-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathsb3_simple.py
176 lines (142 loc) · 5.3 KB
/
sb3_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
""" Optuna example that optimizes the hyperparameters of
a reinforcement learning agent using A2C implementation from Stable-Baselines3
on a Gymnasium environment.
This is a simplified version of what can be found in https://github.com/DLR-RM/rl-baselines3-zoo.
You can run this example as follows:
$ python sb3_simple.py
"""
from typing import Any
from typing import Dict
import gymnasium
import optuna
from optuna.pruners import MedianPruner
from optuna.samplers import TPESampler
from stable_baselines3 import A2C
from stable_baselines3.common.callbacks import EvalCallback
from stable_baselines3.common.monitor import Monitor
import torch
import torch.nn as nn
N_TRIALS = 100
N_STARTUP_TRIALS = 5
N_EVALUATIONS = 2
N_TIMESTEPS = int(2e4)
EVAL_FREQ = int(N_TIMESTEPS / N_EVALUATIONS)
N_EVAL_EPISODES = 3
ENV_ID = "CartPole-v1"
DEFAULT_HYPERPARAMS = {
"policy": "MlpPolicy",
"env": ENV_ID,
}
def sample_a2c_params(trial: optuna.Trial) -> Dict[str, Any]:
"""Sampler for A2C hyperparameters."""
gamma = 1.0 - trial.suggest_float("gamma", 0.0001, 0.1, log=True)
max_grad_norm = trial.suggest_float("max_grad_norm", 0.3, 5.0, log=True)
gae_lambda = 1.0 - trial.suggest_float("gae_lambda", 0.001, 0.2, log=True)
n_steps = 2 ** trial.suggest_int("exponent_n_steps", 3, 10)
learning_rate = trial.suggest_float("lr", 1e-5, 1, log=True)
ent_coef = trial.suggest_float("ent_coef", 0.00000001, 0.1, log=True)
ortho_init = trial.suggest_categorical("ortho_init", [False, True])
net_arch = trial.suggest_categorical("net_arch", ["tiny", "small"])
activation_fn = trial.suggest_categorical("activation_fn", ["tanh", "relu"])
# Display true values.
trial.set_user_attr("gamma_", gamma)
trial.set_user_attr("gae_lambda_", gae_lambda)
trial.set_user_attr("n_steps", n_steps)
net_arch = [
{"pi": [64], "vf": [64]} if net_arch == "tiny" else {"pi": [64, 64], "vf": [64, 64]}
]
activation_fn = {"tanh": nn.Tanh, "relu": nn.ReLU}[activation_fn]
return {
"n_steps": n_steps,
"gamma": gamma,
"gae_lambda": gae_lambda,
"learning_rate": learning_rate,
"ent_coef": ent_coef,
"max_grad_norm": max_grad_norm,
"policy_kwargs": {
"net_arch": net_arch,
"activation_fn": activation_fn,
"ortho_init": ortho_init,
},
}
class TrialEvalCallback(EvalCallback):
"""Callback used for evaluating and reporting a trial."""
def __init__(
self,
eval_env: gymnasium.Env,
trial: optuna.Trial,
n_eval_episodes: int = 5,
eval_freq: int = 10000,
deterministic: bool = True,
verbose: int = 0,
):
super().__init__(
eval_env=eval_env,
n_eval_episodes=n_eval_episodes,
eval_freq=eval_freq,
deterministic=deterministic,
verbose=verbose,
)
self.trial = trial
self.eval_idx = 0
self.is_pruned = False
def _on_step(self) -> bool:
if self.eval_freq > 0 and self.n_calls % self.eval_freq == 0:
super()._on_step()
self.eval_idx += 1
self.trial.report(self.last_mean_reward, self.eval_idx)
# Prune trial if need.
if self.trial.should_prune():
self.is_pruned = True
return False
return True
def objective(trial: optuna.Trial) -> float:
kwargs = DEFAULT_HYPERPARAMS.copy()
# Sample hyperparameters.
kwargs.update(sample_a2c_params(trial))
# Create the RL model.
model = A2C(**kwargs)
# Create env used for evaluation.
eval_env = Monitor(gymnasium.make(ENV_ID))
# Create the callback that will periodically evaluate and report the performance.
eval_callback = TrialEvalCallback(
eval_env, trial, n_eval_episodes=N_EVAL_EPISODES, eval_freq=EVAL_FREQ, deterministic=True
)
nan_encountered = False
try:
model.learn(N_TIMESTEPS, callback=eval_callback)
except AssertionError as e:
# Sometimes, random hyperparams can generate NaN.
print(e)
nan_encountered = True
finally:
# Free memory.
model.env.close()
eval_env.close()
# Tell the optimizer that the trial failed.
if nan_encountered:
return float("nan")
if eval_callback.is_pruned:
raise optuna.exceptions.TrialPruned()
return eval_callback.last_mean_reward
if __name__ == "__main__":
# Set pytorch num threads to 1 for faster training.
torch.set_num_threads(1)
sampler = TPESampler(n_startup_trials=N_STARTUP_TRIALS)
# Do not prune before 1/3 of the max budget is used.
pruner = MedianPruner(n_startup_trials=N_STARTUP_TRIALS, n_warmup_steps=N_EVALUATIONS // 3)
study = optuna.create_study(sampler=sampler, pruner=pruner, direction="maximize")
try:
study.optimize(objective, n_trials=N_TRIALS, timeout=600)
except KeyboardInterrupt:
pass
print("Number of finished trials: ", len(study.trials))
print("Best trial:")
trial = study.best_trial
print(" Value: ", trial.value)
print(" Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))
print(" User attrs:")
for key, value in trial.user_attrs.items():
print(" {}: {}".format(key, value))