forked from datadriventests/ddt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ddt.py
469 lines (370 loc) · 15 KB
/
ddt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# -*- coding: utf-8 -*-
# This file is a part of DDT (https://github.com/datadriventests/ddt)
# Copyright 2012-2015 Carles Barrobés and DDT contributors
# For the exact contribution history, see the git revision log.
# DDT is licensed under the MIT License, included in
# https://github.com/datadriventests/ddt/blob/master/LICENSE.md
import codecs
import inspect
import json
import os
import re
from enum import Enum, unique
from functools import wraps
try:
import yaml
except ImportError: # pragma: no cover
_have_yaml = False
else:
_have_yaml = True
__version__ = '1.5.0'
# These attributes will not conflict with any real python attribute
# They are added to the decorated test method and processed later
# by the `ddt` class decorator.
DATA_ATTR = '%values' # store the data the test must run with
FILE_ATTR = '%file_path' # store the path to JSON file
YAML_LOADER_ATTR = '%yaml_loader' # store custom yaml loader for serialization
UNPACK_ATTR = '%unpack' # remember that we have to unpack values
INDEX_LEN = '%index_len' # store the index length of the data
# These are helper classes for @named_data that allow ddt tests to have meaningful names.
class NamedDataList(list):
def __init__(self, name, *args):
super(NamedDataList, self).__init__(args)
self.name = name
def __str__(self):
return str(self.name)
class NamedDataDict(dict):
def __init__(self, name, **kwargs):
super(NamedDataDict, self).__init__(kwargs)
self.name = name
def __str__(self):
return str(self.name)
trivial_types = (type(None), bool, int, float, NamedDataList, NamedDataDict)
try:
trivial_types += (basestring, )
except NameError:
trivial_types += (str, )
@unique
class TestNameFormat(Enum):
"""
An enum to configure how ``mk_test_name()`` to compose a test name. Given
the following example:
.. code-block:: python
@data("a", "b")
def testSomething(self, value):
...
if using just ``@ddt`` or together with ``DEFAULT``:
* ``testSomething_1_a``
* ``testSomething_2_b``
if using ``INDEX_ONLY``:
* ``testSomething_1``
* ``testSomething_2``
"""
DEFAULT = 0
INDEX_ONLY = 1
def is_trivial(value):
if isinstance(value, trivial_types):
return True
elif isinstance(value, (list, tuple)):
return all(map(is_trivial, value))
return False
def unpack(func):
"""
Method decorator to add unpack feature.
"""
setattr(func, UNPACK_ATTR, True)
return func
def data(*values):
"""
Method decorator to add to your test methods.
Should be added to methods of instances of ``unittest.TestCase``.
"""
return idata(values)
def idata(iterable, index_len=None):
"""
Method decorator to add to your test methods.
Should be added to methods of instances of ``unittest.TestCase``.
:param iterable: iterable of the values to provide to the test function.
:param index_len: an optional integer specifying the width to zero-pad the
test identifier indices to. If not provided, this will add the fewest
zeros necessary to make all identifiers the same length.
"""
if index_len is None:
# Avoid consuming a one-time-use generator.
iterable = tuple(iterable)
index_len = len(str(len(iterable)))
def wrapper(func):
setattr(func, DATA_ATTR, iterable)
setattr(func, INDEX_LEN, index_len)
return func
return wrapper
def file_data(value, yaml_loader=None):
"""
Method decorator to add to your test methods.
Should be added to methods of instances of ``unittest.TestCase``.
``value`` should be a path relative to the directory of the file
containing the decorated ``unittest.TestCase``. The file
should contain JSON encoded data, that can either be a list or a
dict.
In case of a list, each value in the list will correspond to one
test case, and the value will be concatenated to the test method
name.
In case of a dict, keys will be used as suffixes to the name of the
test case, and values will be fed as test data.
``yaml_loader`` can be used to customize yaml deserialization.
The default is ``None``, which results in using the ``yaml.safe_load``
method.
"""
def wrapper(func):
setattr(func, FILE_ATTR, value)
if yaml_loader:
setattr(func, YAML_LOADER_ATTR, yaml_loader)
return func
return wrapper
def mk_test_name(name, value, index=0, index_len=5, name_fmt=TestNameFormat.DEFAULT):
"""
Generate a new name for a test case.
It will take the original test name and append an ordinal index and a
string representation of the value, and convert the result into a valid
python identifier by replacing extraneous characters with ``_``.
We avoid doing str(value) if dealing with non-trivial values.
The problem is possible different names with different runs, e.g.
different order of dictionary keys (see PYTHONHASHSEED) or dealing
with mock objects.
Trivial scalar values are passed as is.
A "trivial" value is a plain scalar, or a tuple or list consisting
only of trivial values.
The test name format is controlled by enum ``TestNameFormat`` as well. See
the enum documentation for further details.
"""
# Add zeros before index to keep order
index = "{0:0{1}}".format(index + 1, index_len)
if name_fmt is TestNameFormat.INDEX_ONLY or not is_trivial(value):
return "{0}_{1}".format(name, index)
try:
value = str(value)
except UnicodeEncodeError:
# fallback for python2
value = value.encode('ascii', 'backslashreplace')
test_name = "{0}_{1}_{2}".format(name, index, value)
return re.sub(r'\W|^(?=\d)', '_', test_name)
def feed_data(func, new_name, test_data_docstring, *args, **kwargs):
"""
This internal method decorator feeds the test data item to the test.
"""
@wraps(func)
def wrapper(self):
return func(self, *args, **kwargs)
wrapper.__name__ = new_name
wrapper.__wrapped__ = func
# set docstring if exists
if test_data_docstring is not None:
wrapper.__doc__ = test_data_docstring
else:
# Try to call format on the docstring
if func.__doc__:
try:
wrapper.__doc__ = func.__doc__.format(*args, **kwargs)
except (IndexError, KeyError):
# Maybe the user has added some of the formating strings
# unintentionally in the docstring. Do not raise an exception
# as it could be that user is not aware of the
# formating feature.
pass
return wrapper
def add_test(cls, test_name, test_docstring, func, *args, **kwargs):
"""
Add a test case to this class.
The test will be based on an existing function but will give it a new
name.
"""
setattr(cls, test_name, feed_data(func, test_name, test_docstring,
*args, **kwargs))
def process_file_data(cls, name, func, file_attr):
"""
Process the parameter in the `file_data` decorator.
"""
cls_path = os.path.abspath(inspect.getsourcefile(cls))
data_file_path = os.path.join(os.path.dirname(cls_path), file_attr)
def create_error_func(message): # pylint: disable-msg=W0613
def func(*args):
raise ValueError(message % file_attr)
return func
# If file does not exist, provide an error function instead
if not os.path.exists(data_file_path):
test_name = mk_test_name(name, "error")
test_docstring = """Error!"""
add_test(cls, test_name, test_docstring,
create_error_func("%s does not exist"), None)
return
_is_yaml_file = data_file_path.endswith((".yml", ".yaml"))
# Don't have YAML but want to use YAML file.
if _is_yaml_file and not _have_yaml:
test_name = mk_test_name(name, "error")
test_docstring = """Error!"""
add_test(
cls,
test_name,
test_docstring,
create_error_func("%s is a YAML file, please install PyYAML"),
None
)
return
with codecs.open(data_file_path, 'r', 'utf-8') as f:
# Load the data from YAML or JSON
if _is_yaml_file:
if hasattr(func, YAML_LOADER_ATTR):
yaml_loader = getattr(func, YAML_LOADER_ATTR)
data = yaml.load(f, Loader=yaml_loader)
else:
data = yaml.safe_load(f)
else:
data = json.load(f)
_add_tests_from_data(cls, name, func, data)
def _add_tests_from_data(cls, name, func, data):
"""
Add tests from data loaded from the data file into the class
"""
index_len = len(str(len(data)))
for i, elem in enumerate(data):
if isinstance(data, dict):
key, value = elem, data[elem]
test_name = mk_test_name(name, key, i, index_len)
elif isinstance(data, list):
value = elem
test_name = mk_test_name(name, value, i, index_len)
if isinstance(value, dict):
add_test(cls, test_name, test_name, func, **value)
else:
add_test(cls, test_name, test_name, func, value)
def _is_primitive(obj):
"""Finds out if the obj is a "primitive". It is somewhat hacky but it works.
"""
return not hasattr(obj, '__dict__')
def _get_test_data_docstring(func, value):
"""Returns a docstring based on the following resolution strategy:
1. Passed value is not a "primitive" and has a docstring, then use it.
2. In all other cases return None, i.e the test name is used.
"""
if not _is_primitive(value) and value.__doc__:
return value.__doc__
else:
return None
def ddt(arg=None, **kwargs):
"""
Class decorator for subclasses of ``unittest.TestCase``.
Apply this decorator to the test case class, and then
decorate test methods with ``@data``.
For each method decorated with ``@data``, this will effectively create as
many methods as data items are passed as parameters to ``@data``.
The names of the test methods follow the pattern
``original_test_name_{ordinal}_{data}``. ``ordinal`` is the position of the
data argument, starting with 1.
For data we use a string representation of the data value converted into a
valid python identifier. If ``data.__name__`` exists, we use that instead.
For each method decorated with ``@file_data('test_data.json')``, the
decorator will try to load the test_data.json file located relative
to the python file containing the method that is decorated. It will,
for each ``test_name`` key create as many methods in the list of values
from the ``data`` key.
Decorating with the keyword argument ``testNameFormat`` can control the
format of the generated test names. For example:
- ``@ddt(testNameFormat=TestNameFormat.DEFAULT)`` will be index and values.
- ``@ddt(testNameFormat=TestNameFormat.INDEX_ONLY)`` will be index only.
- ``@ddt`` is the same as DEFAULT.
"""
fmt_test_name = kwargs.get("testNameFormat", TestNameFormat.DEFAULT)
def wrapper(cls):
for name, func in list(cls.__dict__.items()):
if hasattr(func, DATA_ATTR):
index_len = getattr(func, INDEX_LEN)
for i, v in enumerate(getattr(func, DATA_ATTR)):
test_name = mk_test_name(
name,
getattr(v, "__name__", v),
i,
index_len,
fmt_test_name
)
test_data_docstring = _get_test_data_docstring(func, v)
if hasattr(func, UNPACK_ATTR):
if isinstance(v, tuple) or isinstance(v, list):
add_test(
cls,
test_name,
test_data_docstring,
func,
*v
)
else:
# unpack dictionary
add_test(
cls,
test_name,
test_data_docstring,
func,
**v
)
else:
add_test(cls, test_name, test_data_docstring, func, v)
delattr(cls, name)
elif hasattr(func, FILE_ATTR):
file_attr = getattr(func, FILE_ATTR)
process_file_data(cls, name, func, file_attr)
delattr(cls, name)
return cls
# ``arg`` is the unittest's test class when decorating with ``@ddt`` while
# it is ``None`` when decorating a test class with ``@ddt(k=v)``.
return wrapper(arg) if inspect.isclass(arg) else wrapper
def named_data(*named_values):
"""
This decorator is to allow for meaningful names to be given to tests that would otherwise use @ddt.data and
@ddt.unpack.
Example of original ddt usage:
@ddt.ddt
class TestExample(TemplateTest):
@ddt.data(
[0, 1],
[10, 11]
)
@ddt.unpack
def test_values(self, value1, value2):
...
Example of new usage:
@ddt.ddt
class TestExample(TemplateTest):
@named_data(
['A', 0, 1],
['B', 10, 11],
)
def test_values(self, value1, value2):
...
Note that @unpack is not used.
:param list[Any] | dict[Any,Any] named_values: Each named_value should be a list with the name as the first
argument, or a dictionary with 'name' as one of the keys. The name will be coerced to a string and all other
values will be passed unchanged to the test.
"""
type_of_first = None
values = []
for named_value in named_values:
if type_of_first is None:
type_of_first = type(named_value)
if not isinstance(named_value, type_of_first):
raise TypeError("@named_data expects all values to be of the same type.")
if isinstance(named_value, list):
value = NamedDataList(named_value[0], *named_value[1:])
type_of_first = type_of_first or list
elif isinstance(named_value, dict):
if "name" not in named_value.keys():
raise ValueError("@named_data expects a dictionary with a 'name' key.")
value = NamedDataDict(**named_value)
type_of_first = type_of_first or dict
else:
raise TypeError("@named_data expects a list or dictionary.")
# Remove the __doc__ attribute so @ddt.data doesn't add the NamedData class docstrings to the test name.
value.__doc__ = None
values.append(value)
def wrapper(func):
data(*values)(unpack(func))
return func
return wrapper