-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathstudies.py
390 lines (316 loc) · 13.5 KB
/
studies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
from __future__ import annotations
import os
import time
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
import optuna
from optuna import Study
StudiesType = Union[Study, Sequence[Study]]
def objective_single(trial: optuna.Trial) -> float:
x1 = trial.suggest_float("x1", 0, 10)
x2 = trial.suggest_float("x2", 0, 10)
return (x1 - 2) ** 2 + (x2 - 5) ** 2
def objective_single_dynamic(trial: optuna.Trial) -> float:
category = trial.suggest_categorical("category", ["foo", "bar"])
if category == "foo":
return (trial.suggest_float("x1", 0, 10) - 2) ** 2
else:
return -((trial.suggest_float("x2", -10, 0) + 5) ** 2)
def create_single_objective_studies() -> List[Tuple[str, StudiesType]]:
studies: List[Tuple[str, StudiesType]] = []
storage = optuna.storages.InMemoryStorage()
# Single-objective study
study = optuna.create_study(
study_name="A single objective study with 2-dimensional static search space",
storage=storage,
)
study.optimize(objective_single, n_trials=50)
studies.append((study.study_name, study))
# Single-objective study with dynamic search space
study = optuna.create_study(
study_name="A single-objective study with 3-dimensional dynamic search space",
storage=storage,
direction="maximize",
)
study.optimize(objective_single_dynamic, n_trials=50)
studies.append((study.study_name, study))
# Single-objective study with None categorical value
study = optuna.create_study(
study_name="A single objective study that suggests None as a categorical parameter",
storage=storage,
)
def objective_single_none_categorical(trial: optuna.Trial) -> float:
x = trial.suggest_float("x", -100, 100)
trial.suggest_categorical("y", ["foo", None])
return x**2
study.optimize(objective_single_none_categorical, n_trials=10)
studies.append((study.study_name, study))
# Single-objective study with constraints
# https://optuna.readthedocs.io/en/stable/faq.html#how-can-i-optimize-a-model-with-some-constraints
def objective_constraints(trial: optuna.Trial) -> float:
x = trial.suggest_float("x", -15, 30)
y = trial.suggest_float("y", -15, 30)
v0 = 4 * x**2 + 4 * y**2
c0 = (x - 5) ** 2 + y**2 - 25
c1 = -((x - 8) ** 2) - (y + 3) ** 2 + 7.7
trial.set_user_attr("constraint", (c0, c1))
return v0
def constraints(trial: optuna.Trial) -> list[float]:
return trial.user_attrs["constraint"]
study = optuna.create_study(
study_name="A single objective constraint optimization study",
storage=storage,
sampler=optuna.samplers.TPESampler(constraints_func=constraints),
)
study.optimize(objective_constraints, n_trials=100)
studies.append((study.study_name, study))
# No trials single-objective study
optuna.create_study(study_name="A single objective study that has no trials", storage=storage)
return studies
def create_multiple_single_objective_studies() -> List[Tuple[str, StudiesType]]:
studies: List[Tuple[str, StudiesType]] = []
storage = optuna.storages.InMemoryStorage()
# Single-objective study
_static: List[Study] = []
for i in range(2):
study = optuna.create_study(
study_name=f"static{i}",
storage=storage,
)
study.optimize(objective_single, n_trials=50)
_static.append(study)
title = "Two single objective studies with 2-dimensional static search space"
studies.append((title, _static))
# Single-objective study with dynamic search space
_dynamic: List[Study] = []
for i in range(2):
study = optuna.create_study(
study_name=f"dynamic{i}",
storage=storage,
direction="maximize",
)
study.optimize(objective_single_dynamic, n_trials=50)
_dynamic.append(study)
title = "Two single objective studies with 3-dimensional dynamic search space"
studies.append((title, _dynamic))
return studies
def create_multi_objective_studies() -> List[Tuple[str, StudiesType]]:
studies: List[Tuple[str, StudiesType]] = []
storage = optuna.storages.InMemoryStorage()
# Multi-objective study
def objective_multi(trial: optuna.Trial) -> Tuple[float, float]:
x = trial.suggest_float("x", 0, 5)
y = trial.suggest_float("y", 0, 3)
v0 = 4 * x**2 + 4 * y**2
v1 = (x - 5) ** 2 + (y - 5) ** 2
return v0, v1
study = optuna.create_study(
study_name="Multi-objective study with static search space",
storage=storage,
directions=["minimize", "minimize"],
)
study.optimize(objective_multi, n_trials=50)
studies.append((study.study_name, study))
# Multi-objective study with dynamic search space
study = optuna.create_study(
study_name="Multi-objective study with dynamic search space",
storage=storage,
directions=["minimize", "minimize"],
)
def objective_multi_dynamic(trial: optuna.Trial) -> Tuple[float, float]:
category = trial.suggest_categorical("category", ["foo", "bar"])
if category == "foo":
x = trial.suggest_float("x1", 0, 5)
y = trial.suggest_float("y1", 0, 3)
v0 = 4 * x**2 + 4 * y**2
v1 = (x - 5) ** 2 + (y - 5) ** 2
return v0, v1
else:
x = trial.suggest_float("x2", 0, 5)
y = trial.suggest_float("y2", 0, 3)
v0 = 2 * x**2 + 2 * y**2
v1 = (x - 2) ** 2 + (y - 3) ** 2
return v0, v1
study.optimize(objective_multi_dynamic, n_trials=50)
studies.append((study.study_name, study))
return studies
def create_intermediate_value_studies() -> List[Tuple[str, StudiesType]]:
studies: List[Tuple[str, StudiesType]] = []
storage = optuna.storages.InMemoryStorage()
def objective_simple(trial: optuna.Trial, report_intermediate_values: bool) -> float:
if report_intermediate_values:
trial.report(1.0, step=0)
trial.report(2.0, step=1)
return 0.0
def objective_single_inf_report(trial: optuna.Trial) -> float:
x = trial.suggest_float("x", -10, 10)
if trial.number % 3 == 0:
trial.report(float("inf"), 1)
elif trial.number % 3 == 1:
trial.report(float("-inf"), 1)
else:
trial.report(float("nan"), 1)
if x > 0:
raise optuna.TrialPruned()
else:
return x**2
def fail_objective(_: optuna.Trial) -> float:
raise ValueError
study = optuna.create_study(study_name="Study with 1 trial", storage=storage)
study.optimize(lambda t: objective_simple(t, True), n_trials=1)
studies.append((study.study_name, study))
study = optuna.create_study(
study_name="Study that is pruned after 'inf', '-inf', or 'nan'", storage=storage
)
study.optimize(objective_single_inf_report, n_trials=50)
studies.append((study.study_name, study))
study = optuna.create_study(
study_name="Study with only 1 trial that has no intermediate value",
storage=storage,
)
study.optimize(lambda t: objective_simple(t, False), n_trials=1)
studies.append((study.study_name, study))
study = optuna.create_study(study_name="Study that has only failed trials", storage=storage)
study.optimize(fail_objective, n_trials=1, catch=(ValueError,))
studies.append((study.study_name, study))
study = optuna.create_study(study_name="Study that has no trials", storage=storage)
studies.append((study.study_name, study))
return studies
def create_pytorch_study() -> Optional[Study]:
try:
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data
from torchvision import datasets
from torchvision import transforms
except ImportError:
print("create_pytorch_studies is skipped because torch/torchvision is not found")
return None
DEVICE = torch.device("cpu")
BATCHSIZE = 128
CLASSES = 10
DIR = os.getcwd()
EPOCHS = 10
N_TRAIN_EXAMPLES = BATCHSIZE * 30
N_VALID_EXAMPLES = BATCHSIZE * 10
def define_model(trial: optuna.Trial) -> "torch.nn.Module":
# We optimize the number of layers, hidden units and dropout ratio in each layer.
n_layers = trial.suggest_int("n_layers", 1, 3)
layers: List["torch.nn.Module"] = []
in_features = 28 * 28
for i in range(n_layers):
out_features = trial.suggest_int("n_units_l{}".format(i), 4, 128)
layers.append(nn.Linear(in_features, out_features))
layers.append(nn.ReLU())
p = trial.suggest_float("dropout_l{}".format(i), 0.2, 0.5)
layers.append(nn.Dropout(p))
in_features = out_features
layers.append(nn.Linear(in_features, CLASSES))
layers.append(nn.LogSoftmax(dim=1))
return nn.Sequential(*layers)
def get_mnist() -> Tuple[torch.utils.data.DataLoader, torch.utils.data.DataLoader]:
# Load FashionMNIST dataset.
train_loader = torch.utils.data.DataLoader(
datasets.FashionMNIST(DIR, train=True, download=True, transform=transforms.ToTensor()),
batch_size=BATCHSIZE,
shuffle=True,
)
valid_loader = torch.utils.data.DataLoader(
datasets.FashionMNIST(DIR, train=False, transform=transforms.ToTensor()),
batch_size=BATCHSIZE,
shuffle=True,
)
return train_loader, valid_loader
def objective(trial: optuna.Trial) -> float:
# Generate the model.
model = define_model(trial).to(DEVICE)
# Generate the optimizers.
optimizer_name: str = trial.suggest_categorical(
"optimizer", ["Adam", "RMSprop", "SGD"]
) # type: ignore
lr = trial.suggest_float("lr", 1e-5, 1e-1, log=True)
optimizer = getattr(optim, optimizer_name)(model.parameters(), lr=lr)
# Get the FashionMNIST dataset.
train_loader, valid_loader = get_mnist()
# Training of the model.
for epoch in range(EPOCHS):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
# Limiting training data for faster epochs.
if batch_idx * BATCHSIZE >= N_TRAIN_EXAMPLES:
break
data, target = data.view(data.size(0), -1).to(DEVICE), target.to(DEVICE)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
# Validation of the model.
model.eval()
correct = 0
with torch.no_grad():
for batch_idx, (data, target) in enumerate(valid_loader):
# Limiting validation data.
if batch_idx * BATCHSIZE >= N_VALID_EXAMPLES:
break
data, target = data.view(data.size(0), -1).to(DEVICE), target.to(DEVICE)
output = model(data)
# Get the index of the max log-probability.
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
accuracy = correct / min(len(valid_loader.dataset), N_VALID_EXAMPLES) # type: ignore
trial.report(accuracy, epoch)
# Handle pruning based on the intermediate value.
if trial.should_prune():
raise optuna.exceptions.TrialPruned()
return accuracy
study = optuna.create_study(
direction="maximize", study_name="pytorch_simple.py in optuna-example"
)
study.optimize(objective, n_trials=50, timeout=600)
return study
def create_single_objective_studies_for_timeline() -> List[Tuple[str, StudiesType]]:
studies: List[Tuple[str, StudiesType]] = []
storage = optuna.storages.InMemoryStorage()
def objective_timeline(trial: optuna.Trial) -> float:
x = trial.suggest_float("x", 0, 1)
time.sleep(x * 0.1)
if x > 0.8:
raise ValueError()
if x > 0.4:
raise optuna.TrialPruned()
return x**2
# Single-objective study
study = optuna.create_study(
study_name="A single objective study consuming time",
storage=storage,
)
study.enqueue_trial({"x": 0.3}) # Add a COMPLETE trial.
study.enqueue_trial({"x": 0.9}) # Add a FAIL trial.
study.enqueue_trial({"x": 0.5}) # Add a PRUNED trial.
study.optimize(objective_timeline, n_trials=50, n_jobs=2, catch=(ValueError,))
studies.append((study.study_name, study))
# Single-objective study
study = optuna.create_study(
study_name=(
"A single objective study consuming time and "
"the order of legends is different from the order of trials"
),
storage=storage,
)
study.enqueue_trial({"x": 0.9}) # Add a FAIL trial.
study.enqueue_trial({"x": 0.5}) # Add a PRUNED trial.
study.enqueue_trial({"x": 0.3}) # Add a COMPLETE trial.
study.optimize(objective_timeline, n_trials=50, n_jobs=2, catch=(ValueError,))
studies.append((study.study_name, study))
# No trials single-objective study
study = optuna.create_study(
study_name="A single objective study that has no trials", storage=storage
)
studies.append((study.study_name, study))
return studies