-
Notifications
You must be signed in to change notification settings - Fork 178
/
Copy pathterminator_simple.py
45 lines (31 loc) · 1.42 KB
/
terminator_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
"""
Optuna example showcasing the new Optuna Terminator feature.
In this example, we utilize the Optuna Terminator for hyperparameter
optimization on a RandomForestClassifier using the wine dataset.
The Terminator automatically stops the optimization process based
on the potential for further improvement.
To run this example:
$ python terminator_simple.py
"""
import optuna
from optuna.terminator.callback import TerminatorCallback
from optuna.terminator.erroreval import report_cross_validation_scores
from sklearn.datasets import load_wine
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
def objective(trial):
X, y = load_wine(return_X_y=True)
clf = RandomForestClassifier(
max_depth=trial.suggest_int("max_depth", 2, 32),
min_samples_split=trial.suggest_float("min_samples_split", 0, 1),
criterion=trial.suggest_categorical("criterion", ("gini", "entropy")),
)
scores = cross_val_score(clf, X, y, cv=KFold(n_splits=5, shuffle=True))
report_cross_validation_scores(trial, scores)
return scores.mean()
if __name__ == "__main__":
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=50, callbacks=[TerminatorCallback()])
print(f"The number of trials: {len(study.trials)}")
print(f"Best value: {study.best_value} (params: {study.best_params})")