-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathenqueue_trial.py
39 lines (26 loc) · 1.24 KB
/
enqueue_trial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
"""
Optuna enqueue_trial example that optimizes a classifier configuration using sklearn.
In this example, we optimize a classifier configuration for Iris dataset. We start a study with
given parameter values, such as a default and a manually suggested one.
"""
import optuna
import sklearn.datasets
import sklearn.model_selection
import sklearn.svm
def objective(trial):
iris = sklearn.datasets.load_iris()
x, y = iris.data, iris.target
svc_c = trial.suggest_float("svc_c", 1e-10, 1e10, log=True)
classifier_obj = sklearn.svm.SVC(C=svc_c, gamma="auto")
score = sklearn.model_selection.cross_val_score(classifier_obj, x, y, n_jobs=-1, cv=3)
accuracy = score.mean()
return accuracy
if __name__ == "__main__":
study = optuna.create_study(direction="maximize")
# We enqueue a default parameter and a manually suggested parameter.
study.enqueue_trial({"svc_c": 1})
study.enqueue_trial({"svc_c": 10})
study.optimize(objective, n_trials=100)
print("C={}, Value={}".format(study.trials[0].params["svc_c"], study.trials[0].value))
print("C={}, Value={}".format(study.trials[1].params["svc_c"], study.trials[1].value))
print("C={}, Value={}".format(study.best_trial.params["svc_c"], study.best_trial.value))