-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathbotorch_simple.py
56 lines (41 loc) · 1.66 KB
/
botorch_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from botorch.settings import validate_input_scaling
import optuna
def objective(trial):
# Binh and Korn function with constraints.
x = trial.suggest_float("x", -15, 30)
y = trial.suggest_float("y", -15, 30)
# Constraints which are considered feasible if less than or equal to zero.
# The feasible region is basically the intersection of a circle centered at (x=5, y=0)
# and the complement to a circle centered at (x=8, y=-3).
c0 = (x - 5) ** 2 + y**2 - 25
c1 = -((x - 8) ** 2) - (y + 3) ** 2 + 7.7
# Store the constraints as user attributes so that they can be restored after optimization.
trial.set_user_attr("constraint", (c0, c1))
v0 = 4 * x**2 + 4 * y**2
v1 = (x - 5) ** 2 + (y - 5) ** 2
return v0, v1
def constraints(trial):
return trial.user_attrs["constraint"]
if __name__ == "__main__":
# Show warnings from BoTorch such as unnormalized input data warnings.
validate_input_scaling(True)
sampler = optuna.integration.BoTorchSampler(
constraints_func=constraints,
n_startup_trials=10,
)
study = optuna.create_study(
directions=["minimize", "minimize"],
sampler=sampler,
)
study.optimize(objective, n_trials=32, timeout=600)
print("Number of finished trials: ", len(study.trials))
print("Pareto front:")
trials = sorted(study.best_trials, key=lambda t: t.values)
for trial in trials:
print(" Trial#{}".format(trial.number))
print(
" Values: Values={}, Constraint={}".format(
trial.values, trial.user_attrs["constraint"][0]
)
)
print(" Params: {}".format(trial.params))