-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathallennlp_simple.py
145 lines (113 loc) · 4.85 KB
/
allennlp_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
"""
Optuna example that optimizes a classifier configuration for IMDB movie review dataset.
This script is based on the example of AllenTune (https://github.com/allenai/allentune).
In this example, we optimize the validation accuracy of sentiment classification using AllenNLP.
Since it is too time-consuming to use the entire dataset, we here use a small subset of it.
"""
import os
import random
import shutil
import sys
import numpy
import optuna
from optuna.integration import AllenNLPPruningCallback
from packaging import version
import torch
import allennlp
import allennlp.data
import allennlp.models
import allennlp.modules
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from subsample_dataset_reader import SubsampleDatasetReader # NOQA
DEVICE = -1 # If you want to use GPU, use DEVICE = 0.
N_TRAIN_DATA_SIZE = 2000
N_VALIDATION_DATA_SIZE = 1000
MODEL_DIR = os.path.join(os.getcwd(), "result")
TARGET_METRIC = "accuracy"
def prepare_data():
indexer = allennlp.data.token_indexers.SingleIdTokenIndexer(lowercase_tokens=True)
tokenizer = allennlp.data.tokenizers.whitespace_tokenizer.WhitespaceTokenizer()
reader = SubsampleDatasetReader(
token_indexers={"tokens": indexer},
tokenizer=tokenizer,
train_data_size=N_TRAIN_DATA_SIZE,
validation_data_size=N_VALIDATION_DATA_SIZE,
)
train_data_loader = allennlp.data.data_loaders.MultiProcessDataLoader(
data_path="https://s3-us-west-2.amazonaws.com/allennlp/datasets/imdb/train.jsonl",
reader=reader,
batch_size=16,
)
validation_data_loader = allennlp.data.data_loaders.MultiProcessDataLoader(
data_path="https://s3-us-west-2.amazonaws.com/allennlp/datasets/imdb/dev.jsonl",
reader=reader,
batch_size=64,
)
vocab = allennlp.data.Vocabulary.from_instances(train_data_loader.iter_instances())
train_data_loader.index_with(vocab)
validation_data_loader.index_with(vocab)
return train_data_loader, validation_data_loader, vocab
def create_model(vocab, trial):
dropout = trial.suggest_float("dropout", 0, 0.5)
embedding_dim = trial.suggest_int("embedding_dim", 16, 128)
output_dim = trial.suggest_int("output_dim", 32, 128)
max_filter_size = trial.suggest_int("max_filter_size", 3, 4)
num_filters = trial.suggest_int("num_filters", 32, 128)
embedding = allennlp.modules.Embedding(
embedding_dim=embedding_dim, trainable=True, vocab=vocab
)
encoder = allennlp.modules.seq2vec_encoders.CnnEncoder(
ngram_filter_sizes=tuple(range(2, max_filter_size)),
num_filters=num_filters,
embedding_dim=embedding_dim,
output_dim=output_dim,
)
embedder = allennlp.modules.text_field_embedders.BasicTextFieldEmbedder({"tokens": embedding})
model = allennlp.models.BasicClassifier(
text_field_embedder=embedder, seq2vec_encoder=encoder, dropout=dropout, vocab=vocab
)
return model
def objective(trial):
train_data_loader, validation_data_loader, vocab = prepare_data()
model = create_model(vocab, trial)
if DEVICE > -1:
model.to(torch.device("cuda:{}".format(DEVICE)))
lr = trial.suggest_float("lr", 1e-3, 1e-1, log=True)
optimizer = torch.optim.SGD(model.parameters(), lr=lr)
serialization_dir = os.path.join(MODEL_DIR, "trial_{}".format(trial.number))
trainer = allennlp.training.GradientDescentTrainer(
model=model,
optimizer=optimizer,
data_loader=train_data_loader,
validation_data_loader=validation_data_loader,
validation_metric="+" + TARGET_METRIC,
patience=None, # `patience=None` since it could conflict with AllenNLPPruningCallback
num_epochs=30,
cuda_device=DEVICE,
serialization_dir=serialization_dir,
callbacks=[AllenNLPPruningCallback(trial, "validation_" + TARGET_METRIC)],
)
metrics = trainer.train()
return metrics["best_validation_" + TARGET_METRIC]
if __name__ == "__main__":
if version.parse(allennlp.__version__) < version.parse("2.0.0"):
raise RuntimeError(
"`allennlp>=2.0.0` is required for this example."
" If you want to use `allennlp<2.0.0`, please install `optuna==2.5.0`"
" and refer to the following example:"
" https://github.com/optuna/optuna/blob/v2.5.0/examples/allennlp/allennlp_simple.py"
)
random.seed(41)
torch.manual_seed(41)
numpy.random.seed(41)
pruner = optuna.pruners.HyperbandPruner()
study = optuna.create_study(direction="maximize", pruner=pruner)
study.optimize(objective, n_trials=50, timeout=600)
print("Number of finished trials: ", len(study.trials))
print("Best trial:")
trial = study.best_trial
print(" Value: ", trial.value)
print(" Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))
shutil.rmtree(MODEL_DIR)