + // Wrapped to sp due-to we need to hold GIL upon destruction of python function + auto py_encrypt = std::shared_ptr(new py::function(std::move(property_list[0])), + [](py::function* py_encrypt) { + py::gil_scoped_acquire acquire; + delete py_encrypt; + }); + auto py_decrypt = std::shared_ptr(new py::function(std::move(property_list[1])), + [](py::function* py_decrypt) { + py::gil_scoped_acquire acquire; + delete py_decrypt; + }); + std::function encrypt_func = - [property_value](const std::string& in_str) -> std::string { + [py_encrypt](const std::string& in_str) -> std::string { // Acquire GIL, execute Python function py::gil_scoped_acquire acquire; - auto _list = property_value.cast(); - return _list[0](in_str).cast(); + return (*py_encrypt)(in_str).cast(); }; std::function decrypt_func = - [property_value](const std::string& in_str) -> std::string { + [py_decrypt](const std::string& in_str) -> std::string { // Acquire GIL, execute Python function py::gil_scoped_acquire acquire; - auto _list = property_value.cast(); - return _list[1](in_str).cast(); + return (*py_decrypt)(in_str).cast(); }; ov::EncryptionCallbacks encryption_callbacks{encrypt_func, decrypt_func}; properties_to_cpp[property.first] = encryption_callbacks; diff --git a/src/bindings/python/tests/test_graph/test_custom_op.py b/src/bindings/python/tests/test_graph/test_custom_op.py index 5a2e33c7ee5783..8643844e2c54fd 100644 --- a/src/bindings/python/tests/test_graph/test_custom_op.py +++ b/src/bindings/python/tests/test_graph/test_custom_op.py @@ -12,7 +12,7 @@ from openvino.runtime import DiscreteTypeInfo import openvino.runtime.opset14 as ops -from tests.utils.helpers import create_filename_for_test +from tests.utils.helpers import create_filenames_for_ir class CustomOp(Op): @@ -108,7 +108,7 @@ def visit_attributes(self, visitor): # request - https://docs.pytest.org/en/7.1.x/reference/reference.html#request @pytest.fixture def prepared_paths(request, tmp_path): - xml_path, bin_path = create_filename_for_test(request.node.name, tmp_path) + xml_path, bin_path = create_filenames_for_ir(request.node.name, tmp_path) yield xml_path, bin_path diff --git a/src/bindings/python/tests/test_graph/test_manager.py b/src/bindings/python/tests/test_graph/test_manager.py index b5fce8cc09b8d7..ff72ef43158d6e 100644 --- a/src/bindings/python/tests/test_graph/test_manager.py +++ b/src/bindings/python/tests/test_graph/test_manager.py @@ -12,7 +12,7 @@ from openvino.runtime.passes import Manager, Serialize, ConstantFolding, Version from tests.test_graph.util import count_ops_of_type -from tests.utils.helpers import create_filename_for_test, compare_models +from tests.utils.helpers import create_filenames_for_ir, compare_models def create_model(): @@ -51,7 +51,7 @@ def test_constant_folding(): # request - https://docs.pytest.org/en/7.1.x/reference/reference.html#request @pytest.fixture def prepare_ir_paths(request, tmp_path): - xml_path, bin_path = create_filename_for_test(request.node.name, tmp_path) + xml_path, bin_path = create_filenames_for_ir(request.node.name, tmp_path) yield xml_path, bin_path @@ -138,7 +138,7 @@ def test_serialize_pass_mixed_args_kwargs_v2(prepare_ir_paths): # request - https://docs.pytest.org/en/7.1.x/reference/reference.html#request def test_serialize_pass_wrong_num_of_args(request, tmp_path): - xml_path, bin_path = create_filename_for_test(request.node.name, tmp_path) + xml_path, bin_path = create_filenames_for_ir(request.node.name, tmp_path) pass_manager = Manager() with pytest.raises(TypeError) as e: diff --git a/src/bindings/python/tests/test_runtime/test_compiled_model.py b/src/bindings/python/tests/test_runtime/test_compiled_model.py index d6909fa94711d3..9e17497fc22081 100644 --- a/src/bindings/python/tests/test_runtime/test_compiled_model.py +++ b/src/bindings/python/tests/test_runtime/test_compiled_model.py @@ -2,6 +2,7 @@ # Copyright (C) 2018-2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 +import os import pytest import numpy as np @@ -14,6 +15,7 @@ generate_relu_compiled_model_with_config, encrypt_base64, decrypt_base64, + create_filenames_for_ir, create_filename_for_test) from openvino import Model, Shape, Core, Tensor, serialize from openvino.runtime import ConstOutput @@ -97,6 +99,43 @@ def test_export_import_advanced(device): assert np.argmax(res[new_compiled.outputs[0]]) == 531 +# request - https://docs.pytest.org/en/7.1.x/reference/reference.html#request +@pytest.fixture +def prepare_blob_path(request, tmp_path): + filename = create_filename_for_test(request.node.name) + path_to_blob = tmp_path / str(filename + ".blob") + yield path_to_blob + + os.remove(path_to_blob) + + +def test_export_import_via_file(prepare_blob_path, device): + import io + + core = Core() + + if props.device.Capability.EXPORT_IMPORT not in core.get_property(device, props.device.capabilities): + pytest.skip(f"{core.get_property(device, props.device.full_name)} plugin due-to export, import model API isn't implemented.") + + compiled_model = generate_relu_compiled_model(device) + + user_stream = io.BytesIO() + + compiled_model.export_model(user_stream) + path_to_blob = prepare_blob_path + + with open(path_to_blob, "wb") as f_w: + f_w.write(user_stream.getbuffer()) + + with open(path_to_blob, "rb") as f_r: + new_compiled = core.import_model(f_r.read(), device) + + img = generate_image() + res = new_compiled.infer_new_request({"data": img}) + + assert np.argmax(res[new_compiled.outputs[0]]) == 531 + + @pytest.mark.parametrize("input_arguments", [[0], ["data"], []]) def test_get_input(device, input_arguments): compiled_model = generate_relu_compiled_model(device) @@ -250,7 +289,7 @@ def test_direct_infer(device, shared_flag): # request - https://docs.pytest.org/en/7.1.x/reference/reference.html#request def test_compiled_model_after_core_destroyed(request, tmp_path, device): core = Core() - xml_path, bin_path = create_filename_for_test(request.node.name, tmp_path) + xml_path, bin_path = create_filenames_for_ir(request.node.name, tmp_path) model = get_relu_model() serialize(model, xml_path, bin_path) with open(bin_path, "rb") as f: @@ -267,7 +306,7 @@ def test_compiled_model_after_core_destroyed(request, tmp_path, device): def test_compiled_model_from_buffer_in_memory(request, tmp_path, device): core = Core() - xml_path, bin_path = create_filename_for_test(request.node.name, tmp_path) + xml_path, bin_path = create_filenames_for_ir(request.node.name, tmp_path) model = get_relu_model() serialize(model, xml_path, bin_path) with open(bin_path, "rb") as f: diff --git a/src/bindings/python/tests/test_runtime/test_core.py b/src/bindings/python/tests/test_runtime/test_core.py index 8c15c2a32a05c5..d147ce2d6bcab2 100644 --- a/src/bindings/python/tests/test_runtime/test_core.py +++ b/src/bindings/python/tests/test_runtime/test_core.py @@ -28,7 +28,7 @@ get_relu_model, plugins_path, compare_models, - create_filename_for_test, + create_filenames_for_ir, get_model_with_template_extension, ) @@ -77,7 +77,7 @@ def test_core_class(device): ]) def test_compile_model(request, tmp_path, device_name): core = Core() - xml_path, bin_path = create_filename_for_test(request.node.name, tmp_path) + xml_path, bin_path = create_filenames_for_ir(request.node.name, tmp_path) relu_model = get_relu_model() serialize(relu_model, xml_path, bin_path) model = core.read_model(model=xml_path, weights=bin_path) @@ -97,7 +97,7 @@ def get_model(): @pytest.fixture def get_model_path(request, tmp_path): - xml_path, _ = create_filename_for_test(request.node.name, tmp_path, True) + xml_path, _ = create_filenames_for_ir(request.node.name, tmp_path, True) serialize(get_relu_model(), xml_path) return Path(xml_path) @@ -130,7 +130,7 @@ def test_compact_api(model_type, device_name, config, request): # request - https://docs.pytest.org/en/7.1.x/reference/reference.html#request def test_read_model_from_ir(request, tmp_path): core = Core() - xml_path, bin_path = create_filename_for_test(request.node.name, tmp_path) + xml_path, bin_path = create_filenames_for_ir(request.node.name, tmp_path) relu_model = get_relu_model() serialize(relu_model, xml_path, bin_path) model = core.read_model(model=xml_path, weights=bin_path) @@ -143,7 +143,7 @@ def test_read_model_from_ir(request, tmp_path): # request - https://docs.pytest.org/en/7.1.x/reference/reference.html#request def test_read_model_from_tensor(request, tmp_path): core = Core() - xml_path, bin_path = create_filename_for_test(request.node.name, tmp_path, is_xml_path=True, is_bin_path=True) + xml_path, bin_path = create_filenames_for_ir(request.node.name, tmp_path, is_xml_path=True, is_bin_path=True) relu_model = get_relu_model() serialize(relu_model, xml_path, bin_path) arr = np.ones(shape=(10), dtype=np.int8) @@ -164,7 +164,7 @@ def test_read_model_with_wrong_input(): # request - https://docs.pytest.org/en/7.1.x/reference/reference.html#request def test_read_model_as_path(request, tmp_path): core = Core() - xml_path, bin_path = create_filename_for_test(request.node.name, tmp_path, True, True) + xml_path, bin_path = create_filenames_for_ir(request.node.name, tmp_path, True, True) relu_model = get_relu_model() serialize(relu_model, xml_path, bin_path) @@ -181,7 +181,7 @@ def test_read_model_as_path(request, tmp_path): # request - https://docs.pytest.org/en/7.1.x/reference/reference.html#request def test_read_model_from_buffer(request, tmp_path): core = Core() - xml_path, bin_path = create_filename_for_test(request.node.name, tmp_path) + xml_path, bin_path = create_filenames_for_ir(request.node.name, tmp_path) relu_model = get_relu_model() serialize(relu_model, xml_path, bin_path) with open(bin_path, "rb") as f: @@ -195,7 +195,7 @@ def test_read_model_from_buffer(request, tmp_path): # request - https://docs.pytest.org/en/7.1.x/reference/reference.html#request def test_model_from_buffer_valid(request, tmp_path): core = Core() - xml_path, bin_path = create_filename_for_test(request.node.name, tmp_path) + xml_path, bin_path = create_filenames_for_ir(request.node.name, tmp_path) relu_model = get_relu_model() serialize(relu_model, xml_path, bin_path) with open(bin_path, "rb") as f: diff --git a/src/bindings/python/tests/test_runtime/test_model.py b/src/bindings/python/tests/test_runtime/test_model.py index 62b1eac9da3865..0ae592b2d1dff5 100644 --- a/src/bindings/python/tests/test_runtime/test_model.py +++ b/src/bindings/python/tests/test_runtime/test_model.py @@ -30,7 +30,7 @@ from tests.utils.helpers import ( generate_add_model, generate_model_with_memory, - create_filename_for_test, + create_filenames_for_ir, ) @@ -618,7 +618,7 @@ def check_rt_info(model): assert model.get_rt_info(["optimization", "test"]) core = Core() - xml_path, bin_path = create_filename_for_test(request.node.name, tmp_path) + xml_path, bin_path = create_filenames_for_ir(request.node.name, tmp_path) input_shape = PartialShape([1]) param = ops.parameter(input_shape, dtype=np.float32, name="data") relu1 = ops.relu(param, name="relu1") @@ -701,7 +701,7 @@ def check_rt_info(model): assert rt_info_val in ["float_empty", "nodes", "type", "directed"] core = Core() - xml_path, bin_path = create_filename_for_test(request.node.name, tmp_path) + xml_path, bin_path = create_filenames_for_ir(request.node.name, tmp_path) input_shape = PartialShape([1]) param = ops.parameter(input_shape, dtype=np.float32, name="data") relu1 = ops.relu(param, name="relu1") diff --git a/src/bindings/python/tests/test_transformations/test_compression.py b/src/bindings/python/tests/test_transformations/test_compression.py index fa46b6d227f1e3..d2754fd29d9c70 100644 --- a/src/bindings/python/tests/test_transformations/test_compression.py +++ b/src/bindings/python/tests/test_transformations/test_compression.py @@ -9,7 +9,7 @@ from openvino.runtime.opset13 import add, multiply import openvino as ov -from tests.utils.helpers import create_filename_for_test +from tests.utils.helpers import create_filenames_for_ir def make_constant(values, transposed): @@ -38,7 +38,7 @@ def make_model(add_consts, mul_consts): def get_constants(model, request, tmp_path) -> List[Constant]: - model_fname, _ = create_filename_for_test(request.node.name, tmp_path) + model_fname, _ = create_filenames_for_ir(request.node.name, tmp_path) ov.save_model(model, model_fname) core = ov.Core() restored_model = core.read_model(model_fname) diff --git a/src/bindings/python/tests/test_transformations/test_offline_api.py b/src/bindings/python/tests/test_transformations/test_offline_api.py index cd336493b58246..e265cef4635988 100644 --- a/src/bindings/python/tests/test_transformations/test_offline_api.py +++ b/src/bindings/python/tests/test_transformations/test_offline_api.py @@ -18,7 +18,7 @@ from openvino import Model, PartialShape, Core, serialize, save_model import openvino.runtime as ov -from tests.utils.helpers import create_filename_for_test, compare_models, _compare_models +from tests.utils.helpers import create_filenames_for_ir, compare_models, _compare_models def get_relu_model(): @@ -171,10 +171,10 @@ def test_fused_names_cleanup(): def prepare_test_model_for_serialize(request, tmp_path, is_path_xml, is_path_bin): - xml_path, bin_path = create_filename_for_test(request.node.name, - tmp_path, - is_path_xml, - is_path_bin) + xml_path, bin_path = create_filenames_for_ir(request.node.name, + tmp_path, + is_path_xml, + is_path_bin) shape = [100, 100, 2] parameter_a = ov.opset8.parameter(shape, dtype=np.float32, name="A") parameter_b = ov.opset8.parameter(shape, dtype=np.float32, name="B") @@ -267,10 +267,10 @@ def test_compress_model_transformation(): ) def test_version_default(request, tmp_path, is_path_xml, is_path_bin): core = Core() - xml_path, bin_path = create_filename_for_test(request.node.name, - tmp_path, - is_path_xml, - is_path_bin) + xml_path, bin_path = create_filenames_for_ir(request.node.name, + tmp_path, + is_path_xml, + is_path_bin) shape = [100, 100, 2] parameter_a = ov.opset8.parameter(shape, dtype=np.float32, name="A") parameter_b = ov.opset8.parameter(shape, dtype=np.float32, name="B") @@ -297,10 +297,10 @@ def test_version_default(request, tmp_path, is_path_xml, is_path_bin): ], ) def test_serialize_default_bin(request, tmp_path, is_path_xml, is_path_bin): - xml_path, bin_path = create_filename_for_test(request.node.name, - tmp_path, - is_path_xml, - is_path_bin) + xml_path, bin_path = create_filenames_for_ir(request.node.name, + tmp_path, + is_path_xml, + is_path_bin) model = get_relu_model() serialize(model, xml_path) assert os.path.exists(bin_path) @@ -311,7 +311,7 @@ def test_serialize_default_bin(request, tmp_path, is_path_xml, is_path_bin): # request - https://docs.pytest.org/en/7.1.x/reference/reference.html#request def test_version_ir_v10(request, tmp_path): core = Core() - xml_path, bin_path = create_filename_for_test(request.node.name, tmp_path) + xml_path, bin_path = create_filenames_for_ir(request.node.name, tmp_path) shape = [100, 100, 2] parameter_a = ov.opset8.parameter(shape, dtype=np.float32, name="A") parameter_b = ov.opset8.parameter(shape, dtype=np.float32, name="B") @@ -332,7 +332,7 @@ def test_version_ir_v10(request, tmp_path): # request - https://docs.pytest.org/en/7.1.x/reference/reference.html#request def test_version_ir_v11(request, tmp_path): core = Core() - xml_path, bin_path = create_filename_for_test(request.node.name, tmp_path) + xml_path, bin_path = create_filenames_for_ir(request.node.name, tmp_path) shape = [100, 100, 2] parameter_a = ov.opset8.parameter(shape, dtype=np.float32, name="A") parameter_b = ov.opset8.parameter(shape, dtype=np.float32, name="B") diff --git a/src/bindings/python/tests/test_transformations/test_public_transformations.py b/src/bindings/python/tests/test_transformations/test_public_transformations.py index 429bc6c192acc4..a10fea786b9770 100644 --- a/src/bindings/python/tests/test_transformations/test_public_transformations.py +++ b/src/bindings/python/tests/test_transformations/test_public_transformations.py @@ -17,7 +17,7 @@ ) from tests.test_transformations.utils.utils import count_ops, get_relu_model -from tests.utils.helpers import create_filename_for_test, compare_models +from tests.utils.helpers import create_filenames_for_ir, compare_models def get_model(): @@ -132,10 +132,10 @@ def test_low_latency2(): ) def test_serialize_pass(request, tmp_path, is_path_xml, is_path_bin): core = Core() - xml_path, bin_path = create_filename_for_test(request.node.name, - tmp_path, - is_path_xml, - is_path_bin) + xml_path, bin_path = create_filenames_for_ir(request.node.name, + tmp_path, + is_path_xml, + is_path_bin) model = get_relu_model() diff --git a/src/bindings/python/tests/utils/helpers.py b/src/bindings/python/tests/utils/helpers.py index 2ea00484e9840c..c14bd6e5e779da 100644 --- a/src/bindings/python/tests/utils/helpers.py +++ b/src/bindings/python/tests/utils/helpers.py @@ -303,7 +303,14 @@ def generate_abs_compiled_model_with_data(device, ov_type, numpy_dtype): return compiled_model, request, tensor1, array1 -def create_filename_for_test(test_name, tmp_path, is_xml_path=False, is_bin_path=False): +def create_filename_for_test(test_name): + python_version = str(sys.version_info.major) + "_" + str(sys.version_info.minor) + filename = test_name.replace("test_", "").replace("[", "_").replace("]", "_") + filename = filename + "_" + python_version + return filename + + +def create_filenames_for_ir(test_name, tmp_path, is_xml_path=False, is_bin_path=False): """Return a tuple with automatically generated paths for xml and bin files. :param test_name: Name used in generating. @@ -311,9 +318,7 @@ def create_filename_for_test(test_name, tmp_path, is_xml_path=False, is_bin_path :param is_bin_path: True if bin file should be pathlib.Path object, otherwise return string. :return: Tuple with two objects representing xml and bin files. """ - python_version = str(sys.version_info.major) + "_" + str(sys.version_info.minor) - filename = test_name.replace("test_", "").replace("[", "_").replace("]", "_") - filename = filename + "_" + python_version + filename = create_filename_for_test(test_name) path_to_xml = tmp_path / Path(filename + ".xml") path_to_bin = tmp_path / Path(filename + ".bin") _xml = path_to_xml if is_xml_path else str(path_to_xml) From 362ebe99aa07549976d38daec17d8ace4041f69f Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Wed, 6 Nov 2024 09:10:05 +0000 Subject: [PATCH 22/93] Bump codecov/codecov-action from 4.5.0 to 4.6.0 (#26882) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Bumps [codecov/codecov-action](https://github.com/codecov/codecov-action) from 4.5.0 to 4.6.0.
Release notes

Sourced from codecov/codecov-action's releases.

v4.6.0

What's Changed

... (truncated)

Commits
  • b9fd7d1 chore(release):4.6.0 (#1587)
  • 6f7612c fix: bump eslint parser deps (#1586)
  • 26c7e28 build(deps): bump actions/checkout from 4.1.7 to 4.2.0 (#1583)
  • 6f744f7 build(deps): bump github/codeql-action from 3.26.8 to 3.26.9 (#1584)
  • 543c3d4 chore: fix typo of OSS (#1578)
  • e379426 build(deps-dev): bump @​vercel/ncc from 0.38.1 to 0.38.2 (#1577)
  • 42656e4 build(deps): bump github/codeql-action from 3.26.7 to 3.26.8 (#1575)
  • 2296b6b build(deps-dev): bump eslint from 8.57.0 to 8.57.1 (#1571)
  • bd77bc3 build(deps): bump github/codeql-action from 3.26.6 to 3.26.7 (#1569)
  • 180b964 build(deps-dev): bump @​types/jest from 29.5.12 to 29.5.13 (#1567)
  • Additional commits viewable in compare view

[![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=codecov/codecov-action&package-manager=github_actions&previous-version=4.5.0&new-version=4.6.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) You can trigger a rebase of this PR by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) ---
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
> **Note** > Automatic rebases have been disabled on this pull request as it has been open for over 30 days. Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- .github/workflows/coverage.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/coverage.yml b/.github/workflows/coverage.yml index db5ba3de1a3c85..6cb0b2c5b6233c 100644 --- a/.github/workflows/coverage.yml +++ b/.github/workflows/coverage.yml @@ -138,6 +138,6 @@ jobs: lcov --capture --directory ${{ github.workspace }}/. --output-file coverage.info genhtml coverage.info --output-directory coverage-report - name: Collect coverage - uses: codecov/codecov-action@e28ff129e5465c2c0dcc6f003fc735cb6ae0c673 # v4.5.0 + uses: codecov/codecov-action@b9fd7d16f6d7d1b5d2bec1a2887e65ceed900238 # v4.6.0 with: verbose: true From b6fe65f01ad71c9298fe658da5978371ffbc2e3c Mon Sep 17 00:00:00 2001 From: Alexandra Sidorova Date: Wed, 6 Nov 2024 13:12:15 +0400 Subject: [PATCH 23/93] [Snippets] Fixed LoopManager::update_loop_ports (#27300) ### Details: - *To remind, `LoopPort` is expression port connected to another expression port which is not in the same Loop. It's like entry (of exit) point of the Loop. It means that some expression port cannot be port of the Loop if all consumers (or sources) are from the same Loop. However, the method `LoopManager::update_loop_ports` sometimes creates these situation. This PR fixes this method. The screenshot below describes this situation: red loop is inner loop and blue loops is outer loop. However, some of output ports of this Loop is inside (green question sign) - invalid situation which is fixed by these changes.* image - *Added the corresponding checks to validate pass* - *Remove parts in `init_is_incremented` which handle invalid case by `is_incremented=false`.* ### Tickets: - *CVS-156299* --- .../snippets/lowered/pass/init_loops.hpp | 2 +- .../lowered/pass/validate_unified_loops.hpp | 7 +++ .../include/snippets/utils/loop_utils.hpp | 6 ++ .../snippets/src/lowered/loop_manager.cpp | 52 ++++++++++++------ .../snippets/src/lowered/pass/init_loops.cpp | 50 ++--------------- .../lowered/pass/validate_unified_loops.cpp | 55 +++++++++++++++---- src/common/snippets/src/utils/loop_utils.cpp | 9 +++ 7 files changed, 107 insertions(+), 74 deletions(-) diff --git a/src/common/snippets/include/snippets/lowered/pass/init_loops.hpp b/src/common/snippets/include/snippets/lowered/pass/init_loops.hpp index 169dbd30e35cc2..e94e1977974716 100644 --- a/src/common/snippets/include/snippets/lowered/pass/init_loops.hpp +++ b/src/common/snippets/include/snippets/lowered/pass/init_loops.hpp @@ -25,7 +25,7 @@ class InitLoops : public Pass { bool run(LinearIR& linear_ir) override; private: - static void update_compile_parameters(const UnifiedLoopInfoPtr& loop_info, size_t loop_id); + static void update_compile_parameters(const UnifiedLoopInfoPtr& loop_info); }; } // namespace pass diff --git a/src/common/snippets/include/snippets/lowered/pass/validate_unified_loops.hpp b/src/common/snippets/include/snippets/lowered/pass/validate_unified_loops.hpp index 80c1b7be19d1f0..d78aaaa668363e 100644 --- a/src/common/snippets/include/snippets/lowered/pass/validate_unified_loops.hpp +++ b/src/common/snippets/include/snippets/lowered/pass/validate_unified_loops.hpp @@ -6,6 +6,9 @@ #include "pass.hpp" +#include "snippets/lowered/loop_manager.hpp" + + namespace ov { namespace snippets { namespace lowered { @@ -27,6 +30,10 @@ class ValidateUnifiedLoops : public Pass { OPENVINO_RTTI("ValidateUnifiedLoops", "Pass") ValidateUnifiedLoops() = default; bool run(LinearIR& linear_ir) override; + +private: + static void validate_loop_infos(const LoopManagerPtr& loop_manager); + static void validate_loop_port_presence(const LinearIR& linear_ir); }; } // namespace pass diff --git a/src/common/snippets/include/snippets/utils/loop_utils.hpp b/src/common/snippets/include/snippets/utils/loop_utils.hpp index b0597008adc1c4..c9f9412ff5c574 100644 --- a/src/common/snippets/include/snippets/utils/loop_utils.hpp +++ b/src/common/snippets/include/snippets/utils/loop_utils.hpp @@ -21,6 +21,12 @@ void update_data_pointer_shifts(const ov::snippets::lowered::UnifiedLoopInfoPtr& * @brief Updates work amount and updates data pointer shifts of the provided "loop_info" */ void update_runtime_parameters(const ov::snippets::lowered::UnifiedLoopInfoPtr& loop_info); +/** + * @brief Check if the passed expression port should be port of the Loop with ID `loop_id`: + * the target expression port should be connected to an expression from another Loop (missed in the loop with ID `loop_id`), + */ +bool should_be_loop_port(const ov::snippets::lowered::ExpressionPort& port, size_t loop_id); + } // namespace utils } // namespace snippets } // namespace ov \ No newline at end of file diff --git a/src/common/snippets/src/lowered/loop_manager.cpp b/src/common/snippets/src/lowered/loop_manager.cpp index 21f4ecc83c57b0..f0e5306c5878bc 100644 --- a/src/common/snippets/src/lowered/loop_manager.cpp +++ b/src/common/snippets/src/lowered/loop_manager.cpp @@ -11,6 +11,7 @@ #include "openvino/core/graph_util.hpp" #include "openvino/core/type.hpp" +#include "snippets/utils/loop_utils.hpp" #include "snippets/itt.hpp" @@ -349,30 +350,45 @@ void LoopManager::fuse_loop_ports(std::vector& output_ports, } void LoopManager::update_loop_ports(const ExpressionPtr& expr) { - auto output_ports = expr->get_output_ports(); - for (size_t i = 0; i < expr->get_input_count(); ++i) { - const auto& source = expr->get_input_port_connector(i)->get_source(); - const auto common_outer_loop_ids = get_common_outer_loops(expr, source.get_expr()); - // The source output port can have several consumers (including the current expr) that can be potential output ports - // So we should verify on the possible future output ports - size_t count_of_common_outer_loops = common_outer_loop_ids.size(); - for (const auto& source_consumer : source.get_connected_ports()) { - if (source_consumer.get_expr() == expr) + auto update_ports = [&](const ov::snippets::lowered::ExpressionPort& connected_port) { + const auto is_output = connected_port.get_type() == ExpressionPort::Output; + // Iterate through all Loops of the connected expression + for (const auto& loop_id : connected_port.get_expr()->get_loop_ids()) { + const auto& loop_info = get_loop_info(loop_id); + // If the connected expression port is not Loop port - nothing to update + // If the target expression is not from the same Loop - nothing to update + if (!loop_info->is_loop_port(connected_port) || !is_loop_id_found(expr, loop_id)) continue; - count_of_common_outer_loops = std::min(count_of_common_outer_loops, get_common_outer_loops(source.get_expr(), source_consumer.get_expr()).size()); - } - replace_loop_ports({common_outer_loop_ids.cbegin(), common_outer_loop_ids.cbegin() + count_of_common_outer_loops}, source, output_ports); - // Save previous port - if (count_of_common_outer_loops != common_outer_loop_ids.size()) { - output_ports.insert(output_ports.begin(), source); - replace_loop_ports({common_outer_loop_ids.cbegin() + count_of_common_outer_loops, common_outer_loop_ids.cend()}, source, output_ports); + + std::vector new_ports; + // Check if some ports of target expression must be Loop port + const auto target_expr_ports = is_output ? expr->get_output_ports() : expr->get_input_ports(); + for (const auto& port : target_expr_ports) { + if (utils::should_be_loop_port(port, loop_id)) + new_ports.push_back(port); + } + // Leave the connected expression port as Loop port if needed + if (utils::should_be_loop_port(connected_port, loop_id)) + new_ports.push_back(connected_port); + + // Nothing should be updated + if (new_ports.size() == 1 && new_ports.front() == connected_port) + continue; + + loop_info->replace_with_new_ports(connected_port, new_ports); } + }; + + // The case with parent loops: source -> target expr + for (size_t i = 0; i < expr->get_input_count(); ++i) { + update_ports(expr->get_input_port_connector(i)->get_source()); } - const auto input_ports = expr->get_input_ports(); + + // The case with child loops: target expr -> consumers for (size_t i = 0; i < expr->get_output_count(); ++i) { const auto& consumers = expr->get_output_port_connector(i)->get_consumers(); for (const auto& consumer : consumers) { - replace_loop_ports(get_common_outer_loops(expr, consumer.get_expr()), consumer, input_ports); + update_ports(consumer); } } } diff --git a/src/common/snippets/src/lowered/pass/init_loops.cpp b/src/common/snippets/src/lowered/pass/init_loops.cpp index aa7d0ab042e1a4..69d336094f1a14 100644 --- a/src/common/snippets/src/lowered/pass/init_loops.cpp +++ b/src/common/snippets/src/lowered/pass/init_loops.cpp @@ -16,46 +16,10 @@ namespace lowered { namespace pass { namespace { -inline void init_is_incremented(LoopPort& port, size_t loop_id) { +inline void init_is_incremented(LoopPort& port) { const auto& expr = port.expr_port->get_expr(); - const auto& expr_loops = expr->get_loop_ids(); if (!std::dynamic_pointer_cast(expr->get_node())) { port.is_incremented = false; - } else if (expr_loops.back() != loop_id) { - // Note: LoopPort connected to Buffer between two loops should not be incremented in the outermost loop - // Consider the example below: - // Store; Loop ids [0,1,2,3] - // Buffer; Loop ids [0,1] - // Load; Loop ids [0,1,4,5] - // Store is output port of Loop-1, but it should be incremented only in Loop-2 and Loop-3. Similar with Load. - auto is_ignored = [=](const ExpressionPtr& target_expr) { - if (ov::is_type(target_expr)) { - const auto& target_loops = target_expr->get_loop_ids(); - const auto i_max = std::min(expr_loops.size(), target_loops.size()); - for (size_t i = 0; i < i_max && expr_loops[i] == target_loops[i]; i++) { - if (target_loops[i] == loop_id) - return true; - } - } - return false; - }; - if (port.expr_port->get_type() == ExpressionPort::Type::Output) { - const auto& out_connector = expr->get_output_port_connector(port.expr_port->get_index()); - for (const auto& consumer : out_connector->get_consumers()) { - if (is_ignored(consumer.get_expr())) { - port.is_incremented = false; - return; - } - } - } else if (port.expr_port->get_type() == ExpressionPort::Type::Input) { - const auto& in_connector = expr->get_input_port_connector(port.expr_port->get_index()); - if (is_ignored(in_connector->get_source().get_expr())) { - port.is_incremented = false; - return; - } - } else { - OPENVINO_THROW("Unexpected LoopPort type"); - } } } @@ -71,11 +35,11 @@ inline int64_t get_data_size(const LoopPort& loop_port) { } } // namespace -void InitLoops::update_compile_parameters(const UnifiedLoopInfoPtr& loop_info, size_t loop_id) { +void InitLoops::update_compile_parameters(const UnifiedLoopInfoPtr& loop_info) { OPENVINO_ASSERT(loop_info != nullptr, "UnifiedLoopInfo is nullptr, nothing to update"); loop_info->iterate_through_infos( - [loop_id](LoopPort& loop_port, UnifiedLoopInfo::LoopPortDesc& ptr_shifts_params) { - init_is_incremented(loop_port, loop_id); + [](LoopPort& loop_port, UnifiedLoopInfo::LoopPortDesc& ptr_shifts_params) { + init_is_incremented(loop_port); ptr_shifts_params.data_size = get_data_size(loop_port); }); } @@ -85,12 +49,10 @@ bool InitLoops::run(LinearIR& linear_ir) { if (linear_ir.empty()) return false; - const auto& loop_manager = linear_ir.get_loop_manager(); - const auto& loops = loop_manager->get_map(); + const auto& loops = linear_ir.get_loop_manager()->get_map(); for (const auto& loop : loops) { - const auto& loop_id = loop.first; const auto& loop_info = ov::as_type_ptr(loop.second); - update_compile_parameters(loop_info, loop_id); + update_compile_parameters(loop_info); ov::snippets::utils::update_runtime_parameters(loop_info); } diff --git a/src/common/snippets/src/lowered/pass/validate_unified_loops.cpp b/src/common/snippets/src/lowered/pass/validate_unified_loops.cpp index bdfb8896405847..ec43f02d28792f 100644 --- a/src/common/snippets/src/lowered/pass/validate_unified_loops.cpp +++ b/src/common/snippets/src/lowered/pass/validate_unified_loops.cpp @@ -7,6 +7,7 @@ #include "snippets/itt.hpp" #include "snippets/lowered/linear_ir.hpp" #include "snippets/lowered/loop_manager.hpp" +#include "snippets/utils/loop_utils.hpp" #include "snippets/utils/utils.hpp" namespace ov { @@ -14,14 +15,7 @@ namespace snippets { namespace lowered { namespace pass { -bool ValidateUnifiedLoops::run(LinearIR& linear_ir) { - OV_ITT_SCOPED_TASK(ov::pass::itt::domains::SnippetsTransform, "Snippets::ValidateUnifiedLoops") - if (linear_ir.empty()) - return false; - - const auto& loop_manager = linear_ir.get_loop_manager(); - const auto& loops = loop_manager->get_map(); - +void ValidateUnifiedLoops::validate_loop_infos(const LoopManagerPtr& loop_manager) { // Already validated vectors of Loop IDs std::set> validated_nested_loops; auto is_already_verified = [&validated_nested_loops](const std::vector& ids) { @@ -66,10 +60,9 @@ bool ValidateUnifiedLoops::run(LinearIR& linear_ir) { validated_nested_loops.insert(loop_ids); }; - for (const auto& pair : loops) { + for (const auto& pair : loop_manager->get_map()) { const auto& loop_info = ov::as_type_ptr(pair.second); - OPENVINO_ASSERT(loop_info, - "ValidateUnifiedLoops expects only UnifiedLoopInfo in LoopManager"); + OPENVINO_ASSERT(loop_info, "ValidateUnifiedLoops expects only UnifiedLoopInfo in LoopManager"); loop_info->iterate_through_ports(validate_loop_port); // Validate that iteration dimnsion is broadcastable @@ -88,6 +81,46 @@ bool ValidateUnifiedLoops::run(LinearIR& linear_ir) { OPENVINO_ASSERT(unique_dimensions.size() <= 1, "Loop ports have incompatible dimensions, by which the loop iterates"); } +} + +void ValidateUnifiedLoops::validate_loop_port_presence(const LinearIR& linear_ir) { + auto validate_loop_port = [](const ExpressionPort& expr_port, const LoopInfoPtr& loop_info, size_t loop_id) { + if (utils::should_be_loop_port(expr_port, loop_id)) { + OPENVINO_ASSERT(loop_info->is_loop_port(expr_port), + "Expression port with idx ", expr_port.get_index(), " with node ", + expr_port.get_expr()->get_node()->get_friendly_name(), " is not Loop port but should be!"); + } else { + OPENVINO_ASSERT(!loop_info->is_loop_port(expr_port), + "Expression port with idx ", expr_port.get_index(), " with node ", + expr_port.get_expr()->get_node()->get_friendly_name(), " is Loop port but should not be!"); + } + }; + + const auto& loop_manager = linear_ir.get_loop_manager(); + for (const auto& expr : linear_ir) { + const auto& op = expr->get_node(); + if (ov::is_type(op)) + continue; + + for (const auto& loop_id : expr->get_loop_ids()) { + const auto& loop_info = loop_manager->get_loop_info(loop_id); + + for (size_t i = 0; i < expr->get_input_count(); ++i) + validate_loop_port(expr->get_input_port(i), loop_info, loop_id); + + for (size_t i = 0; i < expr->get_output_count(); ++i) + validate_loop_port(expr->get_output_port(i), loop_info, loop_id); + } + } +} + +bool ValidateUnifiedLoops::run(LinearIR& linear_ir) { + OV_ITT_SCOPED_TASK(ov::pass::itt::domains::SnippetsTransform, "Snippets::ValidateUnifiedLoops") + if (linear_ir.empty()) + return false; + + validate_loop_infos(linear_ir.get_loop_manager()); + validate_loop_port_presence(linear_ir); return true; } diff --git a/src/common/snippets/src/utils/loop_utils.cpp b/src/common/snippets/src/utils/loop_utils.cpp index dabd129fce451d..3d6b274c7613a8 100644 --- a/src/common/snippets/src/utils/loop_utils.cpp +++ b/src/common/snippets/src/utils/loop_utils.cpp @@ -82,6 +82,15 @@ void update_runtime_parameters(const UnifiedLoopInfoPtr& loop_info) { update_data_pointer_shifts(loop_info); } +bool should_be_loop_port(const ov::snippets::lowered::ExpressionPort& port, size_t loop_id) { + const auto& connected_ports = port.get_connected_ports(); + return std::any_of(connected_ports.cbegin(), connected_ports.cend(), + [&](const ExpressionPort& connected_port) { + const auto& loops = connected_port.get_expr()->get_loop_ids(); + return std::find(loops.cbegin(), loops.cend(), loop_id) == loops.cend(); + }); +} + } // namespace utils } // namespace snippets } // namespace ov \ No newline at end of file From d8befa1a5f6f803a711b356c5b0b2ea93f9ada53 Mon Sep 17 00:00:00 2001 From: Roman Lyamin Date: Wed, 6 Nov 2024 14:22:21 +0400 Subject: [PATCH 24/93] [GPU] Added convolution_gpu_b_fs_zyx_fsv16_imad shape agnostic kernel (#26404) ### Tickets: - *[148550](https://jira.devtools.intel.com/browse/CVS-148550)* --- .../src/graph/impls/ocl/convolution.cpp | 4 + .../src/graph/impls/ocl/convolution.hpp | 3 +- src/plugins/intel_gpu/src/graph/program.cpp | 25 +--- .../convolution_gpu_b_fs_zyx_fsv16_imad.cl | 7 +- .../intel_gpu/src/kernel_selector/jitter.cpp | 3 +- ...convolution_kernel_b_fs_zyx_fsv16_imad.cpp | 68 +++++++-- .../convolution_kernel_b_fs_zyx_fsv16_imad.h | 17 +-- .../convolution/convolution_kernel_base.h | 15 ++ .../unit/test_cases/convolution_gpu_test.cpp | 138 ++++++++++++++++++ 9 files changed, 233 insertions(+), 47 deletions(-) diff --git a/src/plugins/intel_gpu/src/graph/impls/ocl/convolution.cpp b/src/plugins/intel_gpu/src/graph/impls/ocl/convolution.cpp index e8043fa9fe90a9..cda7d8f1a4cedc 100644 --- a/src/plugins/intel_gpu/src/graph/impls/ocl/convolution.cpp +++ b/src/plugins/intel_gpu/src/graph/impls/ocl/convolution.cpp @@ -32,6 +32,10 @@ struct convolution_impl : typed_primitive_impl_ocl { if (is_dynamic()) { auto& kernel_selector = kernel_selector_t::Instance(); auto kernel_impl = kernel_selector.GetImplementation(_kernel_data.kernelName); + + const kernel_impl_params* impl_params = reinterpret_cast(ib.getKernelImplParams()); + _kernel_data.params = std::make_shared(get_kernel_params(*impl_params, true)); + kernel_impl->GetUpdateDispatchDataFunc(_kernel_data); } } diff --git a/src/plugins/intel_gpu/src/graph/impls/ocl/convolution.hpp b/src/plugins/intel_gpu/src/graph/impls/ocl/convolution.hpp index 69ef9f0f8a2a7c..1771da5a5a63ba 100644 --- a/src/plugins/intel_gpu/src/graph/impls/ocl/convolution.hpp +++ b/src/plugins/intel_gpu/src/graph/impls/ocl/convolution.hpp @@ -55,7 +55,8 @@ struct ConvolutionImplementationManager : public ImplementationManager { static const std::vector supported_dyn_formats = { format::bfyx, format::bfzyx, - format::b_fs_yx_fsv16 + format::b_fs_yx_fsv16, + format::b_fs_zyx_fsv16 }; if (!one_of(input_fmt.value, supported_dyn_formats) || !one_of(output_fmt.value, supported_dyn_formats)) diff --git a/src/plugins/intel_gpu/src/graph/program.cpp b/src/plugins/intel_gpu/src/graph/program.cpp index 07fad4873659cd..7a66d32795c17c 100644 --- a/src/plugins/intel_gpu/src/graph/program.cpp +++ b/src/plugins/intel_gpu/src/graph/program.cpp @@ -1796,15 +1796,9 @@ void program::save(cldnn::BinaryOutputBuffer& ob) const { for (auto& impl_id : impl_ids) { std::string type_name = get_node_ptr(impl_id)->get_selected_impl()->m_manager->get_type_info().name; ob << type_name; - if (get_node_ptr(impl_id)->get_selected_impl()->is_onednn()) { - ob << true; - auto params = get_node_ptr(impl_id)->get_kernel_impl_params(); - ob.setKernelImplParams(params.get()); - ob << get_node_ptr(impl_id)->selected_impl; - } else { - ob << false; - ob << get_node_ptr(impl_id)->selected_impl; - } + auto params = get_node_ptr(impl_id)->get_kernel_impl_params(); + ob.setKernelImplParams(params.get()); + ob << get_node_ptr(impl_id)->selected_impl; ob << get_node_ptr(impl_id)->get_selected_impl()->get_cached_kernel_ids(kernels_cache); } } @@ -1930,15 +1924,10 @@ void program::load(cldnn::BinaryInputBuffer& ib) { ib >> type_name; ov::DiscreteTypeInfo type(type_name.c_str()); auto impl_manager = p_node.type()->get(type); - bool is_onednn; - ib >> is_onednn; - if (is_onednn) { - auto params = p_node.get_kernel_impl_params(); - ib.setKernelImplParams(params.get()); - ib >> p_node.selected_impl; - } else { - ib >> p_node.selected_impl; - } + + auto params = p_node.get_kernel_impl_params(); + ib.setKernelImplParams(params.get()); + ib >> p_node.selected_impl; p_node.selected_impl->m_manager = impl_manager.get(); diff --git a/src/plugins/intel_gpu/src/kernel_selector/cl_kernels/convolution_gpu_b_fs_zyx_fsv16_imad.cl b/src/plugins/intel_gpu/src/kernel_selector/cl_kernels/convolution_gpu_b_fs_zyx_fsv16_imad.cl index fc5f2c18fe7efb..07486c1b9a1498 100644 --- a/src/plugins/intel_gpu/src/kernel_selector/cl_kernels/convolution_gpu_b_fs_zyx_fsv16_imad.cl +++ b/src/plugins/intel_gpu/src/kernel_selector/cl_kernels/convolution_gpu_b_fs_zyx_fsv16_imad.cl @@ -54,6 +54,7 @@ REQD_SUB_GROUP_SIZE(SIMD) __attribute__((reqd_work_group_size(1, 1, FEATURE_SLM_SPLIT * SIMD))) KERNEL(convolution_gpu_b_fs_zyx_fsv16_imad)( + OPTIONAL_SHAPE_INFO_ARG const __global INPUT0_TYPE *conv_input, __global OUTPUT_TYPE *output, const __global FILTER_TYPE *weights @@ -606,11 +607,15 @@ KERNEL(convolution_gpu_b_fs_zyx_fsv16_imad)( __attribute__((opencl_unroll_hint(OUT_BLOCK_WIDTH))) for (uint ow = 0; ow < OUT_BLOCK_WIDTH; ow++) { + #if !IS_DYNAMIC #if OUTPUT_SIZE_X % OUT_BLOCK_WIDTH != 0 if (out_x + OUT_BLOCK_WIDTH > OUTPUT_SIZE_X && ow >= OUTPUT_SIZE_X % OUT_BLOCK_WIDTH) break; #endif - + #else + if (OUTPUT_SIZE_X % OUT_BLOCK_WIDTH != 0 && out_x + OUT_BLOCK_WIDTH > OUTPUT_SIZE_X && ow >= OUTPUT_SIZE_X % OUT_BLOCK_WIDTH) + break; + #endif if (out_f_g < FILTER_OFM_NUM) { output[dst_index + ow * FSV + oh * OUTPUT_Y_PITCH * FSV + od * OUTPUT_Z_PITCH * FSV] = result[ofb][od][oh][ow]; } diff --git a/src/plugins/intel_gpu/src/kernel_selector/jitter.cpp b/src/plugins/intel_gpu/src/kernel_selector/jitter.cpp index 33d13429fdcf3f..716e64937ec9e5 100644 --- a/src/plugins/intel_gpu/src/kernel_selector/jitter.cpp +++ b/src/plugins/intel_gpu/src/kernel_selector/jitter.cpp @@ -364,7 +364,8 @@ JitDefinitions DataTensorJitConstant::GetDefinitions() const { if (_tensor.GetLayout() == DataLayout::bf || _tensor.GetLayout() == DataLayout::bfyx || _tensor.GetLayout() == DataLayout::bfzyx || _tensor.GetLayout() == DataLayout::bfwzyx || _tensor.GetLayout() == DataLayout::bfuwzyx || _tensor.GetLayout() == DataLayout::bfvuwzyx || - _tensor.GetLayout() == DataLayout::b_fs_yx_fsv16 || _tensor.GetLayout() == DataLayout::b_fs_yx_fsv32) { + _tensor.GetLayout() == DataLayout::b_fs_yx_fsv16 || _tensor.GetLayout() == DataLayout::b_fs_yx_fsv32 || + _tensor.GetLayout() == DataLayout::b_fs_zyx_fsv16) { definitions.push_back({_name + "_X_PITCH", "1"}); definitions.push_back({_name + "_Y_PITCH", dims_padded.x()}); definitions.push_back({_name + "_Z_PITCH", toVectorMulString({dims_padded.x(), dims_padded.y()})}); diff --git a/src/plugins/intel_gpu/src/kernel_selector/kernels/convolution/convolution_kernel_b_fs_zyx_fsv16_imad.cpp b/src/plugins/intel_gpu/src/kernel_selector/kernels/convolution/convolution_kernel_b_fs_zyx_fsv16_imad.cpp index 38ed9e42d3718f..352470913e4751 100644 --- a/src/plugins/intel_gpu/src/kernel_selector/kernels/convolution/convolution_kernel_b_fs_zyx_fsv16_imad.cpp +++ b/src/plugins/intel_gpu/src/kernel_selector/kernels/convolution/convolution_kernel_b_fs_zyx_fsv16_imad.cpp @@ -55,7 +55,10 @@ namespace kernel_selector { Convolution_kernel_b_fs_zyx_fsv16_imad::BlockParams Convolution_kernel_b_fs_zyx_fsv16_imad::GetBlockParams(const convolution_params& params) const { - size_t max_block_width = getOutBlock_X(params.outputs[0].X().v, params.stride.x, params.filterSize.x, params.dilation.x); + size_t max_block_width = 1; + if (!params.outputs[0].X().is_dynamic) { + max_block_width = getOutBlock_X(params.outputs[0].X().v, params.stride.x, params.filterSize.x, params.dilation.x); + } size_t max_in_block_width = (max_block_width - 1) * params.stride.x + (params.filterSize.x - 1) * params.dilation.x + 1; size_t block_width = max_block_width; @@ -90,7 +93,9 @@ Convolution_kernel_b_fs_zyx_fsv16_imad::GetBlockParams(const convolution_params& size_t max_slm_split = params.engineInfo.maxWorkGroupSize / simd; // TGLU exceptions related to SLM usage - if (params.engineInfo.deviceType == dev_type::integrated_gpu && params.engineInfo.computeUnitsCount == 96) { + if (params.is_shape_agnostic) { + max_slm_split = 2; + } else if (params.engineInfo.deviceType == dev_type::integrated_gpu && params.engineInfo.computeUnitsCount == 96) { bool split_exception_1 = params.outputs[0].X().v == 3 && params.outputs[0].Y().v == 3 && params.outputs[0].Z().v == 1 && params.outputs[0].Feature().v == 512; bool split_exception_2 = params.outputs[0].X().v == 5 && params.outputs[0].Y().v == 5 && params.outputs[0].Z().v == 1 @@ -118,13 +123,16 @@ Convolution_kernel_b_fs_zyx_fsv16_imad::GetBlockParams(const convolution_params& } } + size_t max_d = params.outputs[0].Z().is_dynamic ? 1 : 16; + size_t max_h = params.outputs[0].Y().is_dynamic ? 1 : 16; + for (size_t split = 1; split <= max_slm_split; split *= 2) { for (size_t temp_block_features = simd; temp_block_features <= simd * 2; temp_block_features += simd) { - for (size_t d = 1; d < 16; ++d) { - if (params.outputs[0].Z().v % d) + for (size_t d = 1; d < max_d; ++d) { + if (d != 1 && params.outputs[0].Z().v % d) continue; - for (size_t h = 1; h < 16; ++h) { - if (params.outputs[0].Y().v % h) + for (size_t h = 1; h < max_h; ++h) { + if (h != 1 && params.outputs[0].Y().v % h) continue; bool c_ifm_mul = CeilDiv(params.weights.IFM().v, fsv) % split == 0; @@ -174,6 +182,10 @@ Convolution_kernel_b_fs_zyx_fsv16_imad::GetBlockParams(const convolution_params& } float Convolution_kernel_b_fs_zyx_fsv16_imad::EstimateBlockParamsRatio(const convolution_params& params, const BlockParams& block) const { + if (params.has_dynamic_outputs()) { + return -10.f; + } + float occupancy_by_logic_size = static_cast(params.outputs[0].LogicalSize() / static_cast(params.engineInfo.maxThreadsPerDevice)); bool increase_max_reg_pressure = occupancy_by_logic_size >= 595.f; bool twice_increase_max_reg_pressure = occupancy_by_logic_size >= 595.f * 2.f; @@ -373,6 +385,7 @@ ParamsKey Convolution_kernel_b_fs_zyx_fsv16_imad::GetSupportedKey() const { k.EnableQuantization(QuantizationType::SYMMETRIC); k.EnableQuantization(QuantizationType::ASYMMETRIC_DATA); k.EnableDilation(); + k.EnableDynamicShapesSupport(); return k; } @@ -450,10 +463,15 @@ JitConstants Convolution_kernel_b_fs_zyx_fsv16_imad::GetJitConstants(const convo ConvolutionKernelBase::DispatchData Convolution_kernel_b_fs_zyx_fsv16_imad::SetDefault(const convolution_params& params, int) const { + const BlockParams& block_params = GetBlockParams(params); + return CalcDispatchDataWithBlockParams(params, block_params); +} // SetDefault + +ConvolutionKernelBase::DispatchData Convolution_kernel_b_fs_zyx_fsv16_imad::CalcDispatchDataWithBlockParams(const convolution_params& params, + const BlockParams& block_params) const { DispatchData dispatchData; const auto& output = params.outputs[0]; const auto& weights = params.weights; - auto block_params = GetBlockParams(params); dispatchData.gws[0] = CeilDiv(output.X().v, block_params.output_block_width); dispatchData.gws[1] = CeilDiv(output.Y().v, block_params.output_block_height) * CeilDiv(output.Z().v, block_params.output_block_depth); @@ -466,17 +484,24 @@ ConvolutionKernelBase::DispatchData Convolution_kernel_b_fs_zyx_fsv16_imad::SetD dispatchData.cldnnStyle = {0, 0, 0, 0, 0}; dispatchData.gemmStyle = {0, 0, 0, 0, 0, 0}; - + dispatchData.blockParams = { block_params.output_block_width, block_params.output_block_height, + block_params.output_block_depth, block_params.output_block_features, + block_params.input_block_width, block_params.input_block_height, + block_params.input_block_depth, block_params.feature_slm_split }; return dispatchData; -} // SetDefault +} KernelsPriority Convolution_kernel_b_fs_zyx_fsv16_imad::GetKernelsPriority(const Params& params) const { const auto& p = static_cast(params); - if (static_cast(p.weights.IFM().v) / static_cast(Align(p.weights.IFM().v, fsv)) < 0.5f) + if (!p.is_shape_agnostic) { + if (static_cast(p.weights.IFM().v) / static_cast(Align(p.weights.IFM().v, fsv)) < 0.5f) + return FORCE_PRIORITY_4; + else + return FORCE_PRIORITY_2; + } else { return FORCE_PRIORITY_4; - else - return FORCE_PRIORITY_2; + } } bool Convolution_kernel_b_fs_zyx_fsv16_imad::Validate(const Params& params) const { @@ -507,4 +532,23 @@ bool Convolution_kernel_b_fs_zyx_fsv16_imad::Validate(const Params& params) cons return true; } + +void Convolution_kernel_b_fs_zyx_fsv16_imad::GetUpdateDispatchDataFunc(KernelData& kd) const { + const auto& prim_params = static_cast(*kd.params); + const auto& dynamicDispatchData = SetDefault(prim_params); + + kd.update_dispatch_data_func = [this, dynamicDispatchData](const Params& params, KernelData& kd) { + const auto& prim_params = static_cast(params); + const auto& dispatchData = CalcDispatchDataWithBlockParams(prim_params, dynamicDispatchData.blockParams); + OPENVINO_ASSERT(kd.kernels.size() == 1, "[GPU] Invalid kernels size for update dispatch data func"); + kd.kernels[0].params.workGroups.global = dispatchData.gws; + kd.kernels[0].params.workGroups.local = dispatchData.lws; + kd.kernels[0].skip_execution = KernelData::SkipKernelExecution(prim_params); + + kd.internalBufferSizes.clear(); + kd.internalBufferSizes.push_back(prim_params.inputs[0].PhysicalSizeInBytes()); + kd.internalBufferDataType = prim_params.inputs[0].GetDType(); + }; +} + } // namespace kernel_selector diff --git a/src/plugins/intel_gpu/src/kernel_selector/kernels/convolution/convolution_kernel_b_fs_zyx_fsv16_imad.h b/src/plugins/intel_gpu/src/kernel_selector/kernels/convolution/convolution_kernel_b_fs_zyx_fsv16_imad.h index c2da5e66982d11..adb5125873a657 100644 --- a/src/plugins/intel_gpu/src/kernel_selector/kernels/convolution/convolution_kernel_b_fs_zyx_fsv16_imad.h +++ b/src/plugins/intel_gpu/src/kernel_selector/kernels/convolution/convolution_kernel_b_fs_zyx_fsv16_imad.h @@ -12,6 +12,7 @@ namespace kernel_selector { class Convolution_kernel_b_fs_zyx_fsv16_imad : public ConvolutionKernelBase { public: using Parent = ConvolutionKernelBase; + using BlockParams = DispatchData::BlockParams; Convolution_kernel_b_fs_zyx_fsv16_imad() : ConvolutionKernelBase("convolution_gpu_b_fs_zyx_fsv16_imad") {} virtual ~Convolution_kernel_b_fs_zyx_fsv16_imad() {} @@ -24,6 +25,7 @@ class Convolution_kernel_b_fs_zyx_fsv16_imad : public ConvolutionKernelBase { bool Validate(const Params& params) const override; JitConstants GetJitConstants(const convolution_params& params, const DispatchData& dispatchData) const override; DispatchData SetDefault(const convolution_params& params, int autoTuneIndex = -1) const override; + void GetUpdateDispatchDataFunc(KernelData& kd) const override; bool NeedPaddedInput() const override { return true; } WeightsLayout GetPreferredWeightsLayout(const convolution_params& p) const override { return p.groups > 1 ? WeightsLayout::g_os_is_zyx_osv16_isv16 : WeightsLayout::os_is_zyx_osv16_isv16; @@ -35,24 +37,11 @@ class Convolution_kernel_b_fs_zyx_fsv16_imad : public ConvolutionKernelBase { FusedOpType::ACTIVATION }; } - struct BlockParams { - size_t output_block_width; - size_t output_block_height; - size_t output_block_depth; - - size_t output_block_features; - - size_t input_block_width; - size_t input_block_height; - size_t input_block_depth; - - size_t feature_slm_split; - }; - BlockParams GetBlockParams(const convolution_params& params) const; float EstimateBlockParamsRatio(const convolution_params& params, const BlockParams& block) const; float EstimateRegPressure(const convolution_params& params, const BlockParams& block) const; float EstimateOccupancy(const convolution_params& params, const BlockParams& block) const; float EstimateSLMUsage(const convolution_params& params, const BlockParams& block) const; + DispatchData CalcDispatchDataWithBlockParams(const convolution_params& params, const BlockParams& block_params) const; }; } // namespace kernel_selector diff --git a/src/plugins/intel_gpu/src/kernel_selector/kernels/convolution/convolution_kernel_base.h b/src/plugins/intel_gpu/src/kernel_selector/kernels/convolution/convolution_kernel_base.h index f8d1b3bf0de956..ccdd4941cdd1d0 100644 --- a/src/plugins/intel_gpu/src/kernel_selector/kernels/convolution/convolution_kernel_base.h +++ b/src/plugins/intel_gpu/src/kernel_selector/kernels/convolution/convolution_kernel_base.h @@ -36,8 +36,23 @@ class ConvolutionKernelBase : public WeightBiasKernelBase { size_t globalWorkSizeDZ; }; + struct BlockParams { + size_t output_block_width; + size_t output_block_height; + size_t output_block_depth; + + size_t output_block_features; + + size_t input_block_width; + size_t input_block_height; + size_t input_block_depth; + + size_t feature_slm_split; + }; + CLDNNStyle cldnnStyle; GEMMStyle gemmStyle; + BlockParams blockParams; }; std::string GetAutoTuneOptions(int autoTuneIndex) const; diff --git a/src/plugins/intel_gpu/tests/unit/test_cases/convolution_gpu_test.cpp b/src/plugins/intel_gpu/tests/unit/test_cases/convolution_gpu_test.cpp index 4f9c31064e9026..5d01d448dcfc64 100644 --- a/src/plugins/intel_gpu/tests/unit/test_cases/convolution_gpu_test.cpp +++ b/src/plugins/intel_gpu/tests/unit/test_cases/convolution_gpu_test.cpp @@ -11056,3 +11056,141 @@ INSTANTIATE_TEST_SUITE_P(smoke, conv_dyn_test, { ov::Shape{1, 32, 91}, ov::Shape{32, 1, 1, 11}, ov::Strides{1}, ov::Strides{1}, ov::CoordinateDiff{0}, ov::CoordinateDiff{0}, 32 }, { ov::Shape{1, 64, 16, 16}, ov::Shape{64, 1, 1, 3, 3}, ov::Strides{1, 1}, ov::Strides{1, 1}, ov::CoordinateDiff{0, 0}, ov::CoordinateDiff{0, 0}, 64 }, })); + + +struct conv_dyn_3d_test_params { + ov::Shape in_shape; + ov::Shape wei_shape; + ov::Strides stride; + ov::Strides dilation; + ov::CoordinateDiff pad_begin; + ov::CoordinateDiff pad_end; + uint32_t groups; + bool is_caching_test; +}; + +class conv_dyn_3d_test : public testing::TestWithParam {}; + +TEST_P(conv_dyn_3d_test, convolution_gpu_b_fs_zyx_fsv16_imad_quantized) { + auto& engine = get_test_engine(); + auto p = GetParam(); + + auto calculate_ref = [&](memory::ptr input, memory::ptr weights, + memory::ptr a_zp, memory::ptr compensation, ExecutionConfig config) { + auto in_layout = input->get_layout(); + + topology topology_ref( + input_layout("input", in_layout), + data("weights", weights), + data("a_zp", a_zp), + data("compensation", compensation), + convolution("conv", input_info("input"), "weights", no_bias, "", "a_zp", "compensation", + p.groups, p.stride, p.dilation, p.pad_begin, p.pad_end, false, data_types::f32)); + + network network_ref(engine, topology_ref, config); + network_ref.set_input_data("input", input); + + auto outputs_ref = network_ref.execute(); + + return outputs_ref.at("conv").get_memory(); + }; + + ov::PartialShape dyn_input_pshape; + for (size_t i = 0; i < p.in_shape.size(); ++i) { + dyn_input_pshape.emplace_back(ov::Dimension()); + } + dyn_input_pshape[1] = p.in_shape[1]; + + auto in_layout = layout{dyn_input_pshape, data_types::u8, format::b_fs_zyx_fsv16}; + auto input = engine.allocate_memory({ p.in_shape, data_types::u8, format::b_fs_zyx_fsv16 }); + auto weights = engine.allocate_memory({p.wei_shape, data_types::i8, format::bfzyx}); + + auto a_zp_shape = ov::Shape(p.in_shape.size(), 1); + a_zp_shape[1] = p.in_shape[1]; + auto a_zp = engine.allocate_memory({ a_zp_shape, data_types::u8, format::bfyx }); + + auto compensation = engine.allocate_memory({ a_zp_shape, data_types::f32, format::bfyx }); + + tests::random_generator rg(GET_SUITE_NAME); + VF input_rnd = rg.generate_random_1d(ov::shape_size(p.in_shape), 0, 10); + VF weights_rnd = rg.generate_random_1d(ov::shape_size(p.wei_shape), -5, 5); + VF a_zp_rnd = rg.generate_random_1d(ov::shape_size(a_zp_shape), 1, 5); + VF compensation_rnd = rg.generate_random_1d(ov::shape_size(a_zp_shape), -5, 5); + + set_values(input, input_rnd); + set_values(weights, weights_rnd); + set_values(a_zp, a_zp_rnd); + set_values(compensation, compensation_rnd); + + topology topology( + input_layout("input", in_layout), + data("weights", weights), + data("a_zp", a_zp), + data("compensation", compensation), + convolution("conv", input_info("input"), "weights", no_bias, "", "a_zp", "compensation", + p.groups, p.stride, p.dilation, p.pad_begin, p.pad_end, false, data_types::f32)); + + ExecutionConfig config = get_test_default_config(engine); + ov::intel_gpu::ImplementationDesc conv_impl = { format::b_fs_zyx_fsv16, "convolution_gpu_b_fs_zyx_fsv16_imad", impl_types::ocl }; + config.set_property(ov::intel_gpu::force_implementations(ov::intel_gpu::ImplForcingMap{ { "conv", conv_impl } })); + config.set_property(ov::intel_gpu::allow_new_shape_infer(true)); + config.set_property(ov::enable_profiling(true)); + + cldnn::network::ptr network = get_network(engine, topology, config, get_test_stream_ptr(), p.is_caching_test); + network->set_input_data("input", input); + + auto inst = network->get_primitive("conv"); + auto impl = inst->get_impl(); + ASSERT_TRUE(impl != nullptr); + ASSERT_TRUE(impl->is_dynamic()); + + auto outputs = network->execute(); + + auto output_memory = outputs.at("conv").get_memory(); + + auto output_memory_ref = calculate_ref(input, weights, a_zp, compensation, config); + + cldnn::mem_lock output_ptr(output_memory, get_test_stream()); + cldnn::mem_lock output_ptr_ref(output_memory_ref, get_test_stream()); + + ASSERT_EQ(outputs.at("conv").get_layout(), output_memory_ref->get_layout()); + for (size_t i = 0; i < output_ptr.size(); i++) { + ASSERT_EQ(output_ptr[i], output_ptr_ref[i]); + } + + { + // Change original shape for the second run + auto new_shape = p.in_shape; + new_shape[2] += 4; + + auto input = engine.allocate_memory({ new_shape, data_types::u8, format::b_fs_zyx_fsv16 }); + + VF input_rnd = rg.generate_random_1d(ov::shape_size(p.in_shape), 0, 10); + set_values(input, input_rnd); + + network->set_input_data("input", input); + auto outputs = network->execute(); + + auto output_memory = outputs.at("conv").get_memory(); + auto output_memory_ref = calculate_ref(input, weights, a_zp, compensation, config); + + cldnn::mem_lock output_ptr(output_memory, get_test_stream()); + cldnn::mem_lock output_ptr_ref(output_memory_ref, get_test_stream()); + + ASSERT_EQ(outputs.at("conv").get_layout(), output_memory_ref->get_layout()); + for (size_t i = 0; i < output_ptr.size(); i++) { + ASSERT_EQ(output_ptr[i], output_ptr_ref[i]); + } + } +} + +INSTANTIATE_TEST_SUITE_P(smoke, conv_dyn_3d_test, + testing::ValuesIn(std::vector{ + { ov::Shape{1, 16, 5, 5, 5}, ov::Shape{2, 16, 3, 3, 3}, ov::Strides{1, 1, 1}, ov::Strides{1, 1, 1}, ov::CoordinateDiff{0, 0, 0}, ov::CoordinateDiff{0, 0, 0}, 1, false}, + { ov::Shape{1, 16, 5, 5, 5}, ov::Shape{2, 16, 3, 3, 3}, ov::Strides{1, 1, 1}, ov::Strides{1, 1, 1}, ov::CoordinateDiff{0, 0, 0}, ov::CoordinateDiff{0, 0, 0}, 1, true}, + { ov::Shape{2, 32, 30, 30, 30}, ov::Shape{16, 32, 10, 10, 10}, ov::Strides{1, 1, 1}, ov::Strides{1, 1, 1}, ov::CoordinateDiff{0, 0, 0}, ov::CoordinateDiff{0, 0, 0}, 1, false }, + { ov::Shape{2, 32, 30, 30, 30}, ov::Shape{16, 32, 10, 10, 10}, ov::Strides{1, 1, 1}, ov::Strides{1, 1, 1}, ov::CoordinateDiff{0, 0, 0}, ov::CoordinateDiff{0, 0, 0}, 1, true }, + { ov::Shape{1, 16, 5, 5, 5}, ov::Shape{2, 16, 3, 3, 3}, ov::Strides{2, 2, 2}, ov::Strides{1, 1, 1}, ov::CoordinateDiff{0, 0, 0}, ov::CoordinateDiff{0, 0, 0}, 1, false }, + { ov::Shape{1, 16, 5, 5, 5}, ov::Shape{2, 16, 3, 3, 3}, ov::Strides{1, 1, 1}, ov::Strides{1, 1, 1}, ov::CoordinateDiff{1, 1, 1}, ov::CoordinateDiff{1, 1, 1}, 1, false }, + { ov::Shape{1, 16, 5, 5, 5}, ov::Shape{16, 1, 1, 3, 3, 3}, ov::Strides{1, 1, 1}, ov::Strides{1, 1, 1}, ov::CoordinateDiff{0, 0, 0}, ov::CoordinateDiff{0, 0, 0}, 16, false } +})); From 05c365c5e4fdc78a5d7137963fad233c36da972e Mon Sep 17 00:00:00 2001 From: Przemyslaw Wysocki Date: Wed, 6 Nov 2024 12:00:55 +0100 Subject: [PATCH 25/93] [PyOV] Migrate benchmark_app from `setup.py` to `pyproject.toml` (#27305) ### Details: - Added `--no-deps` because `pip wheel .` with `pyproject.toml` would save the `numpy` wheel in cwd - Since requirements are added to the benchmark_app wheel itself, when installing it they'll be pulled from PyPI anyway ### Tickets: - CVS-156008 --------- Signed-off-by: p-wysocki Co-authored-by: Anastasia Kuporosova Co-authored-by: Michal Lukaszewski --- tools/benchmark_tool/pyproject.toml | 31 +++++++++++++++++++ tools/benchmark_tool/requirements.txt | 1 - tools/benchmark_tool/setup.py | 43 --------------------------- 3 files changed, 31 insertions(+), 44 deletions(-) create mode 100644 tools/benchmark_tool/pyproject.toml delete mode 100644 tools/benchmark_tool/requirements.txt delete mode 100644 tools/benchmark_tool/setup.py diff --git a/tools/benchmark_tool/pyproject.toml b/tools/benchmark_tool/pyproject.toml new file mode 100644 index 00000000000000..61fe23ffbbf539 --- /dev/null +++ b/tools/benchmark_tool/pyproject.toml @@ -0,0 +1,31 @@ +# Copyright (C) 2018-2024 Intel Corporation +# SPDX-License-Identifier: Apache-2.0 + +# Use this configuration file to create a wheel with OpenVINO™ Python* benchmark tool: +# $ python -m pip wheel . --no-deps + +[build-system] +requires = ["setuptools", "wheel"] +build-backend = "setuptools.build_meta" + +[project] +name = "benchmark_tool" +version = "0.0.0" +description = "OpenVINO™ Python* tools package" +readme = "README.md" +authors = [ + {name = "Intel® Corporation", email = "openvino_pushbot@intel.com"} +] +urls = {homepage = "https://github.com/openvinotoolkit/openvino"} +classifiers = [ + "Programming Language :: Python :: 3", + "Operating System :: OS Independent", + "License :: OSI Approved :: Apache Software License" +] +requires-python = ">=3.9" +dependencies = [ + "numpy>=1.16.6,<2.2.0", +] + +[project.scripts] +benchmark_app = "openvino.tools.benchmark.main:main" diff --git a/tools/benchmark_tool/requirements.txt b/tools/benchmark_tool/requirements.txt deleted file mode 100644 index 5594ff31cd35c5..00000000000000 --- a/tools/benchmark_tool/requirements.txt +++ /dev/null @@ -1 +0,0 @@ -numpy>=1.16.6,<2.1.0 diff --git a/tools/benchmark_tool/setup.py b/tools/benchmark_tool/setup.py deleted file mode 100644 index 98f2a369a60360..00000000000000 --- a/tools/benchmark_tool/setup.py +++ /dev/null @@ -1,43 +0,0 @@ -#!/usr/bin/env python3 - -# Copyright (C) 2018-2024 Intel Corporation -# SPDX-License-Identifier: Apache-2.0 - -""" -Use this script to create a wheel with OpenVINO™ Python* tools: - -$ python -m pip wheel . -""" -from setuptools import setup, find_packages - - -with open('requirements.txt', 'r', encoding='utf-8') as f: - raw_contents = f.readlines() - reqs = [line.strip() for line in raw_contents] - -with open('README.md', 'r', encoding='utf-8') as f: - long_description = f.read() - -setup( - name='benchmark_tool', - version='0.0.0', - author='Intel® Corporation', - license='OSI Approved :: Apache Software License', - author_email='openvino_pushbot@intel.com', - url='https://github.com/openvinotoolkit/openvino', - description='OpenVINO™ Python* tools package', - long_description=long_description, - long_description_content_type='text/markdown', - entry_points={ - 'console_scripts': [ - 'benchmark_app = openvino.tools.benchmark.main:main'], - }, - classifiers=[ - 'Programming Language :: Python :: 3', - 'Operating System :: OS Independent', - ], - packages=find_packages(), - install_requires=reqs, - data_files=[('.', ['requirements.txt'])], - python_requires='>=3.9', -) From eabe5282511563d3fc4325f25234e338b0d8a28a Mon Sep 17 00:00:00 2001 From: Bogdan Pereanu Date: Wed, 6 Nov 2024 14:17:17 +0200 Subject: [PATCH 26/93] [NPU] Fix compiler clang build (#27405) ### Details: - *Change from define to constexpr and remove unused code* - *Fix clang build* ### Tickets: - *EISW-146067* --------- Signed-off-by: Bogdan Pereanu --- .../intel_npu/src/al/include/intel_npu/prefix.hpp | 10 +++------- .../src/compiler_adapter/src/ze_graph_ext_wrappers.cpp | 1 - .../utils/include/intel_npu/utils/zero/zero_types.hpp | 4 ++-- 3 files changed, 5 insertions(+), 10 deletions(-) diff --git a/src/plugins/intel_npu/src/al/include/intel_npu/prefix.hpp b/src/plugins/intel_npu/src/al/include/intel_npu/prefix.hpp index 9be19d67454d82..f80390ef61ca7e 100644 --- a/src/plugins/intel_npu/src/al/include/intel_npu/prefix.hpp +++ b/src/plugins/intel_npu/src/al/include/intel_npu/prefix.hpp @@ -11,9 +11,9 @@ namespace intel_npu { // // Prefix for ReadValue and Assign operations in compiler. // -#define READVALUE_PREFIX std::string("vpux_ie_read_value_") -#define ASSIGN_PREFIX std::string("vpux_ie_assign_") -#define SHAPE_TENSOR_PREFIX std::string("vpux_ie_shape_") +constexpr std::string_view READVALUE_PREFIX = "vpux_ie_read_value_"; +constexpr std::string_view ASSIGN_PREFIX = "vpux_ie_assign_"; +constexpr std::string_view SHAPE_TENSOR_PREFIX = "vpux_ie_shape_"; inline bool isStateInputName(const std::string& name) { return !name.compare(0, READVALUE_PREFIX.length(), READVALUE_PREFIX); @@ -25,8 +25,4 @@ inline bool isShapeTensorName(const std::string& name) { return !name.compare(0, SHAPE_TENSOR_PREFIX.length(), SHAPE_TENSOR_PREFIX); } -inline std::string stateOutputToStateInputName(const std::string& name) { - return READVALUE_PREFIX + name.substr(ASSIGN_PREFIX.length()); -} - } // namespace intel_npu diff --git a/src/plugins/intel_npu/src/compiler_adapter/src/ze_graph_ext_wrappers.cpp b/src/plugins/intel_npu/src/compiler_adapter/src/ze_graph_ext_wrappers.cpp index c094838cc22ef0..095f470e15e02f 100644 --- a/src/plugins/intel_npu/src/compiler_adapter/src/ze_graph_ext_wrappers.cpp +++ b/src/plugins/intel_npu/src/compiler_adapter/src/ze_graph_ext_wrappers.cpp @@ -396,7 +396,6 @@ ze_graph_handle_t ZeGraphExtWrappers::getGraphHandle( const uint32_t& flags) const { ze_graph_handle_t graphHandle; - _logger.info("compileIR Using extension version: %s", typeid(TableExtension).name()); createGraph(std::move(serializedIR), buildFlags, flags, &graphHandle); return graphHandle; diff --git a/src/plugins/intel_npu/src/utils/include/intel_npu/utils/zero/zero_types.hpp b/src/plugins/intel_npu/src/utils/include/intel_npu/utils/zero/zero_types.hpp index 032dd867306004..188da886f5d9e4 100644 --- a/src/plugins/intel_npu/src/utils/include/intel_npu/utils/zero/zero_types.hpp +++ b/src/plugins/intel_npu/src/utils/include/intel_npu/utils/zero/zero_types.hpp @@ -70,7 +70,7 @@ struct ze_graph_dditable_ext_decorator final { } ~ze_graph_dditable_ext_decorator() = default; - inline const uint32_t version() const { + inline uint32_t version() const { return _driverExtVersion; } @@ -202,7 +202,7 @@ struct ze_command_queue_npu_dditable_ext_decorator final { _commandQueueExtVersion(commandQueueExtVersion) {} ~ze_command_queue_npu_dditable_ext_decorator() = default; - inline const uint32_t version() const { + inline uint32_t version() const { return _commandQueueExtVersion; } From 6c715998b36012c26d59e73fe86fca00fee761d3 Mon Sep 17 00:00:00 2001 From: Przemyslaw Wysocki Date: Wed, 6 Nov 2024 13:48:23 +0100 Subject: [PATCH 27/93] [PyOV] Use `python -m build` only for old `pip` versions (#27429) ### Details: - An alternative to https://github.com/openvinotoolkit/openvino/pull/27426 - The functionality branching based on pip version has recently been removed in https://github.com/openvinotoolkit/openvino/pull/27190 - This fix has originated from discussion at https://github.com/openvinotoolkit/openvino/pull/27190/files#r1830707810 - Fix for issues with NPU building on Windows machines - A disadvantage is that we need to have `build` as a dependency no matter what, there's no environment marker for `pip` version which would allow us to install it conditionally ### Tickets: - EISW-146038 Signed-off-by: p-wysocki --- src/bindings/python/wheel/CMakeLists.txt | 23 ++++++++++++++++++++--- 1 file changed, 20 insertions(+), 3 deletions(-) diff --git a/src/bindings/python/wheel/CMakeLists.txt b/src/bindings/python/wheel/CMakeLists.txt index 72828a155dd865..d943c3caa21e52 100644 --- a/src/bindings/python/wheel/CMakeLists.txt +++ b/src/bindings/python/wheel/CMakeLists.txt @@ -100,14 +100,31 @@ set(openvino_wheel_path "${openvino_wheels_output_dir}/${openvino_wheel_name}") # create target for openvino.wheel # -# for --config-setting explanation see https://github.com/pypa/setuptools/issues/2491 -set(wheel_build_command - ${Python3_EXECUTABLE} -m build "${CMAKE_CURRENT_SOURCE_DIR}" +execute_process(COMMAND ${Python3_EXECUTABLE} -m pip --version + OUTPUT_VARIABLE pip_version OUTPUT_STRIP_TRAILING_WHITESPACE) + +string(REGEX MATCH "pip[ ]+([\\.0-9]*)" pip_version "${pip_version}") +set(pip_version ${CMAKE_MATCH_1}) + +if(pip_version VERSION_GREATER_EQUAL 22.0) + set(wheel_build_command + ${Python3_EXECUTABLE} -m pip wheel + --no-deps + --wheel-dir ${openvino_wheels_output_dir} + --verbose + --build-option --build-number=${WHEEL_BUILD} + --build-option --plat-name=${PLATFORM_TAG} + "${CMAKE_CURRENT_SOURCE_DIR}") +else() + # for --config-setting explanation see https://github.com/pypa/setuptools/issues/2491 + set(wheel_build_command + ${Python3_EXECUTABLE} -m build "${CMAKE_CURRENT_SOURCE_DIR}" --outdir ${openvino_wheels_output_dir} --config-setting=--build-option=--build-number=${WHEEL_BUILD} --config-setting=--build-option=--plat-name=${PLATFORM_TAG} --config-setting=--quiet --wheel) +endif() add_custom_command(OUTPUT ${openvino_wheel_path} COMMAND ${setup_py_env} ${wheel_build_command} From 95d6be201f9cbb2e41c5d58d05f6638e84c71606 Mon Sep 17 00:00:00 2001 From: Mikhail Ryzhov Date: Wed, 6 Nov 2024 15:01:33 +0100 Subject: [PATCH 28/93] [GHA] WA parallel make issue (#27422) ### Details: - To address the issue mentioned [here](https://unix.stackexchange.com/questions/316644/is-make-j-with-no-argument-dangerous), we need to set the number of parallel jobs explicitly ### Tickets: - *156361* --- .github/workflows/android_arm64.yml | 2 +- .github/workflows/android_x64.yml | 4 ++-- .github/workflows/coverity.yml | 2 +- .github/workflows/dev_cpu_linux_snippets_libxsmm.yml | 2 +- .github/workflows/job_build_linux.yml | 10 +++++----- .github/workflows/job_build_windows.yml | 4 ++-- .github/workflows/job_onnx_runtime.yml | 2 +- .github/workflows/linux_conditional_compilation.yml | 4 ++-- .github/workflows/linux_riscv.yml | 4 ++-- .github/workflows/mac.yml | 6 +++--- .github/workflows/mac_arm64.yml | 6 +++--- .github/workflows/ubuntu_22.yml | 2 +- .github/workflows/windows_conditional_compilation.yml | 4 ++-- 13 files changed, 26 insertions(+), 26 deletions(-) diff --git a/.github/workflows/android_arm64.yml b/.github/workflows/android_arm64.yml index fca16f2848f7bb..e0954871f4b51e 100644 --- a/.github/workflows/android_arm64.yml +++ b/.github/workflows/android_arm64.yml @@ -169,7 +169,7 @@ jobs: run: ${SCCACHE_PATH} --zero-stats - name: Cmake - build - run: cmake --build ${BUILD_DIR} --parallel + run: cmake --build ${BUILD_DIR} --parallel $(nproc) - name: Show ccache stats run: ${SCCACHE_PATH} --show-stats diff --git a/.github/workflows/android_x64.yml b/.github/workflows/android_x64.yml index 47ea6d2cd90ffe..b0b46c662abdbb 100644 --- a/.github/workflows/android_x64.yml +++ b/.github/workflows/android_x64.yml @@ -73,7 +73,7 @@ jobs: defaults: run: shell: bash - runs-on: aks-linux-16-cores-64gb + runs-on: aks-linux-16-cores-32gb container: image: ${{ fromJSON(needs.docker.outputs.images).ov_build.ubuntu_22_04_android }} volumes: @@ -144,7 +144,7 @@ jobs: run: ${SCCACHE_PATH} --zero-stats - name: Cmake - build - run: cmake --build ${BUILD_DIR} --parallel + run: cmake --build ${BUILD_DIR} --parallel $(nproc) - name: Show ccache stats run: ${SCCACHE_PATH} --show-stats diff --git a/.github/workflows/coverity.yml b/.github/workflows/coverity.yml index 9797414cde56c8..5e3aa3f9bf0fc2 100644 --- a/.github/workflows/coverity.yml +++ b/.github/workflows/coverity.yml @@ -164,7 +164,7 @@ jobs: popd - name: Cmake build - OpenVINO with Coverity - run: ${COVERITY_TOOL_DIR}/cov-analysis*/bin/cov-build --dir ${BUILD_DIR}/cov-int cmake --build ${BUILD_DIR} --parallel --config ${{ env.CMAKE_BUILD_TYPE }} + run: ${COVERITY_TOOL_DIR}/cov-analysis*/bin/cov-build --dir ${BUILD_DIR}/cov-int cmake --build ${BUILD_DIR} --parallel $ENV:NUMBER_OF_PROCESSORS --config ${{ env.CMAKE_BUILD_TYPE }} - name: Show sccache stats run: ${SCCACHE_PATH} --show-stats diff --git a/.github/workflows/dev_cpu_linux_snippets_libxsmm.yml b/.github/workflows/dev_cpu_linux_snippets_libxsmm.yml index 2f6d646f8e271d..ba458da5d3ec1a 100644 --- a/.github/workflows/dev_cpu_linux_snippets_libxsmm.yml +++ b/.github/workflows/dev_cpu_linux_snippets_libxsmm.yml @@ -143,7 +143,7 @@ jobs: run: ${SCCACHE_PATH} --zero-stats - name: Cmake build - OpenVINO - run: cmake --build ${BUILD_DIR} --parallel --config ${{ env.CMAKE_BUILD_TYPE }} + run: cmake --build ${BUILD_DIR} --parallel $(nproc) --config ${{ env.CMAKE_BUILD_TYPE }} - name: Show sccache stats run: ${SCCACHE_PATH} --show-stats diff --git a/.github/workflows/job_build_linux.yml b/.github/workflows/job_build_linux.yml index e491388a4b3606..3964f049be2abb 100644 --- a/.github/workflows/job_build_linux.yml +++ b/.github/workflows/job_build_linux.yml @@ -168,7 +168,7 @@ jobs: run: ${SCCACHE_PATH} --zero-stats - name: Cmake build - OpenVINO - run: cmake --build ${BUILD_DIR} --parallel --config ${{ env.CMAKE_BUILD_TYPE }} + run: cmake --build ${BUILD_DIR} --parallel $(nproc) --config ${{ env.CMAKE_BUILD_TYPE }} - name: Show sccache stats run: ${SCCACHE_PATH} --show-stats @@ -210,7 +210,7 @@ jobs: -DPython3_EXECUTABLE=$python_exec \ -DCPACK_GENERATOR=DEB \ ${BUILD_DIR} - cmake --build ${BUILD_DIR} --parallel --config ${{ env.CMAKE_BUILD_TYPE }} --target package + cmake --build ${BUILD_DIR} --parallel $(nproc) --config ${{ env.CMAKE_BUILD_TYPE }} --target package - name: Cmake & Build - OpenVINO Contrib if: ${{ inputs.build-contrib }} @@ -221,7 +221,7 @@ jobs: -DENABLE_WHEEL=OFF \ -S ${OPENVINO_REPO} \ -B ${BUILD_DIR} - cmake --build ${BUILD_DIR} --parallel --config ${{ env.CMAKE_BUILD_TYPE }} + cmake --build ${BUILD_DIR} --parallel $(nproc) --config ${{ env.CMAKE_BUILD_TYPE }} - name: CMake configure, build and install - OpenVINO JS API if: ${{ fromJSON(inputs.affected-components).JS_API && inputs.build-js }} @@ -230,7 +230,7 @@ jobs: -DCPACK_GENERATOR=NPM \ -DENABLE_SYSTEM_TBB=OFF \ -DENABLE_WHEEL=OFF - cmake --build ${BUILD_DIR} --parallel + cmake --build ${BUILD_DIR} --parallel $(nproc) cmake --install ${BUILD_DIR} --prefix ${INSTALL_DIR_JS} - name: Build RPM packages @@ -243,7 +243,7 @@ jobs: -DENABLE_WHEEL=OFF \ -DENABLE_TESTS=OFF \ ${BUILD_DIR} - cmake --build ${BUILD_DIR} --parallel --target package --verbose + cmake --build ${BUILD_DIR} --parallel $(nproc) --target package --verbose # # Upload build artifacts and logs diff --git a/.github/workflows/job_build_windows.yml b/.github/workflows/job_build_windows.yml index 0567109e0dea46..4ea82590e7abd5 100644 --- a/.github/workflows/job_build_windows.yml +++ b/.github/workflows/job_build_windows.yml @@ -164,7 +164,7 @@ jobs: run: '& ccache --zero-stats' - name: Cmake build - OpenVINO - run: cmake --build ${{ env.BUILD_DIR }} --config ${{ env.CMAKE_BUILD_TYPE }} --parallel --verbose + run: cmake --build ${{ env.BUILD_DIR }} --config ${{ env.CMAKE_BUILD_TYPE }} --parallel $ENV:NUMBER_OF_PROCESSORS --verbose - name: Show ccache stats run: '& ccache --show-stats' @@ -201,7 +201,7 @@ jobs: -DCPACK_GENERATOR=NPM ` -DENABLE_SYSTEM_TBB=OFF ` -DENABLE_WHEEL=OFF - cmake --build ${{ env.BUILD_DIR }} --parallel + cmake --build ${{ env.BUILD_DIR }} --parallel $ENV:NUMBER_OF_PROCESSORS cmake --install ${{ env.BUILD_DIR }} --config ${{ env.CMAKE_BUILD_TYPE }} --prefix ${{ env.INSTALL_DIR_JS }} # diff --git a/.github/workflows/job_onnx_runtime.yml b/.github/workflows/job_onnx_runtime.yml index 966d258a2fc609..df50c4f3e2ad3c 100644 --- a/.github/workflows/job_onnx_runtime.yml +++ b/.github/workflows/job_onnx_runtime.yml @@ -96,7 +96,7 @@ jobs: --config RelWithDebInfo \ --use_openvino CPU \ --build_shared_lib \ - --parallel \ + --parallel $(nproc) \ --skip_tests \ --compile_no_warning_as_error \ --allow_running_as_root \ diff --git a/.github/workflows/linux_conditional_compilation.yml b/.github/workflows/linux_conditional_compilation.yml index acb7e1271d7a34..27f54da6ecdc60 100644 --- a/.github/workflows/linux_conditional_compilation.yml +++ b/.github/workflows/linux_conditional_compilation.yml @@ -169,7 +169,7 @@ jobs: - name: Cmake build - CC COLLECT run: | cmake --build ${BUILD_DIR} --parallel 8 --config ${{ env.CMAKE_BUILD_TYPE }} - cmake --build ${BUILD_DIR} --parallel --config ${{ env.CMAKE_BUILD_TYPE }} --target sea_itt_lib + cmake --build ${BUILD_DIR} --parallel $(nproc) --config ${{ env.CMAKE_BUILD_TYPE }} --target sea_itt_lib - name: Show sccache stats run: ${SCCACHE_PATH} --show-stats @@ -182,7 +182,7 @@ jobs: - name: Build C++ samples - OpenVINO build tree run: | cmake -G "${{ env.CMAKE_GENERATOR }}" -DOpenVINO_DIR=${BUILD_DIR} -S ${INSTALL_DIR}/samples/cpp -B ${BUILD_DIR}/cpp_samples - cmake --build ${BUILD_DIR}/cpp_samples --parallel --config ${{ env.CMAKE_BUILD_TYPE }} --target hello_query_device + cmake --build ${BUILD_DIR}/cpp_samples --parallel $(nproc) --config ${{ env.CMAKE_BUILD_TYPE }} --target hello_query_device - name: Build C samples - OpenVINO install tree run: ${INSTALL_DIR}/samples/c/build_samples.sh -i ${INSTALL_DIR} -b ${BUILD_DIR}/c_samples diff --git a/.github/workflows/linux_riscv.yml b/.github/workflows/linux_riscv.yml index c450a5d30768e4..85b0db8c36294e 100644 --- a/.github/workflows/linux_riscv.yml +++ b/.github/workflows/linux_riscv.yml @@ -213,13 +213,13 @@ jobs: source ${OPENVINO_BUILD_DIR}/dependencies/deactivate_conanbuild.sh - name: Cmake - Build - run: cmake --build ${OPENVINO_BUILD_DIR} --parallel + run: cmake --build ${OPENVINO_BUILD_DIR} --parallel $(nproc) - name: Show ccache stats run: ccache --show-stats - name: Cmake - Install - run: cmake --build ${OPENVINO_BUILD_DIR} --parallel --target install + run: cmake --build ${OPENVINO_BUILD_DIR} --parallel $(nproc) --target install - name: Build OpenVINO C++ samples run: | diff --git a/.github/workflows/mac.yml b/.github/workflows/mac.yml index 5492ad40aa17b4..c587c5ad7323b3 100644 --- a/.github/workflows/mac.yml +++ b/.github/workflows/mac.yml @@ -159,7 +159,7 @@ jobs: -B ${{ env.BUILD_DIR }} - name: Cmake build - OpenVINO - run: cmake --build ${{ env.BUILD_DIR }} --parallel --config ${{ env.CMAKE_BUILD_TYPE }} + run: cmake --build ${{ env.BUILD_DIR }} --parallel $(nproc) --config ${{ env.CMAKE_BUILD_TYPE }} - name: Show ccache stats run: ccache --show-stats @@ -186,7 +186,7 @@ jobs: -DOPENVINO_EXTRA_MODULES=${{ env.OPENVINO_CONTRIB_REPO }}/modules/custom_operations \ -S ${{ env.OPENVINO_REPO }} \ -B ${{ env.BUILD_DIR }} - cmake --build ${{ env.BUILD_DIR }} --parallel --config ${{ env.CMAKE_BUILD_TYPE }} + cmake --build ${{ env.BUILD_DIR }} --parallel $(nproc) --config ${{ env.CMAKE_BUILD_TYPE }} - name: CMake configure, build and install - OpenVINO JS API if: fromJSON(needs.smart_ci.outputs.affected_components).JS_API @@ -196,7 +196,7 @@ jobs: -S ${{ env.OPENVINO_REPO }} \ -B ${{ env.BUILD_DIR }} - cmake --build ${{ env.BUILD_DIR }} --parallel + cmake --build ${{ env.BUILD_DIR }} --parallel $(nproc) cmake -DCMAKE_INSTALL_PREFIX=${{ env.INSTALL_DIR_JS }} -P ${{ env.BUILD_DIR }}/cmake_install.cmake # diff --git a/.github/workflows/mac_arm64.yml b/.github/workflows/mac_arm64.yml index 8100b74734ab17..0708a844fe6b8b 100644 --- a/.github/workflows/mac_arm64.yml +++ b/.github/workflows/mac_arm64.yml @@ -159,7 +159,7 @@ jobs: -B ${{ env.BUILD_DIR }} - name: Cmake build - OpenVINO - run: cmake --build ${{ env.BUILD_DIR }} --parallel --config ${{ env.CMAKE_BUILD_TYPE }} + run: cmake --build ${{ env.BUILD_DIR }} --parallel $(nproc) --config ${{ env.CMAKE_BUILD_TYPE }} - name: Show ccache stats run: ccache --show-stats @@ -187,7 +187,7 @@ jobs: -DOPENVINO_EXTRA_MODULES=${{ env.OPENVINO_CONTRIB_REPO }}/modules/custom_operations \ -S ${{ env.OPENVINO_REPO }} \ -B ${{ env.BUILD_DIR }} - cmake --build ${{ env.BUILD_DIR }} --parallel --config ${{ env.CMAKE_BUILD_TYPE }} + cmake --build ${{ env.BUILD_DIR }} --parallel $(nproc) --config ${{ env.CMAKE_BUILD_TYPE }} - name: CMake configure, build and install - OpenVINO JS API if: fromJSON(needs.smart_ci.outputs.affected_components).JS_API @@ -197,7 +197,7 @@ jobs: -S ${{ env.OPENVINO_REPO }} \ -B ${{ env.BUILD_DIR }} - cmake --build ${{ env.BUILD_DIR }} --parallel + cmake --build ${{ env.BUILD_DIR }} --parallel $(nproc) cmake -DCMAKE_INSTALL_PREFIX=${{ env.INSTALL_DIR_JS }} -P ${{ env.BUILD_DIR }}/cmake_install.cmake # diff --git a/.github/workflows/ubuntu_22.yml b/.github/workflows/ubuntu_22.yml index 92178fce7f5054..f4caec8b2458a0 100644 --- a/.github/workflows/ubuntu_22.yml +++ b/.github/workflows/ubuntu_22.yml @@ -477,7 +477,7 @@ jobs: -DCMAKE_COMPILE_WARNING_AS_ERROR=OFF \ -S ${OPENVINO_CONTRIB_REPO}/modules/nvidia_plugin \ -B ${NVIDIA_BUILD_DIR} - cmake --build ${NVIDIA_BUILD_DIR} --parallel --config ${{ env.CMAKE_BUILD_TYPE }} --verbose -- ov_nvidia_func_tests ov_nvidia_unit_tests + cmake --build ${NVIDIA_BUILD_DIR} --parallel $(nproc) --config ${{ env.CMAKE_BUILD_TYPE }} --verbose -- ov_nvidia_func_tests ov_nvidia_unit_tests - name: Show ccache stats run: ${SCCACHE_PATH} --show-stats diff --git a/.github/workflows/windows_conditional_compilation.yml b/.github/workflows/windows_conditional_compilation.yml index d93c737606a2b4..6a5846b514dbd7 100644 --- a/.github/workflows/windows_conditional_compilation.yml +++ b/.github/workflows/windows_conditional_compilation.yml @@ -193,7 +193,7 @@ jobs: - name: Build C++ samples - OpenVINO build tree run: | cmake -G "${{ env.CMAKE_GENERATOR }}" -DOpenVINO_DIR=${{ env.BUILD_DIR }} -S ${{ env.INSTALL_DIR }}/samples/cpp -B ${{ env.BUILD_DIR }}/cpp_samples - cmake --build ${{ env.BUILD_DIR }}/cpp_samples --parallel --config ${{ env.CMAKE_BUILD_TYPE }} --target hello_query_device + cmake --build ${{ env.BUILD_DIR }}/cpp_samples --parallel $ENV:NUMBER_OF_PROCESSORS --config ${{ env.CMAKE_BUILD_TYPE }} --target hello_query_device - name: Build C samples - OpenVINO install tree run: | @@ -331,7 +331,7 @@ jobs: -B ${{ env.BUILD_DIR }} - name: Cmake build - CC ON - run: cmake --build ${{ env.BUILD_DIR }} --parallel --config ${{ env.CMAKE_BUILD_TYPE }} --target benchmark_app --verbose + run: cmake --build ${{ env.BUILD_DIR }} --parallel $ENV:NUMBER_OF_PROCESSORS --config ${{ env.CMAKE_BUILD_TYPE }} --target benchmark_app --verbose - name: List bin files shell: cmd From 42d4377a97e025d34c8f38b9504b85151b5473e9 Mon Sep 17 00:00:00 2001 From: Sergey Shlyapnikov Date: Wed, 6 Nov 2024 19:47:51 +0400 Subject: [PATCH 29/93] [GPU] Fix accuracy issue in PagedAttention kernel for large prompts (#27433) ### Details: - Fix accuracy issue in PagedAttention kernel for large prompts (4K/8K tokens) by correcting index calculation in sub_group_broadcast function to ensure accurate data broadcasting within the subgroup ### Tickets: - [CVS-154881](https://jira.devtools.intel.com/browse/CVS-154881) --- .../intel_gpu/src/kernel_selector/cl_kernels/pa_sdpa_opt.cl | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/plugins/intel_gpu/src/kernel_selector/cl_kernels/pa_sdpa_opt.cl b/src/plugins/intel_gpu/src/kernel_selector/cl_kernels/pa_sdpa_opt.cl index a3bdd7e12dcd49..00c43829d02ea7 100644 --- a/src/plugins/intel_gpu/src/kernel_selector/cl_kernels/pa_sdpa_opt.cl +++ b/src/plugins/intel_gpu/src/kernel_selector/cl_kernels/pa_sdpa_opt.cl @@ -436,7 +436,7 @@ KERNEL(pa_sdpa_finalization_stage)( partition_num * HEAD_SIZE + head_size_idx; OUTPUT_TYPE out_val = tmp_out[tmp_out_offset]; - acc += TO_SOFTMAX_ACCUMULATOR_TYPE(out_val) * TO_SOFTMAX_ACCUMULATOR_TYPE(sub_group_broadcast(exp_sum[partition_num / SUBGROUP_SIZE], partition_num)) / TO_SOFTMAX_ACCUMULATOR_TYPE(global_sum); + acc += TO_SOFTMAX_ACCUMULATOR_TYPE(out_val) * TO_SOFTMAX_ACCUMULATOR_TYPE(sub_group_broadcast(exp_sum[partition_num / SUBGROUP_SIZE], partition_num % SUBGROUP_SIZE)) / TO_SOFTMAX_ACCUMULATOR_TYPE(global_sum); } const uint out_offset = seq_idx * (HEADS_NUM * HEAD_SIZE) + head_num_idx * HEAD_SIZE + From 33cba008c50ddac49efc12b15cb933f4feeacba5 Mon Sep 17 00:00:00 2001 From: Alexey Smirnov Date: Wed, 6 Nov 2024 17:24:18 +0000 Subject: [PATCH 30/93] [NPUW] Support i16/u16 constants during partitioning (#27437) --- .../intel_npu/src/plugin/npuw/partitioning/partitioning.cpp | 2 ++ 1 file changed, 2 insertions(+) diff --git a/src/plugins/intel_npu/src/plugin/npuw/partitioning/partitioning.cpp b/src/plugins/intel_npu/src/plugin/npuw/partitioning/partitioning.cpp index 99705fef30e8a8..dbc86c5062da9e 100644 --- a/src/plugins/intel_npu/src/plugin/npuw/partitioning/partitioning.cpp +++ b/src/plugins/intel_npu/src/plugin/npuw/partitioning/partitioning.cpp @@ -1287,6 +1287,8 @@ void Partitioner::saveRepeatedConstants(const std::string& func_name) { HANDLE_CASE(boolean, bool); HANDLE_CASE(i4, int8_t); HANDLE_CASE(u4, uint8_t); + HANDLE_CASE(i16, int16_t); + HANDLE_CASE(u16, uint16_t); HANDLE_CASE(i32, int); HANDLE_CASE(i64, int64_t); HANDLE_CASE(f16, uint16_t); From 9226bbe7dc108af10bf40b022f09b605ada081bb Mon Sep 17 00:00:00 2001 From: Mikhail Ryzhov Date: Thu, 7 Nov 2024 09:42:19 +0100 Subject: [PATCH 31/93] [GHA] Coverity build regression fix (#27445) ### Details: - Fixed regression introduced by https://github.com/openvinotoolkit/openvino/pull/27422 ### Tickets: - *ticket-id* --- .github/workflows/coverity.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/coverity.yml b/.github/workflows/coverity.yml index 5e3aa3f9bf0fc2..e26bd66e097e33 100644 --- a/.github/workflows/coverity.yml +++ b/.github/workflows/coverity.yml @@ -164,7 +164,7 @@ jobs: popd - name: Cmake build - OpenVINO with Coverity - run: ${COVERITY_TOOL_DIR}/cov-analysis*/bin/cov-build --dir ${BUILD_DIR}/cov-int cmake --build ${BUILD_DIR} --parallel $ENV:NUMBER_OF_PROCESSORS --config ${{ env.CMAKE_BUILD_TYPE }} + run: ${COVERITY_TOOL_DIR}/cov-analysis*/bin/cov-build --dir ${BUILD_DIR}/cov-int cmake --build ${BUILD_DIR} --parallel $(nproc) --config ${{ env.CMAKE_BUILD_TYPE }} - name: Show sccache stats run: ${SCCACHE_PATH} --show-stats From 5fad8053be6aeb954844aef8511ac0610ba96227 Mon Sep 17 00:00:00 2001 From: Sergey Shlyapnikov Date: Thu, 7 Nov 2024 14:30:59 +0400 Subject: [PATCH 32/93] [GPU] Enable KV-cache compression by default for non-systolic platforms (#27410) ### Details: - Enable KV-cache compression by default for non-systolic platforms --- .../cl_kernels/dynamic_quantize_gpu_kv_cache.cl | 6 +++--- .../dynamic_quantize_kernel_opt_kv_cache.cpp | 3 +++ src/plugins/intel_gpu/src/runtime/execution_config.cpp | 5 +++++ .../functional/subgraph_tests/dynamic/kv_cache_sdpa.cpp | 5 ++++- .../tests/unit/test_cases/dynamic_quantize_gpu_test.cpp | 7 +++---- 5 files changed, 18 insertions(+), 8 deletions(-) diff --git a/src/plugins/intel_gpu/src/kernel_selector/cl_kernels/dynamic_quantize_gpu_kv_cache.cl b/src/plugins/intel_gpu/src/kernel_selector/cl_kernels/dynamic_quantize_gpu_kv_cache.cl index 22a2f03c94564a..b0e363169e9e4d 100644 --- a/src/plugins/intel_gpu/src/kernel_selector/cl_kernels/dynamic_quantize_gpu_kv_cache.cl +++ b/src/plugins/intel_gpu/src/kernel_selector/cl_kernels/dynamic_quantize_gpu_kv_cache.cl @@ -83,11 +83,11 @@ KERNEL(dynamic_quantize_gpu_kv_cache)( #if ASYMMETRIC_QUANTIZATION min_value = work_group_reduce_min(min_value); max_value = work_group_reduce_max(max_value); - OUTPUT1_TYPE scale = (OUTPUT1_TYPE)((CHAR_MAX - CHAR_MIN) / (max_value - min_value)); - OUTPUT1_TYPE zp = (OUTPUT1_TYPE)(-min_value * scale) - CHAR_MAX; + ACCUMULATOR_TYPE scale = (ACCUMULATOR_TYPE)((CHAR_MAX - CHAR_MIN) / (max_value - min_value)); + ACCUMULATOR_TYPE zp = (ACCUMULATOR_TYPE)(-min_value * scale) - CHAR_MAX; #else max_value = work_group_reduce_max(max_value); - OUTPUT1_TYPE scale = 127.0h / max_value; + ACCUMULATOR_TYPE scale = 127.0h / max_value; #endif #ifdef APPEND_MODE diff --git a/src/plugins/intel_gpu/src/kernel_selector/kernels/dynamic_quantize/dynamic_quantize_kernel_opt_kv_cache.cpp b/src/plugins/intel_gpu/src/kernel_selector/kernels/dynamic_quantize/dynamic_quantize_kernel_opt_kv_cache.cpp index d0c99484e3f52e..8f7537eeeb5d7d 100644 --- a/src/plugins/intel_gpu/src/kernel_selector/kernels/dynamic_quantize/dynamic_quantize_kernel_opt_kv_cache.cpp +++ b/src/plugins/intel_gpu/src/kernel_selector/kernels/dynamic_quantize/dynamic_quantize_kernel_opt_kv_cache.cpp @@ -141,6 +141,9 @@ JitConstants DynamicQuantizeKernelKVCache::GetJitConstants(const dynamic_quantiz jit.AddConstant(MakeJitConstant("ASYMMETRIC_QUANTIZATION", params.use_asymmetric_quantization)); jit.AddConstant(MakeJitConstant("GROUP_SCALES_WITH_ZP", params.combine_scales_and_zp)); + // Use FP32 accumulator type for scale/zp calculation + jit.Merge(MakeTypeJitConstants(Datatype::F32, "ACCUMULATOR")); + bool rearrange_scales_order = false; const auto& scales_output_order = params.scales_output_order; if (!scales_output_order.empty()) { diff --git a/src/plugins/intel_gpu/src/runtime/execution_config.cpp b/src/plugins/intel_gpu/src/runtime/execution_config.cpp index 7c8e55cddfe593..44758f73289edb 100644 --- a/src/plugins/intel_gpu/src/runtime/execution_config.cpp +++ b/src/plugins/intel_gpu/src/runtime/execution_config.cpp @@ -246,6 +246,11 @@ void ExecutionConfig::apply_user_properties(const cldnn::device_info& info) { set_property(ov::intel_gpu::queue_type(QueueTypes::in_order)); } + // Enable KV-cache compression by default for non-systolic platforms + if (!is_set_by_user(ov::hint::kv_cache_precision) && !info.supports_immad) { + set_property(ov::hint::kv_cache_precision(ov::element::i8)); + } + user_properties.clear(); } diff --git a/src/plugins/intel_gpu/tests/functional/subgraph_tests/dynamic/kv_cache_sdpa.cpp b/src/plugins/intel_gpu/tests/functional/subgraph_tests/dynamic/kv_cache_sdpa.cpp index 16db9d89c28b4d..2563fe535a93d9 100644 --- a/src/plugins/intel_gpu/tests/functional/subgraph_tests/dynamic/kv_cache_sdpa.cpp +++ b/src/plugins/intel_gpu/tests/functional/subgraph_tests/dynamic/kv_cache_sdpa.cpp @@ -47,8 +47,11 @@ class SDPAWithKVCacheTest : public ::testing::Test, public ::testing::WithParamI ov::AnyMap properties = {ov::hint::inference_precision(ov::element::f16), ov::intel_gpu::hint::enable_sdpa_optimization(true)}; - if (p.compressed) + if (p.compressed) { properties.emplace(ov::hint::kv_cache_precision(ov::element::i8)); + } else { + properties.emplace(ov::hint::kv_cache_precision(ov::element::undefined)); + } const size_t n_heads = 16; const size_t n_features = 64; diff --git a/src/plugins/intel_gpu/tests/unit/test_cases/dynamic_quantize_gpu_test.cpp b/src/plugins/intel_gpu/tests/unit/test_cases/dynamic_quantize_gpu_test.cpp index 5a78360eb1f6d8..c0e317ff6ce915 100644 --- a/src/plugins/intel_gpu/tests/unit/test_cases/dynamic_quantize_gpu_test.cpp +++ b/src/plugins/intel_gpu/tests/unit/test_cases/dynamic_quantize_gpu_test.cpp @@ -121,11 +121,10 @@ class dynamic_quantization_gpu_tests: public ::testing::Test { auto outputs = network->execute(); auto output_mem = outputs.begin()->second.get_memory(); - cldnn::mem_lock output_ptr (output_mem, get_test_stream()); + cldnn::mem_lock output_ptr (output_mem, get_test_stream()); auto ref_output_mem = get_ref_results(); - cldnn::mem_lock output_ptr_ref (ref_output_mem, get_test_stream()); - + cldnn::mem_lock output_ptr_ref (ref_output_mem, get_test_stream()); size_t count = 0; float max_diff = 0.f; float avg = 0.f; @@ -135,7 +134,7 @@ class dynamic_quantization_gpu_tests: public ::testing::Test { max_diff = abs_diff; avg += abs_diff; count++; - OPENVINO_ASSERT(abs_diff < 1); + ASSERT_LE(abs_diff, 1); } GPU_DEBUG_LOG << "---> count: " << count << ", max_diff:" << max_diff << ", avg_diff: " << (avg/count) << std::endl; } From ab71e5ba54e60684e0e69680fee55af1899d707b Mon Sep 17 00:00:00 2001 From: Alexandra Sidorova Date: Thu, 7 Nov 2024 15:06:40 +0400 Subject: [PATCH 33/93] [Snippets] Added dynamic memory sharing support (#27175) ### Details: - *Added memory inplace support for Buffer with different precision (it's supported only when output Buffer has data size not more than input Buffer) - it's needed for BF16 and INT8 MHA* - *Added memory inplace support for dynamic Buffers with the marking pass "MarkInvariantShapePath"* ### Tickets: - *154732, 150148* ### Prerequisites: - [x] https://github.com/openvinotoolkit/openvino/pull/27169 - [x] https://github.com/openvinotoolkit/openvino/pull/27300 --- .../lowered/expressions/buffer_expression.hpp | 1 + .../include/snippets/lowered/loop_info.hpp | 17 +- .../lowered/pass/define_buffer_clusters.hpp | 64 ++-- .../pass/mark_invariant_shape_path.hpp | 65 ++++ .../lowered/pass/set_buffer_reg_group.hpp | 55 ++- .../snippets/include/snippets/utils/utils.hpp | 6 + .../snippets/src/lowered/expression.cpp | 9 +- .../lowered/expressions/buffer_expression.cpp | 9 +- src/common/snippets/src/lowered/loop_info.cpp | 27 +- .../src/lowered/pass/allocate_buffers.cpp | 3 +- .../lowered/pass/define_buffer_clusters.cpp | 341 ++++++++---------- .../pass/mark_invariant_shape_path.cpp | 128 +++++++ .../src/lowered/pass/set_buffer_reg_group.cpp | 104 +++--- .../snippets/src/pass/mha_tokenization.cpp | 11 +- .../x64/pass/lowered/set_tpp_leading_dim.cpp | 11 +- .../x64/lowered/buffer_allocation.cpp | 94 +++-- 16 files changed, 571 insertions(+), 374 deletions(-) create mode 100644 src/common/snippets/include/snippets/lowered/pass/mark_invariant_shape_path.hpp create mode 100644 src/common/snippets/src/lowered/pass/mark_invariant_shape_path.cpp diff --git a/src/common/snippets/include/snippets/lowered/expressions/buffer_expression.hpp b/src/common/snippets/include/snippets/lowered/expressions/buffer_expression.hpp index 3dcd98ef0a95fd..9174d9866db503 100644 --- a/src/common/snippets/include/snippets/lowered/expressions/buffer_expression.hpp +++ b/src/common/snippets/include/snippets/lowered/expressions/buffer_expression.hpp @@ -38,6 +38,7 @@ class BufferExpression : public Expression { size_t get_offset() const { return m_offset; } size_t get_allocation_size() const { return m_allocation_size; } size_t get_byte_size() const; + ov::element::Type get_data_type() const; void set_reg_group(size_t reg_group) { m_reg_group = reg_group; } void set_cluster_id(size_t cluster) { m_cluster_id = cluster; } diff --git a/src/common/snippets/include/snippets/lowered/loop_info.hpp b/src/common/snippets/include/snippets/lowered/loop_info.hpp index cc66f5f6ffcc95..23e1f14a8b7f5e 100644 --- a/src/common/snippets/include/snippets/lowered/loop_info.hpp +++ b/src/common/snippets/include/snippets/lowered/loop_info.hpp @@ -211,13 +211,20 @@ class UnifiedLoopInfo : public LoopInfo { int64_t data_size = 0; bool is_dynamic() const; + bool is_static() const; + + friend bool operator==(const LoopPortDesc& lhs, const LoopPortDesc& rhs); + friend bool operator!=(const LoopPortDesc& lhs, const LoopPortDesc& rhs); }; // The structure describes full information about port // - TODO [140365] : UnifiedLoopInfo should have the map of LoopPorts and LoopDesc as class field // instead of the separate vectors with descriptors. struct LoopPortInfo { - LoopPort port; - LoopPortDesc desc; + LoopPortInfo() = default; + LoopPortInfo(LoopPort port_, LoopPortDesc desc_) : port(std::move(port_)), desc(std::move(desc_)) {} + + LoopPort port = {}; + LoopPortDesc desc = {}; }; UnifiedLoopInfo() = default; @@ -367,6 +374,12 @@ class UnifiedLoopInfo : public LoopInfo { caller(m_output_ports[i], m_output_port_descs[i]); } + /** + * @brief Return loop port info of an expression port + * @param expr_port - expression port. + */ + LoopPortInfo get_loop_port_info(const ExpressionPort& expr_port); + protected: /** * @brief Clone LoopPortDesc[actual_port_idx] `new_count` times and insert on the place of current desc diff --git a/src/common/snippets/include/snippets/lowered/pass/define_buffer_clusters.hpp b/src/common/snippets/include/snippets/lowered/pass/define_buffer_clusters.hpp index 1597eaa2377a50..312abb02abf7b5 100644 --- a/src/common/snippets/include/snippets/lowered/pass/define_buffer_clusters.hpp +++ b/src/common/snippets/include/snippets/lowered/pass/define_buffer_clusters.hpp @@ -6,6 +6,8 @@ #include "pass.hpp" +#include "snippets/lowered/loop_info.hpp" + namespace ov { namespace snippets { namespace lowered { @@ -45,7 +47,7 @@ class DefineBufferClusters : public RangedPass { private: using BufferCluster = std::set; using BufferClusters = std::vector; - using BufferPorts = std::unordered_map>; + using BufferMap = std::unordered_map; /** * @brief Finds Buffer cluster in set of clusters which contains the target expression with Buffer * @param target target expression with Buffer op @@ -58,76 +60,72 @@ class DefineBufferClusters : public RangedPass { * @param target_expr expression with target op - LoopEnd or MemoryAccess op * @return boolean value */ - bool is_direct_buffer(const BufferExpressionPtr& buffer_expr, const ExpressionPtr& target_expr) const; + static bool is_direct_buffer(const BufferExpressionPtr& buffer_expr, const ExpressionPtr& target_expr); /** * @brief Creates new buffer cluster if buffer_exprs is missed in clusters. If buffer_exprs is already in clusters, do nothing * @param buffer_expr expression with Buffer op */ void create_new_cluster(const BufferExpressionPtr& buffer_expr); + /** + * @brief Add buffers to the existing clusters + * @param existing_cluster existing clusters + * @param buffers buffers which will be added to the existing cluster + */ + static void add_buffers_to_cluster(BufferCluster& existing_cluster, const std::set& buffers); /** * @brief Returns common ID of cluster if all buffer inside have the same Buffer ID. Otherwise returns the default value SIZE_MAX * that means that Buffers in cluster have different IDs. * @param cluster set of Buffer expressions - cluster * @return common buffer ID or SIZE_MAX - size value */ - size_t get_cluster_buffer_id(const BufferCluster& cluster) const; + static size_t get_cluster_buffer_id(const BufferCluster& cluster); /** * @brief Analyzes Loop: if Loop has Buffer ops on inputs and outputs, Loop can read and write from/to the same memory. + * @param loop_manager loop manager * @param expr_it iterator of Linear IR which refers to the expression with LoopEnd */ - void parse_loop(const LinearIR::constExprIt& expr_it); + void parse_loop(const LoopManagerPtr& loop_manager, const LinearIR::constExprIt& expr_it); /** * @brief Analyzes full MemoryAccess op: if the op has Buffer ops on I/O, the op can read and write from/to the same memory. * @param expr expression with full MemoryAccess op */ void parse_memory_access_op(const ExpressionPtr& expr); /** - * @brief Gets input outputs buffers of Loop - * @param loop_expr expression with LoopEnd op - * @return unordered map [Expression -> set of input ports] which represents input Buffers of Loop + * @brief Find all direct buffers that are connected to the current Loop + * @param loop_info current unified loop info + * @param loop_expr the target LoopEnd expression + * @return input and output buffer maps */ - BufferPorts get_input_buffers(const ExpressionPtr& loop_expr) const; - /** - * @brief Gets output buffers of Loop - * @param loop_expr expression with LoopEnd op - * @return unordered map [Expression -> set of input ports] which represents output Buffers of Loop - */ - BufferPorts get_output_buffers(const ExpressionPtr& loop_expr) const; + static std::pair get_direct_buffers(const UnifiedLoopInfoPtr& loop_info, const ExpressionPtr& loop_expr); /** * @brief Analyzes nested Loops: unite nested buffer clusters if they can reproduce `window` sliding - * @param input_buffers unordered map [Expression -> set of input ports] which represents input Buffers of Loop - * @param output_buffers unordered map [Expression -> set of output ports (one)] which represents output Buffers of Loop + * @param loop_manager loop manager + * @param input_buffers unordered map [Expression -> LoopPortInfo] which represents input Buffers of Loop + * @param output_buffers unordered map [Expression -> LoopPortInfo] which represents output Buffers of Loop * @param outer_loop_end_expr_it iterator of Linear IR which refers to the expression with outer LoopEnd */ - void parse_nested_loops(const BufferPorts& input_buffers, const BufferPorts& output_buffers, const LinearIR::constExprIt& outer_loop_end_expr_it); + void parse_nested_loops(const LoopManagerPtr& loop_manager, const BufferMap& input_buffers, const BufferMap& output_buffers, + const LinearIR::constExprIt& outer_loop_end_expr_it); /** - * @brief Finds the last connected Loop to the target Buffer and returns the corresponding finalization offset + * @brief Finds the last connected Loop to the target Buffer and init the corresponding loop port info + * @param loop_manager loop manager * @param buffer_expr expression with Buffer op - * @return finalization offset - int64_t value - */ - int64_t get_buffer_finalization_offset(const BufferExpressionPtr& buffer_expr) const; - /** - * @brief Check if two Buffer expressions are connected to the same Loop. Set common LoopEnd as `loop` parameter and - * indexes of Loop ports `up_idx` and `down_idx` if Buffers are really neighbours - * @param up expression with upper Buffer op - * @param down expression with lower Buffer op - * @param loop expression with common LoopEnd op - * @param up_idx the reference to port index of upper Buffer op to the Loop - * @param down_idx the reference to port index of lower Buffer op to the Loop - * @return Return True if the Buffers are connected to the same Loop + * @param port_info target loop port info to be initialized + * @return status - True if loop port has been found. Otherwise, return false - not connected to the Loop. */ - static bool are_buffer_neighbours(const BufferExpressionPtr& up, const BufferExpressionPtr& down, ExpressionPtr& loop, - size_t& up_idx, size_t& down_idx); + static bool init_buffer_last_loop_port_info(const LoopManagerPtr& loop_manager, const BufferExpressionPtr& buffer_expr, + UnifiedLoopInfo::LoopPortInfo& port_info); /** * @brief Unite clusters + * @param loop_manager loop manager * @param inner_cluster_it iterator to inner cluster - buffer cluster is in the loop * @param outer_cluster buffer clusters with buffers outside the Loop * @param outer_buffer target Buffer from outer_cluster * @param is_outer_up true if outer buffer is upper in Linear IR than inner Buffers * @return Return True if clusters have been united */ - bool unite_nested_clusters(const BufferClusters::iterator& inner_cluster_it, BufferCluster& outer_cluster, + bool unite_nested_clusters(const LoopManagerPtr& loop_manager, const BufferClusters::iterator& inner_cluster_it, BufferCluster& outer_cluster, const BufferExpressionPtr& outer_buffer, bool is_outer_up); BufferClusters m_clusters; diff --git a/src/common/snippets/include/snippets/lowered/pass/mark_invariant_shape_path.hpp b/src/common/snippets/include/snippets/lowered/pass/mark_invariant_shape_path.hpp new file mode 100644 index 00000000000000..6a31a697baca77 --- /dev/null +++ b/src/common/snippets/include/snippets/lowered/pass/mark_invariant_shape_path.hpp @@ -0,0 +1,65 @@ +// Copyright (C) 2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 +// + +#pragma once + +#include "pass.hpp" + +namespace ov { +namespace snippets { +namespace lowered { +namespace pass { + +/** + * @interface MarkInvariantShapePath + * @brief The helper pass for BufferAllocation pipeline: + * - Many buffer-relates passes (SetBufferRegGroup, DefineBufferClusters) depend on loop pointer increments. + * The increments are unknown in dynamic case, so these passes can't set reg groups and clusters efficiently. + * The current pass marks expressions port which will have the same shape. The shape and layout means + * the same loop pointer arithmetic in runtime. + * @ingroup snippets + */ +class MarkInvariantShapePath: public RangedPass { +public: + OPENVINO_RTTI("MarkInvariantShapePath", "RangedPass") + MarkInvariantShapePath() = default; + + /** + * @brief Apply the pass to the Linear IR + * @param linear_ir the target Linear IR + * @return status of the pass + */ + bool run(LinearIR& linear_ir, lowered::LinearIR::constExprIt begin, lowered::LinearIR::constExprIt end) override; + + /** + * @brief Returns ID (color) of the current Invariant Shape path for the passed port. + * Ports which have the same IDs of the paths - will have the same shapes in runtime. + * Note: if passed port is input port, the method returns value for source of port connector + * for the passed port. Because the shape is created by output ports of expressions. + * @param port target expression port + * @return ID + */ + static size_t getInvariantPortShapePath(const ExpressionPort& port); + +private: + /** + * @brief Sets ID (color) of the current Invariant Shape path for the passed output port. + * Ports which have the same IDs of the paths - will have the same shapes in runtime. + * @param port target expression port + * @param value ID of the path (color) + */ + static void SetInvariantPortShapePath(const ExpressionPort& port, size_t value); + + /** + * @brief Return runtime info for the passed expression port + * @param port target expression port + * @return runtime info map + */ + static ov::RTMap& get_rt_info(const ExpressionPort& port); +}; + +} // namespace pass +} // namespace lowered +} // namespace snippets +} // namespace ov diff --git a/src/common/snippets/include/snippets/lowered/pass/set_buffer_reg_group.hpp b/src/common/snippets/include/snippets/lowered/pass/set_buffer_reg_group.hpp index cba3f28856be42..dc22ce4beff1a0 100644 --- a/src/common/snippets/include/snippets/lowered/pass/set_buffer_reg_group.hpp +++ b/src/common/snippets/include/snippets/lowered/pass/set_buffer_reg_group.hpp @@ -6,6 +6,7 @@ #include "pass.hpp" +#include "snippets/lowered/loop_info.hpp" #include "snippets/utils/utils.hpp" namespace ov { @@ -38,34 +39,19 @@ class SetBufferRegGroup: public RangedPass { * @param linear_ir the target Linear IR * @return status of the pass */ - bool run(LinearIR& linear_ir, lowered::LinearIR::constExprIt begin, lowered::LinearIR::constExprIt end) override; - - struct ShiftPtrParams { - ShiftPtrParams() = default; - ShiftPtrParams(int64_t ds, int64_t pi, int64_t fo) : data_size(ds), ptr_increment(pi), finalization_offset(fo) {} - int64_t data_size = 0; - int64_t ptr_increment = 0; - int64_t finalization_offset = 0; - - inline bool is_static() const { - return !utils::is_dynamic_value(ptr_increment) && !utils::is_dynamic_value(finalization_offset); - } - - friend bool operator==(const ShiftPtrParams& lhs, const ShiftPtrParams& rhs); - friend bool operator!=(const ShiftPtrParams& lhs, const ShiftPtrParams& rhs); - }; + bool run(LinearIR& linear_ir, LinearIR::constExprIt begin, LinearIR::constExprIt end) override; /** - * @brief Check if two Buffers can be in one register group by ShiftPtrParams < data_size, ptr_increment, finalization_offset > - * @param lhs Data pointer shift params for first Buffer - * @param rhs Data pointer shift params for second Buffer + * @brief Check if two Buffers can be in one register group by LoopDesc < data_size, ptr_increment, finalization_offset > + * @param lhs LoopPortInfo (Port and Data pointer shift params for first Buffer) + * @param rhs LoopPortInfo (Port and Data pointer shift params for second Buffer) * @return Returns True if params are valid to reuse one register. Otherwise returns False */ - static bool can_be_in_one_group(const ShiftPtrParams& lhs, const ShiftPtrParams& rhs); + static bool can_be_in_one_reg_group(const UnifiedLoopInfo::LoopPortInfo& lhs, const UnifiedLoopInfo::LoopPortInfo& rhs); private: using BufferPool = std::vector; - using BufferMap = std::map; + using BufferMap = std::map; /** * @brief Get Buffer Index in Buffer set @@ -76,11 +62,14 @@ class SetBufferRegGroup: public RangedPass { static size_t get_buffer_idx(const BufferExpressionPtr& target, const BufferPool& pool); /** * @brief Create adjacency matrix for Buffer system. See comment in the method for more details. - * @param linear_ir the target Linear IR + * @param loop_manager the loop manager + * @param begin begin iterator + * @param end end iterator * @param pool set of Buffers from the Linear IR * @return adjacency matrix where True value means that Buffers are adjacent and cannot have the same ID */ - static std::vector create_adjacency_matrix(lowered::LinearIR::constExprIt begin, lowered::LinearIR::constExprIt end, const BufferPool& pool); + static std::vector create_adjacency_matrix(const LoopManagerPtr& loop_manager, LinearIR::constExprIt begin, LinearIR::constExprIt end, + const BufferPool& pool); /** * @brief Algorithm of Graph coloring where vertices are Buffers * @param buffers set of Buffers from the Linear IR @@ -99,25 +88,23 @@ class SetBufferRegGroup: public RangedPass { * @param buffers set of Buffers from the Linear IR * @param adj Target adjacency matrix */ - static void update_adj_matrix(const std::pair& lhs, - const std::pair& rhs, - const BufferPool& buffers, + static void update_adj_matrix(const BufferMap::value_type& lhs, const BufferMap::value_type& rhs, const BufferPool& buffers, std::vector& adj); + /** * @brief Check if two Buffers are adjacent and cannot have the same ID - * @param lhs Pair where first value is Expression with first Buffer and second value is data pointer shift params for it - * @param rhs Pair where first value is Expression with second Buffer and second value is data pointer shift params for it + * @param lhs LoopPortInfo (Port and Data pointer shift params for first Buffer) + * @param rhs LoopPortInfo (Port and Data pointer shift params for second Buffer) * @return Returns True if they are adjacent, otherwise returns False */ - static bool are_adjacent(const std::pair& lhs, - const std::pair& rhs); + static bool are_adjacent(const BufferMap::value_type& lhs, const BufferMap::value_type& rhs); /** - * @brief Find all buffers that are connected to the current LoopEnd - * @param loop_end_expr expression of the target LoopEnd - * @return buffer map [buffer expr -> ShiftDataPtrs] + * @brief Find all buffers that are connected to the current Loop + * @param loop_info current unified loop info + * @return buffer map */ - static BufferMap get_buffer_loop_neighbours(const ExpressionPtr& loop_end_expr); + static BufferMap get_buffer_loop_neighbours(const UnifiedLoopInfoPtr& loop_info); /** * @brief Find all buffers that are inside the current Loop. * @param loop_end_it expression iterator in LinearIR of the target LoopEnd diff --git a/src/common/snippets/include/snippets/utils/utils.hpp b/src/common/snippets/include/snippets/utils/utils.hpp index f7e584d48a905c..ff4646f24d03b7 100644 --- a/src/common/snippets/include/snippets/utils/utils.hpp +++ b/src/common/snippets/include/snippets/utils/utils.hpp @@ -91,6 +91,12 @@ static inline auto rnd_up(const T lhs, const U rhs) -> decltype(div_up(lhs, rhs) return div_up_res * rhs; } +static inline bool is_planar_layout(const std::vector& order) { + for (size_t i = 0; i < order.size(); ++i) + if (order[i] != i) return false; + return true; +} + inline bool is_dynamic_vdims(const VectorDims& shape) { return std::any_of(shape.cbegin(), shape.cend(), [](size_t v){ return is_dynamic_value(v); }); } diff --git a/src/common/snippets/src/lowered/expression.cpp b/src/common/snippets/src/lowered/expression.cpp index aaa71612cef706..1952b93017aab5 100644 --- a/src/common/snippets/src/lowered/expression.cpp +++ b/src/common/snippets/src/lowered/expression.cpp @@ -170,11 +170,6 @@ ExpressionPtr Expression::clone() const { } bool Expression::visit_attributes(AttributeVisitor &visitor) { - auto is_planar_layout = [](const std::vector& layout) { - for (size_t i = 0; i < layout.size(); ++i) - if (layout[i] != i) return false; - return true; - }; auto subtensor2str = [](const VectorDims& subtensor) { std::stringstream ss; for (size_t i = 0; i < subtensor.size(); ++i) { @@ -203,7 +198,7 @@ bool Expression::visit_attributes(AttributeVisitor &visitor) { subtensors.emplace_back("in_subtensor_" + std::to_string(i), subtensor2str(subtensor)); const auto& layout = desc->get_layout(); - if (!layout.empty() && !is_planar_layout(layout)) + if (!layout.empty() && !utils::is_planar_layout(layout)) layouts.emplace_back("in_layout_" + std::to_string(i), layout); in_reg_types.emplace_back(regTypeToStr(desc->get_reg().type)); @@ -220,7 +215,7 @@ bool Expression::visit_attributes(AttributeVisitor &visitor) { subtensors.emplace_back("out_subtensor_" + std::to_string(i), subtensor2str(subtensor)); const auto& layout = desc->get_layout(); - if (!layout.empty() && !is_planar_layout(layout)) + if (!layout.empty() && !utils::is_planar_layout(layout)) layouts.emplace_back("out_layout_" + std::to_string(i), layout); out_reg_types.emplace_back(regTypeToStr(desc->get_reg().type)); diff --git a/src/common/snippets/src/lowered/expressions/buffer_expression.cpp b/src/common/snippets/src/lowered/expressions/buffer_expression.cpp index acc742ff196407..a8b3bb2034b105 100644 --- a/src/common/snippets/src/lowered/expressions/buffer_expression.cpp +++ b/src/common/snippets/src/lowered/expressions/buffer_expression.cpp @@ -25,12 +25,15 @@ ExpressionPtr BufferExpression::clone() const { } bool BufferExpression::visit_attributes(AttributeVisitor &visitor) { + Expression::visit_attributes(visitor); auto allocation_size = utils::value2str(m_allocation_size); auto offset = utils::value2str(m_offset); + auto prc = get_data_type(); visitor.on_attribute("allocation_size", allocation_size); visitor.on_attribute("offset", offset); visitor.on_attribute("reg_group", m_reg_group); visitor.on_attribute("cluster_id", m_cluster_id); + visitor.on_attribute("data_type", prc); return true; } @@ -38,9 +41,13 @@ bool BufferExpression::is_defined() const { return !utils::is_dynamic_value(m_allocation_size); } +ov::element::Type BufferExpression::get_data_type() const { + return get_node()->get_output_element_type(0); +} + size_t BufferExpression::get_byte_size() const { if (is_defined()) - return m_allocation_size * get_node()->get_output_element_type(0).size(); + return m_allocation_size * get_data_type().size(); return utils::get_dynamic_value(); } diff --git a/src/common/snippets/src/lowered/loop_info.cpp b/src/common/snippets/src/lowered/loop_info.cpp index 954cc180a1527b..1c856869878b80 100644 --- a/src/common/snippets/src/lowered/loop_info.cpp +++ b/src/common/snippets/src/lowered/loop_info.cpp @@ -99,7 +99,7 @@ template<> std::vector::iterator LoopInfo::find_loop_port(const ExpressionPort& expr_port) { auto& ports = expr_port.get_type() == ExpressionPort::Input ? m_input_ports : m_output_ports; const auto it = std::find_if(ports.begin(), ports.end(), - [&expr_port](const LoopPort& port) { return *port.expr_port.get() == expr_port; }); + [&expr_port](const LoopPort& port) { return *port.expr_port == expr_port; }); return it; } @@ -176,6 +176,19 @@ bool UnifiedLoopInfo::LoopPortDesc::is_dynamic() const { return utils::is_dynamic_value(ptr_increment) || utils::is_dynamic_value(finalization_offset); } +bool UnifiedLoopInfo::LoopPortDesc::is_static() const { + return !is_dynamic(); +} + +bool operator==(const UnifiedLoopInfo::LoopPortDesc& lhs, const UnifiedLoopInfo::LoopPortDesc& rhs) { + if (&lhs == &rhs) + return true; + return lhs.ptr_increment == rhs.ptr_increment && lhs.finalization_offset == rhs.finalization_offset && lhs.data_size == rhs.data_size; +} +bool operator!=(const UnifiedLoopInfo::LoopPortDesc& lhs, const UnifiedLoopInfo::LoopPortDesc& rhs) { + return !(rhs == lhs); +} + UnifiedLoopInfo::UnifiedLoopInfo(size_t work_amount, size_t increment, const std::vector& entries, const std::vector& exits, const SpecificIterationHandlers& handlers) @@ -321,6 +334,18 @@ void UnifiedLoopInfo::sort_ports() { reorder(m_output_ports, m_output_port_descs); } +UnifiedLoopInfo::LoopPortInfo UnifiedLoopInfo::get_loop_port_info(const ExpressionPort& expr_port) { + OPENVINO_ASSERT(is_loop_port(expr_port), "Failed get_loop_port: expr_port is not a loop port"); + const auto is_input = expr_port.get_type() == ExpressionPort::Input; + const auto& ports = is_input ? m_input_ports : m_output_ports; + const auto& descs = is_input ? m_input_port_descs : m_output_port_descs; + const auto it = std::find_if(ports.begin(), ports.end(), + [&expr_port](const LoopPort& port) { return *port.expr_port == expr_port; }); + const auto index = static_cast(std::distance(ports.cbegin(), it)); + OPENVINO_ASSERT(index < ports.size() && index < descs.size(), "LoopPortInfo has not been found!"); + return {ports[index], descs[index]}; +} + void UnifiedLoopInfo::replace_with_cloned_descs(size_t actual_port_idx, size_t new_count, bool is_input) { auto& descs = is_input ? m_input_port_descs : m_output_port_descs; std::vector target_shifts(new_count, descs[actual_port_idx]); diff --git a/src/common/snippets/src/lowered/pass/allocate_buffers.cpp b/src/common/snippets/src/lowered/pass/allocate_buffers.cpp index f76c4097b38f38..0269c65109b701 100644 --- a/src/common/snippets/src/lowered/pass/allocate_buffers.cpp +++ b/src/common/snippets/src/lowered/pass/allocate_buffers.cpp @@ -12,7 +12,7 @@ #include "snippets/lowered/pass/define_buffer_clusters.hpp" #include "snippets/lowered/pass/normalize_buffer_reg_groups.hpp" #include "snippets/lowered/pass/propagate_buffer_offset.hpp" -#include "snippets/pass/tokenization.hpp" +#include "snippets/lowered/pass/mark_invariant_shape_path.hpp" #include "snippets/itt.hpp" #include "snippets/utils/utils.hpp" @@ -30,6 +30,7 @@ bool AllocateBuffers::run(lowered::LinearIR& linear_ir, lowered::LinearIR::const PassPipeline pipeline; pipeline.register_pass(); if (m_is_optimized_mode) { + pipeline.register_pass(); pipeline.register_pass(); pipeline.register_pass(); pipeline.register_pass(buffer_scratchpad_size); diff --git a/src/common/snippets/src/lowered/pass/define_buffer_clusters.cpp b/src/common/snippets/src/lowered/pass/define_buffer_clusters.cpp index c43b5d63a358c6..e8132d62be0cc9 100644 --- a/src/common/snippets/src/lowered/pass/define_buffer_clusters.cpp +++ b/src/common/snippets/src/lowered/pass/define_buffer_clusters.cpp @@ -4,24 +4,42 @@ #include "snippets/lowered/pass/define_buffer_clusters.hpp" +#include "snippets/lowered/pass/mark_invariant_shape_path.hpp" #include "snippets/lowered/pass/set_buffer_reg_group.hpp" +#include "snippets/lowered/loop_manager.hpp" #include "snippets/snippets_isa.hpp" #include "snippets/utils/utils.hpp" #include "snippets/itt.hpp" + namespace ov { namespace snippets { namespace lowered { namespace pass { -using ShiftPtrParams = SetBufferRegGroup::ShiftPtrParams; +namespace { + +// Find Loops which are connected to the current `buffer_expr` (consumer of Buffer is port of these Loops) +std::vector get_connected_loops(const BufferExpressionPtr& buffer_expr, const ExpressionPtr& consumer_expr) { + // [133463] Remove it please + if (ov::is_type(consumer_expr->get_node())) + return {}; + const auto& buffer_loops_ids = buffer_expr->get_loop_ids(); + const auto& consumer_loop_ids = consumer_expr->get_loop_ids(); + OPENVINO_ASSERT(buffer_loops_ids.size() <= consumer_loop_ids.size(), "Buffer with consumer are in incorrect loops"); + const auto mismatched_its = std::mismatch(buffer_loops_ids.begin(), buffer_loops_ids.end(), consumer_loop_ids.begin()); + return {mismatched_its.second, consumer_loop_ids.cend()}; +} +} // namespace + +using LoopPortInfo = UnifiedLoopInfo::LoopPortInfo; DefineBufferClusters::BufferClusters::iterator DefineBufferClusters::find_cluster_by_expr(const BufferExpressionPtr& target) { return std::find_if(m_clusters.begin(), m_clusters.end(), [&target](const BufferCluster& cluster) { return cluster.count(target) > 0; }); } -bool DefineBufferClusters::is_direct_buffer(const BufferExpressionPtr& buffer_expr, const ExpressionPtr& target_expr) const { +bool DefineBufferClusters::is_direct_buffer(const BufferExpressionPtr& buffer_expr, const ExpressionPtr& target_expr) { return buffer_expr && buffer_expr->get_loop_ids() == target_expr->get_loop_ids(); } @@ -33,7 +51,16 @@ void DefineBufferClusters::create_new_cluster(const BufferExpressionPtr& buffer_ } } -size_t DefineBufferClusters::get_cluster_buffer_id(const BufferCluster& cluster) const { +void DefineBufferClusters::add_buffers_to_cluster(BufferCluster& existing_cluster, const std::set& buffers) { + existing_cluster.insert(buffers.cbegin(), buffers.cend()); + // All buffers in one cluster must be only static or dynamic (no mixes). + if (std::any_of(existing_cluster.cbegin(), existing_cluster.cend(), [](const BufferExpressionPtr& buffer) { return !buffer->is_defined(); })) { + for (const auto& buffer : existing_cluster) + buffer->set_allocation_size(utils::get_dynamic_value()); + } +} + +size_t DefineBufferClusters::get_cluster_buffer_id(const BufferCluster& cluster) { OPENVINO_ASSERT(!cluster.empty(), "Buffer cluster is empty!"); const auto id = cluster.cbegin()->get()->get_reg_group(); if (std::all_of(cluster.cbegin(), cluster.cend(), [&id](const BufferExpressionPtr& expr) { return expr->get_reg_group() == id; })) { @@ -42,141 +69,121 @@ size_t DefineBufferClusters::get_cluster_buffer_id(const BufferCluster& cluster) return SIZE_MAX; } -DefineBufferClusters::BufferPorts DefineBufferClusters::get_input_buffers(const ExpressionPtr& loop_expr) const { - BufferPorts input_buffers; - - const auto loop_end = ov::as_type_ptr(loop_expr->get_node()); - const auto in_count = loop_end->get_input_num(); - const auto& connectors = loop_expr->get_input_port_connectors(); - - // Input Buffers - for (size_t i = 0; i < in_count; ++i) { - const auto& source_expr = ov::as_type_ptr(connectors[i]->get_source().get_expr()); - if (!is_direct_buffer(source_expr, loop_expr)) +std::pair DefineBufferClusters::get_direct_buffers(const UnifiedLoopInfoPtr& loop_info, + const ExpressionPtr& loop_expr) { + BufferMap input_buffers; + const auto& loop_inputs = loop_info->get_input_ports_info(); + for (const auto& port_info : loop_inputs) { + const auto& buffer_expr = ov::as_type_ptr(port_info.port.expr_port->get_port_connector_ptr()->get_source().get_expr()); + if (!is_direct_buffer(buffer_expr, loop_expr)) + continue; + if (input_buffers.count(buffer_expr) > 0) { + const auto& port_desc = port_info.desc; + OPENVINO_ASSERT(input_buffers[buffer_expr].desc == port_desc, + "Invalid data pointer shifts: If Buffer has several consumers, this consumers must have the same shifts or zero"); continue; - // Save as input Buffer - const auto ret = input_buffers.insert(std::make_pair(source_expr, std::set{ i })).second; - if (!ret) - input_buffers[source_expr].insert(i); + } + input_buffers[buffer_expr] = port_info; } - return input_buffers; -} - -DefineBufferClusters::BufferPorts DefineBufferClusters::get_output_buffers(const ExpressionPtr& loop_expr) const { - BufferPorts output_buffers; - const auto loop_end = ov::as_type_ptr(loop_expr->get_node()); - const auto in_count = loop_end->get_input_num(); - const auto out_count = loop_end->get_output_num(); - const auto& connectors = loop_expr->get_input_port_connectors(); - - for (size_t i = in_count; i < in_count + out_count; ++i) { - for (const auto& consumer : connectors[i]->get_consumers()) { - const auto& consumer_expr = ov::as_type_ptr(consumer.get_expr()); - if (!is_direct_buffer(consumer_expr, loop_expr)) + BufferMap output_buffers; + const auto& loop_outputs = loop_info->get_output_ports_info(); + for (const auto& port_info : loop_outputs) { + const auto& consumer_inputs = port_info.port.expr_port->get_port_connector_ptr()->get_consumers(); + for (const auto& consumer_input : consumer_inputs) { + const auto& buffer_expr = ov::as_type_ptr(consumer_input.get_expr()); + if (!is_direct_buffer(buffer_expr, loop_expr)) continue; - // Save as output Buffer - output_buffers[consumer_expr] = { i }; + OPENVINO_ASSERT(output_buffers.count(buffer_expr) == 0, "Only one Buffer can be on node output!"); + output_buffers[buffer_expr] = port_info; } } - return output_buffers; + + return std::make_pair(input_buffers, output_buffers); } -void DefineBufferClusters::parse_loop(const LinearIR::constExprIt& expr_it) { +void DefineBufferClusters::parse_loop(const LoopManagerPtr& loop_manager, const LinearIR::constExprIt& expr_it) { const auto& expr = *expr_it; - const auto loop_end = ov::as_type_ptr(expr->get_node()); - const auto& ptr_increments = loop_end->get_ptr_increments(); - const auto& final_offsets = loop_end->get_finalization_offsets(); - const auto& data_sizes = loop_end->get_element_type_sizes(); + const auto& loop_end = ov::as_type_ptr(expr->get_node()); + const auto& loop_info = loop_manager->get_loop_info(loop_end->get_id()); - // [ Expression -> Port indexes ] - const auto input_buffers = get_input_buffers(expr); - const auto output_buffers = get_output_buffers(expr); + BufferMap input_buffers, output_buffers; + std::tie(input_buffers, output_buffers) = get_direct_buffers(loop_info, expr); for (const auto& in : input_buffers) create_new_cluster(in.first); std::set visited_buffers; for (const auto& out : output_buffers) { - const auto output_buffer_expr = out.first; - const auto output_buffer_port_idx = *(out.second.cbegin()); // Output port is always one + const auto& output_buffer_expr = out.first; + const auto& output_buffer_port_info = out.second; bool has_been_added = false; for (const auto& in : input_buffers) { const auto& input_buffer_expr = in.first; + const auto& input_buffer_port_info = in.second; if (visited_buffers.count(input_buffer_expr) > 0) continue; - // If allocated sizes of buffers are unkown on compilation stage (dynamic), - // we cannot be sure that they're will be the same in runtime. - if (!input_buffer_expr->is_defined()|| !output_buffer_expr->is_defined()) + // Memory can be reused if reading and writing are executed proportionally: + // - output buffer can have precision with data size less than input buffer + if ((input_buffer_expr->get_data_type().size() < output_buffer_expr->get_data_type().size())) continue; - // Memory can be reused if reading and writing are executed proportionally: - // - the same reading/writing order - // - the same buffer memory sizes - if ((input_buffer_expr->get_byte_size() != output_buffer_expr->get_byte_size()) || - (input_buffer_expr->get_output_port_descriptor(0)->get_layout() != output_buffer_expr->get_input_port_descriptor(0)->get_layout())) + const auto in_path = MarkInvariantShapePath::getInvariantPortShapePath(*input_buffer_port_info.port.expr_port); + const auto out_path = MarkInvariantShapePath::getInvariantPortShapePath(*output_buffer_port_info.port.expr_port); + // - Memory can be reused if there are the same loop pointer increments (data size, final offsets, ptr increments). + // For that, loop ports with buffers should be on the same shape-path and have the same value of `is_incremented`. + if (in_path != out_path || input_buffer_port_info.port.is_incremented != output_buffer_port_info.port.is_incremented) continue; - // Also memory can be reused if there are the same ShiftPtrParams (data size, final offsets, ptr increments) - const auto& input_buffer_ports = in.second; - for (const auto& input_buffer_port_idx : input_buffer_ports) { - const auto input_params = - ShiftPtrParams(data_sizes[input_buffer_port_idx], ptr_increments[input_buffer_port_idx], final_offsets[input_buffer_port_idx]); - const auto output_params = - ShiftPtrParams(data_sizes[output_buffer_port_idx], ptr_increments[output_buffer_port_idx], final_offsets[output_buffer_port_idx]); - - // If data pointer shift parameters are unknown on model compilation stage (dynamic), - // we cannot be sure that these data pointers will be proportionally shifted in runtime. - if (input_params.is_static() && output_params.is_static() && input_params == output_params) { - const auto cluster_it = find_cluster_by_expr(input_buffer_expr); - OPENVINO_ASSERT(cluster_it != m_clusters.end(), "Buffer on inputs of Loop must be already saved in clusters"); - // Add to the existing cluster - has_been_added = cluster_it->insert(output_buffer_expr).second; - OPENVINO_ASSERT(has_been_added, "Buffer has not been saved in cluster"); - // Remove input buffer because we have already use its memory - visited_buffers.insert(input_buffer_expr); - break; - } + // - Memory can be shared if Buffer has the same allocation size. + if (input_buffer_expr->is_defined() && output_buffer_expr->is_defined()) { + if (input_buffer_expr->get_allocation_size() != output_buffer_expr->get_allocation_size()) + continue; + } else { + // If allocation sizes are undefined, we can check if they have the same allocation sizes in runtime: + // - they should calculate allocation size using the common algorithm from `BufferExpression::init_allocation_size`. + if (!utils::everyone_is(BufferExpression::get_type_info_static(), input_buffer_expr->get_type_info(), output_buffer_expr->get_type_info())) + continue; } - if (has_been_added) break; + + const auto cluster_it = find_cluster_by_expr(input_buffer_expr); + OPENVINO_ASSERT(cluster_it != m_clusters.end(), "Buffer on inputs of Loop must be already saved in clusters"); + // Add to the existing cluster + add_buffers_to_cluster(*cluster_it, {output_buffer_expr}); + // Remove input buffer because we have already use its memory + visited_buffers.insert(input_buffer_expr); + has_been_added = true; + break; } if (!has_been_added) { - m_clusters.push_back(BufferCluster{output_buffer_expr}); + create_new_cluster(output_buffer_expr); } } // Check Buffers inside to possible memory reusing using `window` sliding - parse_nested_loops(input_buffers, output_buffers, expr_it); + parse_nested_loops(loop_manager, input_buffers, output_buffers, expr_it); } -void DefineBufferClusters::parse_nested_loops(const BufferPorts& input_buffers, const BufferPorts& output_buffers, - const LinearIR::constExprIt& outer_loop_end_expr_it) { +void DefineBufferClusters::parse_nested_loops(const LoopManagerPtr& loop_manager, const BufferMap& input_buffers, + const BufferMap& output_buffers, const LinearIR::constExprIt& outer_loop_end_expr_it) { if (input_buffers.empty() && output_buffers.empty()) return; - // The inner Buffer can reuse memory of the outer Buffer using `window` sliding only if: - // - The finalization offset of the latest Loop connected to the inner Buffer is equal to pointer increment of outer Buffer to emulate `window` sliding - // - This outer Buffer should have the same Buffer ID as inner to move data ptr of inner Buffer after each outer Loop iteration. - // It's needed because all Loops reset data pointers of connected Buffer after full work. - // To avoid rewriting of outer Buffer data we have to have the same Buffer ID (GPR) to proportionally shift pointers both Buffers. - - auto can_be_data_ptr_proportionally_shifted = [](int64_t outer_buffer_ptr_increment, int64_t outer_buffer_data_size, - int64_t inner_buffer_final_offsets, int64_t inner_buffer_data_size) { - // If data pointer shift parameters are unknown on model compilation stage (dynamic), - // we cannot be sure that these data pointers will be proportionally shifted in runtime. - if (utils::is_dynamic_value(outer_buffer_ptr_increment) || utils::is_dynamic_value(inner_buffer_final_offsets)) + auto can_be_data_ptr_proportionally_shifted = [](const LoopPortInfo& outer_port_info, const LoopPortInfo& inner_port_info) { + // Outer Buffer ptr should be shifted to emulate "window" sliding + const auto& outer_desc = outer_port_info.desc; + if (!outer_port_info.port.is_incremented || (!utils::is_dynamic_value(outer_desc.ptr_increment) && outer_desc.ptr_increment == 0)) return false; - return (outer_buffer_ptr_increment != 0) && - ((inner_buffer_data_size * inner_buffer_final_offsets * -1) == outer_buffer_ptr_increment * outer_buffer_data_size); - }; - const auto outer_loop_end = ov::as_type_ptr(outer_loop_end_expr_it->get()->get_node()); - const auto outer_loop_begin = outer_loop_end->get_loop_begin(); - const auto& outer_ptr_increments = outer_loop_end->get_ptr_increments(); - const auto& outer_data_sizes = outer_loop_end->get_element_type_sizes(); + OPENVINO_ASSERT(inner_port_info.port.expr_port && outer_port_info.port.expr_port, "Expression ports are nullptr!"); + // we can be sure that these data pointers will be proportionally shifted if they're on the same invariant shape path + return MarkInvariantShapePath::getInvariantPortShapePath(*inner_port_info.port.expr_port) == + MarkInvariantShapePath::getInvariantPortShapePath(*outer_port_info.port.expr_port); + }; + const auto outer_loop_begin = ov::as_type_ptr(outer_loop_end_expr_it->get()->get_node())->get_loop_begin(); for (auto it = std::reverse_iterator(outer_loop_end_expr_it); (*it)->get_node() != outer_loop_begin; ++it) { const auto& inner_expr = *it; if (const auto inner_buffer_expr = ov::as_type_ptr(inner_expr)) { @@ -185,9 +192,12 @@ void DefineBufferClusters::parse_nested_loops(const BufferPorts& input_buffers, const auto inner_cluster_id = get_cluster_buffer_id(*inner_cluster_it); if (inner_cluster_id == SIZE_MAX) continue; - const auto final_offset = get_buffer_finalization_offset(inner_buffer_expr); + // If inner Buffer is not connected to the Loop - `window` sliding effect is not possible + LoopPortInfo final_loop_info; + if (!init_buffer_last_loop_port_info(loop_manager, inner_buffer_expr, final_loop_info)) + continue; - auto unite = [&](const BufferPorts& ports, const bool is_input) { + auto unite = [&](const BufferMap& ports, const bool is_input) { bool applied = false; for (const auto& port : ports) { const auto cluster_it = find_cluster_by_expr(port.first); @@ -196,17 +206,15 @@ void DefineBufferClusters::parse_nested_loops(const BufferPorts& input_buffers, if (cluster_it == inner_cluster_it) continue; // Buffer from one cluster must be only defined (with known allocation_size) or dynamic (with unknown allocation_size) if (inner_buffer_expr->is_defined() != port.first->is_defined()) continue; - - bool can_be_reused = true; - for (const auto idx : port.second) { - can_be_reused = can_be_reused && - can_be_data_ptr_proportionally_shifted(outer_ptr_increments[idx], outer_data_sizes[idx], - final_offset, inner_buffer_expr->get_node()->get_element_type().size()); - } - if (!can_be_reused) - continue; - - applied = unite_nested_clusters(inner_cluster_it, *cluster_it, port.first, is_input); + // The inner Buffer can reuse memory of the outer Buffer using `window` sliding only if: + // - The finalization offset of the latest Loop connected to the inner Buffer is equal to + // pointer increment of outer Buffer to emulate `window` sliding + // - This outer Buffer should have the same Buffer ID as inner to move data ptr of inner Buffer after each outer Loop iteration. + // It's needed because all Loops reset data pointers of connected Buffer after full work. + // To avoid rewriting of outer Buffer data we have to have the same Buffer ID (GPR) to proportionally shift pointers both Buffers. + if (!can_be_data_ptr_proportionally_shifted(port.second, final_loop_info)) continue; + + applied = unite_nested_clusters(loop_manager, inner_cluster_it, *cluster_it, port.first, is_input); if (applied) break; } return applied; @@ -218,101 +226,66 @@ void DefineBufferClusters::parse_nested_loops(const BufferPorts& input_buffers, } } -int64_t DefineBufferClusters::get_buffer_finalization_offset(const BufferExpressionPtr& buffer_expr) const { - auto index = [](const std::vector& loop_inputs, const PortConnectorPtr& buffer_out) { - const auto it = std::find(loop_inputs.cbegin(), loop_inputs.cend(), buffer_out); - OPENVINO_ASSERT(it != loop_inputs.cend(), "Buffer output PortConnector has not been found in target LoopEnd inputs"); - return std::distance(loop_inputs.cbegin(), it); +bool DefineBufferClusters::init_buffer_last_loop_port_info(const LoopManagerPtr& loop_manager, const BufferExpressionPtr& buffer_expr, + UnifiedLoopInfo::LoopPortInfo& port_info) { + auto get_direct_loop_for_buffer_out = [&](const BufferExpressionPtr& buffer_expr, const ExpressionPtr& consumer_expr) -> UnifiedLoopInfoPtr { + const auto inner_loops = get_connected_loops(buffer_expr, consumer_expr); + if (inner_loops.empty()) + return nullptr; + return loop_manager->get_loop_info(inner_loops.front()); }; - int64_t final_offset = 0; + + bool found = false; double last_loop_exec_order = -1 * std::numeric_limits::max(); const auto& buffer_outs = buffer_expr->get_output_port_connectors(); for (const auto& buffer_out : buffer_outs) { const auto consumers = buffer_out->get_consumers(); for (const auto& consumer : consumers) { - const auto consumer_expr = consumer.get_expr(); - const auto loop_end = ov::as_type_ptr(consumer_expr->get_node()); - if (loop_end && consumer_expr->get_loop_ids() == buffer_expr->get_loop_ids()) { - const auto loop_order = consumer_expr->get_exec_num(); + if (const auto& direct_loop = get_direct_loop_for_buffer_out(buffer_expr, consumer.get_expr())) { + const auto loop_order = direct_loop->get_output_ports().back().expr_port->get_expr()->get_exec_num(); if (loop_order > last_loop_exec_order) { - const auto& loop_inputs = consumer_expr->get_input_port_connectors(); - final_offset = loop_end->get_finalization_offsets()[index(loop_inputs, buffer_out)]; + OPENVINO_ASSERT(direct_loop->is_loop_port(consumer), "Consumer of Buffer from another loop must be loop port"); + port_info = direct_loop->get_loop_port_info(consumer); last_loop_exec_order = loop_order; + found = true; } } } } - return final_offset; + return found; } -bool DefineBufferClusters::unite_nested_clusters(const BufferClusters::iterator& inner_cluster_it, - BufferCluster& outer_cluster, - const BufferExpressionPtr& outer_buffer, bool is_outer_up) { +bool DefineBufferClusters::unite_nested_clusters(const LoopManagerPtr& loop_manager, const BufferClusters::iterator& inner_cluster_it, + BufferCluster& outer_cluster, const BufferExpressionPtr& outer_buffer, bool is_outer_up) { for (const auto& inner_buffer : *inner_cluster_it) { - ExpressionPtr common_loop_end_expr = nullptr; - size_t outer_idx = SIZE_MAX, inner_idx = SIZE_MAX; - const auto& up_buffer = is_outer_up ? outer_buffer : inner_buffer; - const auto& down_buffer = is_outer_up ? inner_buffer : outer_buffer; - auto& up_idx = is_outer_up ? outer_idx : inner_idx; - auto& down_idx = is_outer_up ? inner_idx : outer_idx; - if (are_buffer_neighbours(up_buffer, down_buffer, common_loop_end_expr, up_idx, down_idx)) { - const auto common_loop_end = ov::as_type_ptr(common_loop_end_expr->get_node()); - const auto& inner_ptr_increments = common_loop_end->get_ptr_increments(); - const auto& inner_final_offsets = common_loop_end->get_finalization_offsets(); - const auto& inner_data_sizes = common_loop_end->get_element_type_sizes(); - if (SetBufferRegGroup::can_be_in_one_group({ inner_data_sizes[up_idx], inner_ptr_increments[up_idx], inner_final_offsets[up_idx] }, - { inner_data_sizes[down_idx], inner_ptr_increments[down_idx], inner_final_offsets[down_idx] })) { - for (const auto& inner_buffer : *inner_cluster_it) - inner_buffer->set_reg_group(outer_buffer->get_reg_group()); - - outer_cluster.insert(inner_cluster_it->cbegin(), inner_cluster_it->cend()); - m_clusters.erase(inner_cluster_it); - return true; + const auto& upper_buffer = is_outer_up ? outer_buffer : inner_buffer; + const auto& lower_buffer = is_outer_up ? inner_buffer : outer_buffer; + + const auto& lower_buffer_source = lower_buffer->get_input_port_connector(0)->get_source(); + const auto& upper_buffer_consumers = upper_buffer->get_output_port_connector(0)->get_consumers(); + for (const auto& upper_buffer_consumer : upper_buffer_consumers) { + const auto& connected_loops = get_connected_loops(upper_buffer, upper_buffer_consumer.get_expr()); + for (const auto& loop_id : connected_loops) { + const auto& common_loop_info = loop_manager->get_loop_info(loop_id); + if (!common_loop_info->is_loop_port(lower_buffer_source) || !common_loop_info->is_loop_port(upper_buffer_consumer)) + continue; + + const auto upper_port_desc = common_loop_info->get_loop_port_info(upper_buffer_consumer); + const auto lower_port_desc = common_loop_info->get_loop_port_info(lower_buffer_source); + if (SetBufferRegGroup::can_be_in_one_reg_group(upper_port_desc, lower_port_desc)) { + for (const auto& inner_buffer : *inner_cluster_it) + inner_buffer->set_reg_group(outer_buffer->get_reg_group()); + + add_buffers_to_cluster(outer_cluster, *inner_cluster_it); + m_clusters.erase(inner_cluster_it); + return true; + } } } } return false; } -bool DefineBufferClusters::are_buffer_neighbours(const BufferExpressionPtr& up, const BufferExpressionPtr& down, ExpressionPtr& loop, - size_t& up_idx, size_t& down_idx) { - auto find_input = [&down](const PortConnectorPtr& in) { - return in->get_source().get_expr() == down; - }; - auto find_output = [&down](const PortConnectorPtr& in) { - const auto consumers = in->get_consumers(); - return std::any_of(consumers.cbegin(), consumers.cend(), - [&down](const ExpressionPort& port) { return port.get_expr() == down; }); - }; - auto find = [&](const std::vector::const_iterator& begin, - const std::vector::const_iterator& end, - const std::vector::const_iterator& orig_begin, - const ExpressionPort& loop_port, - bool is_input) -> bool { - const auto in_buffer_it = is_input ? std::find_if(begin, end, find_input) - : std::find_if(begin, end, find_output); - if (in_buffer_it != end) { - up_idx = loop_port.get_index(); - down_idx = std::distance(orig_begin, in_buffer_it); - loop = loop_port.get_expr(); - return true; - } - return false; - }; - for (const auto& out : up->get_output_port_connectors()) { - for (const auto& buffer_consumer : out->get_consumers()) { - const auto buffer_consumer_expr = buffer_consumer.get_expr(); - const auto loop_end = ov::as_type_ptr(buffer_consumer_expr->get_node()); - if (!loop_end) - continue; - const auto& loop_inputs = buffer_consumer_expr->get_input_port_connectors(); - if (find(loop_inputs.cbegin(), loop_inputs.cbegin() + loop_end->get_input_num(), loop_inputs.cbegin(), buffer_consumer, true)) return true; - if (find(loop_inputs.cbegin() + loop_end->get_input_num(), loop_inputs.cend(), loop_inputs.cbegin(), buffer_consumer, false)) return true; - } - } - return false; -} - void DefineBufferClusters::parse_memory_access_op(const ExpressionPtr& expr) { const auto ma = std::dynamic_pointer_cast(expr->get_node()); // TODO: Some full MemoryAccess ops can have inplace inputs and outputs in general. @@ -340,7 +313,7 @@ bool DefineBufferClusters::run(lowered::LinearIR& linear_ir, lowered::LinearIR:: const auto& expr = *expr_it; const auto op = expr->get_node(); if (ov::is_type(op)) { - parse_loop(expr_it); + parse_loop(linear_ir.get_loop_manager(), expr_it); continue; } diff --git a/src/common/snippets/src/lowered/pass/mark_invariant_shape_path.cpp b/src/common/snippets/src/lowered/pass/mark_invariant_shape_path.cpp new file mode 100644 index 00000000000000..b32056d4e32a57 --- /dev/null +++ b/src/common/snippets/src/lowered/pass/mark_invariant_shape_path.cpp @@ -0,0 +1,128 @@ +// Copyright (C) 2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 +// + + +#include "snippets/lowered/pass/mark_invariant_shape_path.hpp" + +#include "snippets/lowered/expressions/buffer_expression.hpp" +#include "snippets/op/memory_access.hpp" +#include "snippets/snippets_isa.hpp" +#include "snippets/utils/utils.hpp" +#include "snippets/itt.hpp" + +namespace ov { +namespace snippets { +namespace lowered { +namespace pass { + +namespace { + +// Specific value to mark ports which doesn't affect output shape of broadcastable ops. +// For example, ops with output scalar shape or Horizon ops. +static const size_t NOT_AFFECTING_PATH = SIZE_MAX; + +static bool is_shape_broadcastable_op(const ExpressionPtr& expr) { + return expr->get_node()->get_autob() != ov::op::AutoBroadcastType::NONE; +} + +static bool is_not_affecting_op(const ExpressionPtr& expr) { + const auto& node = expr->get_node(); + return ov::is_type(node) || + ov::is_type(node) || + ov::is_type(node) || + ov::is_type(node) || + ov::is_type(node) || + ov::is_type(node) || + ov::is_type(node); +} + +static bool is_affecting_op(const ExpressionPtr& expr) { + const auto& node = expr->get_node(); + return ov::is_type(node) || + ov::is_type(node) || + ov::is_type(node); +} +} // namespace + +size_t MarkInvariantShapePath::getInvariantPortShapePath(const ExpressionPort& port) { + auto& rt = get_rt_info(port); + const auto rinfo = rt.find("InvariantShapePath"); + OPENVINO_ASSERT(rinfo != rt.end(), "Invariant path for this expression port has not been marked!"); + return rinfo->second.as(); +} + +void MarkInvariantShapePath::SetInvariantPortShapePath(const ExpressionPort& port, size_t value) { + OPENVINO_ASSERT(port.get_type() == ExpressionPort::Output, "SetInvariantPortShapePath can be used only for output port"); + auto& rt = get_rt_info(port); + rt["InvariantShapePath"] = value; +} + +ov::RTMap& MarkInvariantShapePath::get_rt_info(const ExpressionPort& port) { + const auto& source_port = port.get_type() == ExpressionPort::Input ? port.get_port_connector_ptr()->get_source() : port; + const auto& node = source_port.get_expr()->get_node(); + const auto port_idx = source_port.get_index(); + OPENVINO_ASSERT(port_idx < node->get_output_size(), "Node has incompatible port count with the expression"); + return node->output(port_idx).get_rt_info(); +} + +bool MarkInvariantShapePath::run(lowered::LinearIR& linear_ir, lowered::LinearIR::constExprIt begin, lowered::LinearIR::constExprIt end) { + OV_ITT_SCOPED_TASK(ov::pass::itt::domains::SnippetsTransform, "Snippets::MarkInvariantShapePath"); + + bool modified = false; + + // Shape -> color + std::map colored_shapes; + + size_t color_path = 0; + + auto merge_paths = [&color_path](size_t lhs, size_t rhs) { + if (lhs == rhs || rhs == NOT_AFFECTING_PATH) return lhs; + if (lhs == NOT_AFFECTING_PATH) return rhs; + return ++color_path; + }; + + for (auto expr_it = begin; expr_it != end; ++expr_it) { + const auto& expr = *expr_it; + if (ov::is_type(expr->get_node())) + continue; + + for (size_t out_idx = 0; out_idx < expr->get_output_count(); ++out_idx) { + const auto& out_shape = expr->get_output_port_descriptor(out_idx)->get_shape(); + size_t current_color_path; + if (colored_shapes.count(out_shape)) { + current_color_path = colored_shapes.at(out_shape); + } else if (!utils::is_dynamic_vdims(out_shape) && ov::shape_size(out_shape) == 1) { + current_color_path = NOT_AFFECTING_PATH; + } else { + if (is_affecting_op(expr)) { + current_color_path = ++color_path; + } else if (is_not_affecting_op(expr)) { + current_color_path = NOT_AFFECTING_PATH; + } else if (is_shape_broadcastable_op(expr)) { + current_color_path = NOT_AFFECTING_PATH; + for (size_t in_idx = 0; in_idx < expr->get_input_count(); ++in_idx) { + const auto input_path = getInvariantPortShapePath(expr->get_input_port(in_idx)); + current_color_path = merge_paths(current_color_path, input_path); + } + } else { + current_color_path = expr->get_input_count() > 0 ? getInvariantPortShapePath(expr->get_input_port(0)) + : ++color_path; + } + + if (!utils::is_dynamic_vdims(out_shape)) + colored_shapes[out_shape] = current_color_path; + } + + SetInvariantPortShapePath(expr->get_output_port(out_idx), current_color_path); + modified = true; + } + } + + return modified; +} + +} // namespace pass +} // namespace lowered +} // namespace snippets +} // namespace ov diff --git a/src/common/snippets/src/lowered/pass/set_buffer_reg_group.cpp b/src/common/snippets/src/lowered/pass/set_buffer_reg_group.cpp index 9bdb5e8ef3a9dc..46248b9c277818 100644 --- a/src/common/snippets/src/lowered/pass/set_buffer_reg_group.cpp +++ b/src/common/snippets/src/lowered/pass/set_buffer_reg_group.cpp @@ -4,8 +4,10 @@ #include "snippets/lowered/pass/set_buffer_reg_group.hpp" +#include "snippets/lowered/pass/mark_invariant_shape_path.hpp" #include "snippets/lowered/linear_ir.hpp" -#include "snippets/snippets_isa.hpp" +#include "snippets/lowered/loop_manager.hpp" +#include "snippets/lowered/expressions/buffer_expression.hpp" #include "snippets/itt.hpp" namespace ov { @@ -19,54 +21,44 @@ inline size_t index(size_t col_num, size_t row, size_t col) { } } // namespace -bool operator==(const SetBufferRegGroup::ShiftPtrParams& lhs, const SetBufferRegGroup::ShiftPtrParams& rhs) { - if (&lhs == &rhs) - return true; - return lhs.ptr_increment == rhs.ptr_increment && lhs.finalization_offset == rhs.finalization_offset && lhs.data_size == rhs.data_size; -} -bool operator!=(const SetBufferRegGroup::ShiftPtrParams& lhs, const SetBufferRegGroup::ShiftPtrParams& rhs) { - return !(rhs == lhs); -} - size_t SetBufferRegGroup::get_buffer_idx(const BufferExpressionPtr& target, const BufferPool& pool) { const auto iter = std::find(pool.cbegin(), pool.cend(), target); OPENVINO_ASSERT(iter != pool.cend(), "Buffer wasn't find in Buffer system of Subgraph"); return std::distance(pool.cbegin(), iter); } -bool SetBufferRegGroup::can_be_in_one_group(const ShiftPtrParams& lhs, const ShiftPtrParams& rhs) { - // If data pointer shift parameters are unknown on model compilation stage (dynamic), - // we cannot be sure that these data pointers will be proportionally shifted. - // Then we force `false` value here to set unique registers for these buffers - const auto are_static = lhs.is_static() && rhs.is_static(); - const auto equal_ptr_params_shifting = lhs.ptr_increment == rhs.ptr_increment && lhs.finalization_offset == rhs.finalization_offset; - const auto equal_element_type_sizes = lhs.data_size == rhs.data_size; - return are_static && equal_ptr_params_shifting && (equal_element_type_sizes || (lhs.ptr_increment == 0 && lhs.finalization_offset == 0)); +bool SetBufferRegGroup::can_be_in_one_reg_group(const UnifiedLoopInfo::LoopPortInfo& lhs_info, + const UnifiedLoopInfo::LoopPortInfo& rhs_info) { + const auto equal_element_type_sizes = lhs_info.desc.data_size == rhs_info.desc.data_size; + OPENVINO_ASSERT(lhs_info.port.expr_port && rhs_info.port.expr_port, "Expression ports are nullptr!"); + const auto equal_invariant_shape_paths = + MarkInvariantShapePath::getInvariantPortShapePath(*lhs_info.port.expr_port) == + MarkInvariantShapePath::getInvariantPortShapePath(*rhs_info.port.expr_port); + const auto equal_is_incremented = lhs_info.port.is_incremented == rhs_info.port.is_incremented; + return equal_invariant_shape_paths && equal_is_incremented && + (equal_element_type_sizes || !lhs_info.port.is_incremented || (lhs_info.desc.ptr_increment == 0 && lhs_info.desc.finalization_offset == 0)); } -bool SetBufferRegGroup::are_adjacent(const std::pair& lhs, - const std::pair& rhs) { +bool SetBufferRegGroup::are_adjacent(const BufferMap::value_type& lhs, const BufferMap::value_type& rhs) { const auto& lhs_ids = lhs.first->get_loop_ids(); const auto& rhs_ids = rhs.first->get_loop_ids(); const auto equal_loop_ids = lhs_ids == rhs_ids; if (equal_loop_ids) { // Buffers are connected to the same Loop and have the same outer Loops - return !can_be_in_one_group(lhs.second, rhs.second); + return !can_be_in_one_reg_group(lhs.second, rhs.second); } else { // Buffers are connected to the same Loop, but one of Buffers - inside this Loop, another - outside - // Buffers are adjacent if outer Buffer has not zero data shift params + // Buffers are adjacent if outer Buffer has non-zero data shift params if (lhs_ids.size() == rhs_ids.size()) // If the count of outer Loops are equal, it means that outer loops are already different return true; const auto& outer_buffer = lhs_ids.size() < rhs_ids.size() ? lhs : rhs; const auto count_outer_loops = std::min(lhs_ids.size(), rhs_ids.size()); const auto are_outer_loops_the_same = lhs_ids.size() != rhs_ids.size() && std::equal(rhs_ids.cbegin(), rhs_ids.cbegin() + count_outer_loops, lhs_ids.cbegin()); - const auto outer_buffer_has_zero_shifts = outer_buffer.second.ptr_increment == 0 && outer_buffer.second.finalization_offset == 0; + const auto outer_buffer_has_zero_shifts = outer_buffer.second.desc.ptr_increment == 0 && outer_buffer.second.desc.finalization_offset == 0; return !(are_outer_loops_the_same && outer_buffer_has_zero_shifts); } } -void SetBufferRegGroup::update_adj_matrix(const std::pair& lhs, - const std::pair& rhs, - const BufferPool& buffers, +void SetBufferRegGroup::update_adj_matrix(const BufferMap::value_type& lhs, const BufferMap::value_type& rhs, const BufferPool& buffers, std::vector& adj) { const auto size = buffers.size(); const auto lhs_idx = get_buffer_idx(lhs.first, buffers); @@ -80,7 +72,8 @@ void SetBufferRegGroup::update_adj_matrix(const std::pair SetBufferRegGroup::create_adjacency_matrix(LinearIR::constExprIt begin, LinearIR::constExprIt end, const BufferPool& pool) { +std::vector SetBufferRegGroup::create_adjacency_matrix(const LoopManagerPtr& loop_manager, LinearIR::constExprIt begin, LinearIR::constExprIt end, + const BufferPool& pool) { // The sync point to check for adjacency is Loop because only in Loop we increment pointers. // So if some Buffers in the one Loop have conflict (cannot be inplace: the different ptr increment and data sizes) // they are called as adjacent @@ -91,10 +84,12 @@ std::vector SetBufferRegGroup::create_adjacency_matrix(LinearIR::constExpr for (auto expr_it = begin; expr_it != end; expr_it++) { const auto &expr = *expr_it; - if (!ov::is_type(expr->get_node())) + const auto& loop_end = ov::as_type_ptr(expr->get_node()); + if (!loop_end) continue; - const auto buffer_loop_neighbours = get_buffer_loop_neighbours(expr); + const auto& loop_info = loop_manager->get_loop_info(loop_end->get_id()); + const auto buffer_loop_neighbours = get_buffer_loop_neighbours(loop_info); const auto buffers_loop_inside = get_buffer_loop_inside(expr_it); for (auto buffer_it = buffer_loop_neighbours.cbegin(); buffer_it != buffer_loop_neighbours.cend(); ++buffer_it) { // If Buffers, that are connected to the same Loop, have not proportionally ptr shift params for this Loop - these Buffers are adjacent @@ -113,47 +108,33 @@ std::vector SetBufferRegGroup::create_adjacency_matrix(LinearIR::constExpr return adj; } -SetBufferRegGroup::BufferMap SetBufferRegGroup::get_buffer_loop_neighbours(const ExpressionPtr& loop_end_expr) { - const auto& loop_end = ov::as_type_ptr(loop_end_expr->get_node()); - const auto input_count = loop_end->get_input_num(); - const auto output_count = loop_end->get_output_num(); - - const auto& ptr_increments = loop_end->get_ptr_increments(); - const auto& finalization_offsets = loop_end->get_finalization_offsets(); - const auto& data_sizes = loop_end->get_element_type_sizes(); - +SetBufferRegGroup::BufferMap SetBufferRegGroup::get_buffer_loop_neighbours(const UnifiedLoopInfoPtr& loop_info) { BufferMap buffer_neighbours; - for (size_t i = 0; i < input_count; ++i) { - const auto& parent_output = loop_end_expr->get_input_port_connector(i)->get_source().get_expr(); + + const auto& loop_inputs = loop_info->get_input_ports_info(); + for (const auto& port_info : loop_inputs) { + const auto& parent_output = port_info.port.expr_port->get_port_connector_ptr()->get_source().get_expr(); if (const auto buffer_expr = ov::as_type_ptr(parent_output)) { if (buffer_neighbours.count(buffer_expr) > 0) { - OPENVINO_ASSERT(buffer_neighbours[buffer_expr].ptr_increment == ptr_increments[i] && - buffer_neighbours[buffer_expr].finalization_offset == finalization_offsets[i], + const auto& port_desc = port_info.desc; + OPENVINO_ASSERT(buffer_neighbours[buffer_expr].desc == port_desc, "Invalid data pointer shifts: If Buffer has several consumers, this consumers must have the same shifts or zero"); continue; } - buffer_neighbours[buffer_expr] = { data_sizes[i], ptr_increments[i], finalization_offsets[i] }; + buffer_neighbours[buffer_expr] = port_info; } } - for (size_t i = input_count; i < input_count + output_count; ++i) { - // The consumers of the corresponding Store ops - const auto consumer_inputs = loop_end_expr->get_input_port_connector(i)->get_consumers(); - size_t buffer_count = 0; - size_t loop_count = 0; + + const auto& loop_outputs = loop_info->get_output_ports_info(); + for (const auto& port_info : loop_outputs) { + const auto& consumer_inputs = port_info.port.expr_port->get_port_connector_ptr()->get_consumers(); for (const auto& consumer_input : consumer_inputs) { const auto& child_expr = consumer_input.get_expr(); - if (const auto buffer_expr = ov::as_type_ptr(child_expr)) { - buffer_neighbours[buffer_expr] = { data_sizes[i], ptr_increments[i], finalization_offsets[i] }; - buffer_count++; - } else if (ov::is_type(child_expr->get_node())) { - loop_count++; - } - } - if (buffer_count > 0) { - OPENVINO_ASSERT((buffer_count == 1) && (buffer_count + loop_count == consumer_inputs.size()), - "Loop output must have not more than 1 Buffer"); + if (const auto buffer_expr = ov::as_type_ptr(child_expr)) + buffer_neighbours[buffer_expr] = port_info; } } + return buffer_neighbours; } @@ -164,9 +145,9 @@ SetBufferRegGroup::BufferMap SetBufferRegGroup::get_buffer_loop_inside(const Lin for (auto it = std::reverse_iterator(loop_end_it); (*it)->get_node() != loop_begin; ++it) { const auto& inner_expr = *it; if (const auto buffer_expr = ov::as_type_ptr(inner_expr)) { - // Set default zero values since it's not used for adjacency definition in case with Buffers in Loop + // Set default value (zeroes) since it's not used for adjacency definition in case with Buffers in Loop if (inner_buffers.count(buffer_expr) == 0) - inner_buffers[buffer_expr] = { 0, 0, 0 }; + inner_buffers[buffer_expr] = UnifiedLoopInfo::LoopPortInfo(); } } return inner_buffers; @@ -219,6 +200,7 @@ auto SetBufferRegGroup::coloring(BufferPool& buffers, std::vector& adj) -> bool SetBufferRegGroup::run(LinearIR& linear_ir, lowered::LinearIR::constExprIt begin, lowered::LinearIR::constExprIt end) { OV_ITT_SCOPED_TASK(ov::pass::itt::domains::SnippetsTransform, "Snippets::SetBufferRegGroup") + // Identify Buffers using Graph coloring algorithm. BufferPool buffer_pool = linear_ir.get_buffers(); // For the better coloring Buffers should be stored in the order of execution numbers @@ -226,7 +208,7 @@ bool SetBufferRegGroup::run(LinearIR& linear_ir, lowered::LinearIR::constExprIt [](const BufferExpressionPtr& lhs, const BufferExpressionPtr& rhs) { return lhs->get_exec_num() < rhs->get_exec_num(); }); // Creation of Adj matrix - auto adj = create_adjacency_matrix(begin, end, buffer_pool); + auto adj = create_adjacency_matrix(linear_ir.get_loop_manager(), begin, end, buffer_pool); // Graph coloring algorithm const auto color_groups = coloring(buffer_pool, adj); diff --git a/src/common/snippets/src/pass/mha_tokenization.cpp b/src/common/snippets/src/pass/mha_tokenization.cpp index c42eb08b82bd4a..beb465ab3a3fbe 100644 --- a/src/common/snippets/src/pass/mha_tokenization.cpp +++ b/src/common/snippets/src/pass/mha_tokenization.cpp @@ -268,16 +268,11 @@ ov::snippets::pass::TokenizeMHASnippets::TokenizeMHASnippets(const SnippetsToken const auto pattern_rank = matmul0->get_output_partial_shape(0).size(); - const auto ops_count_before_softmax = ordered_ops.size(); auto interm_op = matmul0->get_output_target_inputs(0).begin()->get_node()->shared_from_this(); // Add supported operations which are between MatMul0 and Softmax to ordered_ops if (!update_intermediate_supported_ops(interm_op, ordered_ops, hidden_virtual_ports_count, potential_body_params_count)) return false; - // If before Softmax there is Eltwise ops, there will be one more Buffer - if (ops_count_before_softmax != ordered_ops.size() && interm_op->get_output_partial_shape(0).rbegin()->is_dynamic()) - uniqie_buffer_reg_group_count++; - std::shared_ptr reshape0 = nullptr; if (!tokenize_reshape_around_softmax(interm_op, reshape0, ordered_ops)) return false; @@ -295,10 +290,6 @@ ov::snippets::pass::TokenizeMHASnippets::TokenizeMHASnippets(const SnippetsToken if (axis != rank.get_length() - 1 || interm_op->get_output_target_inputs(0).size() != 1) return false; - // Softmax need one buffer at least - if (interm_op->get_output_partial_shape(0).rbegin()->is_dynamic()) - uniqie_buffer_reg_group_count++; - ordered_ops.push_back(interm_op); interm_op = interm_op->get_output_target_inputs(0).begin()->get_node()->shared_from_this(); @@ -333,7 +324,7 @@ ov::snippets::pass::TokenizeMHASnippets::TokenizeMHASnippets(const SnippetsToken // The Loop will have one Buffer with the same shape both on input and output. // Need to check for precision to get if we need one more register for Buffer const auto matmul0_prc = op::Brgemm::get_output_type(matmul0->get_input_element_type(0), matmul0->get_input_element_type(1)); - if (matmul1->get_input_element_type(0).size() != matmul0_prc.size() || matmul1->get_input_partial_shape(0).is_dynamic()) { + if (matmul1->get_input_element_type(0).size() != matmul0_prc.size()) { uniqie_buffer_reg_group_count++; } diff --git a/src/plugins/intel_cpu/src/transformations/tpp/x64/pass/lowered/set_tpp_leading_dim.cpp b/src/plugins/intel_cpu/src/transformations/tpp/x64/pass/lowered/set_tpp_leading_dim.cpp index 4f38eddc2bde0f..2a85714a792655 100644 --- a/src/plugins/intel_cpu/src/transformations/tpp/x64/pass/lowered/set_tpp_leading_dim.cpp +++ b/src/plugins/intel_cpu/src/transformations/tpp/x64/pass/lowered/set_tpp_leading_dim.cpp @@ -16,13 +16,6 @@ namespace tpp { namespace pass { namespace { using ExpressionPort = snippets::lowered::ExpressionPort; -bool is_planar_layout(const std::vector& layout) { - for (size_t i = 0; i < layout.size(); i++) { - if (layout[i] != i) - return false; - } - return true; -} // Note: Buffer is directly connected to the port if it remains in the same loops with the port's expression // Directly connected Buffers store data densely, so strides are defined by subternsor dims // Indirectly connected Buffers (with loops between the expr and Buffer) store data according @@ -81,12 +74,12 @@ size_t get_leading_dim(ExpressionPort port, const snippets::lowered::LoopManager subtensor[idx] = shape[shape.size() - i]; } } - OPENVINO_ASSERT(!full_dim_substituted || is_planar_layout(layout), + OPENVINO_ASSERT(!full_dim_substituted || ov::snippets::utils::is_planar_layout(layout), "Only planar layouts are supported for FULL_DIM substitution"); if (has_directly_connected_buffer(port, loop_mngr)) { shape = port_desc->get_subtensor(); - OPENVINO_ASSERT(is_planar_layout(layout), "Only planar layouts are supported for Buffers"); + OPENVINO_ASSERT(ov::snippets::utils::is_planar_layout(layout), "Only planar layouts are supported for Buffers"); const auto rank_diff = static_cast(layout.size()) - static_cast(shape.size()); if (rank_diff > 0) layout.erase(layout.end() - rank_diff, layout.end()); diff --git a/src/plugins/intel_cpu/tests/unit/snippets_transformations/x64/lowered/buffer_allocation.cpp b/src/plugins/intel_cpu/tests/unit/snippets_transformations/x64/lowered/buffer_allocation.cpp index 6dad1d4772f531..e31a8bebb95758 100644 --- a/src/plugins/intel_cpu/tests/unit/snippets_transformations/x64/lowered/buffer_allocation.cpp +++ b/src/plugins/intel_cpu/tests/unit/snippets_transformations/x64/lowered/buffer_allocation.cpp @@ -36,21 +36,24 @@ using BRGEMM_TYPE = intel_cpu::brgemm_utils::BRGEMM_TYPE; */ typedef std::tuple< - bool, // Optimized pipeline - bool, // With SplitLoops opt - size_t, // Expected Buffer size in bytes - size_t, // Expected unique Buffer reg group count - size_t // Expected unique Buffer cluster count + std::vector, // Input shapes + bool, // Optimized pipeline + bool, // With SplitLoops opt + size_t, // Expected Buffer size in bytes + size_t, // Expected unique Buffer reg group count + size_t // Expected unique Buffer cluster count > BufferAllocationCPUParams; class BufferAllocationCPUTest : public testing::TestWithParam { public: using VectorDims = ov::snippets::VectorDims; static std::string getTestCaseName(testing::TestParamInfo obj) { + std::vector shapes; bool is_optimized, with_split_loops; size_t expected_size, expected_reg_group_count, expected_cluster_count; - std::tie(is_optimized, with_split_loops, expected_size, expected_reg_group_count, expected_cluster_count) = obj.param; + std::tie(shapes, is_optimized, with_split_loops, expected_size, expected_reg_group_count, expected_cluster_count) = obj.param; std::ostringstream result; + result << "Shapes=" << ov::test::utils::partialShape2str(shapes) << "_"; result << "Opt=" << ov::test::utils::bool2str(is_optimized) << "_"; result << "Split=" << ov::test::utils::bool2str(with_split_loops) << "_"; result << "ExpBufferSize=" << expected_size << "_"; @@ -61,9 +64,11 @@ class BufferAllocationCPUTest : public testing::TestWithParamGetParam(); + std::vector shapes; + std::tie(shapes, m_is_buffer_optimized, m_with_split_loops, m_expected_size, + m_expected_reg_group_count, m_expected_cluster_count) = this->GetParam(); - const auto body = GetModel(); + const auto body = GetModel(shapes); m_linear_ir = ov::snippets::lowered::LinearIR(body, std::make_shared()); m_linear_ir.set_loop_depth(m_loop_depth); // When Subgraph::control_flow_transformations become public method, @@ -105,7 +110,7 @@ class BufferAllocationCPUTest : public testing::TestWithParam GetModel() const = 0; + virtual std::shared_ptr GetModel(const std::vector& shapes) const = 0; void MarkOp(const std::shared_ptr& node, const std::vector& subtensor) const { for (const auto& input : node->inputs()) @@ -131,20 +136,16 @@ class BufferAllocationCPUTest : public testing::TestWithParam GetModel() const override { + std::shared_ptr GetModel(const std::vector& shapes) const override { const auto subtensor_scalar = std::vector{1}; const auto subtensor_power = std::vector{1, ov::snippets::utils::get_full_dim_value()}; const auto subtensor_full = std::vector(2, ov::snippets::utils::get_full_dim_value()); // Dims are selected in order to have blocking loops by each dim - const size_t m = 1024; - const size_t k = 1024; - const size_t n1 = 128; - const size_t n2 = 256; - - const auto parameter0 = std::make_shared(ov::element::f32, ov::PartialShape({1, 12, m, k})); - const auto parameter1 = std::make_shared(ov::element::f32, ov::PartialShape({1, n1, 12, k})); - const auto parameter2 = std::make_shared(ov::element::f32, ov::PartialShape({1, 12, n1, n2})); + OPENVINO_ASSERT(shapes.size() == 3, "Incorrect count of input shapes"); + const auto parameter0 = std::make_shared(ov::element::f32, shapes[0]); + const auto parameter1 = std::make_shared(ov::element::f32, shapes[1]); + const auto parameter2 = std::make_shared(ov::element::f32, shapes[2]); const auto order = std::vector{0, 2, 3, 1}; const auto load_reshape = std::make_shared(parameter1, 1, 0, order); @@ -186,20 +187,15 @@ class MHAFP32BufferAllocationTest : public BufferAllocationCPUTest { class MHABF16AMXBufferAllocationTest : public BufferAllocationCPUTest { protected: - std::shared_ptr GetModel() const override { + std::shared_ptr GetModel(const std::vector& shapes) const override { const auto subtensor_scalar = std::vector{1}; const auto subtensor_power = std::vector{1, ov::snippets::utils::get_full_dim_value()}; const auto subtensor_full = std::vector(2, ov::snippets::utils::get_full_dim_value()); - // Dims are selected in order to have blocking loops by each dim - const size_t m = 1024; - const size_t k = 1024; - const size_t n1 = 128; - const size_t n2 = 256; - - const auto parameter0 = std::make_shared(ov::element::bf16, ov::PartialShape({1, 12, m, k})); - const auto parameter1 = std::make_shared(ov::element::bf16, ov::PartialShape({1, n1, 12, k})); - const auto parameter2 = std::make_shared(ov::element::bf16, ov::PartialShape({1, 12, n1, n2})); + OPENVINO_ASSERT(shapes.size() == 3, "Incorrect count of input shapes"); + const auto parameter0 = std::make_shared(ov::element::bf16, shapes[0]); + const auto parameter1 = std::make_shared(ov::element::bf16, shapes[1]); + const auto parameter2 = std::make_shared(ov::element::bf16, shapes[2]); const auto order = std::vector{0, 2, 3, 1}; const auto load_reshape = std::make_shared(parameter1, 1, 0, order); @@ -264,8 +260,17 @@ TEST_P(MHABF16AMXBufferAllocationTest, BufferAllocationCPU) { namespace BufferAllocationCPUTest_Instances { +std::vector static_shapes = { + { 1, 12, 1024, 1024 }, {1, 128, 12, 1024 }, {1, 12, 128, 256 }, +}; + +std::vector dynamic_shapes = { + { -1, -1, -1, -1 }, { -1, -1, -1, -1 }, { -1, -1, -1, -1 }, +}; + INSTANTIATE_TEST_SUITE_P(smoke_Snippets_BufferAllocation_MHANotOptimizedWSplit, MHAFP32BufferAllocationTest, ::testing::Combine( + ::testing::Values(static_shapes), ::testing::Values(false), ::testing::Values(true), ::testing::Values(591360), // Each Buffer has own allocated memory @@ -275,6 +280,7 @@ INSTANTIATE_TEST_SUITE_P(smoke_Snippets_BufferAllocation_MHANotOptimizedWSplit, INSTANTIATE_TEST_SUITE_P(smoke_Snippets_BufferAllocation_MHAOptimizedWSplit, MHAFP32BufferAllocationTest, ::testing::Combine( + ::testing::Values(static_shapes), ::testing::Values(true), ::testing::Values(true), ::testing::Values(573440), // (Buffer before brgemm) + (between brgemms) + (after brgemm) @@ -284,6 +290,7 @@ INSTANTIATE_TEST_SUITE_P(smoke_Snippets_BufferAllocation_MHAOptimizedWSplit, MHA INSTANTIATE_TEST_SUITE_P(smoke_Snippets_BufferAllocation_MHANotOptimizedWOSplit, MHAFP32BufferAllocationTest, ::testing::Combine( + ::testing::Values(static_shapes), ::testing::Values(false), ::testing::Values(false), ::testing::Values(2622976), // Each Buffer has own allocated memory @@ -293,6 +300,7 @@ INSTANTIATE_TEST_SUITE_P(smoke_Snippets_BufferAllocation_MHANotOptimizedWOSplit, INSTANTIATE_TEST_SUITE_P(smoke_Snippets_BufferAllocation_MHAOptimizedWOSplit, MHAFP32BufferAllocationTest, ::testing::Combine( + ::testing::Values(static_shapes), ::testing::Values(true), ::testing::Values(false), ::testing::Values(1572864), // (between brgemms) + (Buffer before brgemm0 and after brgemm1) @@ -302,6 +310,7 @@ INSTANTIATE_TEST_SUITE_P(smoke_Snippets_BufferAllocation_MHAOptimizedWOSplit, MH INSTANTIATE_TEST_SUITE_P(smoke_Snippets_BufferAllocation_MHABF16AMXNotOptimizedWSplit, MHABF16AMXBufferAllocationTest, ::testing::Combine( + ::testing::Values(static_shapes), ::testing::Values(false), ::testing::Values(true), ::testing::Values(713984), @@ -311,15 +320,17 @@ INSTANTIATE_TEST_SUITE_P(smoke_Snippets_BufferAllocation_MHABF16AMXNotOptimizedW INSTANTIATE_TEST_SUITE_P(smoke_Snippets_BufferAllocation_MHABF16AMXOptimizedWSplit, MHABF16AMXBufferAllocationTest, ::testing::Combine( + ::testing::Values(static_shapes), ::testing::Values(true), ::testing::Values(true), ::testing::Values(524288), ::testing::Values(3), - ::testing::Values(8)), + ::testing::Values(7)), BufferAllocationCPUTest::getTestCaseName); INSTANTIATE_TEST_SUITE_P(smoke_Snippets_BufferAllocation_MHABF16AMXNotOptimizedWOSplit, MHABF16AMXBufferAllocationTest, ::testing::Combine( + ::testing::Values(static_shapes), ::testing::Values(false), ::testing::Values(false), ::testing::Values(2491648), @@ -329,11 +340,32 @@ INSTANTIATE_TEST_SUITE_P(smoke_Snippets_BufferAllocation_MHABF16AMXNotOptimizedW INSTANTIATE_TEST_SUITE_P(smoke_Snippets_BufferAllocation_MHABF16AMXOptimizedWOSplit, MHABF16AMXBufferAllocationTest, ::testing::Combine( + ::testing::Values(static_shapes), ::testing::Values(true), ::testing::Values(false), - ::testing::Values(1409024), + ::testing::Values(1671168), + ::testing::Values(3), + ::testing::Values(7)), + BufferAllocationCPUTest::getTestCaseName); + +INSTANTIATE_TEST_SUITE_P(smoke_Snippets_BufferAllocation_MHAOptimizedWSplit_Dynamic, MHAFP32BufferAllocationTest, + ::testing::Combine( + ::testing::Values(dynamic_shapes), + ::testing::Values(true), + ::testing::Values(true), + ::testing::Values(0), // no static clusters + ::testing::Values(2), // (Buffer before brgemm0 and after brgemm1) + (between brgemms) + ::testing::Values(3)), // (Buffer before brgemm0) + (between brgemms) + (after brgemm1) + BufferAllocationCPUTest::getTestCaseName); + +INSTANTIATE_TEST_SUITE_P(smoke_Snippets_BufferAllocation_MHABF16AMXOptimizedWSplit_Dynamic, MHABF16AMXBufferAllocationTest, + ::testing::Combine( + ::testing::Values(dynamic_shapes), + ::testing::Values(true), + ::testing::Values(true), + ::testing::Values(32768), // only WSP buffers ::testing::Values(3), - ::testing::Values(8)), + ::testing::Values(7)), BufferAllocationCPUTest::getTestCaseName); } // namespace BufferAllocationCPUTest_Instances From 696bddee349dd584996f73e81017cf9c2515f2c9 Mon Sep 17 00:00:00 2001 From: Bo Liu Date: Thu, 7 Nov 2024 19:11:18 +0800 Subject: [PATCH 34/93] [CPU] Roll back deconv 3rd rank layout order for non AMX (#27446) ### Details: - *temporal WA limiting Deconv acb Layout to avx512_core_amx_fp16 platform before oneDNN fix the performance regression issue of related primitive creation* ### Tickets: - *CVS-156640* --- src/plugins/intel_cpu/src/nodes/deconv.cpp | 44 ++++++++++++++-------- 1 file changed, 29 insertions(+), 15 deletions(-) diff --git a/src/plugins/intel_cpu/src/nodes/deconv.cpp b/src/plugins/intel_cpu/src/nodes/deconv.cpp index cb340afc029304..2ee858e730c900 100644 --- a/src/plugins/intel_cpu/src/nodes/deconv.cpp +++ b/src/plugins/intel_cpu/src/nodes/deconv.cpp @@ -418,24 +418,38 @@ std::pair Deconvolution::makeDummyInOutShape() { return {inShape.getStaticDims(), outShape.getStaticDims()}; } -std::vector Deconvolution::getAvailableFormatsForDims(const Shape &dims) const { - if (dims.getRank() == 0) +std::vector Deconvolution::getAvailableFormatsForDims(const Shape& dims) const { + if (dims.getRank() == 0) { return {memory::format_tag::x}; - else if (dims.getRank() == 1) + } else if (dims.getRank() == 1) { return {memory::format_tag::x}; - else if (dims.getRank() == 2) + } else if (dims.getRank() == 2) { return {memory::format_tag::nc}; - else if (dims.getRank() == 3) - return {memory::format_tag::ncw, - memory::format_tag::nCw8c, - memory::format_tag::nCw16c, - memory::format_tag::nwc}; - else if (dims.getRank() == 4) - return {memory::format_tag::nchw, memory::format_tag::nChw8c, - memory::format_tag::nChw16c, memory::format_tag::nhwc }; - else if (dims.getRank() == 5) - return {memory::format_tag::ncdhw, memory::format_tag::nCdhw8c, - memory::format_tag::nCdhw16c, dnnl::memory::format_tag::ndhwc }; + } else if (dims.getRank() == 3) { + // Ticket 156640 + if (impl::cpu::x64::mayiuse(impl::cpu::x64::avx512_core_amx_fp16)) { + return {memory::format_tag::ncw, + memory::format_tag::nCw8c, + memory::format_tag::nCw16c, + memory::format_tag::nwc}; + } else { + return {memory::format_tag::tnc, + memory::format_tag::ntc, + memory::format_tag::ncw, + memory::format_tag::nCw8c, + memory::format_tag::nCw16c}; + } + } else if (dims.getRank() == 4) { + return {memory::format_tag::nchw, + memory::format_tag::nChw8c, + memory::format_tag::nChw16c, + memory::format_tag::nhwc}; + } else if (dims.getRank() == 5) { + return {memory::format_tag::ncdhw, + memory::format_tag::nCdhw8c, + memory::format_tag::nCdhw16c, + dnnl::memory::format_tag::ndhwc}; + } return {memory::format_tag::any}; } From a9ddd47ac02dea96b06bf364e2a5a22078a681ba Mon Sep 17 00:00:00 2001 From: Denis Orlov Date: Thu, 7 Nov 2024 13:45:19 +0000 Subject: [PATCH 35/93] [GHA] Increase timeout for PyTorch Models tests in precommit (#27449) ### Tickets: - 155619 --- .github/workflows/job_pytorch_models_tests.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/job_pytorch_models_tests.yml b/.github/workflows/job_pytorch_models_tests.yml index 2959728e39dee7..d52b819981d821 100644 --- a/.github/workflows/job_pytorch_models_tests.yml +++ b/.github/workflows/job_pytorch_models_tests.yml @@ -22,7 +22,7 @@ permissions: read-all jobs: PyTorch_Models_Tests: name: PyTorch Models tests - timeout-minutes: ${{ inputs.model_scope == 'precommit' && 40 || 400 }} + timeout-minutes: ${{ inputs.model_scope == 'precommit' && 45 || 400 }} runs-on: ${{ inputs.runner }} container: ${{ fromJSON(inputs.container) }} defaults: From 98f6ea5fdea0416f17e319e6291029c2d59af14a Mon Sep 17 00:00:00 2001 From: Mikhail Ryzhov Date: Thu, 7 Nov 2024 14:58:01 +0100 Subject: [PATCH 36/93] [GHA][Coverity] Disable sccache (#27450) ### Details: - sccache doesn't properly work with Coverity ### Tickets: - *ticket-id* --- .github/workflows/coverity.yml | 14 -------------- 1 file changed, 14 deletions(-) diff --git a/.github/workflows/coverity.yml b/.github/workflows/coverity.yml index e26bd66e097e33..5a08ec084dadac 100644 --- a/.github/workflows/coverity.yml +++ b/.github/workflows/coverity.yml @@ -85,7 +85,6 @@ jobs: image: ${{ fromJSON(needs.docker.outputs.images).ov_build.ubuntu_20_04_x64 }} volumes: - /mount:/mount - options: -e SCCACHE_AZURE_BLOB_CONTAINER -e SCCACHE_AZURE_CONNECTION_STRING env: DEBIAN_FRONTEND: noninteractive # to prevent apt-get from waiting user input CMAKE_BUILD_TYPE: 'Release' @@ -95,14 +94,6 @@ jobs: OPENVINO_CONTRIB_REPO: /__w/openvino/openvino/openvino_contrib BUILD_DIR: /__w/openvino/openvino/openvino_build COVERITY_TOOL_DIR: /__w/openvino/openvino/coverity_tool - CMAKE_CXX_COMPILER_LAUNCHER: sccache - CMAKE_C_COMPILER_LAUNCHER: sccache - SCCACHE_IGNORE_SERVER_IO_ERROR: 1 - SCCACHE_SERVER_PORT: 35555 - SCCACHE_ERROR_LOG: /__w/openvino/sccache_log.txt - SCCACHE_LOG: warn - SCCACHE_AZURE_KEY_PREFIX: coverity_lin - SCCACHE_CACHE_SIZE: 50G steps: - name: Clone OpenVINO @@ -141,8 +132,6 @@ jobs: # # Build # - - name: Clean sccache stats - run: ${SCCACHE_PATH} --zero-stats - name: CMake configure - OpenVINO run: | @@ -165,9 +154,6 @@ jobs: - name: Cmake build - OpenVINO with Coverity run: ${COVERITY_TOOL_DIR}/cov-analysis*/bin/cov-build --dir ${BUILD_DIR}/cov-int cmake --build ${BUILD_DIR} --parallel $(nproc) --config ${{ env.CMAKE_BUILD_TYPE }} - - - name: Show sccache stats - run: ${SCCACHE_PATH} --show-stats - name: Pack Artefacts run: tar -cvf - cov-int | pigz > openvino.tgz From 5c834609fcf9d7d5bf3ce67208dccd5588e03df6 Mon Sep 17 00:00:00 2001 From: Maxim Vafin Date: Thu, 7 Nov 2024 16:01:39 +0100 Subject: [PATCH 37/93] [PT FE] Inherit signature from forward while patching (#27413) ### Details: - *Inherit signature from forward while patching* ### Tickets: - *ticket-id* --------- Signed-off-by: Maxim Vafin --- .../python/src/openvino/frontend/pytorch/patch_model.py | 3 +++ tests/layer_tests/py_frontend_tests/test_torch_frontend.py | 4 ++++ 2 files changed, 7 insertions(+) diff --git a/src/bindings/python/src/openvino/frontend/pytorch/patch_model.py b/src/bindings/python/src/openvino/frontend/pytorch/patch_model.py index fb8f70e2a566bc..0d1c4803e3115f 100644 --- a/src/bindings/python/src/openvino/frontend/pytorch/patch_model.py +++ b/src/bindings/python/src/openvino/frontend/pytorch/patch_model.py @@ -4,6 +4,7 @@ # flake8: noqa # mypy: ignore-errors +import functools import logging import torch from openvino.frontend.pytorch import ModuleExtension @@ -70,6 +71,8 @@ def new_forward(*args, **kwargs): Trampoline.stashed_kwargs = kwargs return extension.convert(m, Trampoline.apply, *args, **kwargs) + # make signature of new_forward same as of forward + new_forward = functools.wraps(m.forward)(new_forward) setattr(m, orig_forward_name, m.forward) m.forward = new_forward diff --git a/tests/layer_tests/py_frontend_tests/test_torch_frontend.py b/tests/layer_tests/py_frontend_tests/test_torch_frontend.py index faee72bb5d938a..b659c1735d8453 100644 --- a/tests/layer_tests/py_frontend_tests/test_torch_frontend.py +++ b/tests/layer_tests/py_frontend_tests/test_torch_frontend.py @@ -687,6 +687,7 @@ def test_patched_16bit_model_converts(): from openvino.frontend.pytorch import patch_model from openvino import convert_model, compile_model import copy + import inspect from transformers.pytorch_utils import Conv1D class ModelWithLinear(torch.nn.Module): @@ -716,6 +717,9 @@ def forward(self, x1, x2): model_fp16 = copy.deepcopy(model_ref).half() patch_model.__make_16bit_traceable(model_fp16) + # verify torch.nn.Linear signature after patching + signature = inspect.signature(model_ref.branch1[0].forward).parameters + assert ["input"] == list(signature) # the approach with patching only works for node with no grad with torch.no_grad(): converted_model = convert_model(model_fp16, example_input=example) From 8edb1501d3472944f131df2ecb8d60246c7dac6a Mon Sep 17 00:00:00 2001 From: Ivan Novoselov Date: Thu, 7 Nov 2024 15:29:49 +0000 Subject: [PATCH 38/93] Sns enable lp kn blocking (#26957) ### Details: - *Perform weights repacking outside of the blocking cycles* - *Functionally enable blocking for I8,U8 and BF16* - *The blocking will be temporary disabled until blocking heuristic is updated in 156014* ### Tickets: - *154729* --- src/common/snippets/src/lowered/loop_port.cpp | 6 +- .../snippets/cpu_runtime_configurator.cpp | 65 ++++++++++- .../snippets/cpu_runtime_configurator.hpp | 13 +++ .../snippets/x64/jit_kernel_emitter.cpp | 10 +- .../snippets/x64/kernel_executors/brgemm.cpp | 12 +- .../x64/kernel_executors/brgemm_copy_b.cpp | 2 +- src/plugins/intel_cpu/src/nodes/subgraph.cpp | 9 +- .../snippets/x64/op/brgemm_utils.cpp | 5 - .../snippets/x64/op/brgemm_utils.hpp | 12 +- .../adjust_brgemm_copy_b_loop_ports.cpp | 107 ++++++++++++++++++ .../adjust_brgemm_copy_b_loop_ports.hpp | 37 ++++++ .../x64/pass/lowered/brgemm_cpu_blocking.cpp | 83 ++++++-------- .../x64/pass/lowered/brgemm_cpu_blocking.hpp | 4 - .../x64/lowered/brgemm_blocking.cpp | 89 +++++++-------- 14 files changed, 329 insertions(+), 125 deletions(-) create mode 100644 src/plugins/intel_cpu/src/transformations/snippets/x64/pass/lowered/adjust_brgemm_copy_b_loop_ports.cpp create mode 100644 src/plugins/intel_cpu/src/transformations/snippets/x64/pass/lowered/adjust_brgemm_copy_b_loop_ports.hpp diff --git a/src/common/snippets/src/lowered/loop_port.cpp b/src/common/snippets/src/lowered/loop_port.cpp index 990b2801beccb8..52f59bb1fa4d35 100644 --- a/src/common/snippets/src/lowered/loop_port.cpp +++ b/src/common/snippets/src/lowered/loop_port.cpp @@ -30,7 +30,7 @@ std::shared_ptr LoopPort::clone_with_new_expr(const ExpressionPtr& new bool operator==(const LoopPort& lhs, const LoopPort& rhs) { if (&lhs == &rhs) return true; - return lhs.expr_port == rhs.expr_port && lhs.is_incremented == rhs.is_incremented && lhs.dim_idx == rhs.dim_idx; + return *lhs.expr_port == *rhs.expr_port && lhs.is_incremented == rhs.is_incremented && lhs.dim_idx == rhs.dim_idx; } bool operator!=(const LoopPort& lhs, const LoopPort& rhs) { @@ -38,8 +38,8 @@ bool operator!=(const LoopPort& lhs, const LoopPort& rhs) { } bool operator<(const LoopPort& lhs, const LoopPort& rhs) { - return (lhs.expr_port < rhs.expr_port) || - (lhs.expr_port == rhs.expr_port && + return (*lhs.expr_port < *rhs.expr_port) || + (*lhs.expr_port == *rhs.expr_port && (lhs.is_incremented < rhs.is_incremented || (lhs.is_incremented == rhs.is_incremented && lhs.dim_idx < rhs.dim_idx))); } diff --git a/src/plugins/intel_cpu/src/emitters/snippets/cpu_runtime_configurator.cpp b/src/plugins/intel_cpu/src/emitters/snippets/cpu_runtime_configurator.cpp index 56c2c75dae9bc2..1c3d283ab673b1 100644 --- a/src/plugins/intel_cpu/src/emitters/snippets/cpu_runtime_configurator.cpp +++ b/src/plugins/intel_cpu/src/emitters/snippets/cpu_runtime_configurator.cpp @@ -7,6 +7,9 @@ #include "snippets/lowered/loop_manager.hpp" #include "snippets/utils/utils.hpp" +#ifndef OPENVINO_ARCH_ARM64 +#include "transformations/snippets/x64/pass/lowered/adjust_brgemm_copy_b_loop_ports.hpp" +#endif namespace ov { namespace intel_cpu { @@ -36,10 +39,36 @@ std::string CPURuntimeConfig::to_string() const { CPURuntimeConfigurator::CPURuntimeConfigurator() : ov::snippets::RuntimeConfigurator(std::make_shared()) { } +void CPURuntimeConfigurator::initialization(const ov::snippets::lowered::LinearIRCPtr& linear_ir) { + RuntimeConfigurator::initialization(linear_ir); + if (linear_ir->is_dynamic()) { + loopPortsAdjuster = BrgemmCopyBLoopPortsAdjuster(linear_ir); + } +} + void CPURuntimeConfigurator::update(const ov::snippets::lowered::LinearIRCPtr& linear_ir) { - RuntimeConfigurator::update(linear_ir); + m_config->master_shape = linear_ir->get_master_shape(); + if (linear_ir->is_dynamic()) { + update_loop_info(linear_ir); + } + + if (!m_optimizer.optimize()) { + // If the optimization was not applied, offsets are updated using shapes from descriptors + auto shapes = extract_shapes(); + update_data_offsets(shapes, extract_layouts()); + m_latest_shapes = std::move(shapes); + } if (linear_ir->is_dynamic()) + loopPortsAdjuster.optimize(); + + // Update KernelExecutor Table should be before `update_buffer_scratchpad_size` + // because `ComputeAllocationSize` depends on subtensors which are updated in the table + get_kernel_executor_table()->update_state(linear_ir); + update_buffer_scratchpad_size(linear_ir); + + if (linear_ir->is_dynamic()) { update_loop_args(linear_ir); + } } void CPURuntimeConfigurator::update_tensor_rank(const ov::snippets::VectorDims& master_shape) { @@ -72,6 +101,40 @@ void CPURuntimeConfigurator::update_loop_args(const ov::snippets::lowered::Linea } } } +#ifdef OPENVINO_ARCH_ARM64 +CPURuntimeConfigurator::BrgemmCopyBLoopPortsAdjuster::BrgemmCopyBLoopPortsAdjuster(const ov::snippets::lowered::LinearIRCPtr& linear_ir) { +} + +void CPURuntimeConfigurator::BrgemmCopyBLoopPortsAdjuster::optimize() { +} +#else +CPURuntimeConfigurator::BrgemmCopyBLoopPortsAdjuster::BrgemmCopyBLoopPortsAdjuster(const ov::snippets::lowered::LinearIRCPtr& linear_ir) { + const auto& pass = std::make_shared(); + pass->run(*linear_ir); + const auto& affected_uni_loops = pass->get_affected_loops(); + const auto& loop_map = linear_ir->get_loop_manager()->get_map(); + for (const auto& p : loop_map) { + if (const auto& exp_loop = ov::as_type_ptr(p.second)) { + const auto& uni_loop = exp_loop->get_unified_loop_info(); + if (affected_uni_loops.count(uni_loop)) + m_affected_uni2exp_map[uni_loop].push_back(exp_loop); + } + } +} + +void CPURuntimeConfigurator::BrgemmCopyBLoopPortsAdjuster::optimize() { + for (const auto& p : m_affected_uni2exp_map) { + const auto& uni_loop = p.first; + const auto& exp_loops = p.second; + snippets::RuntimeConfigurator::LoopInfoRuntimeParamsMap initialized_info; + if (intel_cpu::pass::AdjustBrgemmCopyBLoopPorts::update_loop_info(uni_loop)) { + initialized_info[uni_loop] = get_loop_runtime_params(uni_loop); + for (const auto& exp_loop : exp_loops) + update_expanded_loop_info(exp_loop, initialized_info); + } + } +} +#endif } // namespace intel_cpu } // namespace ov diff --git a/src/plugins/intel_cpu/src/emitters/snippets/cpu_runtime_configurator.hpp b/src/plugins/intel_cpu/src/emitters/snippets/cpu_runtime_configurator.hpp index 00bc676678d189..d8ef9772e813ff 100644 --- a/src/plugins/intel_cpu/src/emitters/snippets/cpu_runtime_configurator.hpp +++ b/src/plugins/intel_cpu/src/emitters/snippets/cpu_runtime_configurator.hpp @@ -44,6 +44,7 @@ class CPURuntimeConfigurator : public ov::snippets::RuntimeConfigurator { * @param linear_ir LinearIR */ void init_tensor_rank(const ov::snippets::lowered::LinearIRCPtr& linear_ir) const override; + void initialization(const ov::snippets::lowered::LinearIRCPtr& linear_ir) override; /** * @brief Calculate Loop parameters of Loop emitters and update these values in CPURuntimeConfig * @param linear_ir LinearIR @@ -51,6 +52,18 @@ class CPURuntimeConfigurator : public ov::snippets::RuntimeConfigurator { void update_loop_args(const ov::snippets::lowered::LinearIRCPtr& linear_ir) const; static const size_t rank6D; + + class BrgemmCopyBLoopPortsAdjuster { + public: + BrgemmCopyBLoopPortsAdjuster() = default; + BrgemmCopyBLoopPortsAdjuster(const ov::snippets::lowered::LinearIRCPtr& linear_ir); + + void optimize(); + + private: + std::unordered_map> m_affected_uni2exp_map; + } loopPortsAdjuster; }; } // namespace intel_cpu diff --git a/src/plugins/intel_cpu/src/emitters/snippets/x64/jit_kernel_emitter.cpp b/src/plugins/intel_cpu/src/emitters/snippets/x64/jit_kernel_emitter.cpp index 4a27c8e17150e8..476123355abe70 100644 --- a/src/plugins/intel_cpu/src/emitters/snippets/x64/jit_kernel_emitter.cpp +++ b/src/plugins/intel_cpu/src/emitters/snippets/x64/jit_kernel_emitter.cpp @@ -180,16 +180,16 @@ void jit_kernel_static_emitter::init_data_pointers(const std::vectormov(data_ptr_regs[i], h->ptr[reg_runtime_params + GET_OFF(dst_ptrs) + (i - num_inputs) * sizeof(void*)]); init_ptr_with_offset(data_ptr_regs[i], data_offsets[i], reg_tmp); } - // a rare case when num_params is maximal, so we have no spare gprs - // * Static case: we can use reg_runtime_params as the last reg_tmp for the last iteration (and corrupt it), since - // it won't be used anymore - // * Dynamic case: we will need reg_runtime_params to pass runtime args to LoopScheduler, so we have to - // push a reg on the stack, and restore it value afterward + // A rare case when num_params is maximal, so we have no spare gprs + // Note that we need to push-pop runtime params because some kernels might need them even in the static case + // (e.g. brgemm emitter for amx tile configuration access) if (last_iter_explicitly) { + h->push(reg_runtime_params); h->mov(data_ptr_regs[i], h->ptr[reg_runtime_params + GET_OFF(dst_ptrs) + (i - num_inputs) * sizeof(void*)]); reg_tmp = reg_runtime_params; // can corrupt reg_runtime_params, since we won't use it anymore init_ptr_with_offset(data_ptr_regs[i], data_offsets[i], reg_tmp); + h->pop(reg_runtime_params); } } diff --git a/src/plugins/intel_cpu/src/emitters/snippets/x64/kernel_executors/brgemm.cpp b/src/plugins/intel_cpu/src/emitters/snippets/x64/kernel_executors/brgemm.cpp index 6f1f4ab93aeda9..fad1be5a5d1289 100644 --- a/src/plugins/intel_cpu/src/emitters/snippets/x64/kernel_executors/brgemm.cpp +++ b/src/plugins/intel_cpu/src/emitters/snippets/x64/kernel_executors/brgemm.cpp @@ -246,7 +246,7 @@ void BrgemmKernelExecutor::update_config(const ov::snippets::lowered::Expression // Note: We check `is_incremented` attribute only for not incremented ports because // this `is_incremented = true` can be changed by `CleanRepeatedDataPointerShifts` optimization auto check_port = [&](const ov::snippets::lowered::LoopPort& p) { return p.dim_idx == 0; }; - OPENVINO_ASSERT(in_ports.size() == 2 && !in_ports.front().is_incremented && std::all_of(in_ports.cbegin(), in_ports.cend(), check_port) && + OPENVINO_ASSERT(in_ports.size() >= 2 && !in_ports.front().is_incremented && std::all_of(in_ports.cbegin(), in_ports.cend(), check_port) && out_ports.size() == 1 && check_port(out_ports.back()), "Incorrect Loop by Brgemm dimension N"); N = current_expanded_loop_info->get_increment(); @@ -269,7 +269,7 @@ void BrgemmKernelExecutor::update_config(const ov::snippets::lowered::Expression // Quick validation check: Should we check that port is really Brgemm port? // Note: We check `is_incremented` attribute only for not incremented ports because // this `is_incremented = true` can be changed by `CleanRepeatedDataPointerShifts` optimization - OPENVINO_ASSERT(in_ports.size() == 2 && in_ports.front().dim_idx == 0 && in_ports.back().dim_idx == 1 && + OPENVINO_ASSERT(in_ports.size() >= 2 && in_ports.front().dim_idx == 0 && in_ports.back().dim_idx == 1 && out_ports.size() == 1 && !out_ports.front().is_incremented, "Incorrect Loop by Brgemm dimension K"); K = current_expanded_loop_info->get_increment(); @@ -286,7 +286,7 @@ void BrgemmKernelExecutor::update_config(const ov::snippets::lowered::Expression OV_CPU_JIT_EMITTER_ASSERT(brgemm_node, "Got invalid node type in update_config"); // In case of data repacking LDB is chosen in accordance with repacking buffer size if (with_repacking(brgemm_node->get_type())) - LDB = brgemm_utils::repacking::compute_out_leading_dim(N, brgemm_node->get_input_element_type(1)); + LDB = brgemm_utils::repacking::compute_LDB(LDB, brgemm_node->get_input_element_type(1)); config.update(DIM_CAST(M), DIM_CAST(N), DIM_CAST(K), LDA, LDB, LDC, beta); } @@ -303,6 +303,8 @@ void BrgemmKernelExecutor::execute(const BrgemmKernelExecutor* executor, call_ar } cpu::x64::brgemm_kernel_params_t brgemm_p; + // Note: compensations should be applied only once, so we do it only on the first iteration, when beta == 0 + size_t is_with_comp = config.get_beta() == 0 && config.is_with_comp(); brgemm_p.batch = nullptr; // default value brgemm_p.ptr_A = args->A; @@ -311,8 +313,8 @@ void BrgemmKernelExecutor::execute(const BrgemmKernelExecutor* executor, call_ar brgemm_p.ptr_D = args->C; brgemm_p.ptr_buf = args->scratch; brgemm_p.ptr_bias = nullptr; - brgemm_p.do_post_ops = static_cast(config.is_with_comp()); - brgemm_p.do_apply_comp = static_cast(config.is_with_comp()); + brgemm_p.do_post_ops = is_with_comp; + brgemm_p.do_apply_comp = is_with_comp; brgemm_p.skip_accm = 0; brgemm_p.BS = 1; // default value OV_CPU_JIT_EMITTER_ASSERT(kernel->compiled_kernel, "has nullptr kernel"); diff --git a/src/plugins/intel_cpu/src/emitters/snippets/x64/kernel_executors/brgemm_copy_b.cpp b/src/plugins/intel_cpu/src/emitters/snippets/x64/kernel_executors/brgemm_copy_b.cpp index 17f8923ae9867b..cc79458c7c4c64 100644 --- a/src/plugins/intel_cpu/src/emitters/snippets/x64/kernel_executors/brgemm_copy_b.cpp +++ b/src/plugins/intel_cpu/src/emitters/snippets/x64/kernel_executors/brgemm_copy_b.cpp @@ -305,7 +305,7 @@ void BrgemmCopyBKernelExecutor::update_config(const ov::snippets::lowered::Expre init(N_dim, N_blk, 0); const auto& brg_weight_etype = expr->get_node()->get_input_element_type(0); - const auto LDB = brgemm_utils::repacking::compute_out_leading_dim(N_dim, brg_weight_etype); + const auto LDB = brgemm_utils::repacking::compute_LDB(N_dim, brg_weight_etype); const auto copy_B_wei_stride = ov::snippets::utils::get_dim_stride(expr->get_input_port(0), config.is_transposed_B() ? 0 : 1) * brg_weight_etype.size(); config.update(N_dim, N_blk, K_dim, K_blk, copy_B_wei_stride, LDB); diff --git a/src/plugins/intel_cpu/src/nodes/subgraph.cpp b/src/plugins/intel_cpu/src/nodes/subgraph.cpp index 05a1e5a958771b..ee24dd66493204 100644 --- a/src/plugins/intel_cpu/src/nodes/subgraph.cpp +++ b/src/plugins/intel_cpu/src/nodes/subgraph.cpp @@ -17,11 +17,10 @@ #include "snippets/pass/positioned_pass.hpp" #include "snippets/pass/canonicalization.hpp" #include "snippets/pass/analyze_broadcastable_inputs.hpp" -#include "snippets/lowered/linear_ir.hpp" -#include "snippets/lowered/pass/optimize_domain.hpp" #include "snippets/lowered/pass/insert_loops.hpp" #include "snippets/lowered/pass/mark_loops.hpp" #include "snippets/lowered/pass/insert_buffers.hpp" +#include "snippets/lowered/pass/init_loops.hpp" #include "transformations/defs.hpp" #include "transformations/cpu_opset/common/pass/convert_to_swish_cpu.hpp" #include "transformations/snippets/common/pass/mul_add_to_fma.hpp" @@ -38,6 +37,7 @@ #include "transformations/snippets/x64/pass/brgemm_to_brgemm_cpu.hpp" #include "transformations/snippets/x64/pass/enforce_precision.hpp" #include "transformations/snippets/x64/shape_inference.hpp" +#include "transformations/snippets/x64/pass/lowered/adjust_brgemm_copy_b_loop_ports.hpp" #endif #include "utils/cpu_utils.hpp" @@ -54,6 +54,7 @@ std::mutex err_print_lock; #endif #ifdef SNIPPETS_LIBXSMM_TPP +#include "snippets/lowered/pass/optimize_domain.hpp" #include "transformations/tpp/x64/pass/brgemm_to_brgemm_tpp.hpp" #include "transformations/tpp/x64/pass/eltwise_to_eltwise_tpp.hpp" #include "transformations/tpp/x64/pass/scalar_to_scalar_tpp.hpp" @@ -683,6 +684,10 @@ Subgraph::ControlFlowPasses Subgraph::getControlFlowPasses() const { SNIPPETS_REGISTER_PASS_RELATIVE(Place::After, ov::snippets::lowered::pass::MarkLoops, ov::intel_cpu::pass::BrgemmCPUBlocking); + + SNIPPETS_REGISTER_PASS_RELATIVE(Place::After, ov::snippets::lowered::pass::InitLoops, + ov::intel_cpu::pass::AdjustBrgemmCopyBLoopPorts); + SNIPPETS_REGISTER_PASS_RELATIVE(Place::After, ov::snippets::lowered::pass::InsertLoops, ov::intel_cpu::pass::FuseLoadStoreConvert); SNIPPETS_REGISTER_PASS_RELATIVE(Place::Before, ov::snippets::lowered::pass::InsertBuffers, diff --git a/src/plugins/intel_cpu/src/transformations/snippets/x64/op/brgemm_utils.cpp b/src/plugins/intel_cpu/src/transformations/snippets/x64/op/brgemm_utils.cpp index 844ec338b8a83b..adc215ef1d9900 100644 --- a/src/plugins/intel_cpu/src/transformations/snippets/x64/op/brgemm_utils.cpp +++ b/src/plugins/intel_cpu/src/transformations/snippets/x64/op/brgemm_utils.cpp @@ -6,7 +6,6 @@ #include "dnnl_extension_utils.h" #include "emitters/utils.hpp" -#include "snippets/utils/utils.hpp" #include "transformations/snippets/x64/op/brgemm_copy_b.hpp" #include "utils/general_utils.h" @@ -76,10 +75,6 @@ size_t get_elems_in_vec(const ov::element::Type& precision) { } namespace repacking { -size_t compute_out_leading_dim(const size_t n_block, const ov::element::Type& precision) { - return std::max(n_block, compute_inner_n_block(precision)); -} - size_t compute_inner_n_block(const ov::element::Type& precision) { switch (precision) { case element::i8: return 64; diff --git a/src/plugins/intel_cpu/src/transformations/snippets/x64/op/brgemm_utils.hpp b/src/plugins/intel_cpu/src/transformations/snippets/x64/op/brgemm_utils.hpp index bc627c59920c4b..aeb5b22cd56129 100644 --- a/src/plugins/intel_cpu/src/transformations/snippets/x64/op/brgemm_utils.hpp +++ b/src/plugins/intel_cpu/src/transformations/snippets/x64/op/brgemm_utils.hpp @@ -8,6 +8,7 @@ #include "openvino/core/type/element_type.hpp" #include "openvino/core/dimension.hpp" #include "snippets/lowered/expression.hpp" +#include "snippets/utils/utils.hpp" namespace ov { namespace intel_cpu { @@ -42,14 +43,19 @@ size_t compute_vnni_factor(const ov::element::Type& precision); size_t get_elems_in_vec(const ov::element::Type& precision); namespace repacking { +/// \brief Computes inner N block size used by OneDNN implementation. Depends on tensor precision +size_t compute_inner_n_block(const ov::element::Type& precision); /** * @brief Computes leading dimension (LDB) which must be used in brgemm and brgemm_copy_b emitters * @param n_block N block size shared between BrgemmCPU and BrgemmCopyB node * @param precision tensor precision */ -size_t compute_out_leading_dim(const size_t n_block, const ov::element::Type& precision); -/// \brief Computes inner N block size used by OneDNN implementation. Depends on tensor precision -size_t compute_inner_n_block(const ov::element::Type& precision); +template::value || std::is_same::value), bool>::type> +T compute_LDB(T n_block, const ov::element::Type& precision) { + return snippets::utils::is_dynamic_value(n_block) ? + n_block : + std::max(n_block, static_cast(compute_inner_n_block(precision))); +} } // namespace repacking } // namespace brgemm_utils } // namespace intel_cpu diff --git a/src/plugins/intel_cpu/src/transformations/snippets/x64/pass/lowered/adjust_brgemm_copy_b_loop_ports.cpp b/src/plugins/intel_cpu/src/transformations/snippets/x64/pass/lowered/adjust_brgemm_copy_b_loop_ports.cpp new file mode 100644 index 00000000000000..c421e5cc2a4805 --- /dev/null +++ b/src/plugins/intel_cpu/src/transformations/snippets/x64/pass/lowered/adjust_brgemm_copy_b_loop_ports.cpp @@ -0,0 +1,107 @@ +// Copyright (C) 2018-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 +// + +#include "snippets/itt.hpp" + +#include "adjust_brgemm_copy_b_loop_ports.hpp" +#include "snippets/utils/utils.hpp" +#include "snippets/lowered/loop_manager.hpp" +#include "snippets/lowered/expressions/buffer_expression.hpp" +#include "transformations/snippets/x64/op/brgemm_copy_b.hpp" +#include "transformations/snippets/x64/op/brgemm_cpu.hpp" + +namespace ov { +namespace intel_cpu { + +bool pass::AdjustBrgemmCopyBLoopPorts::update_loop_info(const std::shared_ptr& loop_info) { + OPENVINO_ASSERT(loop_info, "Invalid loop info pointer"); + bool modified = false; + auto caller = [&](snippets::lowered::LoopPort &loop_port, + snippets::lowered::UnifiedLoopInfo::LoopPortDesc &loop_desc) { + const auto& p = *loop_port.expr_port; + if (p.get_type() == snippets::lowered::ExpressionPort::Input && + p.get_index() == 1) { + const auto& node = p.get_expr()->get_node(); + if (auto brg = as_type_ptr(node)) { + const auto precision = node->get_input_element_type(1); + /* + * The BrgemmCopyB operation repacks the weights in the following way: + * 1) VNNI format is applied: KN4k for I8/U8, or KN2k for BF16 + * 2) Zero padding is applied if N4k < 256 or N2k < 64 + */ + if (brgemm_utils::with_repacking(brg->get_type()) && + precision != element::f32 && loop_port.is_incremented) { + // K blocking loop: account for zero padding + if (loop_port.dim_idx == 1) { + const auto ptr_incr = loop_desc.ptr_increment; + const auto blocked_shape_ptr_inc = brgemm_utils::repacking::compute_LDB(ptr_incr, precision); + if (ptr_incr != 0 && ptr_incr != blocked_shape_ptr_inc) { + loop_desc.ptr_increment = blocked_shape_ptr_inc; + OPENVINO_ASSERT(loop_desc.finalization_offset % ptr_incr == 0, + "Can't rescale finalization offsets"); + loop_desc.finalization_offset = loop_desc.ptr_increment * + (loop_desc.finalization_offset / ptr_incr); + } + // N blocking loop: account for the VNNI format + } else if (loop_port.dim_idx == 0) { + auto k_blk_size = static_cast(brgemm_utils::compute_vnni_factor(precision)); + loop_desc.ptr_increment = snippets::utils::dynamic_safe_mul(loop_desc.ptr_increment, k_blk_size); + loop_desc.finalization_offset = snippets::utils::dynamic_safe_mul(loop_desc.finalization_offset, k_blk_size); + } else { + OPENVINO_THROW("Unexpected loop port dimension index in AdjustBrgemmCopyBLoopPorts"); + } + modified = true; + } + } + } + }; + loop_info->iterate_through_infos(caller); + return modified; +} + +bool pass::AdjustBrgemmCopyBLoopPorts::run(const snippets::lowered::LinearIR& linear_ir) { + OV_ITT_SCOPED_TASK(ov::pass::itt::domains::SnippetsTransform, "Snippets::AdjustBrgemmCopyBLoopPorts") + + bool modified = false; + + for (const auto& expr : linear_ir) { + const auto& node = expr->get_node(); + if (!is_type(node)) + continue; + const auto& repacking_loop_ids = expr->get_loop_ids(); + const auto& child_ports = expr->get_output_port(0).get_connected_ports(); + OPENVINO_ASSERT(child_ports.size() == 1 && + is_type(child_ports.begin()->get_expr()), + "BrgemmCopyB should have one BufferExpression child"); + auto grandchild_ports = child_ports.begin()->get_expr()->get_output_port(0).get_connected_ports(); + for (const auto& target_port : grandchild_ports) { + const auto& port_node = target_port.get_expr()->get_node(); + if (!is_type(port_node)) { + OPENVINO_ASSERT(is_type(port_node), + "Invalid grandchild of BrgemmCopyB"); + continue; + } + const auto &brgemm_loop_ids = target_port.get_expr()->get_loop_ids(); + // Continue if there is no blocking loop + if (brgemm_loop_ids.empty() && repacking_loop_ids.empty()) + continue; + OPENVINO_ASSERT(brgemm_loop_ids.size() > repacking_loop_ids.size(), "Invalid BrgemmCopyB loop configuration"); + const auto &loop_manager = linear_ir.get_loop_manager(); + for (auto i = repacking_loop_ids.size(); i < brgemm_loop_ids.size(); i++) { + const auto &loop = loop_manager->get_loop_info(brgemm_loop_ids[i]); + auto uni_loop = ov::as_type_ptr(loop); + if (!uni_loop) + uni_loop = ov::as_type_ptr(loop)->get_unified_loop_info(); + if (!m_affected_loops.count(uni_loop) && update_loop_info(uni_loop)) { + m_affected_loops.insert(uni_loop); + modified = true; + } + } + } + } + + return modified; +} +} // namespace intel_cpu +} // namespace ov \ No newline at end of file diff --git a/src/plugins/intel_cpu/src/transformations/snippets/x64/pass/lowered/adjust_brgemm_copy_b_loop_ports.hpp b/src/plugins/intel_cpu/src/transformations/snippets/x64/pass/lowered/adjust_brgemm_copy_b_loop_ports.hpp new file mode 100644 index 00000000000000..5c65c7a0282823 --- /dev/null +++ b/src/plugins/intel_cpu/src/transformations/snippets/x64/pass/lowered/adjust_brgemm_copy_b_loop_ports.hpp @@ -0,0 +1,37 @@ +// Copyright (C) 2018-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 +// + +#pragma once + +#include "snippets/lowered/pass/pass.hpp" +#include "snippets/lowered/loop_info.hpp" + +namespace ov { +namespace intel_cpu { +namespace pass { + +/** + * @interface AdjustBrgemmCopyBLoopPorts + * @brief BrgemmCopyB is located outside of blocking loops and repacks input data into a blocked layout. + * This layout should be accounted for when we increment BrgemmCopyB data pointers. This pass + * Finds loop ports connected to BrgemmCopyB and sets appropriate pointer increments. + * @ingroup snippets + */ +class AdjustBrgemmCopyBLoopPorts: public snippets::lowered::pass::Pass { +public: + AdjustBrgemmCopyBLoopPorts() = default; + OPENVINO_RTTI("AdjustBrgemmCopyBLoopPorts", "Pass"); + bool run(const snippets::lowered::LinearIR& linear_ir); + bool run(snippets::lowered::LinearIR& linear_ir) override { + return run(const_cast(linear_ir)); + } + static bool update_loop_info(const snippets::lowered::UnifiedLoopInfoPtr& uni_loop_info); + const std::unordered_set& get_affected_loops() { return m_affected_loops; } +private: + std::unordered_set m_affected_loops; +}; + +} // namespace pass +} // namespace intel_cpu +} // namespace ov diff --git a/src/plugins/intel_cpu/src/transformations/snippets/x64/pass/lowered/brgemm_cpu_blocking.cpp b/src/plugins/intel_cpu/src/transformations/snippets/x64/pass/lowered/brgemm_cpu_blocking.cpp index 51565537c43568..9b3009284e09e8 100644 --- a/src/plugins/intel_cpu/src/transformations/snippets/x64/pass/lowered/brgemm_cpu_blocking.cpp +++ b/src/plugins/intel_cpu/src/transformations/snippets/x64/pass/lowered/brgemm_cpu_blocking.cpp @@ -44,18 +44,6 @@ LinearIR::constExprIt BrgemmCPUBlocking::move_new_memory_buffer(LinearIR& linear return std::prev(brgemm_it); } -LinearIR::constExprIt BrgemmCPUBlocking::get_loop_begin_pos(LinearIR& linear_ir, const LinearIR::constExprIt& brgemm_it, const ExpressionPtr& copy_b_expr) { - auto loop_begin_it = brgemm_it; - const auto& brgemm_expr = *brgemm_it; - const auto brgemm = ov::as_type_ptr(brgemm_expr->get_node()); - OPENVINO_ASSERT(brgemm, "get_loop_begin_pos must be called only for BrgemmCPU expression"); - if (with_amx(brgemm->get_type())) - loop_begin_it = move_new_memory_buffer(linear_ir, brgemm_it); - if (copy_b_expr) - loop_begin_it = linear_ir.find(copy_b_expr); - return loop_begin_it; -} - size_t BrgemmCPUBlocking::get_default_n_blk(size_t n) const { return dnnl::impl::cpu::x64::mayiuse(dnnl::impl::cpu::x64::avx512_core) ? 64 : 24; } @@ -66,6 +54,8 @@ std::tuple BrgemmCPUBlocking::get_blocking_params(const size_t m_blk, n_blk, k_blk; std::tie(m_blk, n_blk, k_blk) = BrgemmBlockingBase::get_blocking_params(brgemm_expr); + // Note: K,N blocking is functionally enabled, need to turn it on after blocking heuristic is updated to cover + // the low precision cases (ticket: 156014) if (with_repacking(brgemm->get_type())) { n_blk = get_full_dim_value(); k_blk = get_full_dim_value(); @@ -88,47 +78,48 @@ bool BrgemmCPUBlocking::mark_blocking_loops(LinearIR& linear_ir, const auto brgemm = ov::as_type_ptr(brgemm_expr->get_node()); const auto type = brgemm->get_type(); - if (stand_alone(type)) - return ov::snippets::lowered::pass::BrgemmBlockingBase::mark_blocking_loops(linear_ir, brgemm_it, m_block, n_block, k_block); + auto res = ov::snippets::lowered::pass::BrgemmBlockingBase::mark_blocking_loops(linear_ir, brgemm_it, m_block, n_block, k_block); - brgemm_expr->get_input_port_descriptor(0)->set_subtensor({m_block, k_block}); - brgemm_expr->get_input_port_descriptor(1)->set_subtensor({k_block, n_block}); - brgemm_expr->get_output_port_descriptor(0)->set_subtensor({m_block, n_block}); + if (stand_alone(type)) + return res; const auto copy_b_expr = linear_ir.get_expr_by_node(brgemm->get_brgemm_copy()); - copy_b_expr->get_input_port_descriptor(0)->set_subtensor({k_block, n_block}); - copy_b_expr->get_output_port_descriptor(0)->set_subtensor({k_block, n_block}); + const ov::snippets::VectorDims full_subtensor(2, get_full_dim_value()); + copy_b_expr->get_input_port_descriptor(0)->set_subtensor(full_subtensor); + copy_b_expr->get_output_port_descriptor(0)->set_subtensor(full_subtensor); + + if (with_amx(type)) { + move_new_memory_buffer(linear_ir, brgemm_it); + auto buffer_it = std::prev(brgemm_it); + buffer_it->get()->set_loop_ids(brgemm_expr->get_loop_ids()); + } + + const auto& loop_manager = linear_ir.get_loop_manager(); if (with_compensations(type)) { - const ov::snippets::VectorDims compensations_subtensor{1, n_block}; + const ov::snippets::VectorDims compensations_subtensor{1, get_full_dim_value()}; OPENVINO_ASSERT(brgemm_expr->get_input_count() == 3, "Brgemm must have 3 inputs in case of compensations."); - brgemm_expr->get_input_port_descriptor(2)->set_subtensor(compensations_subtensor); + const auto& compens_port = brgemm_expr->get_input_port(2); + compens_port.get_descriptor_ptr()->set_subtensor(compensations_subtensor); copy_b_expr->get_output_port_descriptor(1)->set_subtensor(compensations_subtensor); - } - const auto& loop_manager = linear_ir.get_loop_manager(); - if (!is_full_dim_value(k_block)) { - const auto loop_begin = get_loop_begin_pos(linear_ir, brgemm_it, copy_b_expr); - const std::vector entries{LoopPort(brgemm_expr->get_input_port(0), true, 0), - LoopPort(copy_b_expr->get_input_port(0), true, 1)}; - const std::vector exits{LoopPort(brgemm_expr->get_output_port(0), false)}; - mark_k_blocking(loop_manager, loop_begin, std::next(brgemm_it), entries, exits, k_block); - } - if (!is_full_dim_value(n_block)) { - const auto loop_begin = get_loop_begin_pos(linear_ir, brgemm_it, copy_b_expr); - const std::vector entries{LoopPort(brgemm_expr->get_input_port(0), false), - LoopPort(copy_b_expr->get_input_port(0), true)}; - const std::vector exits{LoopPort(brgemm_expr->get_output_port(0), true)}; - mark_n_blocking(loop_manager, loop_begin, std::next(brgemm_it), entries, exits, n_block); - } - if (!is_full_dim_value(m_block)) { - const bool include_repacking = !is_full_dim_value(k_block) || !is_full_dim_value(n_block); - const auto loop_begin = get_loop_begin_pos(linear_ir, brgemm_it, include_repacking ? copy_b_expr : nullptr); - const auto b_input_port = include_repacking ? copy_b_expr->get_input_port(0) : brgemm_expr->get_input_port(1); - std::vector entries{LoopPort(brgemm_expr->get_input_port(0), true), LoopPort(b_input_port, false)}; - if (!include_repacking && with_compensations(type)) - entries.emplace_back(brgemm_expr->get_input_port(2), false); - const std::vector exits{LoopPort(brgemm_expr->get_output_port(0), true)}; - mark_m_blocking(loop_manager, loop_begin, std::next(brgemm_it), entries, exits, m_block); + const auto& loop_ids = brgemm_expr->get_loop_ids(); + size_t i = 0; + LoopInfoPtr loop_info = nullptr; + auto update_loop_info = [&](LoopPort&& new_port) { + OPENVINO_ASSERT(i < loop_ids.size(), "Attempt to access invalid loop id"); + loop_info = loop_manager->get_loop_info(loop_ids[i++]); + const auto& in_ports = loop_info->get_input_ports(); + OPENVINO_ASSERT(in_ports.size() > 1, "Invalid number of input loop ports"); + loop_info->replace_with_new_ports(in_ports[1], {in_ports[1], new_port}); + }; + if (!is_full_dim_value(m_block)) + update_loop_info({compens_port, false, 1}); + + if (!is_full_dim_value(n_block)) + update_loop_info({compens_port, true, 0}); + + if (!is_full_dim_value(k_block)) + update_loop_info({compens_port, false, 1}); } return true; } diff --git a/src/plugins/intel_cpu/src/transformations/snippets/x64/pass/lowered/brgemm_cpu_blocking.hpp b/src/plugins/intel_cpu/src/transformations/snippets/x64/pass/lowered/brgemm_cpu_blocking.hpp index 22429a6b0c98fb..0fee4e80454f9a 100644 --- a/src/plugins/intel_cpu/src/transformations/snippets/x64/pass/lowered/brgemm_cpu_blocking.hpp +++ b/src/plugins/intel_cpu/src/transformations/snippets/x64/pass/lowered/brgemm_cpu_blocking.hpp @@ -40,10 +40,6 @@ class BrgemmCPUBlocking : public ov::snippets::lowered::pass::BrgemmBlocking get_blocking_params(const ov::snippets::lowered::ExpressionPtr& brgemm_expr) const override; diff --git a/src/plugins/intel_cpu/tests/unit/snippets_transformations/x64/lowered/brgemm_blocking.cpp b/src/plugins/intel_cpu/tests/unit/snippets_transformations/x64/lowered/brgemm_blocking.cpp index 89f2e06c14a9fa..738afba6a101f9 100644 --- a/src/plugins/intel_cpu/tests/unit/snippets_transformations/x64/lowered/brgemm_blocking.cpp +++ b/src/plugins/intel_cpu/tests/unit/snippets_transformations/x64/lowered/brgemm_blocking.cpp @@ -81,43 +81,6 @@ void create_brgemm_loop_infos(const LinearIRPtr& linear_ir, BrgemmBlockingBase::get_default_blocking_loop_handlers(m, m_block))); } } - -void create_brgemm_with_copy_b_loop_infos(const LinearIRPtr& linear_ir, - const ExpressionPtr& brgemm_expr, - const ExpressionPtr& copy_b_expr, - size_t m = 0, size_t m_blk = 0, - size_t k = 0, size_t k_blk = 0, - size_t n = 0, size_t n_blk = 0) { - const bool k_block = k != 0 && k_blk != 0; - const bool n_block = k != 0 && k_blk != 0; - const bool m_block = m != 0 && m_blk != 0; - if (k_block) { - const auto loop_info = - std::make_shared(k, k_blk, - std::vector{LoopPort(brgemm_expr->get_input_port(0)), - LoopPort(copy_b_expr->get_input_port(0), true, 1)}, - std::vector{LoopPort(brgemm_expr->get_output_port(0), false)}, - get_k_loop_handlers(k, k_block)); - linear_ir->get_loop_manager()->add_loop_info(loop_info); - } - if (n_block) { - linear_ir->get_loop_manager()->add_loop_info( - std::make_shared(n, n_blk, - std::vector{LoopPort(brgemm_expr->get_input_port(0), false), - LoopPort(copy_b_expr->get_input_port(0))}, - std::vector{LoopPort(brgemm_expr->get_output_port(0))}, - BrgemmBlockingBase::get_default_blocking_loop_handlers(n, n_block))); - } - if (m_block) { - const auto& second_input_port = k_block || n_block ? copy_b_expr->get_input_port(0) : brgemm_expr->get_input_port(1); - linear_ir->get_loop_manager()->add_loop_info( - std::make_shared(m, m_blk, - std::vector{LoopPort(brgemm_expr->get_input_port(0), true, 1), - LoopPort(second_input_port, false, 1)}, - std::vector{LoopPort(brgemm_expr->get_output_port(0), true, 1)}, - BrgemmBlockingBase::get_default_blocking_loop_handlers(m, m_block))); - } -} } // namespace class BrgemmBlockingTest : public LoweredPassTestsF { @@ -230,6 +193,8 @@ TEST_F(BrgemmCPUBlockingTest, BlockingIsNotNeeded) { } TEST_F(BrgemmCPUBlockingTest, WithDataRepacking) { + // Skipped because K,N blocking is disabled until heuristic is updated (ticket: 156014) + GTEST_SKIP(); const ov::Dimension::value_type m = 384; const ov::Dimension::value_type k = 1024; const ov::Dimension::value_type n = 384; @@ -257,14 +222,16 @@ TEST_F(BrgemmCPUBlockingTest, WithDataRepacking) { auto brgemm = linear_ir_ref->push_node(data_a.second, copy_b.second, BRGEMM_TYPE::REPACKING_ONLY); const auto& brgemm_expr = *brgemm.first; - init_expr_descriptors(brgemm_expr, {{m_blk, full_dim}, {full_dim, full_dim}, {m_blk, full_dim}}); - create_brgemm_with_copy_b_loop_infos(linear_ir_ref, brgemm_expr, copy_b_expr, m, m_blk); - brgemm_expr->set_loop_ids({0}); + init_expr_descriptors(brgemm_expr, {{m_blk, k_blk}, {k_blk, n_blk}, {m_blk, n_blk}}); + create_brgemm_loop_infos(linear_ir_ref, brgemm_expr, m, m_blk, k, k_blk, n, n_blk); + brgemm_expr->set_loop_ids({2, 1, 0}); auto result = linear_ir_ref->push_node(brgemm.second); } } TEST_F(BrgemmCPUBlockingTest, WithCompensations) { + // Skipped because K,N blocking is disabled until heuristic is updated (ticket: 156014) + GTEST_SKIP(); const ov::Dimension::value_type m = 384; const ov::Dimension::value_type k = 1024; const ov::Dimension::value_type n = 384; @@ -292,14 +259,27 @@ TEST_F(BrgemmCPUBlockingTest, WithCompensations) { const auto& copy_b_n = copy_b.second; auto brgemm = linear_ir_ref->push_node(data_a.second, copy_b_n->output(0), copy_b_n->output(1), BRGEMM_TYPE::WITH_COMPENSATIONS); const auto& brgemm_expr = *brgemm.first; - init_expr_descriptors(brgemm_expr, {{m_blk, full_dim}, {full_dim, full_dim}, {1, full_dim}, {m_blk, full_dim}}); - create_brgemm_loop_infos(linear_ir_ref, brgemm_expr, m, m_blk); - brgemm_expr->set_loop_ids({0}); + init_expr_descriptors(brgemm_expr, {{m_blk, k_blk}, {k_blk, n_blk}, {1, full_dim}, {m_blk, n_blk}}); + create_brgemm_loop_infos(linear_ir_ref, brgemm_expr, m, m_blk, k, k_blk, n, n_blk); + + const auto loop_manager = linear_ir_ref->get_loop_manager(); + auto update_loop_info = [&loop_manager](size_t loop_id, LoopPort&& new_port) { + const auto& loop_info = loop_manager->get_loop_info(loop_id); + const auto& in_ports = loop_info->get_input_ports(); + loop_info->replace_with_new_ports(in_ports[1], {in_ports[1], new_port}); + }; + const auto& compens_port = brgemm_expr->get_input_port(2); + update_loop_info(1, {compens_port, true, 0}); + update_loop_info(0, {compens_port, false, 1}); + + brgemm_expr->set_loop_ids({2, 1, 0}); auto result = linear_ir_ref->push_node(brgemm.second); } } TEST_F(BrgemmCPUBlockingTest, AMX) { + // Skipped because K,N blocking is disabled until heuristic is updated (ticket: 156014) + GTEST_SKIP(); const ov::Dimension::value_type m = 384; const ov::Dimension::value_type k = 1024; const ov::Dimension::value_type n = 384; @@ -322,16 +302,25 @@ TEST_F(BrgemmCPUBlockingTest, AMX) { auto data_b = linear_ir_ref->push_node(precision, input_shape_b); auto copy_b = linear_ir_ref->push_node(data_b.second, precision, BRGEMM_TYPE::REPACKING_ONLY); const auto copy_b_expr = *copy_b.first; - init_expr_descriptors(copy_b_expr, {{full_dim, full_dim}, {full_dim, full_dim}}); + init_expr_descriptors(copy_b_expr, {{full_dim, full_dim}, + {full_dim, full_dim}}); - auto scratch = linear_ir_ref->push_node(ov::Shape{BrgemmCPU::SCRATCH_BYTE_SIZE}); - scratch.first->get()->set_loop_ids({0}); + auto scratch = linear_ir_ref->push_node(ov::Shape {BrgemmCPU::SCRATCH_BYTE_SIZE}); + scratch.first->get()->set_loop_ids({2, 1, 0}); - auto brgemm = linear_ir_ref->push_node(data_a.second, copy_b.second, scratch.second, BRGEMM_TYPE::WITH_AMX); + auto brgemm = linear_ir_ref->push_node(data_a.second, copy_b.second, scratch.second, + BRGEMM_TYPE::WITH_AMX); const auto& brgemm_expr = *brgemm.first; - init_expr_descriptors(brgemm_expr, {{m_blk, full_dim}, {full_dim, full_dim}, get_default_subtensor(), {m_blk, full_dim}}); - create_brgemm_with_copy_b_loop_infos(linear_ir_ref, brgemm_expr, copy_b_expr, m, m_blk); - brgemm_expr->set_loop_ids({0}); + init_expr_descriptors(brgemm_expr, {{m_blk, k_blk}, {k_blk, n_blk}, get_default_subtensor(), {m_blk, n_blk}}); + create_brgemm_loop_infos(linear_ir_ref, brgemm_expr, m, 0, k, k_blk, n, n_blk); + + std::vector entries {LoopPort(brgemm_expr->get_input_port(0), true, 1), + LoopPort(brgemm_expr->get_input_port(1), false, 1)}; + std::vector exits {LoopPort(brgemm_expr->get_output_port(0), true, 1)}; + auto handlers = BrgemmBlockingBase::get_default_blocking_loop_handlers(m, m_blk); + linear_ir_ref->get_loop_manager()-> + add_loop_info(std::make_shared(m, m_blk, entries, exits, handlers)); + brgemm_expr->set_loop_ids({2, 1, 0}); auto result = linear_ir_ref->push_node(brgemm.second); } } From f33a637d30484ea1404f9648b739e35fb43883cd Mon Sep 17 00:00:00 2001 From: Sergey Ivanov Date: Thu, 7 Nov 2024 07:50:28 -0800 Subject: [PATCH 39/93] Improve SIT to compose a batch tensor as a model input make up from a packet of different images (#27341) ### Details: - A new parameter `override_model_batch_size` was added several PRs ago. The purpose of this parameter was is to take a picture/binary and "stretch" it to fit a batched tensor as an input of a batched model providing that we could run and validate batched models - The current PR enhance this idea and allows us to set distinguished images/binaries in a batched tensor input so that we could validate correctness of processing of different lines of batch during our inference invocations. SIT now uses "|" separator to discern different images inside input images array as an command line argument. The batched images filing algorithm is the following: 1) If passed images amount is not enough to fill up an entire batch, a last image will be propagated and copied to remnant lines of N-batch. 2) If passed images array is larger than an batched tensor, then only N images will be used up and the rest of images will be thrown away Example: ``` single-image-test --device CPU --network resnet50.xml --mode classification --top_k 5 --il NCHW --ol NC --iml NCHW --oml NC --ip FP16 --op FP16 --override_model_batch_size 3 --input "dog.bmp|00000001.JPEG|00000002.JPEG" ``` gives us ``` ... Load input #0 from [dog.bmp,00000001.JPEG,00000002.JPEG] as f16 [N,C,H,W] [3,3,224,224] Fill up all input batch slices planes up to 3 with image data from the array: [0/3] Fill input batch slices planes starting from index 1 up to 3 with image data from the array: [1/3] Fill input batch slices planes starting from index 2 up to 3 with image data from the array: [2/3] ``` ### Tickets: - E####145303 --------- Co-authored-by: Maksim Doronin --- .../tools/common/include/tensor_utils.hpp | 8 + .../tools/common/include/tools_helpers.hpp | 16 +- .../tools/common/src/tensor_utils.cpp | 24 +++ .../intel_npu/tools/compile_tool/main.cpp | 18 +- .../tools/single-image-test/main.cpp | 179 ++++++++++++++---- 5 files changed, 197 insertions(+), 48 deletions(-) diff --git a/src/plugins/intel_npu/tools/common/include/tensor_utils.hpp b/src/plugins/intel_npu/tools/common/include/tensor_utils.hpp index 87b2301a7ae4fb..18d431c157d2dd 100644 --- a/src/plugins/intel_npu/tools/common/include/tensor_utils.hpp +++ b/src/plugins/intel_npu/tools/common/include/tensor_utils.hpp @@ -68,5 +68,13 @@ std::vector> parseTensorsAsFP32(const std::map& tensors, const ov::Layout& layout); + +/** + * @brief Split a batched tensor on several non-batched tensors having the same shapes and precisions. + * + * @param tensors The source non-batched tensors + * @return The merged batched tensor + */ +std::list splitBatchedTensor(const ov::Tensor &tensor, const ov::Layout& layout, size_t parts); } // namespace utils } // namespace npu diff --git a/src/plugins/intel_npu/tools/common/include/tools_helpers.hpp b/src/plugins/intel_npu/tools/common/include/tools_helpers.hpp index e9743594ad8711..304f16c29d9a87 100644 --- a/src/plugins/intel_npu/tools/common/include/tools_helpers.hpp +++ b/src/plugins/intel_npu/tools/common/include/tools_helpers.hpp @@ -109,6 +109,7 @@ void setModelBatch(std::shared_ptr& model, uint32_t batch = 1) { if (batch == 1) { return; } + std::cout << "Configuring model batch: " << batch << std::endl; for (auto&& item : model->get_parameters()) { auto shape = item->get_partial_shape(); auto rank = shape.rank(); @@ -175,7 +176,20 @@ void reshape(ov::OutputVector inputsInfo, InputsInfo& infoMap, std::shared_ptrget_layout(); + std::cout << " " << param->get_friendly_name() << " : " << param->get_element_type() << " / " + << param->get_layout().to_string() << " / " << param->get_partial_shape().to_string() << std::endl; + } + std::cout << "Network outputs:" << std::endl; + for (auto&& result : network.get_results()) { + std::cout << " " << result->get_friendly_name() << " : " << result->get_element_type() << " / " + << result->get_layout().to_string() << " / " << result->get_output_partial_shape(0).to_string() + << std::endl; } } diff --git a/src/plugins/intel_npu/tools/common/src/tensor_utils.cpp b/src/plugins/intel_npu/tools/common/src/tensor_utils.cpp index 32616b86135243..c2b4902497777e 100644 --- a/src/plugins/intel_npu/tools/common/src/tensor_utils.cpp +++ b/src/plugins/intel_npu/tools/common/src/tensor_utils.cpp @@ -492,5 +492,29 @@ ov::Tensor joinTensors(const std::list& tensors, const ov::Layout& l } return out; } + +std::list splitBatchedTensor(const ov::Tensor &tensor, const ov::Layout& layout, size_t parts) { + if (!parts) { + OPENVINO_THROW("Cannot split tensor on parts: ", parts); + } + auto pivotShape = tensor.get_shape(); + if (!ov::layout::has_batch(layout)) { + OPENVINO_THROW("Cannot split tensor: has no batch_idx in layout", layout.to_string()); + } + auto pivotPrecision = tensor.get_element_type(); + if (pivotShape[ov::layout::batch_idx(layout)] % parts != 0) { + OPENVINO_THROW("Cannot split tensor with batch size: ", pivotShape[ov::layout::batch_idx(layout)], " on: ", parts ," equal tensors"); + } + pivotShape[ov::layout::batch_idx(layout)] /= parts; + std::list ret; + const auto *inputBuffer = tensor.data(); + for (size_t i = 0; i < parts; i ++) { + ov::Tensor out(pivotPrecision, pivotShape); + memcpy(out.data(), inputBuffer, out.get_byte_size()); + inputBuffer += out.get_byte_size(); + ret.push_back(std::move(out)); + } + return ret; +} } // namespace utils } // namespace npu diff --git a/src/plugins/intel_npu/tools/compile_tool/main.cpp b/src/plugins/intel_npu/tools/compile_tool/main.cpp index 7a088d1afc69e2..47178833508182 100644 --- a/src/plugins/intel_npu/tools/compile_tool/main.cpp +++ b/src/plugins/intel_npu/tools/compile_tool/main.cpp @@ -296,21 +296,6 @@ void configurePrePostProcessing(std::shared_ptr& model, const std::st model = preprocessor.build(); } -void printInputAndOutputsInfoShort(const ov::Model& network) { - std::cout << "Network inputs:" << std::endl; - for (auto&& param : network.get_parameters()) { - auto l = param->get_layout(); - std::cout << " " << param->get_friendly_name() << " : " << param->get_element_type() << " / " - << param->get_layout().to_string() << " / " << param->get_partial_shape().to_string() << std::endl; - } - std::cout << "Network outputs:" << std::endl; - for (auto&& result : network.get_results()) { - std::cout << " " << result->get_friendly_name() << " : " << result->get_element_type() << " / " - << result->get_layout().to_string() << " / " << result->get_output_partial_shape(0).to_string() - << std::endl; - } -} - inline std::string fileNameNoExt(const std::string& filepath) { auto pos = filepath.rfind('.'); if (pos == std::string::npos) @@ -456,6 +441,9 @@ int main(int argc, char* argv[]) { std::cout << "Configuring model pre & post processing" << std::endl; configurePrePostProcessing(model, FLAGS_ip, FLAGS_op, FLAGS_iop, FLAGS_il, FLAGS_ol, FLAGS_iol, FLAGS_iml, FLAGS_oml, FLAGS_ioml); + if (FLAGS_shape.empty()) { + setModelBatch(model, FLAGS_override_model_batch_size); + } std::cout << "Printing Input and Output Info from model" << std::endl; printInputAndOutputsInfoShort(*model); auto timeBeforeLoadNetwork = std::chrono::steady_clock::now(); diff --git a/src/plugins/intel_npu/tools/single-image-test/main.cpp b/src/plugins/intel_npu/tools/single-image-test/main.cpp index 5658c18650243b..2454e9afd40e0d 100644 --- a/src/plugins/intel_npu/tools/single-image-test/main.cpp +++ b/src/plugins/intel_npu/tools/single-image-test/main.cpp @@ -183,6 +183,21 @@ std::vector splitStringList(const std::string& str, char delim) { return out; } +std::string to_string(const std::vector& c) { + std::stringstream stream; + std::string ret; + if (!c.empty()) { + stream << "["; + for (const auto &elem : c) { + stream << elem << ","; + } + ret = stream.str(); + ret.pop_back(); + ret += "]"; + } + return ret; +} + std::map parseArgMap(std::string argMap) { argMap.erase(std::remove_if(argMap.begin(), argMap.end(), ::isspace), argMap.end()); @@ -386,7 +401,23 @@ void convertBufferType(OutT* destination, const InT* source, size_t numberOfElem }); } -void cvToOV(const cv::Mat& cvImg, const ov::Tensor& tensor, const ov::Shape& shape, const ov::Layout& layout, +struct BatchIndexer { + const size_t index = 0; + const size_t size = 1; + + BatchIndexer(size_t lineIndex = 0, size_t lineCount = 1) : index(lineIndex), size(lineCount) { + OPENVINO_ASSERT(index < size, "Inconsistent parameters used for " + "BatchIndexer construction, lineIndex: ", index, + " must be lesser than lineCount: ", size); + } + + std::string to_string() const { + std::stringstream sstream; + sstream << "[" << index << "/" << size << "]"; + return sstream.str(); + } +}; +void cvToOV(const cv::Mat& cvImg, const BatchIndexer &cvImgInBatch, const ov::Tensor& tensor, const ov::Shape& shape, const ov::Layout& layout, const std::string& colorFormat) { const ov::element::Type& precision = tensor.get_element_type(); @@ -449,8 +480,12 @@ void cvToOV(const cv::Mat& cvImg, const ov::Tensor& tensor, const ov::Shape& sha if (layout == ov::Layout("NHWC")) { const auto dataBuffer = reinterpret_cast(tensor.data()); - - cv::Mat out(static_cast(H), static_cast(W), cvType, dataBuffer); + cv::Mat auxOut(static_cast(H), static_cast(W), cvType); + cv::Mat tensorOut(static_cast(H), static_cast(W), cvType, dataBuffer); + // only a first image from an input image array fills an original input tensor up. + // Subsequent images (if exist) will fill batch slices of the input tensor + // by its number in the input array respectively + cv::Mat &out = (cvImgInBatch.index == 0 ? tensorOut : auxOut); if (precision == ov::element::Type_t::f16) { const auto inPtr = in.ptr(); @@ -466,13 +501,35 @@ void cvToOV(const cv::Mat& cvImg, const ov::Tensor& tensor, const ov::Shape& sha in.copyTo(out); } - for (size_t n = 1; n < N; ++n) { + // Being called sequentially with ascending `cvImgInBatch.index` value, + // it fills up rest of the batched tensor by + // a last requested image data until its ending from a batched slice position + // determined by parameter 'cvImgInBatch.index', so that filling N batched tensor + // by array of images size M, where M < N, will make up + // The final batched tensor will comprise + // [imgIdx_0, imgIdx_1,..., imgIdx_M, imgIdx_M,...,imgIdx_M] as its slices + if (cvImgInBatch.index == 0 && N != 1) { + std::cout << "Fill up all input batch slices up to " << N + << " with image data from the array: [" + << cvImgInBatch.to_string() << std::endl; + } + for (size_t n = std::max(1, cvImgInBatch.index); n < N; ++n) { + if (n == std::max(1, cvImgInBatch.index) && cvImgInBatch.index >= 1) { + std::cout << "Fill input batch slices starting from index " + << n << " up to " << N << " with image data from the array: " + << cvImgInBatch.to_string() << std::endl; + } cv::Mat batch(static_cast(H), static_cast(W), cvType, dataBuffer + n * (out.size().area() * out.elemSize())); out.copyTo(batch); } } else if (layout == ov::Layout("NCHW")) { - auto tensorPlanes = ovToCV(tensor, shape, layout, 0); + ov::Tensor auxTensor(precision, shape); + const ov::Tensor &outTensor = (cvImgInBatch.index == 0 ? tensor : auxTensor); + // only a first image from an input image array fills an original input tensor up. + // Subsequent images (if exist) will fill batch slices of the input tensor + // by its number in the input array respectively + auto tensorPlanes = ovToCV(outTensor, shape, layout, 0); if (!(precision == ov::element::Type_t::f16 || precision == ov::element::Type_t::bf16)) { @@ -495,7 +552,24 @@ void cvToOV(const cv::Mat& cvImg, const ov::Tensor& tensor, const ov::Shape& sha } } - for (size_t n = 1; n < N; ++n) { + // Being called sequentially with ascending `cvImgInBatch.index` value, + // it fills up rest of the batched tensor by + // a last requested image data until its ending from a batched slice position + // determined by parameter 'cvImgInBatch.index', so that filling N batched tensor + // by array of images size M, where M < N, will make up + // The final batched tensor will comprise + // [imgIdx_0, imgIdx_1,..., imgIdx_M, imgIdx_M,...,imgIdx_M] as its slices + if (cvImgInBatch.index == 0 && N != 1) { + std::cout << "Fill up all input batch slices planes up to " << N + << " with image data from the array: " + << cvImgInBatch.to_string() << std::endl; + } + for (size_t n = std::max(1, cvImgInBatch.index); n < N; ++n) { + if (n == std::max(1, cvImgInBatch.index) && cvImgInBatch.index >= 1) { + std::cout << "Fill input batch slices planes starting from index " + << n << " up to " << N << " with image data from the array: " + << cvImgInBatch.to_string() << std::endl; + } const auto batchPlanes = ovToCV(tensor, shape, layout, n); OPENVINO_ASSERT(batchPlanes.size() == tensorPlanes.size()); @@ -654,27 +728,28 @@ std::string cleanName(std::string&& name) { return std::move(name); } -ov::Tensor loadImage(const ov::element::Type& precision, const ov::Shape& shape, const ov::Layout& layout, - const std::string& filePath, const std::string& colorFormat) { - const auto frame = cv::imread(filePath, cv::IMREAD_COLOR); - OPENVINO_ASSERT(!frame.empty(), "Failed to open input image file ", filePath); - +ov::Tensor loadImages(const ov::element::Type& precision, const ov::Shape& shape, const ov::Layout& layout, + const std::vector& filePaths, const std::string& colorFormat) { const ov::Tensor tensor(precision, shape); + for (size_t fileIndex = 0; fileIndex != filePaths.size(); fileIndex++) { + const auto &filePath = filePaths[fileIndex]; + const auto frame = cv::imread(filePath, cv::IMREAD_COLOR); + OPENVINO_ASSERT(!frame.empty(), "Failed to open input image file ", filePath); - cvToOV(frame, tensor, shape, layout, colorFormat); - + cvToOV(frame, BatchIndexer{fileIndex, filePaths.size()}, tensor, shape, layout, colorFormat); + } return tensor; } -ov::Tensor loadBinary(const ov::element::Type& modelPrecision, const ov::Shape& shape, const ov::Layout& layout, - const std::string& filePath, const ov::element::Type& dataPrecision) { +void loadBinary(const std::string& filePath, const BatchIndexer &fileSourceInBatch, ov::Tensor &requestedTensor, + const ov::element::Type& modelPrecision, const ov::Shape& shape, + const ov::Layout& layout, const ov::element::Type& dataPrecision) { std::ifstream binaryFile(filePath, std::ios_base::binary | std::ios_base::ate); OPENVINO_ASSERT(binaryFile, "Failed to open input binary file: ", filePath); const auto fileSize = binaryFile.tellg(); binaryFile.seekg(0, std::ios_base::beg); OPENVINO_ASSERT(binaryFile.good(), "While reading a file an error is encountered"); const size_t fileBytes = static_cast(fileSize); - ov::Tensor requestedTensor(modelPrecision, shape); const size_t reqTensorBytes = static_cast(requestedTensor.get_byte_size()); if (dataPrecision != modelPrecision && dataPrecision != ov::element::Type_t::undefined) { @@ -688,7 +763,7 @@ ov::Tensor loadBinary(const ov::element::Type& modelPrecision, const ov::Shape& std::cout << "File contains " << fileBytes << " bytes, but it expected to be: " << inputTensor.get_byte_size() << " while converting precision from " << dataPrecision << " to " << modelPrecision - << ". Check whether it is possible to batch loading " << std::endl; + << ". Check whether it is possible to fit it into batch loading " << std::endl; OPENVINO_ASSERT(ov::layout::has_batch(layout), "Input layout has no batch dimenstion: ", layout.to_string()); size_t N = shape[ov::layout::batch_idx(layout)]; @@ -703,12 +778,20 @@ ov::Tensor loadBinary(const ov::element::Type& modelPrecision, const ov::Shape& const ov::Tensor convertedPrecisionTensor(modelPrecision, debatchedInputTensorShape); npu::utils::convertTensorPrecision(inputDebatchedTensor, convertedPrecisionTensor); std::list tensorsToJoin; - std::generate_n(std::back_inserter(tensorsToJoin), N, [&convertedPrecisionTensor]() { - return convertedPrecisionTensor; - }); + std::list tensorsFromSplit = npu::utils::splitBatchedTensor(requestedTensor, layout, N); + // Constitute a new bathed tensor of size N from parts of it + // enumerated by indices from the interval [0...fileSourceInBatch.index], + // where fileSourceInBatch.index < N + // The rest parts of the new tensor [fileSourceInBatch.index+1...N] + // will be filled up by same content of an image of `fileSourceInBatch.index` + std::copy_n(tensorsFromSplit.begin(), std::min(fileSourceInBatch.index, N), std::back_inserter(tensorsToJoin)); + if (fileSourceInBatch.index < N) { + std::generate_n(std::back_inserter(tensorsToJoin), N - fileSourceInBatch.index, [&convertedPrecisionTensor]() { + return convertedPrecisionTensor; + }); + } requestedTensor = npu::utils::joinTensors(tensorsToJoin, layout); } - } else { if (fileBytes == reqTensorBytes) { binaryFile.read(reinterpret_cast(requestedTensor.data()), @@ -716,22 +799,40 @@ ov::Tensor loadBinary(const ov::element::Type& modelPrecision, const ov::Shape& } else { std::cout << "File contains " << fileBytes << " bytes, but it expected to be: " << reqTensorBytes << " when datatypes match. " - << ". Check whether it is possible to batch loading " << std::endl; + << "Check whether it is possible to fit it into batch loading " << std::endl; OPENVINO_ASSERT(ov::layout::has_batch(layout), "Input layout has no batch dimenstion: ", layout.to_string()); size_t N = shape[ov::layout::batch_idx(layout)]; OPENVINO_ASSERT(fileBytes * N == reqTensorBytes, "File contains ", fileBytes, " bytes, but ", reqTensorBytes, " in batch size ", N, " expected"); - // duplicate a binary into tensor memory if the tensor batched - for (size_t n = 0; n < N; ++n) { + if (fileSourceInBatch.index == 0 && N != 1) { + std::cout << "Fill up all input batch slices up to " << N + << " with binary data from the array: " + << fileSourceInBatch.to_string() << std::endl; + } + for (size_t n = std::max(0, fileSourceInBatch.index); n < N; ++n) { + if (n == std::max(1, fileSourceInBatch.index) && fileSourceInBatch.index >= 1) { + std::cout << "Fill input batch slices starting from index " + << n << " up to " << N + << " with binary data from the data sources array: " + << fileSourceInBatch.to_string() << std::endl; + } binaryFile.seekg(0, std::ios_base::beg); binaryFile.read(reinterpret_cast(requestedTensor.data()) + fileBytes * n, static_cast(fileBytes)); } } } +} +ov::Tensor loadBinaries(const ov::element::Type& modelPrecision, const ov::Shape& shape, const ov::Layout& layout, + const std::vector& filePaths, const ov::element::Type& dataPrecision) { + ov::Tensor requestedTensor(modelPrecision, shape); + for (size_t fileIndex = 0; fileIndex != filePaths.size(); fileIndex++) { + const auto &filePath = filePaths[fileIndex]; + loadBinary(filePath, BatchIndexer{fileIndex, filePaths.size()}, requestedTensor, modelPrecision, shape, layout, dataPrecision); + } return requestedTensor; } @@ -752,12 +853,12 @@ ov::Tensor loadBinary(const ov::element::Type& modelPrecision, const ov::Shape& * @return The tensor containing the loaded data. */ ov::Tensor loadInput(const ov::element::Type& modelPrecision, const ov::Shape& shape, const ov::Layout& layout, - const std::string& filePath, const std::string& colorFormat, + const std::vector& filePaths, const std::string& colorFormat, const ov::element::Type& dataPrecision = ov::element::Type_t::undefined) { if (isImage(shape, layout) && !FLAGS_img_as_bin) { - return loadImage(modelPrecision, shape, layout, filePath, colorFormat); + return loadImages(modelPrecision, shape, layout, filePaths, colorFormat); } else { - return loadBinary(modelPrecision, shape, layout, filePath, dataPrecision); + return loadBinaries(modelPrecision, shape, layout, filePaths, dataPrecision); } } @@ -1719,11 +1820,20 @@ static int runSingleImageTest() { std::map outModelLayouts = parseLayoutRegex(FLAGS_oml); std::vector inputFilesPerCase; - std::vector> inputFilesForOneInfer; + using FilesPerInput = std::vector; + using FilesForModelInputs = std::vector; + std::vector inputFilesForOneInfer; inputFilesPerCase = splitStringList(FLAGS_input, ';'); for (const auto& images : inputFilesPerCase) { - inputFilesForOneInfer.push_back(splitStringList(images, ',')); + std::vector filesPerModel = splitStringList(images, ','); + FilesForModelInputs entireModelFiles; + entireModelFiles.reserve(filesPerModel.size()); + for (auto &&filesPerInput : filesPerModel) { + // from now on each input of a model support multiple image files as content of a batched input + entireModelFiles.push_back(splitStringList(filesPerInput, '|')); + } + inputFilesForOneInfer.push_back(std::move(entireModelFiles)); } std::vector inputBinPrecisionStrPerCase; @@ -1896,8 +2006,13 @@ static int runSingleImageTest() { } } + if (FLAGS_shape.empty()) { + setModelBatch(model, FLAGS_override_model_batch_size); + } std::cout << "Compile model" << std::endl; - compiledModel = core.compile_model(ppp.build(), FLAGS_device); + model = ppp.build(); + printInputAndOutputsInfoShort(*model); + compiledModel = core.compile_model(model, FLAGS_device); } else { std::cout << "Import network " << FLAGS_network << std::endl; @@ -1947,7 +2062,7 @@ static int runSingleImageTest() { for (size_t numberOfTestCase = 0; numberOfTestCase < inputFilesPerCase.size(); ++numberOfTestCase) { const auto inputsInfo = compiledModel.inputs(); const auto outputsInfo = compiledModel.outputs(); - std::vector inputFiles = inputFilesForOneInfer[numberOfTestCase]; + const FilesForModelInputs &inputFiles = inputFilesForOneInfer[numberOfTestCase]; OPENVINO_ASSERT(inputFiles.size() == inputsInfo.size(), "Number of input files ", inputFiles.size(), " doesn't match network configuration ", inputsInfo.size()); @@ -1984,7 +2099,7 @@ static int runSingleImageTest() { inputDescriptors.emplace(inputInfo.get_any_name(), TensorDescriptor{precision, shape, dataShape, inputLayout}); - std::cout << "Load input #" << inputInd << " from " << inputFiles[inputInd] << " as " << precision + std::cout << "Load input #" << inputInd << " from " << to_string(inputFiles[inputInd]) << " as " << precision << " " << inputLayout.to_string() << " " << shape << std::endl; const ov::Tensor tensor = From b416fb02d97896f8198287c8a976cc8e1978ff62 Mon Sep 17 00:00:00 2001 From: Alina Kladieva Date: Thu, 7 Nov 2024 17:48:10 +0100 Subject: [PATCH 40/93] [GHA] Enable Fedora trigger in post-commit (#27463) We need that to have build artifacts stored from pushes Signed-off-by: Alina Kladieva --- .github/workflows/fedora_29.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/fedora_29.yml b/.github/workflows/fedora_29.yml index 3f685502747a19..f3b101327f76dc 100644 --- a/.github/workflows/fedora_29.yml +++ b/.github/workflows/fedora_29.yml @@ -5,7 +5,7 @@ on: merge_group: push: branches: - # - master + - master - 'releases/**' concurrency: From fb5b5ed0036c1bff4753c70364541600889841db Mon Sep 17 00:00:00 2001 From: Chon Ming Lee Date: Fri, 8 Nov 2024 14:34:54 +0800 Subject: [PATCH 41/93] [GPU] Add check to fallback to permute_ref if different format for oneDNN (#27402) ### Details: If the input and output format are not the same in permute before oneDNN convolution, permute_kernel_f_y_axes doesn't support it. Need to fallback to permute_ref ### Tickets: - *CVS-155933* --- .../permute/permute_kernel_f_y_axes.cpp | 6 ++ .../unit/test_cases/permute_gpu_test.cpp | 70 +++++++++++++++++++ 2 files changed, 76 insertions(+) diff --git a/src/plugins/intel_gpu/src/kernel_selector/kernels/permute/permute_kernel_f_y_axes.cpp b/src/plugins/intel_gpu/src/kernel_selector/kernels/permute/permute_kernel_f_y_axes.cpp index 69756b02e2d9ff..deb25d17618347 100644 --- a/src/plugins/intel_gpu/src/kernel_selector/kernels/permute/permute_kernel_f_y_axes.cpp +++ b/src/plugins/intel_gpu/src/kernel_selector/kernels/permute/permute_kernel_f_y_axes.cpp @@ -214,6 +214,8 @@ bool PermuteKernel_f_y_axes::Validate(const Params& p) const { const auto& params = dynamic_cast(p); const auto& in = params.inputs[0]; const auto in_layout = in.GetLayout(); + const auto& out = params.outputs[0]; + const auto& out_layout = out.GetLayout(); const auto feature_div = GetDivisor(in.Feature().v); const auto y_div = GetDivisor(in.Y().v); @@ -227,6 +229,10 @@ bool PermuteKernel_f_y_axes::Validate(const Params& p) const { return false; } + if (in_layout != out_layout) { + return false; + } + // Accept only supported blocked layouts and SIMD sizes. if (!SimpleLayout(in_layout)) { const auto feature_block_size = GetFeatureBlockSize(params); diff --git a/src/plugins/intel_gpu/tests/unit/test_cases/permute_gpu_test.cpp b/src/plugins/intel_gpu/tests/unit/test_cases/permute_gpu_test.cpp index 9688ebe227071f..db9777a3a613d9 100644 --- a/src/plugins/intel_gpu/tests/unit/test_cases/permute_gpu_test.cpp +++ b/src/plugins/intel_gpu/tests/unit/test_cases/permute_gpu_test.cpp @@ -2175,6 +2175,76 @@ TEST(permute_gpu_f32_dynamic, bfyx_0_2_3_1) { } } +TEST(permute_f_y_axes_fallback, b_fs_yx_fsv16) { + constexpr size_t array_size = 128; + + auto& engine = get_test_engine(); + if (!engine.get_device_info().supports_immad) + return; + + auto input_layout_static = layout{ov::PartialShape{1, 8, 16, 1}, data_types::f32, format::bfyx}; + auto input = engine.allocate_memory(input_layout_static); + + std::vector input_data; + input_data.reserve(array_size); + for (size_t i = 0; i < array_size; ++i) + input_data.push_back(static_cast(i)); + + auto weights = engine.allocate_memory({ data_types::f32, format::bfyx, { 8, 16, 1, 1 } }); + + std::vector weights_data; + weights_data.reserve(array_size); + for (size_t i = 0; i < array_size; ++i) + weights_data.push_back(static_cast(1.0)); + + set_values(weights, weights_data); + set_values(input, input_data); + + auto impl_desc_onednn = ov::intel_gpu::ImplementationDesc{format::b_fs_yx_fsv16, "", impl_types::onednn}; + auto impl_forcing_map = ov::intel_gpu::ImplForcingMap{{"conv", impl_desc_onednn}}; + + topology topology; + topology.add(input_layout("input", input_layout_static)); + topology.add(permute("permute", input_info("input"), { 0, 2, 1, 3 })); + topology.add(data("weights", weights)); + topology.add(convolution("conv", input_info("permute"), "weights", "", 1, {1,1}, {1,1}, {0,0}, {0,0}, false)); + + ExecutionConfig config = get_test_default_config(engine); + config.set_property(ov::intel_gpu::force_implementations(impl_forcing_map)); + + network network(engine, topology, config); + network.set_input_data("input", input); + auto outputs = network.execute(); + ASSERT_EQ(outputs.size(), size_t(1)); + ASSERT_EQ(outputs.begin()->first, "conv"); + + auto output = outputs.begin()->second.get_memory(); + + float answers[] = { + 120.f, 120.f, 120.f, 120.f, 120.f, 120.f, 120.f, 120.f, + 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, + 376.f, 376.f, 376.f, 376.f, 376.f, 376.f, 376.f, 376.f, + 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, + 632.f, 632.f, 632.f, 632.f, 632.f, 632.f, 632.f, 632.f, + 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, + 888.f, 888.f, 888.f, 888.f, 888.f, 888.f, 888.f, 888.f, + 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, + 1144.f, 1144.f, 1144.f, 1144.f, 1144.f, 1144.f, 1144.f, 1144.f, + 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, + 1400.f, 1400.f, 1400.f, 1400.f, 1400.f, 1400.f, 1400.f, 1400.f, + 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, + 1656.f, 1656.f, 1656.f, 1656.f, 1656.f, 1656.f, 1656.f, 1656.f, + 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, + 1912.f, 1912.f, 1912.f, 1912.f, 1912.f, 1912.f, 1912.f, 1912.f, + 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, + }; + + cldnn::mem_lock output_ptr(output, get_test_stream()); + for (size_t i = 0; i < array_size; i++) { + ASSERT_FLOAT_EQ(answers[i], output_ptr[i]); + } +} + class permute_bfzyx_to_bfyxz: public TiledPermuteTest {}; INSTANTIATE_TEST_SUITE_P(, permute_bfzyx_to_bfyxz, From 5e6fb3c157cc0231f7ba6aae4d546da93beaaba2 Mon Sep 17 00:00:00 2001 From: yuanxion <96522341+yuanxion@users.noreply.github.com> Date: Fri, 8 Nov 2024 15:47:57 +0800 Subject: [PATCH 42/93] [GPU] Fix one hot seg fault when the second input node is not a Constant node (#27442) ### Details: - *Get the 'depth' value from 'Select' node instead of a Constant node* This happens when the second input of **OneHot** node is not a **Constant** node (**Select** node in this PR). ![image](https://github.com/user-attachments/assets/1bef5fdd-ae42-4916-9ba1-46b8d397e34b) ### Tickets: - *[CVS-155564](https://jira.devtools.intel.com/browse/CVS-155564)* --------- Signed-off-by: yuan.xiong --- .../include/intel_gpu/primitives/one_hot.hpp | 15 ++++++++ .../src/graph/include/one_hot_inst.h | 2 +- src/plugins/intel_gpu/src/graph/one_hot.cpp | 20 ++++++++-- src/plugins/intel_gpu/src/graph/program.cpp | 4 +- .../intel_gpu/src/plugin/ops/one_hot.cpp | 37 ++++++++++++------- 5 files changed, 58 insertions(+), 20 deletions(-) diff --git a/src/plugins/intel_gpu/include/intel_gpu/primitives/one_hot.hpp b/src/plugins/intel_gpu/include/intel_gpu/primitives/one_hot.hpp index c66bbedc80ee0c..d47a128c62c434 100644 --- a/src/plugins/intel_gpu/include/intel_gpu/primitives/one_hot.hpp +++ b/src/plugins/intel_gpu/include/intel_gpu/primitives/one_hot.hpp @@ -54,6 +54,21 @@ struct one_hot : public primitive_base { , on_value(on_value) , off_value(off_value) {} + /// @brief onehot with depth from Select node + one_hot(const primitive_id& id, + const input_info& input, + const input_info& input_depth, + const tensor& shape, + const data_types output_dt, + const int64_t& one_hot_axis, + const float& on_value = 1.0f, + const float& off_value = 0.0f) + : primitive_base(id, {input, input_depth}, 1, {optional_data_type{output_dt}}) + , shape(shape) + , one_hot_axis(one_hot_axis) + , on_value(on_value) + , off_value(off_value) {} + /// @brief Constructs one-hot primitive layer. /// @param id An identifier of new primitive. /// @param input An identifier of primitive which is an input for newly created one-hot primitive. diff --git a/src/plugins/intel_gpu/src/graph/include/one_hot_inst.h b/src/plugins/intel_gpu/src/graph/include/one_hot_inst.h index 782751e261e51a..2e5dc81a3d4049 100644 --- a/src/plugins/intel_gpu/src/graph/include/one_hot_inst.h +++ b/src/plugins/intel_gpu/src/graph/include/one_hot_inst.h @@ -22,7 +22,7 @@ struct typed_program_node : typed_program_node_base { support_padding_all(true); } program_node& input() const { return get_dependency(0); } - std::vector get_shape_infer_dependencies() const override { return {}; } + std::vector get_shape_infer_dependencies() const override { return {1}; } }; using one_hot_node = typed_program_node; diff --git a/src/plugins/intel_gpu/src/graph/one_hot.cpp b/src/plugins/intel_gpu/src/graph/one_hot.cpp index ede34e8e0935b0..bb90e3bf1276b5 100644 --- a/src/plugins/intel_gpu/src/graph/one_hot.cpp +++ b/src/plugins/intel_gpu/src/graph/one_hot.cpp @@ -66,11 +66,23 @@ std::vector one_hot_inst::calc_output_layouts(const one_hot_node& /*node }; int64_t depth = desc->depth; + auto& memory_deps = impl_param.memory_deps; + + std::unordered_map const_data = {}; + if (depth != 0) { + auto depth_tensor = ov::Tensor(ov::element::i64, ov::Shape{1}, static_cast(&depth)); + const_data[1] = depth_tensor; + } else if (memory_deps.count(1) > 0) { + auto depth_mem = memory_deps.at(1); + + cldnn::mem_lock depth_lock(depth_mem, impl_param.get_stream()); + auto depth_ptr = depth_lock.data(); + + // update depth_tensor if depth value comes from memory_deps instead of Constant node + auto depth_tensor = make_tensor(depth_mem->get_layout(), depth_ptr); + const_data[1] = depth_tensor; + } - auto depth_tensor = ov::Tensor(ov::element::i64, ov::Shape{1}, static_cast(&depth)); - std::unordered_map const_data = { - {1, depth_tensor} - }; std::vector output_shapes = ov::op::v1::shape_infer(&op, input_shapes, ov::make_tensor_accessor(const_data)); return {{output_shapes[0], dt, format::get_default_format(output_shapes[0].size())}}; diff --git a/src/plugins/intel_gpu/src/graph/program.cpp b/src/plugins/intel_gpu/src/graph/program.cpp index 7a66d32795c17c..2bfaac84134387 100644 --- a/src/plugins/intel_gpu/src/graph/program.cpp +++ b/src/plugins/intel_gpu/src/graph/program.cpp @@ -436,7 +436,7 @@ void program::prepare_nodes(topology const& topology) { } } -// add node's dependecies from its primitive dependencies +// add node's dependencies from its primitive dependencies void program::add_node_dependencies(program_node* node) { auto deps = node->get_primitive()->dependencies(); // add pointers to node's dependencies @@ -453,7 +453,7 @@ void program::add_node_dependencies(program_node* node) { } /* helper method for program constructor from list of nodes which - copies src_node dependecies to the destination node dest_node dependencies. + copies src_node dependencies to the destination node dest_node dependencies. But only to those which appaer in this program implementation nodes_map */ void program::copy_node_dependencies(program_node* dest_node, program_node* src_node) { if (dest_node->get_primitive()->id != src_node->get_primitive()->id) { diff --git a/src/plugins/intel_gpu/src/plugin/ops/one_hot.cpp b/src/plugins/intel_gpu/src/plugin/ops/one_hot.cpp index 9a7f8697d0b736..09e9d81db088df 100644 --- a/src/plugins/intel_gpu/src/plugin/ops/one_hot.cpp +++ b/src/plugins/intel_gpu/src/plugin/ops/one_hot.cpp @@ -7,7 +7,6 @@ #include "transformations/utils/utils.hpp" #include "openvino/op/one_hot.hpp" - #include "intel_gpu/primitives/one_hot.hpp" namespace ov { @@ -49,21 +48,33 @@ static void CreateOneHotOp(ProgramBuilder& p, const std::shared_ptrcast_vector()[0]; - auto out_pshape = op->get_output_partial_shape(0); cldnn::tensor out_tensor = out_pshape.is_static() ? tensor_from_dims(out_pshape.to_shape()) : cldnn::tensor{}; - auto oneHotPrim = cldnn::one_hot(layerName, - inputs[0], - out_tensor, - cldnn::element_type_to_data_type(op->get_output_element_type(0)), - axis, - depth, - on_value, - off_value); - - p.add_primitive(*op, oneHotPrim); + if (depth_value_node) { + int64_t depth = depth_value_node->cast_vector()[0]; + auto oneHotPrim = cldnn::one_hot(layerName, + inputs[0], + out_tensor, + cldnn::element_type_to_data_type(op->get_output_element_type(0)), + axis, + depth, + on_value, + off_value); + + p.add_primitive(*op, oneHotPrim); + } else { + auto oneHotPrim = cldnn::one_hot(layerName, + inputs[0], + inputs[1], + out_tensor, + cldnn::element_type_to_data_type(op->get_output_element_type(0)), + axis, + on_value, + off_value); + + p.add_primitive(*op, oneHotPrim); + } } REGISTER_FACTORY_IMPL(v1, OneHot); From 9ff42cde8951ff3e70d6f512c032e1ce21bf800b Mon Sep 17 00:00:00 2001 From: Valentin Rusu Date: Fri, 8 Nov 2024 11:12:38 +0200 Subject: [PATCH 43/93] [Benchmark App] Reject -nireq > -niter when using sync API (#27460) ### Details: While investigating the problem raised by the E-117106 ticket, turned out that, in fact, a problem lies within the Benchmark App. When choosing the sync API, it is not possible to run more inference requests than specified iterations. Later on, if `-pc` flag was given, the app still tries to display the profiling data for the never launched inferences. This PR detects this situation and rejects the application execution after writing an explanatory message to the console output. Changes are applied for both C++ and Python versions of the benchmark app. ### Tickets: - CVS-156823 Co-authored-by: Vladimir Zlobin --- samples/cpp/benchmark_app/main.cpp | 4 ++++ tools/benchmark_tool/openvino/tools/benchmark/main.py | 3 +++ 2 files changed, 7 insertions(+) diff --git a/samples/cpp/benchmark_app/main.cpp b/samples/cpp/benchmark_app/main.cpp index 2cfd15b77afb6e..4dcc1e82924efd 100644 --- a/samples/cpp/benchmark_app/main.cpp +++ b/samples/cpp/benchmark_app/main.cpp @@ -60,6 +60,10 @@ bool parse_and_check_command_line(int argc, char* argv[]) { if (FLAGS_api != "async" && FLAGS_api != "sync") { throw std::logic_error("Incorrect API. Please set -api option to `sync` or `async` value."); } + if (FLAGS_api == "sync" && FLAGS_nireq > FLAGS_niter) { + throw std::logic_error( + "Number of iterations should be greater than number of infer requests when using sync API."); + } if (!FLAGS_hint.empty() && FLAGS_hint != "throughput" && FLAGS_hint != "tput" && FLAGS_hint != "latency" && FLAGS_hint != "cumulative_throughput" && FLAGS_hint != "ctput" && FLAGS_hint != "none") { throw std::logic_error("Incorrect performance hint. Please set -hint option to" diff --git a/tools/benchmark_tool/openvino/tools/benchmark/main.py b/tools/benchmark_tool/openvino/tools/benchmark/main.py index ad2839d217fcad..c77b50a7fd4721 100644 --- a/tools/benchmark_tool/openvino/tools/benchmark/main.py +++ b/tools/benchmark_tool/openvino/tools/benchmark/main.py @@ -49,6 +49,9 @@ def arg_not_empty(arg_value,empty_value): raise Exception("Cannot set precision for a compiled model. " \ "Please re-compile your model with required precision.") + if args.api_type == "sync" and args.number_infer_requests > args.number_iterations: + raise Exception("Number of infer requests should be less than or equal to number of iterations in sync mode.") + return args, is_network_compiled def main(): From bb99d6723ba3e875158ddec63cf4df26affe14ed Mon Sep 17 00:00:00 2001 From: Wilson Seok Date: Fri, 8 Nov 2024 02:43:02 -0800 Subject: [PATCH 44/93] [GPU] Don't select add_fusing_type::sum when dependency is input_layout in loop body network (#27443) ### Details: - Don't select add_fusing_type::sum when dependency is input_layout in loop body network. sum op could contaminate memory buffer. ### Tickets: - 154020 --- src/plugins/intel_gpu/src/graph/program_helpers.cpp | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/src/plugins/intel_gpu/src/graph/program_helpers.cpp b/src/plugins/intel_gpu/src/graph/program_helpers.cpp index 256ba493311b7c..51e5d8510739e2 100644 --- a/src/plugins/intel_gpu/src/graph/program_helpers.cpp +++ b/src/plugins/intel_gpu/src/graph/program_helpers.cpp @@ -117,7 +117,8 @@ add_fusing_type onednn_add_fusing_helpers::get_add_fusing_type( && p_layout.data_padding == d_layout.data_padding && dep_node.get_users().size() == 1 && !dep_node.is_constant() - && !p_node.is_type()) { + && !p_node.is_type() + && !(dep_node.get_program().is_body_program() && dep_node.is_type())) { return add_fusing_type::sum; } else if (p_layout.get_tensor() == d_layout.get_tensor()) { return add_fusing_type::binary_per_tensor; From 406034de7d38f0d076cb88618499b6bb860f617d Mon Sep 17 00:00:00 2001 From: Karol Blaszczak Date: Fri, 8 Nov 2024 12:03:16 +0100 Subject: [PATCH 45/93] [DOCS] benchmark data tweaks (#27424) Co-authored-by: Andrzej Kopytko --- .../benchmarks_files/data/graph-data-ov.json | 1462 ++++++++--------- .../benchmarks_files/graph-config.json | 10 +- .../_static/download/supported_models.csv | 3 +- docs/sphinx_setup/index.rst | 2 +- 4 files changed, 741 insertions(+), 736 deletions(-) diff --git a/docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ov.json b/docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ov.json index 0bb38199b997ca..7576fd96148554 100644 --- a/docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ov.json +++ b/docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ov.json @@ -3,7 +3,7 @@ "Platform": "Intel® Celeron® 6305E CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -37,7 +37,7 @@ "Platform": "Intel® Core™ i3-8100 CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -71,7 +71,7 @@ "Platform": "Intel® Core™ i5-10500TE CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -105,7 +105,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -139,7 +139,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -173,7 +173,7 @@ "Platform": "Intel® Core™ i5-13600K CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -207,7 +207,7 @@ "Platform": "Intel® Core™ i5-8500 CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -241,7 +241,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -275,7 +275,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -309,7 +309,7 @@ "Platform": "Intel® Core™ i7-12700H CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -343,7 +343,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -377,7 +377,7 @@ "Platform": "Intel® Core™ i7-1360P CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -411,7 +411,7 @@ "Platform": "Intel® Core™ i7-8700T CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -445,7 +445,7 @@ "Platform": "Intel® Core™ i9-10900TE CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -479,7 +479,7 @@ "Platform": "Intel® Core™ i9-13900K CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -513,7 +513,7 @@ "Platform": "Intel® Xeon® W1290P CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -547,7 +547,7 @@ "Platform": "Intel® Xeon® E-2124G CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -581,7 +581,7 @@ "Platform": "Intel® Xeon® Gold 5218T CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -615,7 +615,7 @@ "Platform": "Intel® Xeon® Platinum 8280 CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -649,7 +649,7 @@ "Platform": "Intel® Xeon® Platinum 8380 CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -683,7 +683,7 @@ "Platform": "Intel® Xeon® Platinum 8480+ CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -717,7 +717,7 @@ "Platform": "Intel® Xeon® Platinum 8580 CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -751,7 +751,7 @@ "Platform": "Intel® Xeon® Gold 6238L CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -785,7 +785,7 @@ "Platform": "Intel® Xeon® Silver 4316 CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -819,7 +819,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -853,7 +853,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -887,7 +887,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1023,7 +1023,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H NPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1057,7 +1057,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H NPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1091,7 +1091,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V NPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1125,7 +1125,7 @@ "Platform": "Intel® Celeron® 6305E iGPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1159,7 +1159,7 @@ "Platform": "Intel® Core™ i5-1235U Processor iGPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1193,7 +1193,7 @@ "Platform": "Intel® Core™ i5-1335U Processor iGPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1227,7 +1227,7 @@ "Platform": "Intel® Core™ i7-1185G7 iGPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1261,7 +1261,7 @@ "Platform": "Intel® Core™ i7-1185GRE iGPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1295,7 +1295,7 @@ "Platform": "Intel® Core™ i7-12700H iGPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1329,7 +1329,7 @@ "Platform": "Intel® Core™ i7-1355U Processor iGPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1363,7 +1363,7 @@ "Platform": "Intel® Core™ i7-1360P iGPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1397,7 +1397,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H iGPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1431,7 +1431,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H iGPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1465,7 +1465,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V iGPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1499,7 +1499,7 @@ "Platform": "Intel® Celeron® 6305E CPU+iGPU", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -1533,7 +1533,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU+iGPU", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1567,7 +1567,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU+iGPU", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1601,7 +1601,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU+iGPU", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1635,7 +1635,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU+iGPU", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1669,7 +1669,7 @@ "Platform": "Intel® Core™ i7-12700H CPU+iGPU", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1703,7 +1703,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU+iGPU", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1737,7 +1737,7 @@ "Platform": "Intel® Core™ i7-1360P CPU+iGPU", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1771,7 +1771,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU+iGPU", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1805,7 +1805,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU+iGPU", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1839,7 +1839,7 @@ "Platform": "Intel® Celeron® 6305E CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1873,7 +1873,7 @@ "Platform": "Intel® Core™ i3-8100 CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1907,7 +1907,7 @@ "Platform": "Intel® Core™ i5-10500TE CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1941,7 +1941,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -1975,7 +1975,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2009,7 +2009,7 @@ "Platform": "Intel® Core™ i5-13600K CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2043,7 +2043,7 @@ "Platform": "Intel® Core™ i5-8500 CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2077,7 +2077,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2111,7 +2111,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2145,7 +2145,7 @@ "Platform": "Intel® Core™ i7-12700H CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2179,7 +2179,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2213,7 +2213,7 @@ "Platform": "Intel® Core™ i7-1360P CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2247,7 +2247,7 @@ "Platform": "Intel® Core™ i7-8700T CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2281,7 +2281,7 @@ "Platform": "Intel® Core™ i9-10900TE CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2315,7 +2315,7 @@ "Platform": "Intel® Core™ i9-13900K CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2349,7 +2349,7 @@ "Platform": "Intel® Xeon® W1290P CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2383,7 +2383,7 @@ "Platform": "Intel® Xeon® E-2124G CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2417,7 +2417,7 @@ "Platform": "Intel® Xeon® Gold 5218T CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2451,7 +2451,7 @@ "Platform": "Intel® Xeon® Platinum 8280 CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2485,7 +2485,7 @@ "Platform": "Intel® Xeon® Platinum 8380 CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2519,7 +2519,7 @@ "Platform": "Intel® Xeon® Platinum 8480+ CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2553,7 +2553,7 @@ "Platform": "Intel® Xeon® Platinum 8580 CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2587,7 +2587,7 @@ "Platform": "Intel® Xeon® Gold 6238L CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2621,7 +2621,7 @@ "Platform": "Intel® Xeon® Silver 4316 CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2655,7 +2655,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2689,7 +2689,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2723,7 +2723,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V CPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2859,7 +2859,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H NPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2893,7 +2893,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H NPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2927,7 +2927,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V NPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2961,7 +2961,7 @@ "Platform": "Intel® Atom® x7425E iGPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -2995,7 +2995,7 @@ "Platform": "Intel® Atom® X6425E iGPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3029,7 +3029,7 @@ "Platform": "Intel® Celeron® 6305E iGPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3063,7 +3063,7 @@ "Platform": "Intel® Core™ i5-1235U Processor iGPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3097,7 +3097,7 @@ "Platform": "Intel® Core™ i5-1335U Processor iGPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3131,7 +3131,7 @@ "Platform": "Intel® Core™ i7-1185G7 iGPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3165,7 +3165,7 @@ "Platform": "Intel® Core™ i7-1185GRE iGPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3199,7 +3199,7 @@ "Platform": "Intel® Core™ i7-12700H iGPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3233,7 +3233,7 @@ "Platform": "Intel® Core™ i7-1355U Processor iGPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3267,7 +3267,7 @@ "Platform": "Intel® Core™ i7-1360P iGPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3301,7 +3301,7 @@ "Platform": "Intel® Processor N100 iGPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3335,7 +3335,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H iGPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3369,7 +3369,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H iGPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3403,7 +3403,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V iGPU-only", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3437,7 +3437,7 @@ "Platform": "Intel® Celeron® 6305E CPU+iGPU", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -3471,7 +3471,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU+iGPU", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3505,7 +3505,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU+iGPU", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3539,7 +3539,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU+iGPU", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3573,7 +3573,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU+iGPU", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3607,7 +3607,7 @@ "Platform": "Intel® Core™ i7-12700H CPU+iGPU", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3641,7 +3641,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU+iGPU", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3675,7 +3675,7 @@ "Platform": "Intel® Core™ i7-1360P CPU+iGPU", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3709,7 +3709,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU+iGPU", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3743,7 +3743,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU+iGPU", "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3777,7 +3777,7 @@ "Platform": "Intel® Atom® x7425E CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3811,7 +3811,7 @@ "Platform": "Intel® Atom® X6425E CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3845,7 +3845,7 @@ "Platform": "Intel® Celeron® 6305E CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3879,7 +3879,7 @@ "Platform": "Intel® Core™ i3-8100 CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3913,7 +3913,7 @@ "Platform": "Intel® Core™ i5-10500TE CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3947,7 +3947,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -3981,7 +3981,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4015,7 +4015,7 @@ "Platform": "Intel® Core™ i5-13600K CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4049,7 +4049,7 @@ "Platform": "Intel® Core™ i5-8500 CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4083,7 +4083,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4117,7 +4117,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4151,7 +4151,7 @@ "Platform": "Intel® Core™ i7-12700H CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4185,7 +4185,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4219,7 +4219,7 @@ "Platform": "Intel® Core™ i7-1360P CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4253,7 +4253,7 @@ "Platform": "Intel® Core™ i7-8700T CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4287,7 +4287,7 @@ "Platform": "Intel® Core™ i9-10900TE CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4321,7 +4321,7 @@ "Platform": "Intel® Core™ i9-13900K CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4355,7 +4355,7 @@ "Platform": "Intel® Processor N100 CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4389,7 +4389,7 @@ "Platform": "Intel® Xeon® W1290P CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4423,7 +4423,7 @@ "Platform": "Intel® Xeon® E-2124G CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4457,7 +4457,7 @@ "Platform": "Intel® Xeon® Gold 5218T CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4491,7 +4491,7 @@ "Platform": "Intel® Xeon® Platinum 8280 CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4525,7 +4525,7 @@ "Platform": "Intel® Xeon® Platinum 8380 CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4559,7 +4559,7 @@ "Platform": "Intel® Xeon® Platinum 8480+ CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4593,7 +4593,7 @@ "Platform": "Intel® Xeon® Platinum 8580 CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4627,7 +4627,7 @@ "Platform": "Intel® Xeon® Gold 6238L CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4661,7 +4661,7 @@ "Platform": "Intel® Xeon® Silver 4316 CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4695,7 +4695,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4729,7 +4729,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4763,7 +4763,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4899,7 +4899,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H NPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4933,7 +4933,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H NPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -4967,7 +4967,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V NPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5001,7 +5001,7 @@ "Platform": "Intel® Atom® x7425E iGPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5035,7 +5035,7 @@ "Platform": "Intel® Atom® X6425E iGPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5069,7 +5069,7 @@ "Platform": "Intel® Celeron® 6305E iGPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5103,7 +5103,7 @@ "Platform": "Intel® Core™ i5-1235U Processor iGPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5137,7 +5137,7 @@ "Platform": "Intel® Core™ i5-1335U Processor iGPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5171,7 +5171,7 @@ "Platform": "Intel® Core™ i7-1185G7 iGPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5205,7 +5205,7 @@ "Platform": "Intel® Core™ i7-1185GRE iGPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5239,7 +5239,7 @@ "Platform": "Intel® Core™ i7-12700H iGPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5273,7 +5273,7 @@ "Platform": "Intel® Core™ i7-1355U Processor iGPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5307,7 +5307,7 @@ "Platform": "Intel® Core™ i7-1360P iGPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5341,7 +5341,7 @@ "Platform": "Intel® Processor N100 iGPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5375,7 +5375,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H iGPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5409,7 +5409,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H iGPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5443,7 +5443,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V iGPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5477,7 +5477,7 @@ "Platform": "Intel® Atom® x7425E CPU+iGPU", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -5511,7 +5511,7 @@ "Platform": "Intel® Atom® X6425E CPU+iGPU", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -5545,7 +5545,7 @@ "Platform": "Intel® Celeron® 6305E CPU+iGPU", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -5579,7 +5579,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU+iGPU", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5613,7 +5613,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU+iGPU", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5647,7 +5647,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU+iGPU", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5681,7 +5681,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU+iGPU", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5715,7 +5715,7 @@ "Platform": "Intel® Core™ i7-12700H CPU+iGPU", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5749,7 +5749,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU+iGPU", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5783,7 +5783,7 @@ "Platform": "Intel® Core™ i7-1360P CPU+iGPU", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5817,7 +5817,7 @@ "Platform": "Intel® Processor N100 CPU+iGPU", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -5851,7 +5851,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU+iGPU", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5885,7 +5885,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU+iGPU", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5919,7 +5919,7 @@ "Platform": "Intel® Celeron® 6305E CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5953,7 +5953,7 @@ "Platform": "Intel® Core™ i3-8100 CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -5987,7 +5987,7 @@ "Platform": "Intel® Core™ i5-10500TE CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6021,7 +6021,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6055,7 +6055,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6089,7 +6089,7 @@ "Platform": "Intel® Core™ i5-13600K CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6123,7 +6123,7 @@ "Platform": "Intel® Core™ i5-8500 CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6157,7 +6157,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6191,7 +6191,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6225,7 +6225,7 @@ "Platform": "Intel® Core™ i7-12700H CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6259,7 +6259,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6293,7 +6293,7 @@ "Platform": "Intel® Core™ i7-1360P CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6327,7 +6327,7 @@ "Platform": "Intel® Core™ i7-8700T CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6361,7 +6361,7 @@ "Platform": "Intel® Core™ i9-10900TE CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6395,7 +6395,7 @@ "Platform": "Intel® Core™ i9-13900K CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6429,7 +6429,7 @@ "Platform": "Intel® Xeon® W1290P CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6463,7 +6463,7 @@ "Platform": "Intel® Xeon® E-2124G CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6497,7 +6497,7 @@ "Platform": "Intel® Xeon® Gold 5218T CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6531,7 +6531,7 @@ "Platform": "Intel® Xeon® Platinum 8280 CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6565,7 +6565,7 @@ "Platform": "Intel® Xeon® Platinum 8380 CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6599,7 +6599,7 @@ "Platform": "Intel® Xeon® Platinum 8480+ CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6633,7 +6633,7 @@ "Platform": "Intel® Xeon® Platinum 8580 CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6667,7 +6667,7 @@ "Platform": "Intel® Xeon® Gold 6238L CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6701,7 +6701,7 @@ "Platform": "Intel® Xeon® Silver 4316 CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6735,7 +6735,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6769,7 +6769,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6803,7 +6803,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6939,7 +6939,7 @@ "Platform": "Intel® Celeron® 6305E iGPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -6973,7 +6973,7 @@ "Platform": "Intel® Core™ i5-1235U Processor iGPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7007,7 +7007,7 @@ "Platform": "Intel® Core™ i5-1335U Processor iGPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7041,7 +7041,7 @@ "Platform": "Intel® Core™ i7-1185G7 iGPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7075,7 +7075,7 @@ "Platform": "Intel® Core™ i7-1185GRE iGPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7109,7 +7109,7 @@ "Platform": "Intel® Core™ i7-12700H iGPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7143,7 +7143,7 @@ "Platform": "Intel® Core™ i7-1355U Processor iGPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7177,7 +7177,7 @@ "Platform": "Intel® Core™ i7-1360P iGPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7211,7 +7211,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H iGPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7245,7 +7245,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H iGPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7279,7 +7279,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V iGPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7313,7 +7313,7 @@ "Platform": "Intel® Celeron® 6305E CPU+iGPU", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -7347,7 +7347,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU+iGPU", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7381,7 +7381,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU+iGPU", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7415,7 +7415,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU+iGPU", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7449,7 +7449,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU+iGPU", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7483,7 +7483,7 @@ "Platform": "Intel® Core™ i7-12700H CPU+iGPU", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7517,7 +7517,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU+iGPU", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7551,7 +7551,7 @@ "Platform": "Intel® Core™ i7-1360P CPU+iGPU", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7585,7 +7585,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU+iGPU", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7619,7 +7619,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU+iGPU", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7653,7 +7653,7 @@ "Platform": "Intel® Atom® x7425E CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7687,7 +7687,7 @@ "Platform": "Intel® Atom® X6425E CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7721,7 +7721,7 @@ "Platform": "Intel® Celeron® 6305E CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7755,7 +7755,7 @@ "Platform": "Intel® Core™ i3-8100 CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7789,7 +7789,7 @@ "Platform": "Intel® Core™ i5-10500TE CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7823,7 +7823,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7857,7 +7857,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7891,7 +7891,7 @@ "Platform": "Intel® Core™ i5-13600K CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7925,7 +7925,7 @@ "Platform": "Intel® Core™ i5-8500 CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7959,7 +7959,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -7993,7 +7993,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8027,7 +8027,7 @@ "Platform": "Intel® Core™ i7-12700H CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8061,7 +8061,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8095,7 +8095,7 @@ "Platform": "Intel® Core™ i7-1360P CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8129,7 +8129,7 @@ "Platform": "Intel® Core™ i7-8700T CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8163,7 +8163,7 @@ "Platform": "Intel® Core™ i9-10900TE CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8197,7 +8197,7 @@ "Platform": "Intel® Core™ i9-13900K CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8231,7 +8231,7 @@ "Platform": "Intel® Processor N100 CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8265,7 +8265,7 @@ "Platform": "Intel® Xeon® W1290P CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8299,7 +8299,7 @@ "Platform": "Intel® Xeon® E-2124G CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8333,7 +8333,7 @@ "Platform": "Intel® Xeon® Gold 5218T CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8367,7 +8367,7 @@ "Platform": "Intel® Xeon® Platinum 8280 CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8401,7 +8401,7 @@ "Platform": "Intel® Xeon® Platinum 8380 CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8435,7 +8435,7 @@ "Platform": "Intel® Xeon® Platinum 8480+ CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8469,7 +8469,7 @@ "Platform": "Intel® Xeon® Platinum 8580 CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8503,7 +8503,7 @@ "Platform": "Intel® Xeon® Gold 6238L CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8537,7 +8537,7 @@ "Platform": "Intel® Xeon® Silver 4316 CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8571,7 +8571,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8605,7 +8605,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8639,7 +8639,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8775,7 +8775,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H NPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8809,7 +8809,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H NPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8843,7 +8843,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V NPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8877,7 +8877,7 @@ "Platform": "Intel® Atom® x7425E iGPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8911,7 +8911,7 @@ "Platform": "Intel® Atom® X6425E iGPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8945,7 +8945,7 @@ "Platform": "Intel® Celeron® 6305E iGPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -8979,7 +8979,7 @@ "Platform": "Intel® Core™ i5-1235U Processor iGPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9013,7 +9013,7 @@ "Platform": "Intel® Core™ i5-1335U Processor iGPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9047,7 +9047,7 @@ "Platform": "Intel® Core™ i7-1185G7 iGPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9081,7 +9081,7 @@ "Platform": "Intel® Core™ i7-1185GRE iGPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9115,7 +9115,7 @@ "Platform": "Intel® Core™ i7-12700H iGPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9149,7 +9149,7 @@ "Platform": "Intel® Core™ i7-1355U Processor iGPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9183,7 +9183,7 @@ "Platform": "Intel® Core™ i7-1360P iGPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9217,7 +9217,7 @@ "Platform": "Intel® Processor N100 iGPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9251,7 +9251,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H iGPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9285,7 +9285,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H iGPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9319,7 +9319,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V iGPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9353,7 +9353,7 @@ "Platform": "Intel® Atom® x7425E CPU+iGPU", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -9387,7 +9387,7 @@ "Platform": "Intel® Atom® X6425E CPU+iGPU", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -9421,7 +9421,7 @@ "Platform": "Intel® Celeron® 6305E CPU+iGPU", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -9455,7 +9455,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU+iGPU", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9489,7 +9489,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU+iGPU", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9523,7 +9523,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU+iGPU", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9557,7 +9557,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU+iGPU", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9591,7 +9591,7 @@ "Platform": "Intel® Core™ i7-12700H CPU+iGPU", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9625,7 +9625,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU+iGPU", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9659,7 +9659,7 @@ "Platform": "Intel® Core™ i7-1360P CPU+iGPU", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9693,7 +9693,7 @@ "Platform": "Intel® Processor N100 CPU+iGPU", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -9727,7 +9727,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU+iGPU", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9761,7 +9761,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU+iGPU", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9795,7 +9795,7 @@ "Platform": "Intel® Atom® x7425E CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9829,7 +9829,7 @@ "Platform": "Intel® Atom® X6425E CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9863,7 +9863,7 @@ "Platform": "Intel® Celeron® 6305E CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9897,7 +9897,7 @@ "Platform": "Intel® Core™ i3-8100 CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9931,7 +9931,7 @@ "Platform": "Intel® Core™ i5-10500TE CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9965,7 +9965,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -9999,7 +9999,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10033,7 +10033,7 @@ "Platform": "Intel® Core™ i5-13600K CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10067,7 +10067,7 @@ "Platform": "Intel® Core™ i5-8500 CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10101,7 +10101,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10135,7 +10135,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10169,7 +10169,7 @@ "Platform": "Intel® Core™ i7-12700H CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10203,7 +10203,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10237,7 +10237,7 @@ "Platform": "Intel® Core™ i7-1360P CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10271,7 +10271,7 @@ "Platform": "Intel® Core™ i7-8700T CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10305,7 +10305,7 @@ "Platform": "Intel® Core™ i9-10900TE CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10339,7 +10339,7 @@ "Platform": "Intel® Core™ i9-13900K CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10373,7 +10373,7 @@ "Platform": "Intel® Processor N100 CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10407,7 +10407,7 @@ "Platform": "Intel® Xeon® W1290P CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10441,7 +10441,7 @@ "Platform": "Intel® Xeon® E-2124G CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10475,7 +10475,7 @@ "Platform": "Intel® Xeon® Gold 5218T CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10509,7 +10509,7 @@ "Platform": "Intel® Xeon® Platinum 8280 CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10543,7 +10543,7 @@ "Platform": "Intel® Xeon® Platinum 8380 CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10577,7 +10577,7 @@ "Platform": "Intel® Xeon® Platinum 8480+ CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10611,7 +10611,7 @@ "Platform": "Intel® Xeon® Platinum 8580 CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10645,7 +10645,7 @@ "Platform": "Intel® Xeon® Gold 6238L CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10679,7 +10679,7 @@ "Platform": "Intel® Xeon® Silver 4316 CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10713,7 +10713,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10747,7 +10747,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10781,7 +10781,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10917,7 +10917,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H NPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10951,7 +10951,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H NPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -10985,7 +10985,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V NPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11019,7 +11019,7 @@ "Platform": "Intel® Atom® x7425E iGPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11053,7 +11053,7 @@ "Platform": "Intel® Atom® X6425E iGPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11087,7 +11087,7 @@ "Platform": "Intel® Celeron® 6305E iGPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11121,7 +11121,7 @@ "Platform": "Intel® Core™ i5-1235U Processor iGPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11155,7 +11155,7 @@ "Platform": "Intel® Core™ i5-1335U Processor iGPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11189,7 +11189,7 @@ "Platform": "Intel® Core™ i7-1185G7 iGPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11223,7 +11223,7 @@ "Platform": "Intel® Core™ i7-1185GRE iGPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11257,7 +11257,7 @@ "Platform": "Intel® Core™ i7-12700H iGPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11291,7 +11291,7 @@ "Platform": "Intel® Core™ i7-1355U Processor iGPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11325,7 +11325,7 @@ "Platform": "Intel® Core™ i7-1360P iGPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11359,7 +11359,7 @@ "Platform": "Intel® Processor N100 iGPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11393,7 +11393,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H iGPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11427,7 +11427,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H iGPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11461,7 +11461,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V iGPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11495,7 +11495,7 @@ "Platform": "Intel® Atom® x7425E CPU+iGPU", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -11529,7 +11529,7 @@ "Platform": "Intel® Atom® X6425E CPU+iGPU", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -11563,7 +11563,7 @@ "Platform": "Intel® Celeron® 6305E CPU+iGPU", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -11597,7 +11597,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU+iGPU", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11631,7 +11631,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU+iGPU", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11665,7 +11665,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU+iGPU", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11699,7 +11699,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU+iGPU", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11733,7 +11733,7 @@ "Platform": "Intel® Core™ i7-12700H CPU+iGPU", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11767,7 +11767,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU+iGPU", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11801,7 +11801,7 @@ "Platform": "Intel® Core™ i7-1360P CPU+iGPU", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11835,7 +11835,7 @@ "Platform": "Intel® Processor N100 CPU+iGPU", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -11869,7 +11869,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU+iGPU", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11903,7 +11903,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU+iGPU", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11937,7 +11937,7 @@ "Platform": "Intel® Atom® x7425E CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -11971,7 +11971,7 @@ "Platform": "Intel® Atom® X6425E CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12005,7 +12005,7 @@ "Platform": "Intel® Celeron® 6305E CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12039,7 +12039,7 @@ "Platform": "Intel® Core™ i3-8100 CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12073,7 +12073,7 @@ "Platform": "Intel® Core™ i5-10500TE CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12107,7 +12107,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12141,7 +12141,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12175,7 +12175,7 @@ "Platform": "Intel® Core™ i5-13600K CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12209,7 +12209,7 @@ "Platform": "Intel® Core™ i5-8500 CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12243,7 +12243,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12277,7 +12277,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12311,7 +12311,7 @@ "Platform": "Intel® Core™ i7-12700H CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12345,7 +12345,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12379,7 +12379,7 @@ "Platform": "Intel® Core™ i7-1360P CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12413,7 +12413,7 @@ "Platform": "Intel® Core™ i7-8700T CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12447,7 +12447,7 @@ "Platform": "Intel® Core™ i9-10900TE CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12481,7 +12481,7 @@ "Platform": "Intel® Core™ i9-13900K CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12515,7 +12515,7 @@ "Platform": "Intel® Processor N100 CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12549,7 +12549,7 @@ "Platform": "Intel® Xeon® W1290P CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12583,7 +12583,7 @@ "Platform": "Intel® Xeon® E-2124G CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12617,7 +12617,7 @@ "Platform": "Intel® Xeon® Gold 5218T CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12651,7 +12651,7 @@ "Platform": "Intel® Xeon® Platinum 8280 CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12685,7 +12685,7 @@ "Platform": "Intel® Xeon® Platinum 8380 CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12719,7 +12719,7 @@ "Platform": "Intel® Xeon® Platinum 8480+ CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12753,7 +12753,7 @@ "Platform": "Intel® Xeon® Platinum 8580 CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12787,7 +12787,7 @@ "Platform": "Intel® Xeon® Gold 6238L CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12821,7 +12821,7 @@ "Platform": "Intel® Xeon® Silver 4316 CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12855,7 +12855,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12889,7 +12889,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -12923,7 +12923,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13059,7 +13059,7 @@ "Platform": "Intel® Atom® x7425E iGPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13093,7 +13093,7 @@ "Platform": "Intel® Atom® X6425E iGPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13127,7 +13127,7 @@ "Platform": "Intel® Celeron® 6305E iGPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13161,7 +13161,7 @@ "Platform": "Intel® Core™ i5-1235U Processor iGPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13195,7 +13195,7 @@ "Platform": "Intel® Core™ i5-1335U Processor iGPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13229,7 +13229,7 @@ "Platform": "Intel® Core™ i7-1185G7 iGPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13263,7 +13263,7 @@ "Platform": "Intel® Core™ i7-1185GRE iGPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13297,7 +13297,7 @@ "Platform": "Intel® Core™ i7-12700H iGPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13331,7 +13331,7 @@ "Platform": "Intel® Core™ i7-1355U Processor iGPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13365,7 +13365,7 @@ "Platform": "Intel® Core™ i7-1360P iGPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13399,7 +13399,7 @@ "Platform": "Intel® Processor N100 iGPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13433,7 +13433,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H iGPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13467,7 +13467,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H iGPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13501,7 +13501,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V iGPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13535,7 +13535,7 @@ "Platform": "Intel® Atom® x7425E CPU+iGPU", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -13569,7 +13569,7 @@ "Platform": "Intel® Atom® X6425E CPU+iGPU", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -13603,7 +13603,7 @@ "Platform": "Intel® Celeron® 6305E CPU+iGPU", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -13637,7 +13637,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU+iGPU", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13671,7 +13671,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU+iGPU", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13705,7 +13705,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU+iGPU", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13739,7 +13739,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU+iGPU", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13773,7 +13773,7 @@ "Platform": "Intel® Core™ i7-12700H CPU+iGPU", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13807,7 +13807,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU+iGPU", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13841,7 +13841,7 @@ "Platform": "Intel® Core™ i7-1360P CPU+iGPU", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13875,7 +13875,7 @@ "Platform": "Intel® Processor N100 CPU+iGPU", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -13909,7 +13909,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU+iGPU", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13943,7 +13943,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU+iGPU", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -13977,7 +13977,7 @@ "Platform": "Intel® Atom® x7425E CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14011,7 +14011,7 @@ "Platform": "Intel® Atom® X6425E CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14045,7 +14045,7 @@ "Platform": "Intel® Celeron® 6305E CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14079,7 +14079,7 @@ "Platform": "Intel® Core™ i3-8100 CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14113,7 +14113,7 @@ "Platform": "Intel® Core™ i5-10500TE CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14147,7 +14147,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14181,7 +14181,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14215,7 +14215,7 @@ "Platform": "Intel® Core™ i5-13600K CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14249,7 +14249,7 @@ "Platform": "Intel® Core™ i5-8500 CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14283,7 +14283,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14317,7 +14317,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14351,7 +14351,7 @@ "Platform": "Intel® Core™ i7-12700H CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14385,7 +14385,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14419,7 +14419,7 @@ "Platform": "Intel® Core™ i7-1360P CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14453,7 +14453,7 @@ "Platform": "Intel® Core™ i7-8700T CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14487,7 +14487,7 @@ "Platform": "Intel® Core™ i9-10900TE CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14521,7 +14521,7 @@ "Platform": "Intel® Core™ i9-13900K CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14555,7 +14555,7 @@ "Platform": "Intel® Processor N100 CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14589,7 +14589,7 @@ "Platform": "Intel® Xeon® W1290P CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14623,7 +14623,7 @@ "Platform": "Intel® Xeon® E-2124G CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14657,7 +14657,7 @@ "Platform": "Intel® Xeon® Gold 5218T CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14691,7 +14691,7 @@ "Platform": "Intel® Xeon® Platinum 8280 CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14725,7 +14725,7 @@ "Platform": "Intel® Xeon® Platinum 8380 CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14759,7 +14759,7 @@ "Platform": "Intel® Xeon® Platinum 8480+ CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14793,7 +14793,7 @@ "Platform": "Intel® Xeon® Platinum 8580 CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14827,7 +14827,7 @@ "Platform": "Intel® Xeon® Gold 6238L CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14861,7 +14861,7 @@ "Platform": "Intel® Xeon® Silver 4316 CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14895,7 +14895,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14929,7 +14929,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -14963,7 +14963,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15099,7 +15099,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H NPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15133,7 +15133,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H NPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15167,7 +15167,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V NPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15201,7 +15201,7 @@ "Platform": "Intel® Atom® x7425E iGPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15235,7 +15235,7 @@ "Platform": "Intel® Atom® X6425E iGPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15269,7 +15269,7 @@ "Platform": "Intel® Celeron® 6305E iGPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15303,7 +15303,7 @@ "Platform": "Intel® Core™ i5-1235U Processor iGPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15337,7 +15337,7 @@ "Platform": "Intel® Core™ i5-1335U Processor iGPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15371,7 +15371,7 @@ "Platform": "Intel® Core™ i7-1185G7 iGPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15405,7 +15405,7 @@ "Platform": "Intel® Core™ i7-1185GRE iGPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15439,7 +15439,7 @@ "Platform": "Intel® Core™ i7-12700H iGPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15473,7 +15473,7 @@ "Platform": "Intel® Core™ i7-1355U Processor iGPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15507,7 +15507,7 @@ "Platform": "Intel® Core™ i7-1360P iGPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15541,7 +15541,7 @@ "Platform": "Intel® Processor N100 iGPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15575,7 +15575,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H iGPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15609,7 +15609,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H iGPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15643,7 +15643,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V iGPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15677,7 +15677,7 @@ "Platform": "Intel® Atom® x7425E CPU+iGPU", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -15711,7 +15711,7 @@ "Platform": "Intel® Atom® X6425E CPU+iGPU", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -15745,7 +15745,7 @@ "Platform": "Intel® Celeron® 6305E CPU+iGPU", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -15779,7 +15779,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU+iGPU", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15813,7 +15813,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU+iGPU", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15847,7 +15847,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU+iGPU", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15881,7 +15881,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU+iGPU", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15915,7 +15915,7 @@ "Platform": "Intel® Core™ i7-12700H CPU+iGPU", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15949,7 +15949,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU+iGPU", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -15983,7 +15983,7 @@ "Platform": "Intel® Core™ i7-1360P CPU+iGPU", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16017,7 +16017,7 @@ "Platform": "Intel® Processor N100 CPU+iGPU", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -16051,7 +16051,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU+iGPU", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16085,7 +16085,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU+iGPU", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16119,7 +16119,7 @@ "Platform": "Intel® Celeron® 6305E CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16153,7 +16153,7 @@ "Platform": "Intel® Core™ i3-8100 CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16187,7 +16187,7 @@ "Platform": "Intel® Core™ i5-10500TE CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16221,7 +16221,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16255,7 +16255,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16289,7 +16289,7 @@ "Platform": "Intel® Core™ i5-13600K CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16323,7 +16323,7 @@ "Platform": "Intel® Core™ i5-8500 CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16357,7 +16357,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16391,7 +16391,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16425,7 +16425,7 @@ "Platform": "Intel® Core™ i7-12700H CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16459,7 +16459,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16493,7 +16493,7 @@ "Platform": "Intel® Core™ i7-1360P CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16527,7 +16527,7 @@ "Platform": "Intel® Core™ i7-8700T CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16561,7 +16561,7 @@ "Platform": "Intel® Core™ i9-10900TE CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16595,7 +16595,7 @@ "Platform": "Intel® Core™ i9-13900K CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16629,7 +16629,7 @@ "Platform": "Intel® Xeon® W1290P CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16663,7 +16663,7 @@ "Platform": "Intel® Xeon® E-2124G CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16697,7 +16697,7 @@ "Platform": "Intel® Xeon® Gold 5218T CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16731,7 +16731,7 @@ "Platform": "Intel® Xeon® Platinum 8280 CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16765,7 +16765,7 @@ "Platform": "Intel® Xeon® Platinum 8380 CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16799,7 +16799,7 @@ "Platform": "Intel® Xeon® Platinum 8480+ CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16833,7 +16833,7 @@ "Platform": "Intel® Xeon® Platinum 8580 CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16867,7 +16867,7 @@ "Platform": "Intel® Xeon® Gold 6238L CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16901,7 +16901,7 @@ "Platform": "Intel® Xeon® Silver 4316 CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16935,7 +16935,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -16969,7 +16969,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17003,7 +17003,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17139,7 +17139,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H NPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17173,7 +17173,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H NPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17207,7 +17207,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V NPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17241,7 +17241,7 @@ "Platform": "Intel® Atom® x7425E iGPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17275,7 +17275,7 @@ "Platform": "Intel® Atom® X6425E iGPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17309,7 +17309,7 @@ "Platform": "Intel® Celeron® 6305E iGPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17343,7 +17343,7 @@ "Platform": "Intel® Core™ i5-1235U Processor iGPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17377,7 +17377,7 @@ "Platform": "Intel® Core™ i5-1335U Processor iGPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17411,7 +17411,7 @@ "Platform": "Intel® Core™ i7-1185G7 iGPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17445,7 +17445,7 @@ "Platform": "Intel® Core™ i7-1185GRE iGPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17479,7 +17479,7 @@ "Platform": "Intel® Core™ i7-12700H iGPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17513,7 +17513,7 @@ "Platform": "Intel® Core™ i7-1355U Processor iGPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17547,7 +17547,7 @@ "Platform": "Intel® Core™ i7-1360P iGPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17581,7 +17581,7 @@ "Platform": "Intel® Processor N100 iGPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17615,7 +17615,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H iGPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17649,7 +17649,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H iGPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17683,7 +17683,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V iGPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17717,7 +17717,7 @@ "Platform": "Intel® Celeron® 6305E CPU+iGPU", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -17751,7 +17751,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU+iGPU", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17785,7 +17785,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU+iGPU", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17819,7 +17819,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU+iGPU", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17853,7 +17853,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU+iGPU", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17887,7 +17887,7 @@ "Platform": "Intel® Core™ i7-12700H CPU+iGPU", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17921,7 +17921,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU+iGPU", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17955,7 +17955,7 @@ "Platform": "Intel® Core™ i7-1360P CPU+iGPU", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -17989,7 +17989,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU+iGPU", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18023,7 +18023,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU+iGPU", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18057,7 +18057,7 @@ "Platform": "Intel® Atom® x7425E CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18091,7 +18091,7 @@ "Platform": "Intel® Atom® X6425E CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18125,7 +18125,7 @@ "Platform": "Intel® Celeron® 6305E CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18159,7 +18159,7 @@ "Platform": "Intel® Core™ i3-8100 CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18193,7 +18193,7 @@ "Platform": "Intel® Core™ i5-10500TE CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18227,7 +18227,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18261,7 +18261,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18295,7 +18295,7 @@ "Platform": "Intel® Core™ i5-13600K CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18329,7 +18329,7 @@ "Platform": "Intel® Core™ i5-8500 CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18363,7 +18363,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18397,7 +18397,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18431,7 +18431,7 @@ "Platform": "Intel® Core™ i7-12700H CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18465,7 +18465,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18499,7 +18499,7 @@ "Platform": "Intel® Core™ i7-1360P CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18533,7 +18533,7 @@ "Platform": "Intel® Core™ i7-8700T CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18567,7 +18567,7 @@ "Platform": "Intel® Core™ i9-10900TE CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18601,7 +18601,7 @@ "Platform": "Intel® Core™ i9-13900K CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18635,7 +18635,7 @@ "Platform": "Intel® Processor N100 CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18669,7 +18669,7 @@ "Platform": "Intel® Xeon® W1290P CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18703,7 +18703,7 @@ "Platform": "Intel® Xeon® E-2124G CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18737,7 +18737,7 @@ "Platform": "Intel® Xeon® Gold 5218T CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18771,7 +18771,7 @@ "Platform": "Intel® Xeon® Platinum 8280 CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18805,7 +18805,7 @@ "Platform": "Intel® Xeon® Platinum 8380 CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18839,7 +18839,7 @@ "Platform": "Intel® Xeon® Platinum 8480+ CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18873,7 +18873,7 @@ "Platform": "Intel® Xeon® Platinum 8580 CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18907,7 +18907,7 @@ "Platform": "Intel® Xeon® Gold 6238L CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18941,7 +18941,7 @@ "Platform": "Intel® Xeon® Silver 4316 CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -18975,7 +18975,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19009,7 +19009,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19145,7 +19145,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H NPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19179,7 +19179,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H NPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19213,7 +19213,7 @@ "Platform": "Intel® Atom® x7425E iGPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19247,7 +19247,7 @@ "Platform": "Intel® Atom® X6425E iGPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19281,7 +19281,7 @@ "Platform": "Intel® Celeron® 6305E iGPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19315,7 +19315,7 @@ "Platform": "Intel® Core™ i5-1235U Processor iGPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19349,7 +19349,7 @@ "Platform": "Intel® Core™ i5-1335U Processor iGPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19383,7 +19383,7 @@ "Platform": "Intel® Core™ i7-1185G7 iGPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19417,7 +19417,7 @@ "Platform": "Intel® Core™ i7-1185GRE iGPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19451,7 +19451,7 @@ "Platform": "Intel® Core™ i7-12700H iGPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19485,7 +19485,7 @@ "Platform": "Intel® Core™ i7-1355U Processor iGPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19519,7 +19519,7 @@ "Platform": "Intel® Core™ i7-1360P iGPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19553,7 +19553,7 @@ "Platform": "Intel® Processor N100 iGPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19587,7 +19587,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H iGPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19621,7 +19621,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H iGPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19655,7 +19655,7 @@ "Platform": "Intel® Atom® x7425E CPU+iGPU", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -19689,7 +19689,7 @@ "Platform": "Intel® Atom® X6425E CPU+iGPU", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -19723,7 +19723,7 @@ "Platform": "Intel® Celeron® 6305E CPU+iGPU", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -19757,7 +19757,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU+iGPU", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19791,7 +19791,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU+iGPU", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19825,7 +19825,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU+iGPU", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19859,7 +19859,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU+iGPU", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19893,7 +19893,7 @@ "Platform": "Intel® Core™ i7-12700H CPU+iGPU", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19927,7 +19927,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU+iGPU", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19961,7 +19961,7 @@ "Platform": "Intel® Core™ i7-1360P CPU+iGPU", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -19995,7 +19995,7 @@ "Platform": "Intel® Processor N100 CPU+iGPU", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -20029,7 +20029,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU+iGPU", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20063,7 +20063,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU+iGPU", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20097,7 +20097,7 @@ "Platform": "Intel® Atom® x7425E CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20131,7 +20131,7 @@ "Platform": "Intel® Atom® X6425E CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20165,7 +20165,7 @@ "Platform": "Intel® Celeron® 6305E CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20199,7 +20199,7 @@ "Platform": "Intel® Core™ i3-8100 CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20233,7 +20233,7 @@ "Platform": "Intel® Core™ i5-10500TE CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20267,7 +20267,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20301,7 +20301,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20335,7 +20335,7 @@ "Platform": "Intel® Core™ i5-13600K CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20369,7 +20369,7 @@ "Platform": "Intel® Core™ i5-8500 CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20403,7 +20403,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20437,7 +20437,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20471,7 +20471,7 @@ "Platform": "Intel® Core™ i7-12700H CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20505,7 +20505,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20539,7 +20539,7 @@ "Platform": "Intel® Core™ i7-1360P CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20573,7 +20573,7 @@ "Platform": "Intel® Core™ i7-8700T CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20607,7 +20607,7 @@ "Platform": "Intel® Core™ i9-10900TE CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20641,7 +20641,7 @@ "Platform": "Intel® Core™ i9-13900K CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20675,7 +20675,7 @@ "Platform": "Intel® Processor N100 CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20709,7 +20709,7 @@ "Platform": "Intel® Xeon® W1290P CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20743,7 +20743,7 @@ "Platform": "Intel® Xeon® E-2124G CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20777,7 +20777,7 @@ "Platform": "Intel® Xeon® Gold 5218T CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20811,7 +20811,7 @@ "Platform": "Intel® Xeon® Platinum 8280 CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20845,7 +20845,7 @@ "Platform": "Intel® Xeon® Platinum 8380 CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20879,7 +20879,7 @@ "Platform": "Intel® Xeon® Platinum 8480+ CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20913,7 +20913,7 @@ "Platform": "Intel® Xeon® Platinum 8580 CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20947,7 +20947,7 @@ "Platform": "Intel® Xeon® Gold 6238L CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -20981,7 +20981,7 @@ "Platform": "Intel® Xeon® Silver 4316 CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21015,7 +21015,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21049,7 +21049,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21083,7 +21083,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21219,7 +21219,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H NPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21253,7 +21253,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H NPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21287,7 +21287,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V NPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21321,7 +21321,7 @@ "Platform": "Intel® Atom® x7425E iGPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21355,7 +21355,7 @@ "Platform": "Intel® Atom® X6425E iGPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21389,7 +21389,7 @@ "Platform": "Intel® Celeron® 6305E iGPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21423,7 +21423,7 @@ "Platform": "Intel® Core™ i5-1235U Processor iGPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21457,7 +21457,7 @@ "Platform": "Intel® Core™ i5-1335U Processor iGPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21491,7 +21491,7 @@ "Platform": "Intel® Core™ i7-1185G7 iGPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21525,7 +21525,7 @@ "Platform": "Intel® Core™ i7-1185GRE iGPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21559,7 +21559,7 @@ "Platform": "Intel® Core™ i7-12700H iGPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21593,7 +21593,7 @@ "Platform": "Intel® Core™ i7-1355U Processor iGPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21627,7 +21627,7 @@ "Platform": "Intel® Core™ i7-1360P iGPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21661,7 +21661,7 @@ "Platform": "Intel® Processor N100 iGPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21695,7 +21695,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H iGPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21729,7 +21729,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H iGPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21763,7 +21763,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V iGPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21797,7 +21797,7 @@ "Platform": "Intel® Atom® x7425E CPU+iGPU", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -21831,7 +21831,7 @@ "Platform": "Intel® Atom® X6425E CPU+iGPU", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -21865,7 +21865,7 @@ "Platform": "Intel® Celeron® 6305E CPU+iGPU", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -21899,7 +21899,7 @@ "Platform": "Intel® Core™ i5-1235U Processor CPU+iGPU", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21933,7 +21933,7 @@ "Platform": "Intel® Core™ i5-1335U Processor CPU+iGPU", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -21967,7 +21967,7 @@ "Platform": "Intel® Core™ i7-1185G7 CPU+iGPU", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22001,7 +22001,7 @@ "Platform": "Intel® Core™ i7-1185GRE CPU+iGPU", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22035,7 +22035,7 @@ "Platform": "Intel® Core™ i7-12700H CPU+iGPU", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22069,7 +22069,7 @@ "Platform": "Intel® Core™ i7-1355U Processor CPU+iGPU", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22103,7 +22103,7 @@ "Platform": "Intel® Core™ i7-1360P CPU+iGPU", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22137,7 +22137,7 @@ "Platform": "Intel® Processor N100 CPU+iGPU", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Mobile Platforms (Intel® Atom™)", + "PlatformType": "Intel® Atom™, CPU+iGPU", "Parameters": { "throughput": { "Precisions": [ @@ -22171,7 +22171,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 155H CPU+iGPU", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22205,7 +22205,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU+iGPU", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22239,7 +22239,7 @@ "Platform": "Intel® Core™ i9-13900K CPU-only", "Model": "chatglm2-6b", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22273,7 +22273,7 @@ "Platform": "Intel® Xeon® Platinum 8380 CPU-only", "Model": "chatglm2-6b", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22307,7 +22307,7 @@ "Platform": "Intel® Xeon® Platinum 8480+ CPU-only", "Model": "chatglm2-6b", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22341,7 +22341,7 @@ "Platform": "Intel® Xeon® Platinum 8580 CPU-only", "Model": "chatglm2-6b", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22375,7 +22375,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU-only", "Model": "chatglm2-6b", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22511,7 +22511,7 @@ "Platform": "Intel® Core™ i7-1360P iGPU-only", "Model": "chatglm2-6b", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22545,7 +22545,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H iGPU-only", "Model": "chatglm2-6b", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22579,7 +22579,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V iGPU-only", "Model": "chatglm2-6b", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22613,7 +22613,7 @@ "Platform": "Intel® Core™ i9-13900K CPU-only", "Model": "falcon-7b-instruct", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22647,7 +22647,7 @@ "Platform": "Intel® Xeon® Platinum 8380 CPU-only", "Model": "falcon-7b-instruct", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22681,7 +22681,7 @@ "Platform": "Intel® Xeon® Platinum 8480+ CPU-only", "Model": "falcon-7b-instruct", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22715,7 +22715,7 @@ "Platform": "Intel® Xeon® Platinum 8580 CPU-only", "Model": "falcon-7b-instruct", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22749,7 +22749,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU-only", "Model": "falcon-7b-instruct", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22885,7 +22885,7 @@ "Platform": "Intel® Core™ i7-1360P iGPU-only", "Model": "falcon-7b-instruct", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22919,7 +22919,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H iGPU-only", "Model": "falcon-7b-instruct", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22953,7 +22953,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V iGPU-only", "Model": "falcon-7b-instruct", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -22987,7 +22987,7 @@ "Platform": "Intel® Core™ i9-13900K CPU-only", "Model": "llama-2-7b-chat", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23021,7 +23021,7 @@ "Platform": "Intel® Xeon® Platinum 8380 CPU-only", "Model": "llama-2-7b-chat", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23055,7 +23055,7 @@ "Platform": "Intel® Xeon® Platinum 8480+ CPU-only", "Model": "llama-2-7b-chat", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23089,7 +23089,7 @@ "Platform": "Intel® Xeon® Platinum 8580 CPU-only", "Model": "llama-2-7b-chat", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23123,7 +23123,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU-only", "Model": "llama-2-7b-chat", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23225,7 +23225,7 @@ "Platform": "Intel® Core™ i7-1360P iGPU-only", "Model": "llama-2-7b-chat", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23259,7 +23259,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H iGPU-only", "Model": "llama-2-7b-chat", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23293,7 +23293,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V iGPU-only", "Model": "llama-2-7b-chat", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23327,7 +23327,7 @@ "Platform": "Intel® Core™ i9-13900K CPU-only", "Model": "llama-3-8b", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23361,7 +23361,7 @@ "Platform": "Intel® Xeon® Platinum 8380 CPU-only", "Model": "llama-3-8b", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23395,7 +23395,7 @@ "Platform": "Intel® Xeon® Platinum 8480+ CPU-only", "Model": "llama-3-8b", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23429,7 +23429,7 @@ "Platform": "Intel® Xeon® Platinum 8580 CPU-only", "Model": "llama-3-8b", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23463,7 +23463,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU-only", "Model": "llama-3-8b", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23599,7 +23599,7 @@ "Platform": "Intel® Core™ i7-1360P iGPU-only", "Model": "llama-3-8b", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23633,7 +23633,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H iGPU-only", "Model": "llama-3-8b", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23667,7 +23667,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V iGPU-only", "Model": "llama-3-8b", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23701,7 +23701,7 @@ "Platform": "Intel® Core™ i9-13900K CPU-only", "Model": "mistral-7b-v0.1", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23735,7 +23735,7 @@ "Platform": "Intel® Xeon® Platinum 8380 CPU-only", "Model": "mistral-7b-v0.1", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23769,7 +23769,7 @@ "Platform": "Intel® Xeon® Platinum 8480+ CPU-only", "Model": "mistral-7b-v0.1", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23803,7 +23803,7 @@ "Platform": "Intel® Xeon® Platinum 8580 CPU-only", "Model": "mistral-7b-v0.1", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23837,7 +23837,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU-only", "Model": "mistral-7b-v0.1", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -23973,7 +23973,7 @@ "Platform": "Intel® Core™ i7-1360P iGPU-only", "Model": "mistral-7b-v0.1", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24007,7 +24007,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H iGPU-only", "Model": "mistral-7b-v0.1", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24041,7 +24041,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V iGPU-only", "Model": "mistral-7b-v0.1", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24075,7 +24075,7 @@ "Platform": "Intel® Core™ i9-13900K CPU-only", "Model": "phi-3-mini-4k-instruct", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24109,7 +24109,7 @@ "Platform": "Intel® Xeon® Platinum 8380 CPU-only", "Model": "phi-3-mini-4k-instruct", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24143,7 +24143,7 @@ "Platform": "Intel® Xeon® Platinum 8480+ CPU-only", "Model": "phi-3-mini-4k-instruct", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24177,7 +24177,7 @@ "Platform": "Intel® Xeon® Platinum 8580 CPU-only", "Model": "phi-3-mini-4k-instruct", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24211,7 +24211,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H CPU-only", "Model": "phi-3-mini-4k-instruct", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24347,7 +24347,7 @@ "Platform": "Intel® Core™ i7-1360P iGPU-only", "Model": "phi-3-mini-4k-instruct", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24381,7 +24381,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 165H iGPU-only", "Model": "phi-3-mini-4k-instruct", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24415,7 +24415,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V iGPU-only", "Model": "phi-3-mini-4k-instruct", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24449,7 +24449,7 @@ "Platform": "Intel® Core™ i9-13900K CPU-only", "Model": "stable-diffusion-v1-5", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24483,7 +24483,7 @@ "Platform": "Intel® Xeon® Platinum 8380 CPU-only", "Model": "stable-diffusion-v1-5", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24517,7 +24517,7 @@ "Platform": "Intel® Xeon® Platinum 8480+ CPU-only", "Model": "stable-diffusion-v1-5", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24551,7 +24551,7 @@ "Platform": "Intel® Xeon® Platinum 8580 CPU-only", "Model": "stable-diffusion-v1-5", "Checked": "true", - "PlatformType": "Server Platforms (Intel® Xeon®)", + "PlatformType": "Intel® Xeon®, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24653,7 +24653,7 @@ "Platform": "Intel® Core™ i7-1360P iGPU-only", "Model": "stable-diffusion-v1-5", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24687,7 +24687,7 @@ "Platform": "Intel® Core™ Ultra 9 processor 288V iGPU-only", "Model": "stable-diffusion-v1-5", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24721,7 +24721,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU-only", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24753,9 +24753,9 @@ }, { "Platform": "Intel® Core™ Ultra 7 processor 268V CPU-only", - "Model": "bert-large-uncased", + "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24789,7 +24789,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU-only", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24823,7 +24823,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU-only", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24857,7 +24857,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU-only", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24891,7 +24891,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU-only", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24925,7 +24925,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU-only", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24959,7 +24959,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU-only", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -24993,7 +24993,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU-only", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25027,7 +25027,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU-only", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25061,7 +25061,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU-only", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, CPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25095,7 +25095,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V iGPU", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25127,9 +25127,9 @@ }, { "Platform": "Intel® Core™ Ultra 7 processor 268V iGPU", - "Model": "bert-large-uncased", + "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25163,7 +25163,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V iGPU", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25197,7 +25197,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V iGPU", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25231,7 +25231,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V iGPU", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25265,7 +25265,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V iGPU", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25299,7 +25299,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V iGPU", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25333,7 +25333,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V iGPU", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25367,7 +25367,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V iGPU", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25401,7 +25401,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V iGPU", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25435,7 +25435,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V iGPU", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25469,7 +25469,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU+iGPU", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25501,9 +25501,9 @@ }, { "Platform": "Intel® Core™ Ultra 7 processor 268V CPU+iGPU", - "Model": "bert-large-uncased", + "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25537,7 +25537,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU+iGPU", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25571,7 +25571,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU+iGPU", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25605,7 +25605,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU+iGPU", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25639,7 +25639,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU+iGPU", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25673,7 +25673,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU+iGPU", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25707,7 +25707,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU+iGPU", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25741,7 +25741,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU+iGPU", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25775,7 +25775,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU+iGPU", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25809,7 +25809,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V CPU+iGPU", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25843,7 +25843,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V NPU", "Model": "bert-base-cased", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25875,9 +25875,9 @@ }, { "Platform": "Intel® Core™ Ultra 7 processor 268V NPU", - "Model": "bert-large-uncased", + "Model": "bert-large-uncased-whole-word-masking-squad-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25911,7 +25911,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V NPU", "Model": "efficientdet-d0", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25945,7 +25945,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V NPU", "Model": "mask_rcnn_resnet50_atrous_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -25979,7 +25979,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V NPU", "Model": "mobilenet-v2", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -26013,7 +26013,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V NPU", "Model": "resnet-50", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -26047,7 +26047,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V NPU", "Model": "ssd_mobilenet_v1_coco", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -26081,7 +26081,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V NPU", "Model": "ssd-resnet34-1200", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -26115,7 +26115,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V NPU", "Model": "unet-camvid-onnx-0001", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -26149,7 +26149,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V NPU", "Model": "yolo_v5m", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -26183,7 +26183,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V NPU", "Model": "yolo_v8n", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, NPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -26217,7 +26217,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V iGPU", "Model": "chatglm2-6b", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -26251,7 +26251,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V iGPU", "Model": "falcon-7b-instruct", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -26283,9 +26283,9 @@ }, { "Platform": "Intel® Core™ Ultra 7 processor 268V iGPU", - "Model": "llama-2-7b-chat-hf", + "Model": "llama-2-7b-chat", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -26319,7 +26319,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V iGPU", "Model": "llama-3-8b", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -26353,7 +26353,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V iGPU", "Model": "mistral-7b-v0.1", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -26387,7 +26387,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V iGPU", "Model": "phi-3-mini-4k-instruct", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ @@ -26421,7 +26421,7 @@ "Platform": "Intel® Core™ Ultra 7 processor 268V iGPU", "Model": "stable-diffusion-v1-5", "Checked": "true", - "PlatformType": "Client Platforms (Intel® Core™)", + "PlatformType": "Intel® Core™, iGPU-only", "Parameters": { "throughput": { "Precisions": [ diff --git a/docs/sphinx_setup/_static/benchmarks_files/graph-config.json b/docs/sphinx_setup/_static/benchmarks_files/graph-config.json index 6fb8d19e1a1adf..9cd8176af26235 100644 --- a/docs/sphinx_setup/_static/benchmarks_files/graph-config.json +++ b/docs/sphinx_setup/_static/benchmarks_files/graph-config.json @@ -80,7 +80,10 @@ "platformTypes": { "name": "ietype", "data": [ - "Client Platforms (Intel® Core™)" + "Intel® Core™, CPU-only", + "Intel® Core™, iGPU-only", + "Intel® Core™, NPU-only", + "Intel® Core™, CPU+iGPU" ] }, "platforms": { @@ -97,7 +100,10 @@ "models": { "name": "networkmodel", "data": [ - "bert-base-cased" + "bert-base-cased", + "resnet-50", + "yolo_v8n", + "llama-3-8B" ] }, "parameters": { diff --git a/docs/sphinx_setup/_static/download/supported_models.csv b/docs/sphinx_setup/_static/download/supported_models.csv index 1c7db3ab6bfc9d..87ea37b0f207c3 100644 --- a/docs/sphinx_setup/_static/download/supported_models.csv +++ b/docs/sphinx_setup/_static/download/supported_models.csv @@ -344,8 +344,7 @@ mask_rcnn_resnet101_atrous_coco,Instance Segmentation,tf,FP16-INT8,+,+, mask_rcnn_resnet50_atrous_coco,Instance Segmentation,tf,FP16,+,+, mask_rcnn_resnet50_atrous_coco,Instance Segmentation,tf,FP16-INT8,+,+, mask_rcnn_resnet50_atrous_coco,Instance Segmentation,tf,FP32,+,+, -MaskRCNN-12,Object Detection,onnx,FP16,,,+ -MaskRCNN-12,Object Detection,onnx,FP32,+,+,+ +MaskRCNN-12,Object Detection,onnx,FP32,+,+, mbart-large-50-many-to-one-mmt,Natural Language Processing,pytorch,intel-optimum default,,+, Meta-Llama-3-8B,Large Language Model,pytorch,intel-optimum default,,+, Meta-Llama-3-8B-Instruct,Large Language Model,pytorch,intel-optimum default,,+, diff --git a/docs/sphinx_setup/index.rst b/docs/sphinx_setup/index.rst index 47dc76bf16cf29..9d376877b51d08 100644 --- a/docs/sphinx_setup/index.rst +++ b/docs/sphinx_setup/index.rst @@ -124,7 +124,7 @@ Places to Begin Cloud-ready deployments for microservice applications. - .. button-link:: openvino-workflow/openvino-workflow/model-server/ovms_what_is_openvino_model_server.html + .. button-link:: openvino-workflow/model-server/ovms_what_is_openvino_model_server.html :color: primary :outline: From 704de6e74443f28b53f4ca755240fd425ab2830a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Piotr=20Krzemi=C5=84ski?= Date: Fri, 8 Nov 2024 12:03:59 +0100 Subject: [PATCH 46/93] [Opset] Opset16 initialization (#27458) ### Details: - Initialization of OV Opset16 ### Tickets: - 156876, Finalization 156877 --- docs/sphinx_setup/api/ie_python_api/api.rst | 6 ++++++ .../src/openvino/runtime/opset16/__init__.py | 8 ++++++++ .../python/src/openvino/runtime/opset16/ops.py | 12 ++++++++++++ .../test_transformations/test_pattern_ops.py | 2 +- src/core/include/openvino/opsets/opset.hpp | 5 +++++ src/core/include/openvino/opsets/opset16.hpp | 15 +++++++++++++++ src/core/include/openvino/opsets/opset16_tbl.hpp | 16 ++++++++++++++++ src/core/src/opsets/opset.cpp | 14 +++++++++++++- src/core/tests/op.cpp | 1 + src/core/tests/opset.cpp | 4 +++- .../include/openvino/frontend/extension/op.hpp | 2 +- src/plugins/template/src/plugin.cpp | 1 + .../src/op_impl_check/single_op_graph.cpp | 1 + 13 files changed, 83 insertions(+), 4 deletions(-) create mode 100644 src/bindings/python/src/openvino/runtime/opset16/__init__.py create mode 100644 src/bindings/python/src/openvino/runtime/opset16/ops.py create mode 100644 src/core/include/openvino/opsets/opset16.hpp create mode 100644 src/core/include/openvino/opsets/opset16_tbl.hpp diff --git a/docs/sphinx_setup/api/ie_python_api/api.rst b/docs/sphinx_setup/api/ie_python_api/api.rst index efbe25ee40bcde..6fc754da1246b7 100644 --- a/docs/sphinx_setup/api/ie_python_api/api.rst +++ b/docs/sphinx_setup/api/ie_python_api/api.rst @@ -119,6 +119,12 @@ OpenVINO Python API openvino.runtime.opset15 +.. autosummary:: + :toctree: _autosummary + :template: custom-module-template.rst + + openvino.runtime.opset16 + .. autosummary:: :toctree: _autosummary :template: custom-module-template.rst diff --git a/src/bindings/python/src/openvino/runtime/opset16/__init__.py b/src/bindings/python/src/openvino/runtime/opset16/__init__.py new file mode 100644 index 00000000000000..bf155b81312090 --- /dev/null +++ b/src/bindings/python/src/openvino/runtime/opset16/__init__.py @@ -0,0 +1,8 @@ +# -*- coding: utf-8 -*- +# Copyright (C) 2018-2024 Intel Corporation +# SPDX-License-Identifier: Apache-2.0 + +# New operations added in Opset16 + +# Operators from previous opsets +# TODO (ticket: 156877): Add previous opset operators at the end of opset16 development diff --git a/src/bindings/python/src/openvino/runtime/opset16/ops.py b/src/bindings/python/src/openvino/runtime/opset16/ops.py new file mode 100644 index 00000000000000..0825ccb9d0f487 --- /dev/null +++ b/src/bindings/python/src/openvino/runtime/opset16/ops.py @@ -0,0 +1,12 @@ +# -*- coding: utf-8 -*- +# Copyright (C) 2018-2024 Intel Corporation +# SPDX-License-Identifier: Apache-2.0 + +"""Factory functions for ops added to openvino opset16.""" +from functools import partial + +from openvino.runtime.opset_utils import _get_node_factory + +_get_node_factory_opset16 = partial(_get_node_factory, "opset16") + +# -------------------------------------------- ops ------------------------------------------------ diff --git a/src/bindings/python/tests/test_transformations/test_pattern_ops.py b/src/bindings/python/tests/test_transformations/test_pattern_ops.py index 041bf83764e265..24b28061582c68 100644 --- a/src/bindings/python/tests/test_transformations/test_pattern_ops.py +++ b/src/bindings/python/tests/test_transformations/test_pattern_ops.py @@ -189,7 +189,7 @@ def test_pattern_optional_root(): def test_wrap_type_pattern_type(): - last_opset_number = 15 + last_opset_number = 16 for i in range(1, last_opset_number + 1): WrapType(f"opset{i}.Parameter") WrapType(f"opset{i}::Parameter") diff --git a/src/core/include/openvino/opsets/opset.hpp b/src/core/include/openvino/opsets/opset.hpp index 7ab8c43fcec6ab..524729793f0569 100644 --- a/src/core/include/openvino/opsets/opset.hpp +++ b/src/core/include/openvino/opsets/opset.hpp @@ -172,6 +172,11 @@ const OPENVINO_API OpSet& get_opset14(); * @ingroup ov_opset_cpp_api */ const OPENVINO_API OpSet& get_opset15(); +/** + * @brief Returns map of available opsets + * @ingroup ov_opset_cpp_api + */ +const OPENVINO_API OpSet& get_opset16(); /** * @brief Returns map of available opsets * @ingroup ov_opset_cpp_api diff --git a/src/core/include/openvino/opsets/opset16.hpp b/src/core/include/openvino/opsets/opset16.hpp new file mode 100644 index 00000000000000..0e2c6c5452f661 --- /dev/null +++ b/src/core/include/openvino/opsets/opset16.hpp @@ -0,0 +1,15 @@ +// Copyright (C) 2018-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 +// + +#pragma once + +#include "openvino/op/ops.hpp" + +namespace ov { +namespace opset16 { +#define _OPENVINO_OP_REG(a, b) using b::a; +#include "openvino/opsets/opset16_tbl.hpp" +#undef _OPENVINO_OP_REG +} // namespace opset16 +} // namespace ov diff --git a/src/core/include/openvino/opsets/opset16_tbl.hpp b/src/core/include/openvino/opsets/opset16_tbl.hpp new file mode 100644 index 00000000000000..82aa9629263e2a --- /dev/null +++ b/src/core/include/openvino/opsets/opset16_tbl.hpp @@ -0,0 +1,16 @@ +// Copyright (C) 2018-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 +// + +#ifndef _OPENVINO_OP_REG +# warning "_OPENVINO_OP_REG not defined" +# define _OPENVINO_OP_REG(x, y) +#endif + +// Previous opsets operators +// TODO (ticket: 156877): Add remaining operators from opset15 at the end of opset16 development +_OPENVINO_OP_REG(Parameter, ov::op::v0) +_OPENVINO_OP_REG(Convert, ov::op::v0) +_OPENVINO_OP_REG(ShapeOf, ov::op::v3) + +// New operations added in opset16 diff --git a/src/core/src/opsets/opset.cpp b/src/core/src/opsets/opset.cpp index ca219f1c68ecd3..f2490010e9dc50 100644 --- a/src/core/src/opsets/opset.cpp +++ b/src/core/src/opsets/opset.cpp @@ -113,7 +113,8 @@ const std::map>& ov::get_availabl _OPENVINO_REG_OPSET(opset12), _OPENVINO_REG_OPSET(opset13), _OPENVINO_REG_OPSET(opset14), - _OPENVINO_REG_OPSET(opset15)}; + _OPENVINO_REG_OPSET(opset15), + _OPENVINO_REG_OPSET(opset16)}; #undef _OPENVINO_REG_OPSET return opset_map; } @@ -288,3 +289,14 @@ const ov::OpSet& ov::get_opset15() { }); return opset; } + +const ov::OpSet& ov::get_opset16() { + static OpSet opset; + static std::once_flag flag; + std::call_once(flag, [&]() { +#define _OPENVINO_OP_REG(NAME, NAMESPACE) opset.insert(); +#include "openvino/opsets/opset16_tbl.hpp" +#undef _OPENVINO_OP_REG + }); + return opset; +} diff --git a/src/core/tests/op.cpp b/src/core/tests/op.cpp index cf65eecc16cd4c..08fa7a97584e41 100644 --- a/src/core/tests/op.cpp +++ b/src/core/tests/op.cpp @@ -67,4 +67,5 @@ TEST(op, opset_multi_thread) { doTest(ov::get_opset13); doTest(ov::get_opset14); doTest(ov::get_opset15); + doTest(ov::get_opset16); } diff --git a/src/core/tests/opset.cpp b/src/core/tests/opset.cpp index 65c79dc9432439..d667de21263f5a 100644 --- a/src/core/tests/opset.cpp +++ b/src/core/tests/opset.cpp @@ -14,6 +14,7 @@ #include "openvino/opsets/opset13.hpp" #include "openvino/opsets/opset14.hpp" #include "openvino/opsets/opset15.hpp" +#include "openvino/opsets/opset16.hpp" #include "openvino/opsets/opset2.hpp" #include "openvino/opsets/opset3.hpp" #include "openvino/opsets/opset4.hpp" @@ -75,7 +76,8 @@ INSTANTIATE_TEST_SUITE_P(opset, OpsetTestParams{ov::get_opset12, 178}, OpsetTestParams{ov::get_opset13, 186}, OpsetTestParams{ov::get_opset14, 188}, - OpsetTestParams{ov::get_opset15, 199}), + OpsetTestParams{ov::get_opset15, 199}, + OpsetTestParams{ov::get_opset16, 3}), OpsetTestNameGenerator{}); class MyOpOld : public ov::op::Op { diff --git a/src/frontends/common/include/openvino/frontend/extension/op.hpp b/src/frontends/common/include/openvino/frontend/extension/op.hpp index 55fa919447406a..9022b9f801f800 100644 --- a/src/frontends/common/include/openvino/frontend/extension/op.hpp +++ b/src/frontends/common/include/openvino/frontend/extension/op.hpp @@ -25,7 +25,7 @@ inline const ov::OpSet& get_opset_by_name(const std::string& opset_name) { if (opsets.find(opset_name) != opsets.end()) return opsets.at(opset_name)(); if (opset_name.empty() || opset_name == "latest") { - return ov::get_opset15(); + return ov::get_opset15(); // TODO (ticket: 156877): Update to 16 at the end of opset16 development } else { FRONT_END_GENERAL_CHECK(false, "Unsupported opset name: ", opset_name); } diff --git a/src/plugins/template/src/plugin.cpp b/src/plugins/template/src/plugin.cpp index ee885f67e188b5..f66df99c7b1c43 100644 --- a/src/plugins/template/src/plugin.cpp +++ b/src/plugins/template/src/plugin.cpp @@ -221,6 +221,7 @@ ov::SupportedOpsMap ov::template_plugin::Plugin::query_model(const std::shared_p #include "openvino/opsets/opset13_tbl.hpp" #include "openvino/opsets/opset14_tbl.hpp" #include "openvino/opsets/opset15_tbl.hpp" +#include "openvino/opsets/opset16_tbl.hpp" // clang-format on #undef _OPENVINO_OP_REG return op_super_set.contains_type(node->get_type_info()); diff --git a/src/tests/functional/plugin/conformance/test_runner/op_conformance_runner/src/op_impl_check/single_op_graph.cpp b/src/tests/functional/plugin/conformance/test_runner/op_conformance_runner/src/op_impl_check/single_op_graph.cpp index fb192e0ac40223..e311f532a2497b 100644 --- a/src/tests/functional/plugin/conformance/test_runner/op_conformance_runner/src/op_impl_check/single_op_graph.cpp +++ b/src/tests/functional/plugin/conformance/test_runner/op_conformance_runner/src/op_impl_check/single_op_graph.cpp @@ -2189,6 +2189,7 @@ OpGenerator getOpGeneratorMap() { #include "openvino/opsets/opset13_tbl.hpp" #include "openvino/opsets/opset14_tbl.hpp" #include "openvino/opsets/opset15_tbl.hpp" +#include "openvino/opsets/opset16_tbl.hpp" #undef _OPENVINO_OP_REG }; return opGeneratorMap; From 3826706b881ac46aade97fceda78cad5b3f33cc2 Mon Sep 17 00:00:00 2001 From: Andrzej Kopytko Date: Fri, 8 Nov 2024 13:16:56 +0100 Subject: [PATCH 47/93] Docs new benchmark grapf with two y axis (#27480) ### Details: - *item1* - *...* ### Tickets: - *ticket-id* --- .../about-openvino/performance-benchmarks.rst | 6 +- .../data/graph-data-ovms-genai.json | 96 ++ .../benchmarks_files/graph-config.json | 41 +- docs/sphinx_setup/_static/html/modalLLM.html | 95 ++ docs/sphinx_setup/_static/js/graphs.js | 179 +--- docs/sphinx_setup/_static/js/graphsLLM.js | 889 ++++++++++++++++++ docs/sphinx_setup/conf.py | 1 + 7 files changed, 1121 insertions(+), 186 deletions(-) create mode 100644 docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ovms-genai.json create mode 100644 docs/sphinx_setup/_static/html/modalLLM.html create mode 100644 docs/sphinx_setup/_static/js/graphsLLM.js diff --git a/docs/articles_en/about-openvino/performance-benchmarks.rst b/docs/articles_en/about-openvino/performance-benchmarks.rst index ed9d39aaf8b9e6..75d1882b8cee89 100644 --- a/docs/articles_en/about-openvino/performance-benchmarks.rst +++ b/docs/articles_en/about-openvino/performance-benchmarks.rst @@ -13,7 +13,7 @@ Performance Benchmarks Efficient LLMs for AI PC Performance Information F.A.Q. OpenVINO Accuracy - Getting Performance Numbers + Getting Performance Numbers This page presents benchmark results for the @@ -59,12 +59,12 @@ implemented in your solutions. Click the buttons below to see the chosen benchma .. grid-item:: .. button-link:: # - :class: ovms-toolkit-benchmark-llm + :class: ovms-toolkit-benchmark-llm-result :color: primary :outline: :expand: - :material-regular:`bar_chart;1.4em` OVMS for GenAI (coming soon) + :material-regular:`bar_chart;1.4em` OVMS for GenAI (incoming) diff --git a/docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ovms-genai.json b/docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ovms-genai.json new file mode 100644 index 00000000000000..f96fb11e6b029d --- /dev/null +++ b/docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ovms-genai.json @@ -0,0 +1,96 @@ +[ + { + "Platform": "Intel® Xeon® Platinum 8580", + "Model": "mistralai/Mistral-7B-v0.1", + "PlatformType": "None", + "Parameters": { + "Vllm": { + "Precisions": [ + { + "Throughput": { + "0.2": "350.06", + "0.6": "486.89", + "0.8": "575.92", + "2.0": "778.07" + } + }, + { + "Latency": { + "0.2": "60.93", + "0.6": "91.63", + "0.8": "113.61", + "2.0": "240.25" + } + } + ] + }, + "Ovms": { + "Precisions": [ + { + "Throughput": { + "0.2": "90.98", + "0.6": "266.24", + "0.8": "351.63", + "2.0": "195.16" + } + }, + { + "Latency": { + "0.2": "54.9", + "0.6": "78.78", + "0.8": "95.78", + "2.0": "352.23" + } + } + ] + } + } + }, + { + "Platform": "Intel® Xeon® Platinum 8530", + "Model": "mistralai/Mistral-7B-v0.1", + "PlatformType": "None", + "Parameters": { + "Vllm": { + "Precisions": [ + { + "Throughput": { + "0.2": "350.06", + "0.6": "486.89", + "0.8": "575.92", + "2.0": "778.07" + } + }, + { + "Latency": { + "0.2": "60.93", + "0.6": "91.63", + "0.8": "113.61", + "2.0": "240.25" + } + } + ] + }, + "Ovms": { + "Precisions": [ + { + "Throughput": { + "0.2": "90.98", + "0.6": "266.24", + "0.8": "351.63", + "2.0": "195.16" + } + }, + { + "Latency": { + "0.2": "54.9", + "0.6": "78.78", + "0.8": "95.78", + "2.0": "352.23" + } + } + ] + } + } + } +] \ No newline at end of file diff --git a/docs/sphinx_setup/_static/benchmarks_files/graph-config.json b/docs/sphinx_setup/_static/benchmarks_files/graph-config.json index 9cd8176af26235..29fbe714094b74 100644 --- a/docs/sphinx_setup/_static/benchmarks_files/graph-config.json +++ b/docs/sphinx_setup/_static/benchmarks_files/graph-config.json @@ -1,4 +1,3 @@ - { "PrecisionsMap": { "INT4": "int4", @@ -9,7 +8,9 @@ "FP32_OV": "fp32_ov", "FP32_OVMS": "fp32_ovms", "INT8_OV": "int8_ov", - "INT8_OVMS": "int8_ovms" + "INT8_OVMS": "int8_ovms", + "THROUGHPUT": "Throughput", + "LATENCY": "Latency" }, "ParametersMap": { "Throughput": "throughput", @@ -71,6 +72,30 @@ "data": null, "color": "#00536a", "label": "INT8 OVMS" + }, + "Vllm": { + "Latency": { + "data": null, + "color": "#FDB2BC", + "label": "Latency" + }, + "Throughput": { + "data": null, + "color": "#91CDF7", + "label": "Throughput" + } + }, + "Ovms": { + "Latency": { + "data": null, + "color": "#CDB2BC", + "label": "Latency" + }, + "Throughput": { + "data": null, + "color": "#12CDF7", + "label": "Throughput" + } } }, "Filters": [ @@ -80,6 +105,7 @@ "platformTypes": { "name": "ietype", "data": [ + "None", "Intel® Core™, CPU-only", "Intel® Core™, iGPU-only", "Intel® Core™, NPU-only", @@ -88,8 +114,7 @@ }, "platforms": { "name": "platform", - "data": [ - ] + "data": [] }, "platformFilters": { "name": "coretype", @@ -109,15 +134,15 @@ "parameters": { "name": "parameters", "data": [ - "Throughput", - "Latency" + "Vllm", + "Ovms" ] }, "precision": { "name": "precision", "data": [ - "INT4", - "INT8" + "THROUGHPUT", + "LATENCY" ] } } diff --git a/docs/sphinx_setup/_static/html/modalLLM.html b/docs/sphinx_setup/_static/html/modalLLM.html new file mode 100644 index 00000000000000..e3395a16931188 --- /dev/null +++ b/docs/sphinx_setup/_static/html/modalLLM.html @@ -0,0 +1,95 @@ +
+ + + + + +
\ No newline at end of file diff --git a/docs/sphinx_setup/_static/js/graphs.js b/docs/sphinx_setup/_static/js/graphs.js index f8146c1580c58e..4d621ce0780261 100644 --- a/docs/sphinx_setup/_static/js/graphs.js +++ b/docs/sphinx_setup/_static/js/graphs.js @@ -1,173 +1,4 @@ -// =================== GENERAL OUTPUT CONFIG ========================= - -class Filter { - - // param: GraphData[], networkModels[] - static FilterByNetworkModel(graphDataArr, networkModels) { - const optionMap = new Map(); - networkModels.map((model) => graphDataArr.filter((graphData => graphData.Model === model))) - .flat(1) - .forEach(item => optionMap.set(item.Platform, item)); - return Array.from(optionMap.values()); - } - - // param: GraphData[], ieType - static ByIeTypes(graphDataArr, ieTypes) { - const optionMap = new Map(); - graphDataArr - .filter(graphData => ieTypes.includes(graphData.PlatformType)) - .forEach(item => optionMap.set(item.Platform, item)); - return Array.from(optionMap.values()); - } - - // param: GraphData[], ieType, networkModels - static ByTypesAndModels(graphDataArr, ieTypes, models) { - const optionMap = new Map(); - graphDataArr - .filter(graphData => ieTypes.includes(graphData.PlatformType)) - .filter(graphData => models.includes(graphData.Model)) - .forEach(item => optionMap.set(item.Platform, item)); - return Array.from(optionMap.values()); - } - - // param: GraphData[], clientPlatforms - static ByIeKpis(graphDataArr, clientPlatforms) { - var kpis = [] - clientPlatforms.forEach((platformName) => { - graphDataArr.filter((data) => { - if (data.Platform.includes(platformName)) { - for (var key in data.Parameters) { - if (!kpis.includes(key)) kpis.push(key) - } - } - }) - }) - return kpis; - } - - // param: GraphData[] - static getParameters(graphDataArr) { - var parameters = [] - graphDataArr.filter((data) => { - for (var key in data.Parameters) { - if (!parameters.includes(Graph.capitalizeFirstLetter(key))) parameters.push(Graph.capitalizeFirstLetter(key)) - } - }) - return parameters; - } - - // param: GraphData[] - static getIeTypes(graphDataArr) { - var kpis = [] - graphDataArr.filter((data) => { - for (var key in data.Parameters) { - if (!kpis.includes(Graph.capitalizeFirstLetter(key))) kpis.push(Graph.capitalizeFirstLetter(key)) - } - }) - return kpis; - } - - // param: GraphData[], clientPlatforms[] - static ByClientPlatforms(graphDataArr, platformsArr) { - return graphDataArr.filter((data) => { - return platformsArr.includes(data.Platform) - }); - } - - // param: GraphData[], coreTypes[] - static FilterByCoreTypes(graphDataArr, coreTypes) { - if (coreTypes) { - return graphDataArr.filter((data) => coreTypes.includes(data.PlatformType)); - } - return graphDataArr; - } -} - -class Modal { - static getPrecisionsLabels(graphDataArr) { - var kpis = [] - graphDataArr.filter((data) => { - for (var key in data.Parameters) { - data.Parameters[key].Precisions.forEach((key) => { - Object.keys(key).forEach((key) => { - if (!kpis.includes(key.toUpperCase())) kpis.push(key.toUpperCase()) - }); - }) - } - }) - return kpis; - } - - static getPrecisions(appConfig, labels) { - return labels.map((label) => { - var prec = appConfig.PrecisionsMap[label]; - if (prec !== undefined) { - return prec; - } - else { - return "no name"; - } - }); - } -} - - -class Graph { - // functions to get unique keys - static getNetworkModels(graphDataArr) { - return Array.from(new Set(graphDataArr.map((obj) => obj.Model))); - } - static getIeTypes(graphDataArr) { - return Array.from(new Set(graphDataArr.map((obj) => obj.PlatformType))); - } - static getCoreTypes(graphDataArr) { - return Array.from(new Set(graphDataArr.map((obj) => obj.ieType))); - } - - // param: GraphData[] - static getPlatformNames(graphDataArr) { - return graphDataArr.map((data) => data.Platform); - } - - // param: GraphData[], parameterName: string, precisions: list - static getDatabyParameter(graphDataArr, parameterName, precisions) { - var array = []; - graphDataArr.forEach((item) => { - if (item.Parameters[parameterName] !== undefined) { - array.push(item.Parameters[parameterName].Precisions); - } - else { - var obj = {}; - precisions.forEach((prec) => { - obj[prec] = 0; - }) - array.push([obj]) - } - }) - return array; - - } - - // this returns an object that is used to ender the chart - static getGraphConfig(parameterName, item, precisions, appConfig) { - return { - chartTitle: Graph.capitalizeFirstLetter(parameterName), - iconClass: parameterName + '-icon', - unit: item.Parameters[parameterName]?.Unit, - datasets: precisions.map((precision) => appConfig.PrecisionData[precision]), - }; - } - static capitalizeFirstLetter(string) { - return string.charAt(0).toUpperCase() + string.slice(1); - } -} - -class ChartDisplay { - constructor(mode, numberOfCharts) { - this.mode = mode; - this.numberOfChartsInRow = numberOfCharts; - } -} +// =================== ADDITIONAL OUTPUT CONFIG ========================= $(document).ready(function () { @@ -186,7 +17,6 @@ $(document).ready(function () { $('.graph-chart-title-header').off('click').on('click', (event) => { var parent = event.target.parentElement; - if ($(parent).children('.chart-wrap,.empty-chart-container').is(":visible")) { $(parent).children('.chart-wrap,.empty-chart-container').hide(); $(parent).children('.chevron-right-btn').show(); @@ -702,11 +532,10 @@ $(document).ready(function () { chartContainer.append(chartWrap); var graphConfigs = parameters.map((parameter) => { var groupUnit = model[0]; - var kpiData = Graph.getDatabyParameter(model, appConfig.ParametersMap[parameter], precisions); - var config = Graph.getGraphConfig(appConfig.ParametersMap[parameter], groupUnit, precisions, JSON.parse(JSON.stringify(appConfig))); + var kpiData = Graph.getDatabyParameterOld(model, appConfig.ParametersMap[parameter], precisions); + var config = Graph.getGraphConfigOld(appConfig.ParametersMap[parameter], groupUnit, precisions, JSON.parse(JSON.stringify(appConfig))); precisions.forEach((precision, index) => { - config.datasets[index].data = kpiData.map(tData => tData[0][precision] - ); + config.datasets[index].data = kpiData.map(tData => tData[0][precision]); }); return config; }); diff --git a/docs/sphinx_setup/_static/js/graphsLLM.js b/docs/sphinx_setup/_static/js/graphsLLM.js new file mode 100644 index 00000000000000..4dbc0313e2a133 --- /dev/null +++ b/docs/sphinx_setup/_static/js/graphsLLM.js @@ -0,0 +1,889 @@ +// =================== GENERAL OUTPUT CONFIG ========================= + +class Filter { + + // param: GraphData[], networkModels[] + static FilterByNetworkModel(graphDataArr, networkModels) { + const optionMap = new Map(); + networkModels.map((model) => graphDataArr.filter((graphData => graphData.Model === model))) + .flat(1) + .forEach(item => optionMap.set(item.Platform, item)); + return Array.from(optionMap.values()); + } + + // param: GraphData[], ieType + static ByIeTypes(graphDataArr, ieTypes) { + const optionMap = new Map(); + graphDataArr + .filter(graphData => ieTypes.includes(graphData.PlatformType)) + .forEach(item => optionMap.set(item.Platform, item)); + return Array.from(optionMap.values()); + } + + // param: GraphData[], ieType, networkModels + static ByTypesAndModels(graphDataArr, ieTypes, models) { + const optionMap = new Map(); + graphDataArr + .filter(graphData => ieTypes.includes(graphData.PlatformType)) + .filter(graphData => models.includes(graphData.Model)) + .forEach(item => optionMap.set(item.Platform, item)); + return Array.from(optionMap.values()); + } + + // param: GraphData[], clientPlatforms + static ByIeKpis(graphDataArr, clientPlatforms) { + var kpis = [] + clientPlatforms.forEach((platformName) => { + graphDataArr.filter((data) => { + if (data.Platform.includes(platformName)) { + for (var key in data.Parameters) { + if (!kpis.includes(key)) kpis.push(key) + } + } + }) + }) + return kpis; + } + + // param: GraphData[] + static getParameters(graphDataArr) { + var parameters = [] + graphDataArr.filter((data) => { + for (var key in data.Parameters) { + if (!parameters.includes(Graph.capitalizeFirstLetter(key))) parameters.push(Graph.capitalizeFirstLetter(key)) + } + }) + return parameters; + } + + // param: GraphData[] + static getIeTypes(graphDataArr) { + var kpis = [] + graphDataArr.filter((data) => { + for (var key in data.Parameters) { + if (!kpis.includes(Graph.capitalizeFirstLetter(key))) kpis.push(Graph.capitalizeFirstLetter(key)) + } + }) + return kpis; + } + + // param: GraphData[], clientPlatforms[] + static ByClientPlatforms(graphDataArr, platformsArr) { + return graphDataArr.filter((data) => { + return platformsArr.includes(data.Platform) + }); + } + + // param: GraphData[], coreTypes[] + static FilterByCoreTypes(graphDataArr, coreTypes) { + if (coreTypes) { + return graphDataArr.filter((data) => coreTypes.includes(data.PlatformType)); + } + return graphDataArr; + } +} + +class Modal { + static getPrecisionsLabels(graphDataArr) { + var kpis = [] + graphDataArr.filter((data) => { + for (var key in data.Parameters) { + data.Parameters[key].Precisions.forEach((key) => { + Object.keys(key).forEach((key) => { + if (!kpis.includes(key.toUpperCase())) kpis.push(key.toUpperCase()) + }); + }) + } + }) + return kpis; + } + + static getPrecisions(appConfig, labels) { + return labels.map((label) => { + var prec = appConfig.PrecisionsMap[label]; + if (prec !== undefined) { + return prec; + } + else { + return "no name"; + } + }); + } +} + +class Graph { + // functions to get unique keys + static getNetworkModels(graphDataArr) { + return Array.from(new Set(graphDataArr.map((obj) => obj.Model))); + } + static getIeTypes(graphDataArr) { + return Array.from(new Set(graphDataArr.map((obj) => obj.PlatformType))); + } + static getCoreTypes(graphDataArr) { + return Array.from(new Set(graphDataArr.map((obj) => obj.ieType))); + } + + // param: GraphData[] + static getPlatformNames(graphDataArr) { + return graphDataArr.map((data) => data.Platform); + } + + // param: GraphData[], engine: string, precisions: list + static getDatabyParameter(graphDataArr, engine, array) { + if (!Array.isArray(array[engine])) { + array[engine] = []; + } + array[engine].push(graphDataArr.Parameters[engine].Precisions); + return array; + } + + // this returns an object that is used to ender the chart + static getGraphConfig(engine, precisions, appConfig) { + return { + chartTitle: 'Throughput vs Latency', + iconClass: 'latency-icon', + datasets: precisions.map((precision) => appConfig.PrecisionData[engine][precision]), + unit: "None" + }; + } + // param: GraphData[], parameterName: string, precisions: list + static getDatabyParameterOld(graphDataArr, parameterName, precisions) { + var array = []; + graphDataArr.forEach((item) => { + if (item.Parameters[parameterName] !== undefined) { + array.push(item.Parameters[parameterName].Precisions); + } + else { + var obj = {}; + precisions.forEach((prec) => { + obj[prec] = 0; + }) + array.push([obj]) + } + }) + return array; + + } + + // this returns an object that is used to ender the chart + static getGraphConfigOld(parameterName, item, precisions, appConfig) { + return { + chartTitle: Graph.capitalizeFirstLetter(parameterName), + iconClass: parameterName + '-icon', + unit: item.Parameters[parameterName]?.Unit, + datasets: precisions.map((precision) => appConfig.PrecisionData[precision]), + }; + } + static capitalizeFirstLetter(string) { + return string.charAt(0).toUpperCase() + string.slice(1); + } +} + +class ChartDisplay { + constructor(mode, numberOfCharts) { + this.mode = mode; + this.numberOfChartsInRow = numberOfCharts; + } +} + +$(document).ready(function () { + $('.ovms-toolkit-benchmark-llm-result').on('click', () => showModal("graph-data-ovms-genai.json")); + function clickBuildGraphsLLM(graph, appConfig, networkModels, ieTypes, platforms, kpis, precisions) { + renderData(graph, appConfig, networkModels, ieTypes, platforms, kpis, precisions); + $('.modal-footer').show(); + $('#modal-display-graphs').show(); + $('.edit-settings-btn').off('click').on('click', (event) => { + $('#modal-configure-graphs').show(); + $('#modal-display-graphs').hide(); + $('.modal-footer').hide(); + $('.chart-placeholder').empty(); + }); + + $('.graph-chart-title-header').off('click').on('click', (event) => { + var parent = event.target.parentElement; + + if ($(parent).children('.chart-wrap,.empty-chart-container').is(":visible")) { + $(parent).children('.chart-wrap,.empty-chart-container').hide(); + $(parent).children('.chevron-right-btn').show(); + $(parent).children('.chevron-down-btn').hide(); + } else { + $(parent).children('.chart-wrap,.empty-chart-container').show(); + $(parent).children('.chevron-down-btn').show(); + $(parent).children('.chevron-right-btn').hide(); + } + }); + } + + function hideModal() { + $('#graphModal').remove(); + $('body').css('overflow', 'auto'); + } + + function showModal(file) { + $('body').css('overflow', 'hidden'); + + fetch('../_static/benchmarks_files/data/' + file) + .then((response) => response.json()) + .then((jsonData) => { + fetch('../_static/benchmarks_files/graph-config.json') + .then((configResponse) => configResponse.json()) + .then((appConfig) => { + renderModal(jsonData, appConfig) + }) + }); + } + + function getSelectedNetworkModels() { + return $('.models-column input:checked, .platforms-column input:checked').not('[data-networkmodel="Select All"]').map(function () { + return $(this).data('networkmodel'); + }).get(); + } + + function getSelectedIeTypes() { + return $('.ietype-column input:checked').map(function () { + return $(this).data('ietype'); + }).get(); + } + + function getSelectedClientPlatforms() { + return $('.platforms-column input:checked').map(function () { + return $(this).data('platform'); + }).get(); + } + + function getSelectedKpis() { + return $('.kpi-column input:checked').map(function () { + return $(this).data('kpi'); + }).get(); + } + + function getSelectedPrecisions() { + return $('.precisions-column input:checked').map(function () { + return $(this).data('precision'); + }).get(); + } + + function validateSelections() { + if (getSelectedNetworkModels().length > 0 + && getSelectedIeTypes() + && getSelectedClientPlatforms().length > 0 + && getSelectedKpis().length > 0) { + if (getSelectedPrecisions().length > 0) { + $('#build-graphs-btn').prop('disabled', false); + return; + } + $('#build-graphs-btn').prop('disabled', true); + return; + } + $('#build-graphs-btn').prop('disabled', true); + } + + function renderModal(graph, appConfig) { + new Graph(graph); + var networkModels = Graph.getNetworkModels(graph); + var ieTypes = Graph.getIeTypes(graph); + fetch('../_static/html/modalLLM.html').then((response) => response.text()).then((text) => { + + // generate and configure modal container + var modal = $('
'); + modal.attr('id', 'graphModal'); + modal.addClass('modal'); + var modalContent = $(text); + modalContent.attr('id', 'graphModalContent'); + modalContent.addClass('modal-content'); + modal.append(modalContent); + + const models = networkModels.map((networkModel) => createCheckMark(networkModel, 'networkmodel')); + modal.find('.models-column').append(models); + + const selectAllModelsButton = createCheckMark('', 'networkmodel'); + modal.find('.models-selectall').append(selectAllModelsButton); + + const selectAllPlatformsButton = createCheckMark('', 'platform'); + modal.find('.platforms-selectall').append(selectAllPlatformsButton); + + const precisions = Modal.getPrecisionsLabels(graph).map((precision) => createCheckMark(precision, 'precision', false)); + modal.find('.precisions-column').append(precisions); + + selectAllCheckboxes(precisions); + disableAllCheckboxes(precisions); + + const selectAllTypesButton = createCheckMark('', 'ietype') + modal.find('.ietype-selectall').append(selectAllTypesButton); + + const iefilter = ieTypes.map((ieType) => createCheckMark(ieType, 'ietype')); + modal.find('.ietype-column').append(iefilter); + + modal.find('#modal-display-graphs').hide(); + modal.find('.ietype-column input').first().prop('checked', true); + + const kpiLabels = Filter.getParameters(graph).map((parameter) => createCheckMark(parameter, 'kpi', false)); + modal.find('.kpi-column').append(kpiLabels); + + $('body').prepend(modal); + + preselectDefaultSettings(graph, modal, appConfig); + + //is not generic solution :( + if (appConfig.DefaultSelections.platformTypes?.data?.includes('Select All')) { + selectAllCheckboxes(iefilter); + + }; + renderClientPlatforms(graph, modal); + + $('.clear-all-btn').on('click', clearAll); + $('#build-graphs-btn').on('click', () => { + $('#modal-configure-graphs').hide(); + clickBuildGraphsLLM(graph, appConfig, getSelectedNetworkModels(), getSelectedIeTypes(), getSelectedClientPlatforms(), getSelectedKpis(), Modal.getPrecisions(appConfig, getSelectedPrecisions())); + }); + $('.modal-close').on('click', hideModal); + $('.close-btn').on('click', hideModal); + + modal.find('.ietype-selectall input').on('click', function () { + if ($(this).prop('checked')) + selectAllCheckboxes(iefilter); + else deSelectAllCheckboxes(iefilter); + }); + + modal.find('.models-selectall input').on('click', function () { + if ($(this).prop('checked')) selectAllCheckboxes(models); + else deSelectAllCheckboxes(models); + + renderClientPlatforms(graph, modal) + }); + + modal.find('.platforms-selectall input').on('click', function () { + if ($(this).prop('checked')) + renderClientPlatforms(graph, modal) + else { + var enabledPlatforms = modal.find('.platforms-column .checkmark-container'); + deSelectCheckbox(enabledPlatforms); + }; + + }); + + modal.find('.models-column input').on('click', function () { + if (!$(this)[0].checked) { + deSelectCheckbox(selectAllModelsButton); + } + }); + + + modal.find('.ietype-column input').on('click', function () { + if (!$(this)[0].checked) { + deSelectCheckbox(selectAllTypesButton); + } + }); + + modal.find('.models-column input').on('click', () => renderClientPlatforms(graph, modal)); + modal.find('.ietype-column input').on('click', () => renderClientPlatforms(graph, modal)); + modal.find('.ietype-selectall input').on('click', () => renderClientPlatforms(graph, modal)); + modal.find('.platforms-column').on('click', () => enableParmeters(graph, getSelectedClientPlatforms())); + + modal.find('.kpi-column input').on('click', validatePrecisionSelection); + modal.find('input').on('click', validateSelections); + + var modalFilters = document.getElementById("modal-filters"); + + var showFiltersButton = document.getElementById("filters"); + showFiltersButton.onclick = function () { + modalFilters.style.display = "block"; + } + + var closeFiltersButton = document.getElementsByClassName("close-filters")[0]; + closeFiltersButton.onclick = function () { + modalFilters.style.display = "none"; + } + + window.onclick = function (event) { + if (event.target == modalFilters) { + modalFilters.style.display = "none"; + } + } + }); + } + + function validatePrecisionSelection() { + const precisions = $('.precisions-column').find('input') + precisions.prop('disabled', false); + } + + function clearAll() { + $('.modal-content-grid-container input:checkbox').each((index, object) => $(object).prop('checked', false)); + validatePrecisionSelection(); + validateSelections(); + } + + function preselectDefaultSettings(graph, modal, appConfig) { + + const defaultSelections = appConfig.DefaultSelections; + + selectDefaultPlatformType(defaultSelections.platformTypes, graph, modal); + + applyPlatformFilters(defaultSelections.platformFilters, modal, graph); + + clearAllSettings(defaultSelections); + + validateSelections(); + validatePrecisionSelection(); + } + + function selectDefaultPlatformType(platformTypes, graph, modal) { + if (!platformTypes) return; + + const type = platformTypes.data[0]; + $(`input[data-ietype="${type}"]`).prop('checked', true); + renderClientPlatforms(graph, modal); + } + + function applyPlatformFilters(platformFilters, modal, graph) { + if (!platformFilters) return; + + const filters = modal.find('.selectable-box-container').children('.selectable-box'); + filters.removeClass('selected'); + + platformFilters.data.forEach(selection => { + filters.filter(`[data-${platformFilters.name}="${selection}"]`).addClass('selected'); + }); + + renderClientPlatforms(graph, modal); + } + + function clearAllSettings(defaultSelections) { + clearAll(); + Object.keys(defaultSelections).forEach(setting => { + const { name, data } = defaultSelections[setting]; + data.forEach(selection => { + $(`input[data-${name}="${selection}"]`).prop('checked', true); + }); + }); + } + + function filterClientPlatforms(graph, ietypes) { + return Filter.ByIeTypes(graph, ietypes); + } + + function filterPlatforms(graph, ietypes, models) { + return Filter.ByTypesAndModels(graph, ietypes, models); + } + + function renderClientPlatforms(graph, modal) { + var fPlatforms = filterClientPlatforms(graph, getSelectedIeTypes()); + var platformNames = Graph.getPlatformNames(fPlatforms); + $('.platforms-column .checkmark-container').remove(); + + const clientPlatforms = platformNames.map((platform) => createCheckMark(platform, 'platform', true)); + + var enabledPlatforms = filterPlatforms(graph, getSelectedIeTypes(), getSelectedNetworkModels()); + enableCheckBoxes(clientPlatforms, enabledPlatforms); + modal.find('.platforms-column').append(clientPlatforms); + + enableParmeters(graph, getSelectedClientPlatforms()); + modal.find('.platforms-column input').on('click', validateSelections); + } + + function enableParmeters(graph, clientPlatforms) { + var allKpis = Filter.getParameters(graph); + + allKpis.forEach((kpi) => { + $(`input[data-kpi="${Graph.capitalizeFirstLetter(kpi)}"]`).prop('disabled', true); + }) + + var kpis = Filter.ByIeKpis(graph, clientPlatforms); + kpis.forEach((kpi) => { + $(`input[data-kpi="${Graph.capitalizeFirstLetter(kpi)}"]`).prop('disabled', false); + }) + } + + function createCheckMark(itemLabel, modelLabel, disabled) { + const item = $('