diff --git a/README.md b/README.md index a2e25a48..0667b6e7 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@

geosnap

-geosnap +geosnap

The GeoSpatial Neighborhood Analysis Package

@@ -224,6 +224,7 @@ classic clustering methods on the `Community` dc.cluster(method='kmeans', n_clusters=6, columns=['p_unemployment_rate', 'per_capita_income'] ) dc.gdf[dc.gdf.year==2000].plot(column='kmeans') ``` +

@@ -236,6 +237,7 @@ spatially-constrained clustering methods on the `Community` dc.cluster_spatial(method='spenc', n_clusters=6, columns=['p_unemployment_rate', 'per_capita_income'] ) dc.gdf[dc.gdf.year==2000].plot('spenc') ``` +

diff --git a/docs/.nojekyll b/docs/.nojekyll old mode 100755 new mode 100644 index 8b137891..e69de29b --- a/docs/.nojekyll +++ b/docs/.nojekyll @@ -1 +0,0 @@ - diff --git a/docs/_modules/geosnap/analyze/analytics.html b/docs/_modules/geosnap/analyze/analytics.html index a11cbc19..e0c1c834 100644 --- a/docs/_modules/geosnap/analyze/analytics.html +++ b/docs/_modules/geosnap/analyze/analytics.html @@ -137,7 +137,7 @@

Source code for geosnap.analyze.analytics

 )
 
 
-
[docs]def cluster( +
[docs]def cluster( gdf, n_clusters=6, method=None, @@ -229,7 +229,7 @@

Source code for geosnap.analyze.analytics

     return gdf
-
[docs]def cluster_spatial( +
[docs]def cluster_spatial( gdf, n_clusters=6, spatial_weights="rook", diff --git a/docs/_modules/geosnap/analyze/cluster.html b/docs/_modules/geosnap/analyze/cluster.html index 2314afe0..8e4f1a39 100644 --- a/docs/_modules/geosnap/analyze/cluster.html +++ b/docs/_modules/geosnap/analyze/cluster.html @@ -132,7 +132,7 @@

Source code for geosnap.analyze.cluster

 # Sklearn a-spatial models
 
 
-
[docs]def ward(X, n_clusters=5, **kwargs): +
[docs]def ward(X, n_clusters=5, **kwargs): """Agglomerative clustering using Ward linkage. Parameters @@ -154,7 +154,7 @@

Source code for geosnap.analyze.cluster

     return model
-
[docs]def kmeans( +
[docs]def kmeans( X, n_clusters, init="k-means++", @@ -214,7 +214,7 @@

Source code for geosnap.analyze.cluster

     return model
-
[docs]def affinity_propagation( +
[docs]def affinity_propagation( X, damping=0.8, preference=-1000, @@ -263,7 +263,7 @@

Source code for geosnap.analyze.cluster

     return model
-
[docs]def spectral( +
[docs]def spectral( X, n_clusters, eigen_solver=None, @@ -340,7 +340,7 @@

Source code for geosnap.analyze.cluster

     return model
-
[docs]def gaussian_mixture( +
[docs]def gaussian_mixture( X, n_clusters=5, covariance_type="full", @@ -425,7 +425,7 @@

Source code for geosnap.analyze.cluster

     return model
-
[docs]def hdbscan(X, min_cluster_size=5, gen_min_span_tree=True, **kwargs): +
[docs]def hdbscan(X, min_cluster_size=5, gen_min_span_tree=True, **kwargs): """Clustering with Hierarchical DBSCAN Parameters @@ -459,7 +459,7 @@

Source code for geosnap.analyze.cluster

 # Spatially Explicit/Encouraged Methods
 
 
-
[docs]def ward_spatial(X, w, n_clusters=5, **kwargs): +
[docs]def ward_spatial(X, w, n_clusters=5, **kwargs): """Agglomerative clustering using Ward linkage with a spatial connectivity constraint @@ -488,7 +488,7 @@

Source code for geosnap.analyze.cluster

     return model
-
[docs]def spenc(X, w, n_clusters=5, gamma=1, **kwargs): +
[docs]def spenc(X, w, n_clusters=5, gamma=1, **kwargs): """Spatially encouraged spectral clustering :cite:`wolf2018` @@ -519,7 +519,7 @@

Source code for geosnap.analyze.cluster

     return model
-
[docs]def skater( +
[docs]def skater( X, w, n_clusters=5, floor=-np.inf, trace=False, islands="increase", **kwargs ): """SKATER spatial clustering algorithm. @@ -558,7 +558,7 @@

Source code for geosnap.analyze.cluster

     return model
-
[docs]def azp(X, w, n_clusters=5, **kwargs): +
[docs]def azp(X, w, n_clusters=5, **kwargs): """AZP clustering algorithm Parameters @@ -584,7 +584,7 @@

Source code for geosnap.analyze.cluster

     return model
-
[docs]def max_p(X, w, threshold_variable="count", threshold=10, **kwargs): +
[docs]def max_p(X, w, threshold_variable="count", threshold=10, **kwargs): """Max-p clustering algorithm :cite:`Duque2012` diff --git a/docs/_modules/geosnap/analyze/incs.html b/docs/_modules/geosnap/analyze/incs.html index 58bd5e06..6b9b5c86 100644 --- a/docs/_modules/geosnap/analyze/incs.html +++ b/docs/_modules/geosnap/analyze/incs.html @@ -150,7 +150,7 @@

Source code for geosnap.analyze.incs

     return neighborhoods
 
 
-
[docs]def linc(labels_sequence): +
[docs]def linc(labels_sequence): """Local Indicator of Neighborhood Change diff --git a/docs/_modules/geosnap/data/data.html b/docs/_modules/geosnap/data/data.html index ac7ee79f..d9e201f0 100644 --- a/docs/_modules/geosnap/data/data.html +++ b/docs/_modules/geosnap/data/data.html @@ -152,10 +152,10 @@

Source code for geosnap.data.data

     storage = quilt3.Package()
 
 
-
[docs]class DataStore(object): +
[docs]class DataStore(object): """Storage for geosnap data. Currently supports US Census data.""" - def __init__(self): +
[docs] def __init__(self): """Instantiate a new DataStore object.""" try: # if any of these aren't found, stream them insteead from quilt3.data.census import tracts_cartographic, administrative @@ -182,7 +182,7 @@

Source code for geosnap.data.data

                     "python kernel and try again."
                 )
         self.tracts_cartographic = tracts_cartographic
-        self.administrative = administrative
+        self.administrative = administrative
def __dir__(self): @@ -449,6 +449,10 @@

Source code for geosnap.data.data

     @property
     def msa_definitions(self):
         """2010 Metropolitan Statistical Area definitions.
+        
+        Parameters
+        ----------
+        None
 
         Returns
         -------
@@ -461,6 +465,10 @@ 

Source code for geosnap.data.data

     @property
     def ltdb(self):
         """Longitudinal Tract Database (LTDB).
+        
+        Parameters
+        ----------
+        None
 
         Returns
         -------
@@ -479,6 +487,10 @@ 

Source code for geosnap.data.data

     @property
     def ncdb(self):
         """Geolytics Neighborhood Change Database (NCDB).
+        
+        Parameters
+        ----------
+        None
 
         Returns
         -------
@@ -498,6 +510,10 @@ 

Source code for geosnap.data.data

     def codebook(self):
         """Codebook.
 
+        Parameters
+        ----------
+        None
+
         Returns
         -------
         pandas.DataFrame.
@@ -515,6 +531,10 @@ 

Source code for geosnap.data.data

 
[docs]def store_census(): """Save census data to the local quilt package storage. + Parameters + ---------- + None + Returns ------- None @@ -527,9 +547,13 @@

Source code for geosnap.data.data

     quilt3.Package.install("census/administrative", "s3://quilt-cgs")
-
[docs]def store_blocks_2000(): +
[docs]def store_blocks_2000(): """Save census 2000 census block data to the local quilt package storage. + Parameters + ---------- + None + Returns ------- None @@ -540,9 +564,13 @@

Source code for geosnap.data.data

     quilt3.Package.install("census/blocks_2000", "s3://quilt-cgs")
-
[docs]def store_blocks_2010(): +
[docs]def store_blocks_2010(): """Save census 2010 census block data to the local quilt package storage. + Parameters + ---------- + None + Returns ------- None @@ -553,7 +581,7 @@

Source code for geosnap.data.data

     quilt3.Package.install("census/blocks_2010", "s3://quilt-cgs")
-
[docs]def store_ltdb(sample, fullcount): +
[docs]def store_ltdb(sample, fullcount): """ Read & store data from Brown's Longitudinal Tract Database (LTDB). @@ -707,7 +735,7 @@

Source code for geosnap.data.data

     storage.build("geosnap_data/storage")
-
[docs]def store_ncdb(filepath): +
[docs]def store_ncdb(filepath): """ Read & store data from Geolytics's Neighborhood Change Database. @@ -879,7 +907,7 @@

Source code for geosnap.data.data

     return gdf
 
 
-
[docs]class Community(object): +
[docs]class Community(object): """Spatial and tabular data for a collection of "neighborhoods". A community is a collection of "neighborhoods" represented by spatial @@ -910,7 +938,7 @@

Source code for geosnap.data.data

 
     """
 
-
[docs] def __init__(self, gdf=None, harmonized=None, **kwargs): +
[docs] def __init__(self, gdf=None, harmonized=None, **kwargs): """Initialize a new Community. Parameters diff --git a/docs/_modules/index.html b/docs/_modules/index.html index 75463a90..863fe228 100644 --- a/docs/_modules/index.html +++ b/docs/_modules/index.html @@ -122,6 +122,7 @@

All modules for which code is available

  • geosnap.util.cenpy_fetch
  • geosnap.visualize.commviz
  • geosnap.visualize.seq
  • +
  • pandas.core.frame
  • diff --git a/docs/_modules/pandas/core/frame.html b/docs/_modules/pandas/core/frame.html new file mode 100644 index 00000000..bbb3d6d1 --- /dev/null +++ b/docs/_modules/pandas/core/frame.html @@ -0,0 +1,8620 @@ + + + + + + pandas.core.frame — geosnap v0.0.2 Manual + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    + +

    Source code for pandas.core.frame

    +"""
    +DataFrame
    +---------
    +An efficient 2D container for potentially mixed-type time series or other
    +labeled data series.
    +
    +Similar to its R counterpart, data.frame, except providing automatic data
    +alignment and a host of useful data manipulation methods having to do with the
    +labeling information
    +"""
    +import collections
    +from collections import OrderedDict, abc
    +import functools
    +from io import StringIO
    +import itertools
    +import sys
    +from textwrap import dedent
    +from typing import FrozenSet, List, Optional, Set, Tuple, Type, Union
    +import warnings
    +
    +import numpy as np
    +import numpy.ma as ma
    +
    +from pandas._config import get_option
    +
    +from pandas._libs import algos as libalgos, lib
    +from pandas.compat import PY36, raise_with_traceback
    +from pandas.compat.numpy import function as nv
    +from pandas.util._decorators import (
    +    Appender,
    +    Substitution,
    +    deprecate_kwarg,
    +    rewrite_axis_style_signature,
    +)
    +from pandas.util._validators import validate_axis_style_args, validate_bool_kwarg
    +
    +from pandas.core.dtypes.cast import (
    +    cast_scalar_to_array,
    +    coerce_to_dtypes,
    +    find_common_type,
    +    infer_dtype_from_scalar,
    +    invalidate_string_dtypes,
    +    maybe_cast_to_datetime,
    +    maybe_convert_platform,
    +    maybe_downcast_to_dtype,
    +    maybe_infer_to_datetimelike,
    +    maybe_upcast,
    +    maybe_upcast_putmask,
    +)
    +from pandas.core.dtypes.common import (
    +    ensure_float64,
    +    ensure_int64,
    +    ensure_platform_int,
    +    infer_dtype_from_object,
    +    is_bool_dtype,
    +    is_datetime64_any_dtype,
    +    is_datetime64tz_dtype,
    +    is_dict_like,
    +    is_dtype_equal,
    +    is_extension_array_dtype,
    +    is_extension_type,
    +    is_float_dtype,
    +    is_hashable,
    +    is_integer,
    +    is_integer_dtype,
    +    is_iterator,
    +    is_list_like,
    +    is_named_tuple,
    +    is_nested_list_like,
    +    is_object_dtype,
    +    is_scalar,
    +    is_sequence,
    +    needs_i8_conversion,
    +)
    +from pandas.core.dtypes.generic import (
    +    ABCDataFrame,
    +    ABCIndexClass,
    +    ABCMultiIndex,
    +    ABCSeries,
    +)
    +from pandas.core.dtypes.missing import isna, notna
    +
    +from pandas.core import algorithms, common as com, nanops, ops
    +from pandas.core.accessor import CachedAccessor
    +from pandas.core.arrays import Categorical, ExtensionArray
    +from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin as DatetimeLikeArray
    +from pandas.core.arrays.sparse import SparseFrameAccessor
    +from pandas.core.generic import NDFrame, _shared_docs
    +from pandas.core.index import (
    +    Index,
    +    MultiIndex,
    +    ensure_index,
    +    ensure_index_from_sequences,
    +)
    +from pandas.core.indexes import base as ibase
    +from pandas.core.indexes.datetimes import DatetimeIndex
    +from pandas.core.indexes.period import PeriodIndex
    +from pandas.core.indexing import (
    +    check_bool_indexer,
    +    convert_to_index_sliceable,
    +    maybe_droplevels,
    +)
    +from pandas.core.internals import BlockManager
    +from pandas.core.internals.construction import (
    +    arrays_to_mgr,
    +    get_names_from_index,
    +    init_dict,
    +    init_ndarray,
    +    masked_rec_array_to_mgr,
    +    reorder_arrays,
    +    sanitize_index,
    +    to_arrays,
    +)
    +from pandas.core.series import Series
    +
    +from pandas.io.formats import console, format as fmt
    +from pandas.io.formats.printing import pprint_thing
    +import pandas.plotting
    +
    +# ---------------------------------------------------------------------
    +# Docstring templates
    +
    +_shared_doc_kwargs = dict(
    +    axes="index, columns",
    +    klass="DataFrame",
    +    axes_single_arg="{0 or 'index', 1 or 'columns'}",
    +    axis="""axis : {0 or 'index', 1 or 'columns'}, default 0
    +        If 0 or 'index': apply function to each column.
    +        If 1 or 'columns': apply function to each row.""",
    +    optional_by="""
    +        by : str or list of str
    +            Name or list of names to sort by.
    +
    +            - if `axis` is 0 or `'index'` then `by` may contain index
    +              levels and/or column labels
    +            - if `axis` is 1 or `'columns'` then `by` may contain column
    +              levels and/or index labels
    +
    +            .. versionchanged:: 0.23.0
    +               Allow specifying index or column level names.""",
    +    versionadded_to_excel="",
    +    optional_labels="""labels : array-like, optional
    +            New labels / index to conform the axis specified by 'axis' to.""",
    +    optional_axis="""axis : int or str, optional
    +            Axis to target. Can be either the axis name ('index', 'columns')
    +            or number (0, 1).""",
    +)
    +
    +_numeric_only_doc = """numeric_only : boolean, default None
    +    Include only float, int, boolean data. If None, will attempt to use
    +    everything, then use only numeric data
    +"""
    +
    +_merge_doc = """
    +Merge DataFrame or named Series objects with a database-style join.
    +
    +The join is done on columns or indexes. If joining columns on
    +columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes
    +on indexes or indexes on a column or columns, the index will be passed on.
    +
    +Parameters
    +----------%s
    +right : DataFrame or named Series
    +    Object to merge with.
    +how : {'left', 'right', 'outer', 'inner'}, default 'inner'
    +    Type of merge to be performed.
    +
    +    * left: use only keys from left frame, similar to a SQL left outer join;
    +      preserve key order.
    +    * right: use only keys from right frame, similar to a SQL right outer join;
    +      preserve key order.
    +    * outer: use union of keys from both frames, similar to a SQL full outer
    +      join; sort keys lexicographically.
    +    * inner: use intersection of keys from both frames, similar to a SQL inner
    +      join; preserve the order of the left keys.
    +on : label or list
    +    Column or index level names to join on. These must be found in both
    +    DataFrames. If `on` is None and not merging on indexes then this defaults
    +    to the intersection of the columns in both DataFrames.
    +left_on : label or list, or array-like
    +    Column or index level names to join on in the left DataFrame. Can also
    +    be an array or list of arrays of the length of the left DataFrame.
    +    These arrays are treated as if they are columns.
    +right_on : label or list, or array-like
    +    Column or index level names to join on in the right DataFrame. Can also
    +    be an array or list of arrays of the length of the right DataFrame.
    +    These arrays are treated as if they are columns.
    +left_index : bool, default False
    +    Use the index from the left DataFrame as the join key(s). If it is a
    +    MultiIndex, the number of keys in the other DataFrame (either the index
    +    or a number of columns) must match the number of levels.
    +right_index : bool, default False
    +    Use the index from the right DataFrame as the join key. Same caveats as
    +    left_index.
    +sort : bool, default False
    +    Sort the join keys lexicographically in the result DataFrame. If False,
    +    the order of the join keys depends on the join type (how keyword).
    +suffixes : tuple of (str, str), default ('_x', '_y')
    +    Suffix to apply to overlapping column names in the left and right
    +    side, respectively. To raise an exception on overlapping columns use
    +    (False, False).
    +copy : bool, default True
    +    If False, avoid copy if possible.
    +indicator : bool or str, default False
    +    If True, adds a column to output DataFrame called "_merge" with
    +    information on the source of each row.
    +    If string, column with information on source of each row will be added to
    +    output DataFrame, and column will be named value of string.
    +    Information column is Categorical-type and takes on a value of "left_only"
    +    for observations whose merge key only appears in 'left' DataFrame,
    +    "right_only" for observations whose merge key only appears in 'right'
    +    DataFrame, and "both" if the observation's merge key is found in both.
    +
    +validate : str, optional
    +    If specified, checks if merge is of specified type.
    +
    +    * "one_to_one" or "1:1": check if merge keys are unique in both
    +      left and right datasets.
    +    * "one_to_many" or "1:m": check if merge keys are unique in left
    +      dataset.
    +    * "many_to_one" or "m:1": check if merge keys are unique in right
    +      dataset.
    +    * "many_to_many" or "m:m": allowed, but does not result in checks.
    +
    +    .. versionadded:: 0.21.0
    +
    +Returns
    +-------
    +DataFrame
    +    A DataFrame of the two merged objects.
    +
    +See Also
    +--------
    +merge_ordered : Merge with optional filling/interpolation.
    +merge_asof : Merge on nearest keys.
    +DataFrame.join : Similar method using indices.
    +
    +Notes
    +-----
    +Support for specifying index levels as the `on`, `left_on`, and
    +`right_on` parameters was added in version 0.23.0
    +Support for merging named Series objects was added in version 0.24.0
    +
    +Examples
    +--------
    +
    +>>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'],
    +...                     'value': [1, 2, 3, 5]})
    +>>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'],
    +...                     'value': [5, 6, 7, 8]})
    +>>> df1
    +    lkey value
    +0   foo      1
    +1   bar      2
    +2   baz      3
    +3   foo      5
    +>>> df2
    +    rkey value
    +0   foo      5
    +1   bar      6
    +2   baz      7
    +3   foo      8
    +
    +Merge df1 and df2 on the lkey and rkey columns. The value columns have
    +the default suffixes, _x and _y, appended.
    +
    +>>> df1.merge(df2, left_on='lkey', right_on='rkey')
    +  lkey  value_x rkey  value_y
    +0  foo        1  foo        5
    +1  foo        1  foo        8
    +2  foo        5  foo        5
    +3  foo        5  foo        8
    +4  bar        2  bar        6
    +5  baz        3  baz        7
    +
    +Merge DataFrames df1 and df2 with specified left and right suffixes
    +appended to any overlapping columns.
    +
    +>>> df1.merge(df2, left_on='lkey', right_on='rkey',
    +...           suffixes=('_left', '_right'))
    +  lkey  value_left rkey  value_right
    +0  foo           1  foo            5
    +1  foo           1  foo            8
    +2  foo           5  foo            5
    +3  foo           5  foo            8
    +4  bar           2  bar            6
    +5  baz           3  baz            7
    +
    +Merge DataFrames df1 and df2, but raise an exception if the DataFrames have
    +any overlapping columns.
    +
    +>>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False))
    +Traceback (most recent call last):
    +...
    +ValueError: columns overlap but no suffix specified:
    +    Index(['value'], dtype='object')
    +"""
    +
    +
    +# -----------------------------------------------------------------------
    +# DataFrame class
    +
    +
    +class DataFrame(NDFrame):
    +    """
    +    Two-dimensional size-mutable, potentially heterogeneous tabular data
    +    structure with labeled axes (rows and columns). Arithmetic operations
    +    align on both row and column labels. Can be thought of as a dict-like
    +    container for Series objects. The primary pandas data structure.
    +
    +    Parameters
    +    ----------
    +    data : ndarray (structured or homogeneous), Iterable, dict, or DataFrame
    +        Dict can contain Series, arrays, constants, or list-like objects
    +
    +        .. versionchanged :: 0.23.0
    +           If data is a dict, column order follows insertion-order for
    +           Python 3.6 and later.
    +
    +        .. versionchanged :: 0.25.0
    +           If data is a list of dicts, column order follows insertion-order
    +           Python 3.6 and later.
    +
    +    index : Index or array-like
    +        Index to use for resulting frame. Will default to RangeIndex if
    +        no indexing information part of input data and no index provided
    +    columns : Index or array-like
    +        Column labels to use for resulting frame. Will default to
    +        RangeIndex (0, 1, 2, ..., n) if no column labels are provided
    +    dtype : dtype, default None
    +        Data type to force. Only a single dtype is allowed. If None, infer
    +    copy : boolean, default False
    +        Copy data from inputs. Only affects DataFrame / 2d ndarray input
    +
    +    See Also
    +    --------
    +    DataFrame.from_records : Constructor from tuples, also record arrays.
    +    DataFrame.from_dict : From dicts of Series, arrays, or dicts.
    +    DataFrame.from_items : From sequence of (key, value) pairs
    +        read_csv, pandas.read_table, pandas.read_clipboard.
    +
    +    Examples
    +    --------
    +    Constructing DataFrame from a dictionary.
    +
    +    >>> d = {'col1': [1, 2], 'col2': [3, 4]}
    +    >>> df = pd.DataFrame(data=d)
    +    >>> df
    +       col1  col2
    +    0     1     3
    +    1     2     4
    +
    +    Notice that the inferred dtype is int64.
    +
    +    >>> df.dtypes
    +    col1    int64
    +    col2    int64
    +    dtype: object
    +
    +    To enforce a single dtype:
    +
    +    >>> df = pd.DataFrame(data=d, dtype=np.int8)
    +    >>> df.dtypes
    +    col1    int8
    +    col2    int8
    +    dtype: object
    +
    +    Constructing DataFrame from numpy ndarray:
    +
    +    >>> df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]),
    +    ...                    columns=['a', 'b', 'c'])
    +    >>> df2
    +       a  b  c
    +    0  1  2  3
    +    1  4  5  6
    +    2  7  8  9
    +    """
    +
    +    @property
    +    def _constructor(self):
    +        return DataFrame
    +
    +    _constructor_sliced = Series  # type: Type[Series]
    +    _deprecations = NDFrame._deprecations | frozenset(
    +        ["get_value", "set_value", "from_items"]
    +    )  # type: FrozenSet[str]
    +    _accessors = set()  # type: Set[str]
    +
    +    @property
    +    def _constructor_expanddim(self):
    +        raise NotImplementedError("Not supported for DataFrames!")
    +
    +    # ----------------------------------------------------------------------
    +    # Constructors
    +
    +    def __init__(self, data=None, index=None, columns=None, dtype=None, copy=False):
    +        if data is None:
    +            data = {}
    +        if dtype is not None:
    +            dtype = self._validate_dtype(dtype)
    +
    +        if isinstance(data, DataFrame):
    +            data = data._data
    +
    +        if isinstance(data, BlockManager):
    +            mgr = self._init_mgr(
    +                data, axes=dict(index=index, columns=columns), dtype=dtype, copy=copy
    +            )
    +        elif isinstance(data, dict):
    +            mgr = init_dict(data, index, columns, dtype=dtype)
    +        elif isinstance(data, ma.MaskedArray):
    +            import numpy.ma.mrecords as mrecords
    +
    +            # masked recarray
    +            if isinstance(data, mrecords.MaskedRecords):
    +                mgr = masked_rec_array_to_mgr(data, index, columns, dtype, copy)
    +
    +            # a masked array
    +            else:
    +                mask = ma.getmaskarray(data)
    +                if mask.any():
    +                    data, fill_value = maybe_upcast(data, copy=True)
    +                    data.soften_mask()  # set hardmask False if it was True
    +                    data[mask] = fill_value
    +                else:
    +                    data = data.copy()
    +                mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy)
    +
    +        elif isinstance(data, (np.ndarray, Series, Index)):
    +            if data.dtype.names:
    +                data_columns = list(data.dtype.names)
    +                data = {k: data[k] for k in data_columns}
    +                if columns is None:
    +                    columns = data_columns
    +                mgr = init_dict(data, index, columns, dtype=dtype)
    +            elif getattr(data, "name", None) is not None:
    +                mgr = init_dict({data.name: data}, index, columns, dtype=dtype)
    +            else:
    +                mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy)
    +
    +        # For data is list-like, or Iterable (will consume into list)
    +        elif isinstance(data, abc.Iterable) and not isinstance(data, (str, bytes)):
    +            if not isinstance(data, abc.Sequence):
    +                data = list(data)
    +            if len(data) > 0:
    +                if is_list_like(data[0]) and getattr(data[0], "ndim", 1) == 1:
    +                    if is_named_tuple(data[0]) and columns is None:
    +                        columns = data[0]._fields
    +                    arrays, columns = to_arrays(data, columns, dtype=dtype)
    +                    columns = ensure_index(columns)
    +
    +                    # set the index
    +                    if index is None:
    +                        if isinstance(data[0], Series):
    +                            index = get_names_from_index(data)
    +                        elif isinstance(data[0], Categorical):
    +                            index = ibase.default_index(len(data[0]))
    +                        else:
    +                            index = ibase.default_index(len(data))
    +
    +                    mgr = arrays_to_mgr(arrays, columns, index, columns, dtype=dtype)
    +                else:
    +                    mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy)
    +            else:
    +                mgr = init_dict({}, index, columns, dtype=dtype)
    +        else:
    +            try:
    +                arr = np.array(data, dtype=dtype, copy=copy)
    +            except (ValueError, TypeError) as e:
    +                exc = TypeError(
    +                    "DataFrame constructor called with "
    +                    "incompatible data and dtype: {e}".format(e=e)
    +                )
    +                raise_with_traceback(exc)
    +
    +            if arr.ndim == 0 and index is not None and columns is not None:
    +                values = cast_scalar_to_array(
    +                    (len(index), len(columns)), data, dtype=dtype
    +                )
    +                mgr = init_ndarray(
    +                    values, index, columns, dtype=values.dtype, copy=False
    +                )
    +            else:
    +                raise ValueError("DataFrame constructor not properly called!")
    +
    +        NDFrame.__init__(self, mgr, fastpath=True)
    +
    +    # ----------------------------------------------------------------------
    +
    +    @property
    +    def axes(self):
    +        """
    +        Return a list representing the axes of the DataFrame.
    +
    +        It has the row axis labels and column axis labels as the only members.
    +        They are returned in that order.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
    +        >>> df.axes
    +        [RangeIndex(start=0, stop=2, step=1), Index(['col1', 'col2'],
    +        dtype='object')]
    +        """
    +        return [self.index, self.columns]
    +
    +    @property
    +    def shape(self):
    +        """
    +        Return a tuple representing the dimensionality of the DataFrame.
    +
    +        See Also
    +        --------
    +        ndarray.shape
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
    +        >>> df.shape
    +        (2, 2)
    +
    +        >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4],
    +        ...                    'col3': [5, 6]})
    +        >>> df.shape
    +        (2, 3)
    +        """
    +        return len(self.index), len(self.columns)
    +
    +    @property
    +    def _is_homogeneous_type(self):
    +        """
    +        Whether all the columns in a DataFrame have the same type.
    +
    +        Returns
    +        -------
    +        bool
    +
    +        Examples
    +        --------
    +        >>> DataFrame({"A": [1, 2], "B": [3, 4]})._is_homogeneous_type
    +        True
    +        >>> DataFrame({"A": [1, 2], "B": [3.0, 4.0]})._is_homogeneous_type
    +        False
    +
    +        Items with the same type but different sizes are considered
    +        different types.
    +
    +        >>> DataFrame({
    +        ...    "A": np.array([1, 2], dtype=np.int32),
    +        ...    "B": np.array([1, 2], dtype=np.int64)})._is_homogeneous_type
    +        False
    +        """
    +        if self._data.any_extension_types:
    +            return len({block.dtype for block in self._data.blocks}) == 1
    +        else:
    +            return not self._data.is_mixed_type
    +
    +    # ----------------------------------------------------------------------
    +    # Rendering Methods
    +
    +    def _repr_fits_vertical_(self):
    +        """
    +        Check length against max_rows.
    +        """
    +        max_rows = get_option("display.max_rows")
    +        return len(self) <= max_rows
    +
    +    def _repr_fits_horizontal_(self, ignore_width=False):
    +        """
    +        Check if full repr fits in horizontal boundaries imposed by the display
    +        options width and max_columns.
    +
    +        In case off non-interactive session, no boundaries apply.
    +
    +        `ignore_width` is here so ipnb+HTML output can behave the way
    +        users expect. display.max_columns remains in effect.
    +        GH3541, GH3573
    +        """
    +
    +        width, height = console.get_console_size()
    +        max_columns = get_option("display.max_columns")
    +        nb_columns = len(self.columns)
    +
    +        # exceed max columns
    +        if (max_columns and nb_columns > max_columns) or (
    +            (not ignore_width) and width and nb_columns > (width // 2)
    +        ):
    +            return False
    +
    +        # used by repr_html under IPython notebook or scripts ignore terminal
    +        # dims
    +        if ignore_width or not console.in_interactive_session():
    +            return True
    +
    +        if get_option("display.width") is not None or console.in_ipython_frontend():
    +            # check at least the column row for excessive width
    +            max_rows = 1
    +        else:
    +            max_rows = get_option("display.max_rows")
    +
    +        # when auto-detecting, so width=None and not in ipython front end
    +        # check whether repr fits horizontal by actually checking
    +        # the width of the rendered repr
    +        buf = StringIO()
    +
    +        # only care about the stuff we'll actually print out
    +        # and to_string on entire frame may be expensive
    +        d = self
    +
    +        if not (max_rows is None):  # unlimited rows
    +            # min of two, where one may be None
    +            d = d.iloc[: min(max_rows, len(d))]
    +        else:
    +            return True
    +
    +        d.to_string(buf=buf)
    +        value = buf.getvalue()
    +        repr_width = max(len(l) for l in value.split("\n"))
    +
    +        return repr_width < width
    +
    +    def _info_repr(self):
    +        """
    +        True if the repr should show the info view.
    +        """
    +        info_repr_option = get_option("display.large_repr") == "info"
    +        return info_repr_option and not (
    +            self._repr_fits_horizontal_() and self._repr_fits_vertical_()
    +        )
    +
    +    def __repr__(self):
    +        """
    +        Return a string representation for a particular DataFrame.
    +        """
    +        buf = StringIO("")
    +        if self._info_repr():
    +            self.info(buf=buf)
    +            return buf.getvalue()
    +
    +        max_rows = get_option("display.max_rows")
    +        min_rows = get_option("display.min_rows")
    +        max_cols = get_option("display.max_columns")
    +        show_dimensions = get_option("display.show_dimensions")
    +        if get_option("display.expand_frame_repr"):
    +            width, _ = console.get_console_size()
    +        else:
    +            width = None
    +        self.to_string(
    +            buf=buf,
    +            max_rows=max_rows,
    +            min_rows=min_rows,
    +            max_cols=max_cols,
    +            line_width=width,
    +            show_dimensions=show_dimensions,
    +        )
    +
    +        return buf.getvalue()
    +
    +    def _repr_html_(self):
    +        """
    +        Return a html representation for a particular DataFrame.
    +
    +        Mainly for IPython notebook.
    +        """
    +        if self._info_repr():
    +            buf = StringIO("")
    +            self.info(buf=buf)
    +            # need to escape the <class>, should be the first line.
    +            val = buf.getvalue().replace("<", r"&lt;", 1)
    +            val = val.replace(">", r"&gt;", 1)
    +            return "<pre>" + val + "</pre>"
    +
    +        if get_option("display.notebook_repr_html"):
    +            max_rows = get_option("display.max_rows")
    +            max_cols = get_option("display.max_columns")
    +            show_dimensions = get_option("display.show_dimensions")
    +
    +            return self.to_html(
    +                max_rows=max_rows,
    +                max_cols=max_cols,
    +                show_dimensions=show_dimensions,
    +                notebook=True,
    +            )
    +        else:
    +            return None
    +
    +    @Substitution(
    +        header="Write out the column names. If a list of strings "
    +        "is given, it is assumed to be aliases for the "
    +        "column names",
    +        col_space_type="int",
    +        col_space="The minimum width of each column",
    +    )
    +    @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring)
    +    def to_string(
    +        self,
    +        buf=None,
    +        columns=None,
    +        col_space=None,
    +        header=True,
    +        index=True,
    +        na_rep="NaN",
    +        formatters=None,
    +        float_format=None,
    +        sparsify=None,
    +        index_names=True,
    +        justify=None,
    +        max_rows=None,
    +        min_rows=None,
    +        max_cols=None,
    +        show_dimensions=False,
    +        decimal=".",
    +        line_width=None,
    +    ):
    +        """
    +        Render a DataFrame to a console-friendly tabular output.
    +        %(shared_params)s
    +        line_width : int, optional
    +            Width to wrap a line in characters.
    +        %(returns)s
    +        See Also
    +        --------
    +        to_html : Convert DataFrame to HTML.
    +
    +        Examples
    +        --------
    +        >>> d = {'col1': [1, 2, 3], 'col2': [4, 5, 6]}
    +        >>> df = pd.DataFrame(d)
    +        >>> print(df.to_string())
    +           col1  col2
    +        0     1     4
    +        1     2     5
    +        2     3     6
    +        """
    +
    +        formatter = fmt.DataFrameFormatter(
    +            self,
    +            buf=buf,
    +            columns=columns,
    +            col_space=col_space,
    +            na_rep=na_rep,
    +            formatters=formatters,
    +            float_format=float_format,
    +            sparsify=sparsify,
    +            justify=justify,
    +            index_names=index_names,
    +            header=header,
    +            index=index,
    +            min_rows=min_rows,
    +            max_rows=max_rows,
    +            max_cols=max_cols,
    +            show_dimensions=show_dimensions,
    +            decimal=decimal,
    +            line_width=line_width,
    +        )
    +        formatter.to_string()
    +
    +        if buf is None:
    +            result = formatter.buf.getvalue()
    +            return result
    +
    +    # ----------------------------------------------------------------------
    +
    +    @property
    +    def style(self):
    +        """
    +        Property returning a Styler object containing methods for
    +        building a styled HTML representation fo the DataFrame.
    +
    +        See Also
    +        --------
    +        io.formats.style.Styler
    +        """
    +        from pandas.io.formats.style import Styler
    +
    +        return Styler(self)
    +
    +    _shared_docs[
    +        "items"
    +    ] = r"""
    +        Iterator over (column name, Series) pairs.
    +
    +        Iterates over the DataFrame columns, returning a tuple with
    +        the column name and the content as a Series.
    +
    +        %s
    +        label : object
    +            The column names for the DataFrame being iterated over.
    +        content : Series
    +            The column entries belonging to each label, as a Series.
    +
    +        See Also
    +        --------
    +        DataFrame.iterrows : Iterate over DataFrame rows as
    +            (index, Series) pairs.
    +        DataFrame.itertuples : Iterate over DataFrame rows as namedtuples
    +            of the values.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'],
    +        ...                   'population': [1864, 22000, 80000]},
    +        ...                   index=['panda', 'polar', 'koala'])
    +        >>> df
    +                species   population
    +        panda 	bear 	  1864
    +        polar 	bear 	  22000
    +        koala 	marsupial 80000
    +        >>> for label, content in df.items():
    +        ...     print('label:', label)
    +        ...     print('content:', content, sep='\n')
    +        ...
    +        label: species
    +        content:
    +        panda         bear
    +        polar         bear
    +        koala    marsupial
    +        Name: species, dtype: object
    +        label: population
    +        content:
    +        panda     1864
    +        polar    22000
    +        koala    80000
    +        Name: population, dtype: int64
    +        """
    +
    +    @Appender(_shared_docs["items"] % "Yields\n        ------")
    +    def items(self):
    +        if self.columns.is_unique and hasattr(self, "_item_cache"):
    +            for k in self.columns:
    +                yield k, self._get_item_cache(k)
    +        else:
    +            for i, k in enumerate(self.columns):
    +                yield k, self._ixs(i, axis=1)
    +
    +    @Appender(_shared_docs["items"] % "Returns\n        -------")
    +    def iteritems(self):
    +        return self.items()
    +
    +    def iterrows(self):
    +        """
    +        Iterate over DataFrame rows as (index, Series) pairs.
    +
    +        Yields
    +        ------
    +        index : label or tuple of label
    +            The index of the row. A tuple for a `MultiIndex`.
    +        data : Series
    +            The data of the row as a Series.
    +
    +        it : generator
    +            A generator that iterates over the rows of the frame.
    +
    +        See Also
    +        --------
    +        itertuples : Iterate over DataFrame rows as namedtuples of the values.
    +        items : Iterate over (column name, Series) pairs.
    +
    +        Notes
    +        -----
    +
    +        1. Because ``iterrows`` returns a Series for each row,
    +           it does **not** preserve dtypes across the rows (dtypes are
    +           preserved across columns for DataFrames). For example,
    +
    +           >>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float'])
    +           >>> row = next(df.iterrows())[1]
    +           >>> row
    +           int      1.0
    +           float    1.5
    +           Name: 0, dtype: float64
    +           >>> print(row['int'].dtype)
    +           float64
    +           >>> print(df['int'].dtype)
    +           int64
    +
    +           To preserve dtypes while iterating over the rows, it is better
    +           to use :meth:`itertuples` which returns namedtuples of the values
    +           and which is generally faster than ``iterrows``.
    +
    +        2. You should **never modify** something you are iterating over.
    +           This is not guaranteed to work in all cases. Depending on the
    +           data types, the iterator returns a copy and not a view, and writing
    +           to it will have no effect.
    +        """
    +        columns = self.columns
    +        klass = self._constructor_sliced
    +        for k, v in zip(self.index, self.values):
    +            s = klass(v, index=columns, name=k)
    +            yield k, s
    +
    +    def itertuples(self, index=True, name="Pandas"):
    +        """
    +        Iterate over DataFrame rows as namedtuples.
    +
    +        Parameters
    +        ----------
    +        index : bool, default True
    +            If True, return the index as the first element of the tuple.
    +        name : str or None, default "Pandas"
    +            The name of the returned namedtuples or None to return regular
    +            tuples.
    +
    +        Returns
    +        -------
    +        iterator
    +            An object to iterate over namedtuples for each row in the
    +            DataFrame with the first field possibly being the index and
    +            following fields being the column values.
    +
    +        See Also
    +        --------
    +        DataFrame.iterrows : Iterate over DataFrame rows as (index, Series)
    +            pairs.
    +        DataFrame.items : Iterate over (column name, Series) pairs.
    +
    +        Notes
    +        -----
    +        The column names will be renamed to positional names if they are
    +        invalid Python identifiers, repeated, or start with an underscore.
    +        With a large number of columns (>255), regular tuples are returned.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]},
    +        ...                   index=['dog', 'hawk'])
    +        >>> df
    +              num_legs  num_wings
    +        dog          4          0
    +        hawk         2          2
    +        >>> for row in df.itertuples():
    +        ...     print(row)
    +        ...
    +        Pandas(Index='dog', num_legs=4, num_wings=0)
    +        Pandas(Index='hawk', num_legs=2, num_wings=2)
    +
    +        By setting the `index` parameter to False we can remove the index
    +        as the first element of the tuple:
    +
    +        >>> for row in df.itertuples(index=False):
    +        ...     print(row)
    +        ...
    +        Pandas(num_legs=4, num_wings=0)
    +        Pandas(num_legs=2, num_wings=2)
    +
    +        With the `name` parameter set we set a custom name for the yielded
    +        namedtuples:
    +
    +        >>> for row in df.itertuples(name='Animal'):
    +        ...     print(row)
    +        ...
    +        Animal(Index='dog', num_legs=4, num_wings=0)
    +        Animal(Index='hawk', num_legs=2, num_wings=2)
    +        """
    +        arrays = []
    +        fields = list(self.columns)
    +        if index:
    +            arrays.append(self.index)
    +            fields.insert(0, "Index")
    +
    +        # use integer indexing because of possible duplicate column names
    +        arrays.extend(self.iloc[:, k] for k in range(len(self.columns)))
    +
    +        # Python 3 supports at most 255 arguments to constructor
    +        if name is not None and len(self.columns) + index < 256:
    +            itertuple = collections.namedtuple(name, fields, rename=True)
    +            return map(itertuple._make, zip(*arrays))
    +
    +        # fallback to regular tuples
    +        return zip(*arrays)
    +
    +    def __len__(self):
    +        """
    +        Returns length of info axis, but here we use the index.
    +        """
    +        return len(self.index)
    +
    +    def dot(self, other):
    +        """
    +        Compute the matrix multiplication between the DataFrame and other.
    +
    +        This method computes the matrix product between the DataFrame and the
    +        values of an other Series, DataFrame or a numpy array.
    +
    +        It can also be called using ``self @ other`` in Python >= 3.5.
    +
    +        Parameters
    +        ----------
    +        other : Series, DataFrame or array-like
    +            The other object to compute the matrix product with.
    +
    +        Returns
    +        -------
    +        Series or DataFrame
    +            If other is a Series, return the matrix product between self and
    +            other as a Serie. If other is a DataFrame or a numpy.array, return
    +            the matrix product of self and other in a DataFrame of a np.array.
    +
    +        See Also
    +        --------
    +        Series.dot: Similar method for Series.
    +
    +        Notes
    +        -----
    +        The dimensions of DataFrame and other must be compatible in order to
    +        compute the matrix multiplication. In addition, the column names of
    +        DataFrame and the index of other must contain the same values, as they
    +        will be aligned prior to the multiplication.
    +
    +        The dot method for Series computes the inner product, instead of the
    +        matrix product here.
    +
    +        Examples
    +        --------
    +        Here we multiply a DataFrame with a Series.
    +
    +        >>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]])
    +        >>> s = pd.Series([1, 1, 2, 1])
    +        >>> df.dot(s)
    +        0    -4
    +        1     5
    +        dtype: int64
    +
    +        Here we multiply a DataFrame with another DataFrame.
    +
    +        >>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]])
    +        >>> df.dot(other)
    +            0   1
    +        0   1   4
    +        1   2   2
    +
    +        Note that the dot method give the same result as @
    +
    +        >>> df @ other
    +            0   1
    +        0   1   4
    +        1   2   2
    +
    +        The dot method works also if other is an np.array.
    +
    +        >>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]])
    +        >>> df.dot(arr)
    +            0   1
    +        0   1   4
    +        1   2   2
    +
    +        Note how shuffling of the objects does not change the result.
    +
    +        >>> s2 = s.reindex([1, 0, 2, 3])
    +        >>> df.dot(s2)
    +        0    -4
    +        1     5
    +        dtype: int64
    +        """
    +        if isinstance(other, (Series, DataFrame)):
    +            common = self.columns.union(other.index)
    +            if len(common) > len(self.columns) or len(common) > len(other.index):
    +                raise ValueError("matrices are not aligned")
    +
    +            left = self.reindex(columns=common, copy=False)
    +            right = other.reindex(index=common, copy=False)
    +            lvals = left.values
    +            rvals = right.values
    +        else:
    +            left = self
    +            lvals = self.values
    +            rvals = np.asarray(other)
    +            if lvals.shape[1] != rvals.shape[0]:
    +                raise ValueError(
    +                    "Dot product shape mismatch, "
    +                    "{s} vs {r}".format(s=lvals.shape, r=rvals.shape)
    +                )
    +
    +        if isinstance(other, DataFrame):
    +            return self._constructor(
    +                np.dot(lvals, rvals), index=left.index, columns=other.columns
    +            )
    +        elif isinstance(other, Series):
    +            return Series(np.dot(lvals, rvals), index=left.index)
    +        elif isinstance(rvals, (np.ndarray, Index)):
    +            result = np.dot(lvals, rvals)
    +            if result.ndim == 2:
    +                return self._constructor(result, index=left.index)
    +            else:
    +                return Series(result, index=left.index)
    +        else:  # pragma: no cover
    +            raise TypeError("unsupported type: {oth}".format(oth=type(other)))
    +
    +    def __matmul__(self, other):
    +        """
    +        Matrix multiplication using binary `@` operator in Python>=3.5.
    +        """
    +        return self.dot(other)
    +
    +    def __rmatmul__(self, other):
    +        """
    +        Matrix multiplication using binary `@` operator in Python>=3.5.
    +        """
    +        return self.T.dot(np.transpose(other)).T
    +
    +    # ----------------------------------------------------------------------
    +    # IO methods (to / from other formats)
    +
    +    @classmethod
    +    def from_dict(cls, data, orient="columns", dtype=None, columns=None):
    +        """
    +        Construct DataFrame from dict of array-like or dicts.
    +
    +        Creates DataFrame object from dictionary by columns or by index
    +        allowing dtype specification.
    +
    +        Parameters
    +        ----------
    +        data : dict
    +            Of the form {field : array-like} or {field : dict}.
    +        orient : {'columns', 'index'}, default 'columns'
    +            The "orientation" of the data. If the keys of the passed dict
    +            should be the columns of the resulting DataFrame, pass 'columns'
    +            (default). Otherwise if the keys should be rows, pass 'index'.
    +        dtype : dtype, default None
    +            Data type to force, otherwise infer.
    +        columns : list, default None
    +            Column labels to use when ``orient='index'``. Raises a ValueError
    +            if used with ``orient='columns'``.
    +
    +            .. versionadded:: 0.23.0
    +
    +        Returns
    +        -------
    +        DataFrame
    +
    +        See Also
    +        --------
    +        DataFrame.from_records : DataFrame from ndarray (structured
    +            dtype), list of tuples, dict, or DataFrame.
    +        DataFrame : DataFrame object creation using constructor.
    +
    +        Examples
    +        --------
    +        By default the keys of the dict become the DataFrame columns:
    +
    +        >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
    +        >>> pd.DataFrame.from_dict(data)
    +           col_1 col_2
    +        0      3     a
    +        1      2     b
    +        2      1     c
    +        3      0     d
    +
    +        Specify ``orient='index'`` to create the DataFrame using dictionary
    +        keys as rows:
    +
    +        >>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']}
    +        >>> pd.DataFrame.from_dict(data, orient='index')
    +               0  1  2  3
    +        row_1  3  2  1  0
    +        row_2  a  b  c  d
    +
    +        When using the 'index' orientation, the column names can be
    +        specified manually:
    +
    +        >>> pd.DataFrame.from_dict(data, orient='index',
    +        ...                        columns=['A', 'B', 'C', 'D'])
    +               A  B  C  D
    +        row_1  3  2  1  0
    +        row_2  a  b  c  d
    +        """
    +        index = None
    +        orient = orient.lower()
    +        if orient == "index":
    +            if len(data) > 0:
    +                # TODO speed up Series case
    +                if isinstance(list(data.values())[0], (Series, dict)):
    +                    data = _from_nested_dict(data)
    +                else:
    +                    data, index = list(data.values()), list(data.keys())
    +        elif orient == "columns":
    +            if columns is not None:
    +                raise ValueError(
    +                    "cannot use columns parameter with " "orient='columns'"
    +                )
    +        else:  # pragma: no cover
    +            raise ValueError("only recognize index or columns for orient")
    +
    +        return cls(data, index=index, columns=columns, dtype=dtype)
    +
    +    def to_numpy(self, dtype=None, copy=False):
    +        """
    +        Convert the DataFrame to a NumPy array.
    +
    +        .. versionadded:: 0.24.0
    +
    +        By default, the dtype of the returned array will be the common NumPy
    +        dtype of all types in the DataFrame. For example, if the dtypes are
    +        ``float16`` and ``float32``, the results dtype will be ``float32``.
    +        This may require copying data and coercing values, which may be
    +        expensive.
    +
    +        Parameters
    +        ----------
    +        dtype : str or numpy.dtype, optional
    +            The dtype to pass to :meth:`numpy.asarray`
    +        copy : bool, default False
    +            Whether to ensure that the returned value is a not a view on
    +            another array. Note that ``copy=False`` does not *ensure* that
    +            ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that
    +            a copy is made, even if not strictly necessary.
    +
    +        Returns
    +        -------
    +        numpy.ndarray
    +
    +        See Also
    +        --------
    +        Series.to_numpy : Similar method for Series.
    +
    +        Examples
    +        --------
    +        >>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy()
    +        array([[1, 3],
    +               [2, 4]])
    +
    +        With heterogenous data, the lowest common type will have to
    +        be used.
    +
    +        >>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]})
    +        >>> df.to_numpy()
    +        array([[1. , 3. ],
    +               [2. , 4.5]])
    +
    +        For a mix of numeric and non-numeric types, the output array will
    +        have object dtype.
    +
    +        >>> df['C'] = pd.date_range('2000', periods=2)
    +        >>> df.to_numpy()
    +        array([[1, 3.0, Timestamp('2000-01-01 00:00:00')],
    +               [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object)
    +        """
    +        result = np.array(self.values, dtype=dtype, copy=copy)
    +        return result
    +
    +    def to_dict(self, orient="dict", into=dict):
    +        """
    +        Convert the DataFrame to a dictionary.
    +
    +        The type of the key-value pairs can be customized with the parameters
    +        (see below).
    +
    +        Parameters
    +        ----------
    +        orient : str {'dict', 'list', 'series', 'split', 'records', 'index'}
    +            Determines the type of the values of the dictionary.
    +
    +            - 'dict' (default) : dict like {column -> {index -> value}}
    +            - 'list' : dict like {column -> [values]}
    +            - 'series' : dict like {column -> Series(values)}
    +            - 'split' : dict like
    +              {'index' -> [index], 'columns' -> [columns], 'data' -> [values]}
    +            - 'records' : list like
    +              [{column -> value}, ... , {column -> value}]
    +            - 'index' : dict like {index -> {column -> value}}
    +
    +            Abbreviations are allowed. `s` indicates `series` and `sp`
    +            indicates `split`.
    +
    +        into : class, default dict
    +            The collections.abc.Mapping subclass used for all Mappings
    +            in the return value.  Can be the actual class or an empty
    +            instance of the mapping type you want.  If you want a
    +            collections.defaultdict, you must pass it initialized.
    +
    +            .. versionadded:: 0.21.0
    +
    +        Returns
    +        -------
    +        dict, list or collections.abc.Mapping
    +            Return a collections.abc.Mapping object representing the DataFrame.
    +            The resulting transformation depends on the `orient` parameter.
    +
    +        See Also
    +        --------
    +        DataFrame.from_dict: Create a DataFrame from a dictionary.
    +        DataFrame.to_json: Convert a DataFrame to JSON format.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({'col1': [1, 2],
    +        ...                    'col2': [0.5, 0.75]},
    +        ...                   index=['row1', 'row2'])
    +        >>> df
    +              col1  col2
    +        row1     1  0.50
    +        row2     2  0.75
    +        >>> df.to_dict()
    +        {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}}
    +
    +        You can specify the return orientation.
    +
    +        >>> df.to_dict('series')
    +        {'col1': row1    1
    +                 row2    2
    +        Name: col1, dtype: int64,
    +        'col2': row1    0.50
    +                row2    0.75
    +        Name: col2, dtype: float64}
    +
    +        >>> df.to_dict('split')
    +        {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'],
    +         'data': [[1, 0.5], [2, 0.75]]}
    +
    +        >>> df.to_dict('records')
    +        [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}]
    +
    +        >>> df.to_dict('index')
    +        {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}}
    +
    +        You can also specify the mapping type.
    +
    +        >>> from collections import OrderedDict, defaultdict
    +        >>> df.to_dict(into=OrderedDict)
    +        OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])),
    +                     ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))])
    +
    +        If you want a `defaultdict`, you need to initialize it:
    +
    +        >>> dd = defaultdict(list)
    +        >>> df.to_dict('records', into=dd)
    +        [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}),
    +         defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})]
    +        """
    +        if not self.columns.is_unique:
    +            warnings.warn(
    +                "DataFrame columns are not unique, some " "columns will be omitted.",
    +                UserWarning,
    +                stacklevel=2,
    +            )
    +        # GH16122
    +        into_c = com.standardize_mapping(into)
    +        if orient.lower().startswith("d"):
    +            return into_c((k, v.to_dict(into)) for k, v in self.items())
    +        elif orient.lower().startswith("l"):
    +            return into_c((k, v.tolist()) for k, v in self.items())
    +        elif orient.lower().startswith("sp"):
    +            return into_c(
    +                (
    +                    ("index", self.index.tolist()),
    +                    ("columns", self.columns.tolist()),
    +                    (
    +                        "data",
    +                        [
    +                            list(map(com.maybe_box_datetimelike, t))
    +                            for t in self.itertuples(index=False, name=None)
    +                        ],
    +                    ),
    +                )
    +            )
    +        elif orient.lower().startswith("s"):
    +            return into_c((k, com.maybe_box_datetimelike(v)) for k, v in self.items())
    +        elif orient.lower().startswith("r"):
    +            columns = self.columns.tolist()
    +            rows = (
    +                dict(zip(columns, row))
    +                for row in self.itertuples(index=False, name=None)
    +            )
    +            return [
    +                into_c((k, com.maybe_box_datetimelike(v)) for k, v in row.items())
    +                for row in rows
    +            ]
    +        elif orient.lower().startswith("i"):
    +            if not self.index.is_unique:
    +                raise ValueError("DataFrame index must be unique for orient='index'.")
    +            return into_c(
    +                (t[0], dict(zip(self.columns, t[1:])))
    +                for t in self.itertuples(name=None)
    +            )
    +        else:
    +            raise ValueError("orient '{o}' not understood".format(o=orient))
    +
    +    def to_gbq(
    +        self,
    +        destination_table,
    +        project_id=None,
    +        chunksize=None,
    +        reauth=False,
    +        if_exists="fail",
    +        auth_local_webserver=False,
    +        table_schema=None,
    +        location=None,
    +        progress_bar=True,
    +        credentials=None,
    +        verbose=None,
    +        private_key=None,
    +    ):
    +        """
    +        Write a DataFrame to a Google BigQuery table.
    +
    +        This function requires the `pandas-gbq package
    +        <https://pandas-gbq.readthedocs.io>`__.
    +
    +        See the `How to authenticate with Google BigQuery
    +        <https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__
    +        guide for authentication instructions.
    +
    +        Parameters
    +        ----------
    +        destination_table : str
    +            Name of table to be written, in the form ``dataset.tablename``.
    +        project_id : str, optional
    +            Google BigQuery Account project ID. Optional when available from
    +            the environment.
    +        chunksize : int, optional
    +            Number of rows to be inserted in each chunk from the dataframe.
    +            Set to ``None`` to load the whole dataframe at once.
    +        reauth : bool, default False
    +            Force Google BigQuery to re-authenticate the user. This is useful
    +            if multiple accounts are used.
    +        if_exists : str, default 'fail'
    +            Behavior when the destination table exists. Value can be one of:
    +
    +            ``'fail'``
    +                If table exists, do nothing.
    +            ``'replace'``
    +                If table exists, drop it, recreate it, and insert data.
    +            ``'append'``
    +                If table exists, insert data. Create if does not exist.
    +        auth_local_webserver : bool, default False
    +            Use the `local webserver flow`_ instead of the `console flow`_
    +            when getting user credentials.
    +
    +            .. _local webserver flow:
    +                http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server
    +            .. _console flow:
    +                http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console
    +
    +            *New in version 0.2.0 of pandas-gbq*.
    +        table_schema : list of dicts, optional
    +            List of BigQuery table fields to which according DataFrame
    +            columns conform to, e.g. ``[{'name': 'col1', 'type':
    +            'STRING'},...]``. If schema is not provided, it will be
    +            generated according to dtypes of DataFrame columns. See
    +            BigQuery API documentation on available names of a field.
    +
    +            *New in version 0.3.1 of pandas-gbq*.
    +        location : str, optional
    +            Location where the load job should run. See the `BigQuery locations
    +            documentation
    +            <https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a
    +            list of available locations. The location must match that of the
    +            target dataset.
    +
    +            *New in version 0.5.0 of pandas-gbq*.
    +        progress_bar : bool, default True
    +            Use the library `tqdm` to show the progress bar for the upload,
    +            chunk by chunk.
    +
    +            *New in version 0.5.0 of pandas-gbq*.
    +        credentials : google.auth.credentials.Credentials, optional
    +            Credentials for accessing Google APIs. Use this parameter to
    +            override default credentials, such as to use Compute Engine
    +            :class:`google.auth.compute_engine.Credentials` or Service
    +            Account :class:`google.oauth2.service_account.Credentials`
    +            directly.
    +
    +            *New in version 0.8.0 of pandas-gbq*.
    +
    +            .. versionadded:: 0.24.0
    +        verbose : bool, deprecated
    +            Deprecated in pandas-gbq version 0.4.0. Use the `logging module
    +            to adjust verbosity instead
    +            <https://pandas-gbq.readthedocs.io/en/latest/intro.html#logging>`__.
    +        private_key : str, deprecated
    +            Deprecated in pandas-gbq version 0.8.0. Use the ``credentials``
    +            parameter and
    +            :func:`google.oauth2.service_account.Credentials.from_service_account_info`
    +            or
    +            :func:`google.oauth2.service_account.Credentials.from_service_account_file`
    +            instead.
    +
    +            Service account private key in JSON format. Can be file path
    +            or string contents. This is useful for remote server
    +            authentication (eg. Jupyter/IPython notebook on remote host).
    +
    +        See Also
    +        --------
    +        pandas_gbq.to_gbq : This function in the pandas-gbq library.
    +        read_gbq : Read a DataFrame from Google BigQuery.
    +        """
    +        from pandas.io import gbq
    +
    +        gbq.to_gbq(
    +            self,
    +            destination_table,
    +            project_id=project_id,
    +            chunksize=chunksize,
    +            reauth=reauth,
    +            if_exists=if_exists,
    +            auth_local_webserver=auth_local_webserver,
    +            table_schema=table_schema,
    +            location=location,
    +            progress_bar=progress_bar,
    +            credentials=credentials,
    +            verbose=verbose,
    +            private_key=private_key,
    +        )
    +
    +    @classmethod
    +    def from_records(
    +        cls,
    +        data,
    +        index=None,
    +        exclude=None,
    +        columns=None,
    +        coerce_float=False,
    +        nrows=None,
    +    ):
    +        """
    +        Convert structured or record ndarray to DataFrame.
    +
    +        Parameters
    +        ----------
    +        data : ndarray (structured dtype), list of tuples, dict, or DataFrame
    +        index : string, list of fields, array-like
    +            Field of array to use as the index, alternately a specific set of
    +            input labels to use
    +        exclude : sequence, default None
    +            Columns or fields to exclude
    +        columns : sequence, default None
    +            Column names to use. If the passed data do not have names
    +            associated with them, this argument provides names for the
    +            columns. Otherwise this argument indicates the order of the columns
    +            in the result (any names not found in the data will become all-NA
    +            columns)
    +        coerce_float : boolean, default False
    +            Attempt to convert values of non-string, non-numeric objects (like
    +            decimal.Decimal) to floating point, useful for SQL result sets
    +        nrows : int, default None
    +            Number of rows to read if data is an iterator
    +
    +        Returns
    +        -------
    +        DataFrame
    +        """
    +
    +        # Make a copy of the input columns so we can modify it
    +        if columns is not None:
    +            columns = ensure_index(columns)
    +
    +        if is_iterator(data):
    +            if nrows == 0:
    +                return cls()
    +
    +            try:
    +                first_row = next(data)
    +            except StopIteration:
    +                return cls(index=index, columns=columns)
    +
    +            dtype = None
    +            if hasattr(first_row, "dtype") and first_row.dtype.names:
    +                dtype = first_row.dtype
    +
    +            values = [first_row]
    +
    +            if nrows is None:
    +                values += data
    +            else:
    +                values.extend(itertools.islice(data, nrows - 1))
    +
    +            if dtype is not None:
    +                data = np.array(values, dtype=dtype)
    +            else:
    +                data = values
    +
    +        if isinstance(data, dict):
    +            if columns is None:
    +                columns = arr_columns = ensure_index(sorted(data))
    +                arrays = [data[k] for k in columns]
    +            else:
    +                arrays = []
    +                arr_columns = []
    +                for k, v in data.items():
    +                    if k in columns:
    +                        arr_columns.append(k)
    +                        arrays.append(v)
    +
    +                arrays, arr_columns = reorder_arrays(arrays, arr_columns, columns)
    +
    +        elif isinstance(data, (np.ndarray, DataFrame)):
    +            arrays, columns = to_arrays(data, columns)
    +            if columns is not None:
    +                columns = ensure_index(columns)
    +            arr_columns = columns
    +        else:
    +            arrays, arr_columns = to_arrays(data, columns, coerce_float=coerce_float)
    +
    +            arr_columns = ensure_index(arr_columns)
    +            if columns is not None:
    +                columns = ensure_index(columns)
    +            else:
    +                columns = arr_columns
    +
    +        if exclude is None:
    +            exclude = set()
    +        else:
    +            exclude = set(exclude)
    +
    +        result_index = None
    +        if index is not None:
    +            if isinstance(index, str) or not hasattr(index, "__iter__"):
    +                i = columns.get_loc(index)
    +                exclude.add(index)
    +                if len(arrays) > 0:
    +                    result_index = Index(arrays[i], name=index)
    +                else:
    +                    result_index = Index([], name=index)
    +            else:
    +                try:
    +                    index_data = [arrays[arr_columns.get_loc(field)] for field in index]
    +                    result_index = ensure_index_from_sequences(index_data, names=index)
    +
    +                    exclude.update(index)
    +                except Exception:
    +                    result_index = index
    +
    +        if any(exclude):
    +            arr_exclude = [x for x in exclude if x in arr_columns]
    +            to_remove = [arr_columns.get_loc(col) for col in arr_exclude]
    +            arrays = [v for i, v in enumerate(arrays) if i not in to_remove]
    +
    +            arr_columns = arr_columns.drop(arr_exclude)
    +            columns = columns.drop(exclude)
    +
    +        mgr = arrays_to_mgr(arrays, arr_columns, result_index, columns)
    +
    +        return cls(mgr)
    +
    +    def to_records(
    +        self, index=True, convert_datetime64=None, column_dtypes=None, index_dtypes=None
    +    ):
    +        """
    +        Convert DataFrame to a NumPy record array.
    +
    +        Index will be included as the first field of the record array if
    +        requested.
    +
    +        Parameters
    +        ----------
    +        index : bool, default True
    +            Include index in resulting record array, stored in 'index'
    +            field or using the index label, if set.
    +        convert_datetime64 : bool, default None
    +            .. deprecated:: 0.23.0
    +
    +            Whether to convert the index to datetime.datetime if it is a
    +            DatetimeIndex.
    +        column_dtypes : str, type, dict, default None
    +            .. versionadded:: 0.24.0
    +
    +            If a string or type, the data type to store all columns. If
    +            a dictionary, a mapping of column names and indices (zero-indexed)
    +            to specific data types.
    +        index_dtypes : str, type, dict, default None
    +            .. versionadded:: 0.24.0
    +
    +            If a string or type, the data type to store all index levels. If
    +            a dictionary, a mapping of index level names and indices
    +            (zero-indexed) to specific data types.
    +
    +            This mapping is applied only if `index=True`.
    +
    +        Returns
    +        -------
    +        numpy.recarray
    +            NumPy ndarray with the DataFrame labels as fields and each row
    +            of the DataFrame as entries.
    +
    +        See Also
    +        --------
    +        DataFrame.from_records: Convert structured or record ndarray
    +            to DataFrame.
    +        numpy.recarray: An ndarray that allows field access using
    +            attributes, analogous to typed columns in a
    +            spreadsheet.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]},
    +        ...                   index=['a', 'b'])
    +        >>> df
    +           A     B
    +        a  1  0.50
    +        b  2  0.75
    +        >>> df.to_records()
    +        rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
    +                  dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')])
    +
    +        If the DataFrame index has no label then the recarray field name
    +        is set to 'index'. If the index has a label then this is used as the
    +        field name:
    +
    +        >>> df.index = df.index.rename("I")
    +        >>> df.to_records()
    +        rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
    +                  dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')])
    +
    +        The index can be excluded from the record array:
    +
    +        >>> df.to_records(index=False)
    +        rec.array([(1, 0.5 ), (2, 0.75)],
    +                  dtype=[('A', '<i8'), ('B', '<f8')])
    +
    +        Data types can be specified for the columns:
    +
    +        >>> df.to_records(column_dtypes={"A": "int32"})
    +        rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
    +                  dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')])
    +
    +        As well as for the index:
    +
    +        >>> df.to_records(index_dtypes="<S2")
    +        rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)],
    +                  dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')])
    +
    +        >>> index_dtypes = "<S{}".format(df.index.str.len().max())
    +        >>> df.to_records(index_dtypes=index_dtypes)
    +        rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)],
    +                  dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')])
    +        """
    +
    +        if convert_datetime64 is not None:
    +            warnings.warn(
    +                "The 'convert_datetime64' parameter is "
    +                "deprecated and will be removed in a future "
    +                "version",
    +                FutureWarning,
    +                stacklevel=2,
    +            )
    +
    +        if index:
    +            if is_datetime64_any_dtype(self.index) and convert_datetime64:
    +                ix_vals = [self.index.to_pydatetime()]
    +            else:
    +                if isinstance(self.index, MultiIndex):
    +                    # array of tuples to numpy cols. copy copy copy
    +                    ix_vals = list(map(np.array, zip(*self.index.values)))
    +                else:
    +                    ix_vals = [self.index.values]
    +
    +            arrays = ix_vals + [self[c]._internal_get_values() for c in self.columns]
    +
    +            count = 0
    +            index_names = list(self.index.names)
    +
    +            if isinstance(self.index, MultiIndex):
    +                for i, n in enumerate(index_names):
    +                    if n is None:
    +                        index_names[i] = "level_%d" % count
    +                        count += 1
    +            elif index_names[0] is None:
    +                index_names = ["index"]
    +
    +            names = [str(name) for name in itertools.chain(index_names, self.columns)]
    +        else:
    +            arrays = [self[c]._internal_get_values() for c in self.columns]
    +            names = [str(c) for c in self.columns]
    +            index_names = []
    +
    +        index_len = len(index_names)
    +        formats = []
    +
    +        for i, v in enumerate(arrays):
    +            index = i
    +
    +            # When the names and arrays are collected, we
    +            # first collect those in the DataFrame's index,
    +            # followed by those in its columns.
    +            #
    +            # Thus, the total length of the array is:
    +            # len(index_names) + len(DataFrame.columns).
    +            #
    +            # This check allows us to see whether we are
    +            # handling a name / array in the index or column.
    +            if index < index_len:
    +                dtype_mapping = index_dtypes
    +                name = index_names[index]
    +            else:
    +                index -= index_len
    +                dtype_mapping = column_dtypes
    +                name = self.columns[index]
    +
    +            # We have a dictionary, so we get the data type
    +            # associated with the index or column (which can
    +            # be denoted by its name in the DataFrame or its
    +            # position in DataFrame's array of indices or
    +            # columns, whichever is applicable.
    +            if is_dict_like(dtype_mapping):
    +                if name in dtype_mapping:
    +                    dtype_mapping = dtype_mapping[name]
    +                elif index in dtype_mapping:
    +                    dtype_mapping = dtype_mapping[index]
    +                else:
    +                    dtype_mapping = None
    +
    +            # If no mapping can be found, use the array's
    +            # dtype attribute for formatting.
    +            #
    +            # A valid dtype must either be a type or
    +            # string naming a type.
    +            if dtype_mapping is None:
    +                formats.append(v.dtype)
    +            elif isinstance(dtype_mapping, (type, np.dtype, str)):
    +                formats.append(dtype_mapping)
    +            else:
    +                element = "row" if i < index_len else "column"
    +                msg = (
    +                    "Invalid dtype {dtype} specified for " "{element} {name}"
    +                ).format(dtype=dtype_mapping, element=element, name=name)
    +                raise ValueError(msg)
    +
    +        return np.rec.fromarrays(arrays, dtype={"names": names, "formats": formats})
    +
    +    @classmethod
    +    def from_items(cls, items, columns=None, orient="columns"):
    +        """
    +        Construct a DataFrame from a list of tuples.
    +
    +        .. deprecated:: 0.23.0
    +          `from_items` is deprecated and will be removed in a future version.
    +          Use :meth:`DataFrame.from_dict(dict(items)) <DataFrame.from_dict>`
    +          instead.
    +          :meth:`DataFrame.from_dict(OrderedDict(items)) <DataFrame.from_dict>`
    +          may be used to preserve the key order.
    +
    +        Convert (key, value) pairs to DataFrame. The keys will be the axis
    +        index (usually the columns, but depends on the specified
    +        orientation). The values should be arrays or Series.
    +
    +        Parameters
    +        ----------
    +        items : sequence of (key, value) pairs
    +            Values should be arrays or Series.
    +        columns : sequence of column labels, optional
    +            Must be passed if orient='index'.
    +        orient : {'columns', 'index'}, default 'columns'
    +            The "orientation" of the data. If the keys of the
    +            input correspond to column labels, pass 'columns'
    +            (default). Otherwise if the keys correspond to the index,
    +            pass 'index'.
    +
    +        Returns
    +        -------
    +        DataFrame
    +        """
    +
    +        warnings.warn(
    +            "from_items is deprecated. Please use "
    +            "DataFrame.from_dict(dict(items), ...) instead. "
    +            "DataFrame.from_dict(OrderedDict(items)) may be used to "
    +            "preserve the key order.",
    +            FutureWarning,
    +            stacklevel=2,
    +        )
    +
    +        keys, values = zip(*items)
    +
    +        if orient == "columns":
    +            if columns is not None:
    +                columns = ensure_index(columns)
    +
    +                idict = dict(items)
    +                if len(idict) < len(items):
    +                    if not columns.equals(ensure_index(keys)):
    +                        raise ValueError(
    +                            "With non-unique item names, passed "
    +                            "columns must be identical"
    +                        )
    +                    arrays = values
    +                else:
    +                    arrays = [idict[k] for k in columns if k in idict]
    +            else:
    +                columns = ensure_index(keys)
    +                arrays = values
    +
    +            # GH 17312
    +            # Provide more informative error msg when scalar values passed
    +            try:
    +                return cls._from_arrays(arrays, columns, None)
    +
    +            except ValueError:
    +                if not is_nested_list_like(values):
    +                    raise ValueError(
    +                        "The value in each (key, value) pair "
    +                        "must be an array, Series, or dict"
    +                    )
    +
    +        elif orient == "index":
    +            if columns is None:
    +                raise TypeError("Must pass columns with orient='index'")
    +
    +            keys = ensure_index(keys)
    +
    +            # GH 17312
    +            # Provide more informative error msg when scalar values passed
    +            try:
    +                arr = np.array(values, dtype=object).T
    +                data = [lib.maybe_convert_objects(v) for v in arr]
    +                return cls._from_arrays(data, columns, keys)
    +
    +            except TypeError:
    +                if not is_nested_list_like(values):
    +                    raise ValueError(
    +                        "The value in each (key, value) pair "
    +                        "must be an array, Series, or dict"
    +                    )
    +
    +        else:  # pragma: no cover
    +            raise ValueError("'orient' must be either 'columns' or 'index'")
    +
    +    @classmethod
    +    def _from_arrays(cls, arrays, columns, index, dtype=None):
    +        mgr = arrays_to_mgr(arrays, columns, index, columns, dtype=dtype)
    +        return cls(mgr)
    +
    +    def to_sparse(self, fill_value=None, kind="block"):
    +        """
    +        Convert to SparseDataFrame.
    +
    +        .. deprecated:: 0.25.0
    +
    +        Implement the sparse version of the DataFrame meaning that any data
    +        matching a specific value it's omitted in the representation.
    +        The sparse DataFrame allows for a more efficient storage.
    +
    +        Parameters
    +        ----------
    +        fill_value : float, default None
    +            The specific value that should be omitted in the representation.
    +        kind : {'block', 'integer'}, default 'block'
    +            The kind of the SparseIndex tracking where data is not equal to
    +            the fill value:
    +
    +            - 'block' tracks only the locations and sizes of blocks of data.
    +            - 'integer' keeps an array with all the locations of the data.
    +
    +            In most cases 'block' is recommended, since it's more memory
    +            efficient.
    +
    +        Returns
    +        -------
    +        SparseDataFrame
    +            The sparse representation of the DataFrame.
    +
    +        See Also
    +        --------
    +        DataFrame.to_dense :
    +            Converts the DataFrame back to the its dense form.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame([(np.nan, np.nan),
    +        ...                    (1., np.nan),
    +        ...                    (np.nan, 1.)])
    +        >>> df
    +             0    1
    +        0  NaN  NaN
    +        1  1.0  NaN
    +        2  NaN  1.0
    +        >>> type(df)
    +        <class 'pandas.core.frame.DataFrame'>
    +
    +        >>> sdf = df.to_sparse()  # doctest: +SKIP
    +        >>> sdf  # doctest: +SKIP
    +             0    1
    +        0  NaN  NaN
    +        1  1.0  NaN
    +        2  NaN  1.0
    +        >>> type(sdf)  # doctest: +SKIP
    +        <class 'pandas.core.sparse.frame.SparseDataFrame'>
    +        """
    +        warnings.warn(
    +            "DataFrame.to_sparse is deprecated and will be removed "
    +            "in a future version",
    +            FutureWarning,
    +            stacklevel=2,
    +        )
    +
    +        from pandas.core.sparse.api import SparseDataFrame
    +
    +        with warnings.catch_warnings():
    +            warnings.filterwarnings("ignore", message="SparseDataFrame")
    +            return SparseDataFrame(
    +                self._series,
    +                index=self.index,
    +                columns=self.columns,
    +                default_kind=kind,
    +                default_fill_value=fill_value,
    +            )
    +
    +    @deprecate_kwarg(old_arg_name="encoding", new_arg_name=None)
    +    def to_stata(
    +        self,
    +        fname,
    +        convert_dates=None,
    +        write_index=True,
    +        encoding="latin-1",
    +        byteorder=None,
    +        time_stamp=None,
    +        data_label=None,
    +        variable_labels=None,
    +        version=114,
    +        convert_strl=None,
    +    ):
    +        """
    +        Export DataFrame object to Stata dta format.
    +
    +        Writes the DataFrame to a Stata dataset file.
    +        "dta" files contain a Stata dataset.
    +
    +        Parameters
    +        ----------
    +        fname : str, buffer or path object
    +            String, path object (pathlib.Path or py._path.local.LocalPath) or
    +            object implementing a binary write() function. If using a buffer
    +            then the buffer will not be automatically closed after the file
    +            data has been written.
    +        convert_dates : dict
    +            Dictionary mapping columns containing datetime types to stata
    +            internal format to use when writing the dates. Options are 'tc',
    +            'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer
    +            or a name. Datetime columns that do not have a conversion type
    +            specified will be converted to 'tc'. Raises NotImplementedError if
    +            a datetime column has timezone information.
    +        write_index : bool
    +            Write the index to Stata dataset.
    +        encoding : str
    +            Default is latin-1. Unicode is not supported.
    +        byteorder : str
    +            Can be ">", "<", "little", or "big". default is `sys.byteorder`.
    +        time_stamp : datetime
    +            A datetime to use as file creation date.  Default is the current
    +            time.
    +        data_label : str, optional
    +            A label for the data set.  Must be 80 characters or smaller.
    +        variable_labels : dict
    +            Dictionary containing columns as keys and variable labels as
    +            values. Each label must be 80 characters or smaller.
    +
    +            .. versionadded:: 0.19.0
    +
    +        version : {114, 117}, default 114
    +            Version to use in the output dta file.  Version 114 can be used
    +            read by Stata 10 and later.  Version 117 can be read by Stata 13
    +            or later. Version 114 limits string variables to 244 characters or
    +            fewer while 117 allows strings with lengths up to 2,000,000
    +            characters.
    +
    +            .. versionadded:: 0.23.0
    +
    +        convert_strl : list, optional
    +            List of column names to convert to string columns to Stata StrL
    +            format. Only available if version is 117.  Storing strings in the
    +            StrL format can produce smaller dta files if strings have more than
    +            8 characters and values are repeated.
    +
    +            .. versionadded:: 0.23.0
    +
    +        Raises
    +        ------
    +        NotImplementedError
    +            * If datetimes contain timezone information
    +            * Column dtype is not representable in Stata
    +        ValueError
    +            * Columns listed in convert_dates are neither datetime64[ns]
    +              or datetime.datetime
    +            * Column listed in convert_dates is not in DataFrame
    +            * Categorical label contains more than 32,000 characters
    +
    +            .. versionadded:: 0.19.0
    +
    +        See Also
    +        --------
    +        read_stata : Import Stata data files.
    +        io.stata.StataWriter : Low-level writer for Stata data files.
    +        io.stata.StataWriter117 : Low-level writer for version 117 files.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon',
    +        ...                               'parrot'],
    +        ...                    'speed': [350, 18, 361, 15]})
    +        >>> df.to_stata('animals.dta')  # doctest: +SKIP
    +        """
    +        kwargs = {}
    +        if version not in (114, 117):
    +            raise ValueError("Only formats 114 and 117 supported.")
    +        if version == 114:
    +            if convert_strl is not None:
    +                raise ValueError(
    +                    "strl support is only available when using " "format 117"
    +                )
    +            from pandas.io.stata import StataWriter as statawriter
    +        else:
    +            from pandas.io.stata import StataWriter117 as statawriter
    +
    +            kwargs["convert_strl"] = convert_strl
    +
    +        writer = statawriter(
    +            fname,
    +            self,
    +            convert_dates=convert_dates,
    +            byteorder=byteorder,
    +            time_stamp=time_stamp,
    +            data_label=data_label,
    +            write_index=write_index,
    +            variable_labels=variable_labels,
    +            **kwargs
    +        )
    +        writer.write_file()
    +
    +    def to_feather(self, fname):
    +        """
    +        Write out the binary feather-format for DataFrames.
    +
    +        .. versionadded:: 0.20.0
    +
    +        Parameters
    +        ----------
    +        fname : str
    +            string file path
    +        """
    +        from pandas.io.feather_format import to_feather
    +
    +        to_feather(self, fname)
    +
    +    def to_parquet(
    +        self,
    +        fname,
    +        engine="auto",
    +        compression="snappy",
    +        index=None,
    +        partition_cols=None,
    +        **kwargs
    +    ):
    +        """
    +        Write a DataFrame to the binary parquet format.
    +
    +        .. versionadded:: 0.21.0
    +
    +        This function writes the dataframe as a `parquet file
    +        <https://parquet.apache.org/>`_. You can choose different parquet
    +        backends, and have the option of compression. See
    +        :ref:`the user guide <io.parquet>` for more details.
    +
    +        Parameters
    +        ----------
    +        fname : str
    +            File path or Root Directory path. Will be used as Root Directory
    +            path while writing a partitioned dataset.
    +
    +            .. versionchanged:: 0.24.0
    +
    +        engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto'
    +            Parquet library to use. If 'auto', then the option
    +            ``io.parquet.engine`` is used. The default ``io.parquet.engine``
    +            behavior is to try 'pyarrow', falling back to 'fastparquet' if
    +            'pyarrow' is unavailable.
    +        compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy'
    +            Name of the compression to use. Use ``None`` for no compression.
    +        index : bool, default None
    +            If ``True``, include the dataframe's index(es) in the file output.
    +            If ``False``, they will not be written to the file. If ``None``,
    +            the behavior depends on the chosen engine.
    +
    +            .. versionadded:: 0.24.0
    +
    +        partition_cols : list, optional, default None
    +            Column names by which to partition the dataset
    +            Columns are partitioned in the order they are given
    +
    +            .. versionadded:: 0.24.0
    +
    +        **kwargs
    +            Additional arguments passed to the parquet library. See
    +            :ref:`pandas io <io.parquet>` for more details.
    +
    +        See Also
    +        --------
    +        read_parquet : Read a parquet file.
    +        DataFrame.to_csv : Write a csv file.
    +        DataFrame.to_sql : Write to a sql table.
    +        DataFrame.to_hdf : Write to hdf.
    +
    +        Notes
    +        -----
    +        This function requires either the `fastparquet
    +        <https://pypi.org/project/fastparquet>`_ or `pyarrow
    +        <https://arrow.apache.org/docs/python/>`_ library.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]})
    +        >>> df.to_parquet('df.parquet.gzip',
    +        ...               compression='gzip')  # doctest: +SKIP
    +        >>> pd.read_parquet('df.parquet.gzip')  # doctest: +SKIP
    +           col1  col2
    +        0     1     3
    +        1     2     4
    +        """
    +        from pandas.io.parquet import to_parquet
    +
    +        to_parquet(
    +            self,
    +            fname,
    +            engine,
    +            compression=compression,
    +            index=index,
    +            partition_cols=partition_cols,
    +            **kwargs
    +        )
    +
    +    @Substitution(
    +        header="Whether to print column labels, default True",
    +        col_space_type="str or int",
    +        col_space="The minimum width of each column in CSS length "
    +        "units.  An int is assumed to be px units.\n\n"
    +        "            .. versionadded:: 0.25.0\n"
    +        "                Ability to use str",
    +    )
    +    @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring)
    +    def to_html(
    +        self,
    +        buf=None,
    +        columns=None,
    +        col_space=None,
    +        header=True,
    +        index=True,
    +        na_rep="NaN",
    +        formatters=None,
    +        float_format=None,
    +        sparsify=None,
    +        index_names=True,
    +        justify=None,
    +        max_rows=None,
    +        max_cols=None,
    +        show_dimensions=False,
    +        decimal=".",
    +        bold_rows=True,
    +        classes=None,
    +        escape=True,
    +        notebook=False,
    +        border=None,
    +        table_id=None,
    +        render_links=False,
    +    ):
    +        """
    +        Render a DataFrame as an HTML table.
    +        %(shared_params)s
    +        bold_rows : bool, default True
    +            Make the row labels bold in the output.
    +        classes : str or list or tuple, default None
    +            CSS class(es) to apply to the resulting html table.
    +        escape : bool, default True
    +            Convert the characters <, >, and & to HTML-safe sequences.
    +        notebook : {True, False}, default False
    +            Whether the generated HTML is for IPython Notebook.
    +        border : int
    +            A ``border=border`` attribute is included in the opening
    +            `<table>` tag. Default ``pd.options.display.html.border``.
    +
    +            .. versionadded:: 0.19.0
    +
    +        table_id : str, optional
    +            A css id is included in the opening `<table>` tag if specified.
    +
    +            .. versionadded:: 0.23.0
    +
    +        render_links : bool, default False
    +            Convert URLs to HTML links.
    +
    +            .. versionadded:: 0.24.0
    +        %(returns)s
    +        See Also
    +        --------
    +        to_string : Convert DataFrame to a string.
    +        """
    +
    +        if justify is not None and justify not in fmt._VALID_JUSTIFY_PARAMETERS:
    +            raise ValueError("Invalid value for justify parameter")
    +
    +        formatter = fmt.DataFrameFormatter(
    +            self,
    +            buf=buf,
    +            columns=columns,
    +            col_space=col_space,
    +            na_rep=na_rep,
    +            formatters=formatters,
    +            float_format=float_format,
    +            sparsify=sparsify,
    +            justify=justify,
    +            index_names=index_names,
    +            header=header,
    +            index=index,
    +            bold_rows=bold_rows,
    +            escape=escape,
    +            max_rows=max_rows,
    +            max_cols=max_cols,
    +            show_dimensions=show_dimensions,
    +            decimal=decimal,
    +            table_id=table_id,
    +            render_links=render_links,
    +        )
    +        # TODO: a generic formatter wld b in DataFrameFormatter
    +        formatter.to_html(classes=classes, notebook=notebook, border=border)
    +
    +        if buf is None:
    +            return formatter.buf.getvalue()
    +
    +    # ----------------------------------------------------------------------
    +
    +    def info(
    +        self, verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None
    +    ):
    +        """
    +        Print a concise summary of a DataFrame.
    +
    +        This method prints information about a DataFrame including
    +        the index dtype and column dtypes, non-null values and memory usage.
    +
    +        Parameters
    +        ----------
    +        verbose : bool, optional
    +            Whether to print the full summary. By default, the setting in
    +            ``pandas.options.display.max_info_columns`` is followed.
    +        buf : writable buffer, defaults to sys.stdout
    +            Where to send the output. By default, the output is printed to
    +            sys.stdout. Pass a writable buffer if you need to further process
    +            the output.
    +        max_cols : int, optional
    +            When to switch from the verbose to the truncated output. If the
    +            DataFrame has more than `max_cols` columns, the truncated output
    +            is used. By default, the setting in
    +            ``pandas.options.display.max_info_columns`` is used.
    +        memory_usage : bool, str, optional
    +            Specifies whether total memory usage of the DataFrame
    +            elements (including the index) should be displayed. By default,
    +            this follows the ``pandas.options.display.memory_usage`` setting.
    +
    +            True always show memory usage. False never shows memory usage.
    +            A value of 'deep' is equivalent to "True with deep introspection".
    +            Memory usage is shown in human-readable units (base-2
    +            representation). Without deep introspection a memory estimation is
    +            made based in column dtype and number of rows assuming values
    +            consume the same memory amount for corresponding dtypes. With deep
    +            memory introspection, a real memory usage calculation is performed
    +            at the cost of computational resources.
    +        null_counts : bool, optional
    +            Whether to show the non-null counts. By default, this is shown
    +            only if the frame is smaller than
    +            ``pandas.options.display.max_info_rows`` and
    +            ``pandas.options.display.max_info_columns``. A value of True always
    +            shows the counts, and False never shows the counts.
    +
    +        Returns
    +        -------
    +        None
    +            This method prints a summary of a DataFrame and returns None.
    +
    +        See Also
    +        --------
    +        DataFrame.describe: Generate descriptive statistics of DataFrame
    +            columns.
    +        DataFrame.memory_usage: Memory usage of DataFrame columns.
    +
    +        Examples
    +        --------
    +        >>> int_values = [1, 2, 3, 4, 5]
    +        >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
    +        >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0]
    +        >>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values,
    +        ...                   "float_col": float_values})
    +        >>> df
    +           int_col text_col  float_col
    +        0        1    alpha       0.00
    +        1        2     beta       0.25
    +        2        3    gamma       0.50
    +        3        4    delta       0.75
    +        4        5  epsilon       1.00
    +
    +        Prints information of all columns:
    +
    +        >>> df.info(verbose=True)
    +        <class 'pandas.core.frame.DataFrame'>
    +        RangeIndex: 5 entries, 0 to 4
    +        Data columns (total 3 columns):
    +        int_col      5 non-null int64
    +        text_col     5 non-null object
    +        float_col    5 non-null float64
    +        dtypes: float64(1), int64(1), object(1)
    +        memory usage: 248.0+ bytes
    +
    +        Prints a summary of columns count and its dtypes but not per column
    +        information:
    +
    +        >>> df.info(verbose=False)
    +        <class 'pandas.core.frame.DataFrame'>
    +        RangeIndex: 5 entries, 0 to 4
    +        Columns: 3 entries, int_col to float_col
    +        dtypes: float64(1), int64(1), object(1)
    +        memory usage: 248.0+ bytes
    +
    +        Pipe output of DataFrame.info to buffer instead of sys.stdout, get
    +        buffer content and writes to a text file:
    +
    +        >>> import io
    +        >>> buffer = io.StringIO()
    +        >>> df.info(buf=buffer)
    +        >>> s = buffer.getvalue()
    +        >>> with open("df_info.txt", "w",
    +        ...           encoding="utf-8") as f:  # doctest: +SKIP
    +        ...     f.write(s)
    +        260
    +
    +        The `memory_usage` parameter allows deep introspection mode, specially
    +        useful for big DataFrames and fine-tune memory optimization:
    +
    +        >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6)
    +        >>> df = pd.DataFrame({
    +        ...     'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6),
    +        ...     'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6),
    +        ...     'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6)
    +        ... })
    +        >>> df.info()
    +        <class 'pandas.core.frame.DataFrame'>
    +        RangeIndex: 1000000 entries, 0 to 999999
    +        Data columns (total 3 columns):
    +        column_1    1000000 non-null object
    +        column_2    1000000 non-null object
    +        column_3    1000000 non-null object
    +        dtypes: object(3)
    +        memory usage: 22.9+ MB
    +
    +        >>> df.info(memory_usage='deep')
    +        <class 'pandas.core.frame.DataFrame'>
    +        RangeIndex: 1000000 entries, 0 to 999999
    +        Data columns (total 3 columns):
    +        column_1    1000000 non-null object
    +        column_2    1000000 non-null object
    +        column_3    1000000 non-null object
    +        dtypes: object(3)
    +        memory usage: 188.8 MB
    +        """
    +
    +        if buf is None:  # pragma: no cover
    +            buf = sys.stdout
    +
    +        lines = []
    +
    +        lines.append(str(type(self)))
    +        lines.append(self.index._summary())
    +
    +        if len(self.columns) == 0:
    +            lines.append("Empty {name}".format(name=type(self).__name__))
    +            fmt.buffer_put_lines(buf, lines)
    +            return
    +
    +        cols = self.columns
    +
    +        # hack
    +        if max_cols is None:
    +            max_cols = get_option("display.max_info_columns", len(self.columns) + 1)
    +
    +        max_rows = get_option("display.max_info_rows", len(self) + 1)
    +
    +        if null_counts is None:
    +            show_counts = (len(self.columns) <= max_cols) and (len(self) < max_rows)
    +        else:
    +            show_counts = null_counts
    +        exceeds_info_cols = len(self.columns) > max_cols
    +
    +        def _verbose_repr():
    +            lines.append("Data columns (total %d columns):" % len(self.columns))
    +            space = max(len(pprint_thing(k)) for k in self.columns) + 4
    +            counts = None
    +
    +            tmpl = "{count}{dtype}"
    +            if show_counts:
    +                counts = self.count()
    +                if len(cols) != len(counts):  # pragma: no cover
    +                    raise AssertionError(
    +                        "Columns must equal counts "
    +                        "({cols:d} != {counts:d})".format(
    +                            cols=len(cols), counts=len(counts)
    +                        )
    +                    )
    +                tmpl = "{count} non-null {dtype}"
    +
    +            dtypes = self.dtypes
    +            for i, col in enumerate(self.columns):
    +                dtype = dtypes.iloc[i]
    +                col = pprint_thing(col)
    +
    +                count = ""
    +                if show_counts:
    +                    count = counts.iloc[i]
    +
    +                lines.append(
    +                    _put_str(col, space) + tmpl.format(count=count, dtype=dtype)
    +                )
    +
    +        def _non_verbose_repr():
    +            lines.append(self.columns._summary(name="Columns"))
    +
    +        def _sizeof_fmt(num, size_qualifier):
    +            # returns size in human readable format
    +            for x in ["bytes", "KB", "MB", "GB", "TB"]:
    +                if num < 1024.0:
    +                    return "{num:3.1f}{size_q} " "{x}".format(
    +                        num=num, size_q=size_qualifier, x=x
    +                    )
    +                num /= 1024.0
    +            return "{num:3.1f}{size_q} {pb}".format(
    +                num=num, size_q=size_qualifier, pb="PB"
    +            )
    +
    +        if verbose:
    +            _verbose_repr()
    +        elif verbose is False:  # specifically set to False, not nesc None
    +            _non_verbose_repr()
    +        else:
    +            if exceeds_info_cols:
    +                _non_verbose_repr()
    +            else:
    +                _verbose_repr()
    +
    +        counts = self._data.get_dtype_counts()
    +        dtypes = ["{k}({kk:d})".format(k=k[0], kk=k[1]) for k in sorted(counts.items())]
    +        lines.append("dtypes: {types}".format(types=", ".join(dtypes)))
    +
    +        if memory_usage is None:
    +            memory_usage = get_option("display.memory_usage")
    +        if memory_usage:
    +            # append memory usage of df to display
    +            size_qualifier = ""
    +            if memory_usage == "deep":
    +                deep = True
    +            else:
    +                # size_qualifier is just a best effort; not guaranteed to catch
    +                # all cases (e.g., it misses categorical data even with object
    +                # categories)
    +                deep = False
    +                if "object" in counts or self.index._is_memory_usage_qualified():
    +                    size_qualifier = "+"
    +            mem_usage = self.memory_usage(index=True, deep=deep).sum()
    +            lines.append(
    +                "memory usage: {mem}\n".format(
    +                    mem=_sizeof_fmt(mem_usage, size_qualifier)
    +                )
    +            )
    +
    +        fmt.buffer_put_lines(buf, lines)
    +
    +    def memory_usage(self, index=True, deep=False):
    +        """
    +        Return the memory usage of each column in bytes.
    +
    +        The memory usage can optionally include the contribution of
    +        the index and elements of `object` dtype.
    +
    +        This value is displayed in `DataFrame.info` by default. This can be
    +        suppressed by setting ``pandas.options.display.memory_usage`` to False.
    +
    +        Parameters
    +        ----------
    +        index : bool, default True
    +            Specifies whether to include the memory usage of the DataFrame's
    +            index in returned Series. If ``index=True``, the memory usage of
    +            the index is the first item in the output.
    +        deep : bool, default False
    +            If True, introspect the data deeply by interrogating
    +            `object` dtypes for system-level memory consumption, and include
    +            it in the returned values.
    +
    +        Returns
    +        -------
    +        Series
    +            A Series whose index is the original column names and whose values
    +            is the memory usage of each column in bytes.
    +
    +        See Also
    +        --------
    +        numpy.ndarray.nbytes : Total bytes consumed by the elements of an
    +            ndarray.
    +        Series.memory_usage : Bytes consumed by a Series.
    +        Categorical : Memory-efficient array for string values with
    +            many repeated values.
    +        DataFrame.info : Concise summary of a DataFrame.
    +
    +        Examples
    +        --------
    +        >>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool']
    +        >>> data = dict([(t, np.ones(shape=5000).astype(t))
    +        ...              for t in dtypes])
    +        >>> df = pd.DataFrame(data)
    +        >>> df.head()
    +           int64  float64  complex128  object  bool
    +        0      1      1.0    1.0+0.0j       1  True
    +        1      1      1.0    1.0+0.0j       1  True
    +        2      1      1.0    1.0+0.0j       1  True
    +        3      1      1.0    1.0+0.0j       1  True
    +        4      1      1.0    1.0+0.0j       1  True
    +
    +        >>> df.memory_usage()
    +        Index           128
    +        int64         40000
    +        float64       40000
    +        complex128    80000
    +        object        40000
    +        bool           5000
    +        dtype: int64
    +
    +        >>> df.memory_usage(index=False)
    +        int64         40000
    +        float64       40000
    +        complex128    80000
    +        object        40000
    +        bool           5000
    +        dtype: int64
    +
    +        The memory footprint of `object` dtype columns is ignored by default:
    +
    +        >>> df.memory_usage(deep=True)
    +        Index            128
    +        int64          40000
    +        float64        40000
    +        complex128     80000
    +        object        160000
    +        bool            5000
    +        dtype: int64
    +
    +        Use a Categorical for efficient storage of an object-dtype column with
    +        many repeated values.
    +
    +        >>> df['object'].astype('category').memory_usage(deep=True)
    +        5216
    +        """
    +        result = Series(
    +            [c.memory_usage(index=False, deep=deep) for col, c in self.items()],
    +            index=self.columns,
    +        )
    +        if index:
    +            result = Series(self.index.memory_usage(deep=deep), index=["Index"]).append(
    +                result
    +            )
    +        return result
    +
    +    def transpose(self, *args, **kwargs):
    +        """
    +        Transpose index and columns.
    +
    +        Reflect the DataFrame over its main diagonal by writing rows as columns
    +        and vice-versa. The property :attr:`.T` is an accessor to the method
    +        :meth:`transpose`.
    +
    +        Parameters
    +        ----------
    +        copy : bool, default False
    +            If True, the underlying data is copied. Otherwise (default), no
    +            copy is made if possible.
    +        *args, **kwargs
    +            Additional keywords have no effect but might be accepted for
    +            compatibility with numpy.
    +
    +        Returns
    +        -------
    +        DataFrame
    +            The transposed DataFrame.
    +
    +        See Also
    +        --------
    +        numpy.transpose : Permute the dimensions of a given array.
    +
    +        Notes
    +        -----
    +        Transposing a DataFrame with mixed dtypes will result in a homogeneous
    +        DataFrame with the `object` dtype. In such a case, a copy of the data
    +        is always made.
    +
    +        Examples
    +        --------
    +        **Square DataFrame with homogeneous dtype**
    +
    +        >>> d1 = {'col1': [1, 2], 'col2': [3, 4]}
    +        >>> df1 = pd.DataFrame(data=d1)
    +        >>> df1
    +           col1  col2
    +        0     1     3
    +        1     2     4
    +
    +        >>> df1_transposed = df1.T # or df1.transpose()
    +        >>> df1_transposed
    +              0  1
    +        col1  1  2
    +        col2  3  4
    +
    +        When the dtype is homogeneous in the original DataFrame, we get a
    +        transposed DataFrame with the same dtype:
    +
    +        >>> df1.dtypes
    +        col1    int64
    +        col2    int64
    +        dtype: object
    +        >>> df1_transposed.dtypes
    +        0    int64
    +        1    int64
    +        dtype: object
    +
    +        **Non-square DataFrame with mixed dtypes**
    +
    +        >>> d2 = {'name': ['Alice', 'Bob'],
    +        ...       'score': [9.5, 8],
    +        ...       'employed': [False, True],
    +        ...       'kids': [0, 0]}
    +        >>> df2 = pd.DataFrame(data=d2)
    +        >>> df2
    +            name  score  employed  kids
    +        0  Alice    9.5     False     0
    +        1    Bob    8.0      True     0
    +
    +        >>> df2_transposed = df2.T # or df2.transpose()
    +        >>> df2_transposed
    +                      0     1
    +        name      Alice   Bob
    +        score       9.5     8
    +        employed  False  True
    +        kids          0     0
    +
    +        When the DataFrame has mixed dtypes, we get a transposed DataFrame with
    +        the `object` dtype:
    +
    +        >>> df2.dtypes
    +        name         object
    +        score       float64
    +        employed       bool
    +        kids          int64
    +        dtype: object
    +        >>> df2_transposed.dtypes
    +        0    object
    +        1    object
    +        dtype: object
    +        """
    +        nv.validate_transpose(args, dict())
    +        return super().transpose(1, 0, **kwargs)
    +
    +    T = property(transpose)
    +
    +    # ----------------------------------------------------------------------
    +    # Picklability
    +
    +    # legacy pickle formats
    +    def _unpickle_frame_compat(self, state):  # pragma: no cover
    +        if len(state) == 2:  # pragma: no cover
    +            series, idx = state
    +            columns = sorted(series)
    +        else:
    +            series, cols, idx = state
    +            columns = com._unpickle_array(cols)
    +
    +        index = com._unpickle_array(idx)
    +        self._data = self._init_dict(series, index, columns, None)
    +
    +    def _unpickle_matrix_compat(self, state):  # pragma: no cover
    +        # old unpickling
    +        (vals, idx, cols), object_state = state
    +
    +        index = com._unpickle_array(idx)
    +        dm = DataFrame(vals, index=index, columns=com._unpickle_array(cols), copy=False)
    +
    +        if object_state is not None:
    +            ovals, _, ocols = object_state
    +            objects = DataFrame(
    +                ovals, index=index, columns=com._unpickle_array(ocols), copy=False
    +            )
    +
    +            dm = dm.join(objects)
    +
    +        self._data = dm._data
    +
    +    # ----------------------------------------------------------------------
    +    # Getting and setting elements
    +
    +    def get_value(self, index, col, takeable=False):
    +        """
    +        Quickly retrieve single value at passed column and index.
    +
    +        .. deprecated:: 0.21.0
    +            Use .at[] or .iat[] accessors instead.
    +
    +        Parameters
    +        ----------
    +        index : row label
    +        col : column label
    +        takeable : interpret the index/col as indexers, default False
    +
    +        Returns
    +        -------
    +        scalar
    +        """
    +
    +        warnings.warn(
    +            "get_value is deprecated and will be removed "
    +            "in a future release. Please use "
    +            ".at[] or .iat[] accessors instead",
    +            FutureWarning,
    +            stacklevel=2,
    +        )
    +        return self._get_value(index, col, takeable=takeable)
    +
    +    def _get_value(self, index, col, takeable=False):
    +
    +        if takeable:
    +            series = self._iget_item_cache(col)
    +            return com.maybe_box_datetimelike(series._values[index])
    +
    +        series = self._get_item_cache(col)
    +        engine = self.index._engine
    +
    +        try:
    +            return engine.get_value(series._values, index)
    +        except KeyError:
    +            # GH 20629
    +            if self.index.nlevels > 1:
    +                # partial indexing forbidden
    +                raise
    +        except (TypeError, ValueError):
    +            pass
    +
    +        # we cannot handle direct indexing
    +        # use positional
    +        col = self.columns.get_loc(col)
    +        index = self.index.get_loc(index)
    +        return self._get_value(index, col, takeable=True)
    +
    +    _get_value.__doc__ = get_value.__doc__
    +
    +    def set_value(self, index, col, value, takeable=False):
    +        """
    +        Put single value at passed column and index.
    +
    +        .. deprecated:: 0.21.0
    +            Use .at[] or .iat[] accessors instead.
    +
    +        Parameters
    +        ----------
    +        index : row label
    +        col : column label
    +        value : scalar
    +        takeable : interpret the index/col as indexers, default False
    +
    +        Returns
    +        -------
    +        DataFrame
    +            If label pair is contained, will be reference to calling DataFrame,
    +            otherwise a new object.
    +        """
    +        warnings.warn(
    +            "set_value is deprecated and will be removed "
    +            "in a future release. Please use "
    +            ".at[] or .iat[] accessors instead",
    +            FutureWarning,
    +            stacklevel=2,
    +        )
    +        return self._set_value(index, col, value, takeable=takeable)
    +
    +    def _set_value(self, index, col, value, takeable=False):
    +        try:
    +            if takeable is True:
    +                series = self._iget_item_cache(col)
    +                return series._set_value(index, value, takeable=True)
    +
    +            series = self._get_item_cache(col)
    +            engine = self.index._engine
    +            engine.set_value(series._values, index, value)
    +            return self
    +        except (KeyError, TypeError):
    +
    +            # set using a non-recursive method & reset the cache
    +            if takeable:
    +                self.iloc[index, col] = value
    +            else:
    +                self.loc[index, col] = value
    +            self._item_cache.pop(col, None)
    +
    +            return self
    +
    +    _set_value.__doc__ = set_value.__doc__
    +
    +    def _ixs(self, i: int, axis: int = 0):
    +        """
    +        Parameters
    +        ----------
    +        i : int
    +        axis : int
    +
    +        Notes
    +        -----
    +        If slice passed, the resulting data will be a view.
    +        """
    +        # irow
    +        if axis == 0:
    +            label = self.index[i]
    +            new_values = self._data.fast_xs(i)
    +            if is_scalar(new_values):
    +                return new_values
    +
    +            # if we are a copy, mark as such
    +            copy = isinstance(new_values, np.ndarray) and new_values.base is None
    +            result = self._constructor_sliced(
    +                new_values,
    +                index=self.columns,
    +                name=self.index[i],
    +                dtype=new_values.dtype,
    +            )
    +            result._set_is_copy(self, copy=copy)
    +            return result
    +
    +        # icol
    +        else:
    +            label = self.columns[i]
    +
    +            # if the values returned are not the same length
    +            # as the index (iow a not found value), iget returns
    +            # a 0-len ndarray. This is effectively catching
    +            # a numpy error (as numpy should really raise)
    +            values = self._data.iget(i)
    +
    +            if len(self.index) and not len(values):
    +                values = np.array([np.nan] * len(self.index), dtype=object)
    +            result = self._box_col_values(values, label)
    +
    +            # this is a cached value, mark it so
    +            result._set_as_cached(label, self)
    +
    +            return result
    +
    +    def __getitem__(self, key):
    +        key = lib.item_from_zerodim(key)
    +        key = com.apply_if_callable(key, self)
    +
    +        if is_hashable(key):
    +            # shortcut if the key is in columns
    +            if self.columns.is_unique and key in self.columns:
    +                if self.columns.nlevels > 1:
    +                    return self._getitem_multilevel(key)
    +                return self._get_item_cache(key)
    +
    +        # Do we have a slicer (on rows)?
    +        indexer = convert_to_index_sliceable(self, key)
    +        if indexer is not None:
    +            return self._slice(indexer, axis=0)
    +
    +        # Do we have a (boolean) DataFrame?
    +        if isinstance(key, DataFrame):
    +            return self._getitem_frame(key)
    +
    +        # Do we have a (boolean) 1d indexer?
    +        if com.is_bool_indexer(key):
    +            return self._getitem_bool_array(key)
    +
    +        # We are left with two options: a single key, and a collection of keys,
    +        # We interpret tuples as collections only for non-MultiIndex
    +        is_single_key = isinstance(key, tuple) or not is_list_like(key)
    +
    +        if is_single_key:
    +            if self.columns.nlevels > 1:
    +                return self._getitem_multilevel(key)
    +            indexer = self.columns.get_loc(key)
    +            if is_integer(indexer):
    +                indexer = [indexer]
    +        else:
    +            if is_iterator(key):
    +                key = list(key)
    +            indexer = self.loc._convert_to_indexer(key, axis=1, raise_missing=True)
    +
    +        # take() does not accept boolean indexers
    +        if getattr(indexer, "dtype", None) == bool:
    +            indexer = np.where(indexer)[0]
    +
    +        data = self.take(indexer, axis=1)
    +
    +        if is_single_key:
    +            # What does looking for a single key in a non-unique index return?
    +            # The behavior is inconsistent. It returns a Series, except when
    +            # - the key itself is repeated (test on data.shape, #9519), or
    +            # - we have a MultiIndex on columns (test on self.columns, #21309)
    +            if data.shape[1] == 1 and not isinstance(self.columns, MultiIndex):
    +                data = data[key]
    +
    +        return data
    +
    +    def _getitem_bool_array(self, key):
    +        # also raises Exception if object array with NA values
    +        # warning here just in case -- previously __setitem__ was
    +        # reindexing but __getitem__ was not; it seems more reasonable to
    +        # go with the __setitem__ behavior since that is more consistent
    +        # with all other indexing behavior
    +        if isinstance(key, Series) and not key.index.equals(self.index):
    +            warnings.warn(
    +                "Boolean Series key will be reindexed to match " "DataFrame index.",
    +                UserWarning,
    +                stacklevel=3,
    +            )
    +        elif len(key) != len(self.index):
    +            raise ValueError(
    +                "Item wrong length %d instead of %d." % (len(key), len(self.index))
    +            )
    +
    +        # check_bool_indexer will throw exception if Series key cannot
    +        # be reindexed to match DataFrame rows
    +        key = check_bool_indexer(self.index, key)
    +        indexer = key.nonzero()[0]
    +        return self.take(indexer, axis=0)
    +
    +    def _getitem_multilevel(self, key):
    +        loc = self.columns.get_loc(key)
    +        if isinstance(loc, (slice, Series, np.ndarray, Index)):
    +            new_columns = self.columns[loc]
    +            result_columns = maybe_droplevels(new_columns, key)
    +            if self._is_mixed_type:
    +                result = self.reindex(columns=new_columns)
    +                result.columns = result_columns
    +            else:
    +                new_values = self.values[:, loc]
    +                result = self._constructor(
    +                    new_values, index=self.index, columns=result_columns
    +                )
    +                result = result.__finalize__(self)
    +
    +            # If there is only one column being returned, and its name is
    +            # either an empty string, or a tuple with an empty string as its
    +            # first element, then treat the empty string as a placeholder
    +            # and return the column as if the user had provided that empty
    +            # string in the key. If the result is a Series, exclude the
    +            # implied empty string from its name.
    +            if len(result.columns) == 1:
    +                top = result.columns[0]
    +                if isinstance(top, tuple):
    +                    top = top[0]
    +                if top == "":
    +                    result = result[""]
    +                    if isinstance(result, Series):
    +                        result = self._constructor_sliced(
    +                            result, index=self.index, name=key
    +                        )
    +
    +            result._set_is_copy(self)
    +            return result
    +        else:
    +            return self._get_item_cache(key)
    +
    +    def _getitem_frame(self, key):
    +        if key.values.size and not is_bool_dtype(key.values):
    +            raise ValueError("Must pass DataFrame with boolean values only")
    +        return self.where(key)
    +
    +    def query(self, expr, inplace=False, **kwargs):
    +        """
    +        Query the columns of a DataFrame with a boolean expression.
    +
    +        Parameters
    +        ----------
    +        expr : str
    +            The query string to evaluate.  You can refer to variables
    +            in the environment by prefixing them with an '@' character like
    +            ``@a + b``.
    +
    +            .. versionadded:: 0.25.0
    +
    +            You can refer to column names that contain spaces by surrounding
    +            them in backticks.
    +
    +            For example, if one of your columns is called ``a a`` and you want
    +            to sum it with ``b``, your query should be ```a a` + b``.
    +
    +        inplace : bool
    +            Whether the query should modify the data in place or return
    +            a modified copy.
    +        **kwargs
    +            See the documentation for :func:`eval` for complete details
    +            on the keyword arguments accepted by :meth:`DataFrame.query`.
    +
    +            .. versionadded:: 0.18.0
    +
    +        Returns
    +        -------
    +        DataFrame
    +            DataFrame resulting from the provided query expression.
    +
    +        See Also
    +        --------
    +        eval : Evaluate a string describing operations on
    +            DataFrame columns.
    +        DataFrame.eval : Evaluate a string describing operations on
    +            DataFrame columns.
    +
    +        Notes
    +        -----
    +        The result of the evaluation of this expression is first passed to
    +        :attr:`DataFrame.loc` and if that fails because of a
    +        multidimensional key (e.g., a DataFrame) then the result will be passed
    +        to :meth:`DataFrame.__getitem__`.
    +
    +        This method uses the top-level :func:`eval` function to
    +        evaluate the passed query.
    +
    +        The :meth:`~pandas.DataFrame.query` method uses a slightly
    +        modified Python syntax by default. For example, the ``&`` and ``|``
    +        (bitwise) operators have the precedence of their boolean cousins,
    +        :keyword:`and` and :keyword:`or`. This *is* syntactically valid Python,
    +        however the semantics are different.
    +
    +        You can change the semantics of the expression by passing the keyword
    +        argument ``parser='python'``. This enforces the same semantics as
    +        evaluation in Python space. Likewise, you can pass ``engine='python'``
    +        to evaluate an expression using Python itself as a backend. This is not
    +        recommended as it is inefficient compared to using ``numexpr`` as the
    +        engine.
    +
    +        The :attr:`DataFrame.index` and
    +        :attr:`DataFrame.columns` attributes of the
    +        :class:`~pandas.DataFrame` instance are placed in the query namespace
    +        by default, which allows you to treat both the index and columns of the
    +        frame as a column in the frame.
    +        The identifier ``index`` is used for the frame index; you can also
    +        use the name of the index to identify it in a query. Please note that
    +        Python keywords may not be used as identifiers.
    +
    +        For further details and examples see the ``query`` documentation in
    +        :ref:`indexing <indexing.query>`.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({'A': range(1, 6),
    +        ...                    'B': range(10, 0, -2),
    +        ...                    'C C': range(10, 5, -1)})
    +        >>> df
    +           A   B  C C
    +        0  1  10   10
    +        1  2   8    9
    +        2  3   6    8
    +        3  4   4    7
    +        4  5   2    6
    +        >>> df.query('A > B')
    +           A  B  C C
    +        4  5  2    6
    +
    +        The previous expression is equivalent to
    +
    +        >>> df[df.A > df.B]
    +           A  B  C C
    +        4  5  2    6
    +
    +        For columns with spaces in their name, you can use backtick quoting.
    +
    +        >>> df.query('B == `C C`')
    +           A   B  C C
    +        0  1  10   10
    +
    +        The previous expression is equivalent to
    +
    +        >>> df[df.B == df['C C']]
    +           A   B  C C
    +        0  1  10   10
    +        """
    +        inplace = validate_bool_kwarg(inplace, "inplace")
    +        if not isinstance(expr, str):
    +            msg = "expr must be a string to be evaluated, {0} given"
    +            raise ValueError(msg.format(type(expr)))
    +        kwargs["level"] = kwargs.pop("level", 0) + 1
    +        kwargs["target"] = None
    +        res = self.eval(expr, **kwargs)
    +
    +        try:
    +            new_data = self.loc[res]
    +        except ValueError:
    +            # when res is multi-dimensional loc raises, but this is sometimes a
    +            # valid query
    +            new_data = self[res]
    +
    +        if inplace:
    +            self._update_inplace(new_data)
    +        else:
    +            return new_data
    +
    +    def eval(self, expr, inplace=False, **kwargs):
    +        """
    +        Evaluate a string describing operations on DataFrame columns.
    +
    +        Operates on columns only, not specific rows or elements.  This allows
    +        `eval` to run arbitrary code, which can make you vulnerable to code
    +        injection if you pass user input to this function.
    +
    +        Parameters
    +        ----------
    +        expr : str
    +            The expression string to evaluate.
    +        inplace : bool, default False
    +            If the expression contains an assignment, whether to perform the
    +            operation inplace and mutate the existing DataFrame. Otherwise,
    +            a new DataFrame is returned.
    +
    +            .. versionadded:: 0.18.0.
    +        kwargs : dict
    +            See the documentation for :func:`eval` for complete details
    +            on the keyword arguments accepted by
    +            :meth:`~pandas.DataFrame.query`.
    +
    +        Returns
    +        -------
    +        ndarray, scalar, or pandas object
    +            The result of the evaluation.
    +
    +        See Also
    +        --------
    +        DataFrame.query : Evaluates a boolean expression to query the columns
    +            of a frame.
    +        DataFrame.assign : Can evaluate an expression or function to create new
    +            values for a column.
    +        eval : Evaluate a Python expression as a string using various
    +            backends.
    +
    +        Notes
    +        -----
    +        For more details see the API documentation for :func:`~eval`.
    +        For detailed examples see :ref:`enhancing performance with eval
    +        <enhancingperf.eval>`.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)})
    +        >>> df
    +           A   B
    +        0  1  10
    +        1  2   8
    +        2  3   6
    +        3  4   4
    +        4  5   2
    +        >>> df.eval('A + B')
    +        0    11
    +        1    10
    +        2     9
    +        3     8
    +        4     7
    +        dtype: int64
    +
    +        Assignment is allowed though by default the original DataFrame is not
    +        modified.
    +
    +        >>> df.eval('C = A + B')
    +           A   B   C
    +        0  1  10  11
    +        1  2   8  10
    +        2  3   6   9
    +        3  4   4   8
    +        4  5   2   7
    +        >>> df
    +           A   B
    +        0  1  10
    +        1  2   8
    +        2  3   6
    +        3  4   4
    +        4  5   2
    +
    +        Use ``inplace=True`` to modify the original DataFrame.
    +
    +        >>> df.eval('C = A + B', inplace=True)
    +        >>> df
    +           A   B   C
    +        0  1  10  11
    +        1  2   8  10
    +        2  3   6   9
    +        3  4   4   8
    +        4  5   2   7
    +        """
    +        from pandas.core.computation.eval import eval as _eval
    +
    +        inplace = validate_bool_kwarg(inplace, "inplace")
    +        resolvers = kwargs.pop("resolvers", None)
    +        kwargs["level"] = kwargs.pop("level", 0) + 1
    +        if resolvers is None:
    +            index_resolvers = self._get_index_resolvers()
    +            column_resolvers = self._get_space_character_free_column_resolvers()
    +            resolvers = column_resolvers, index_resolvers
    +        if "target" not in kwargs:
    +            kwargs["target"] = self
    +        kwargs["resolvers"] = kwargs.get("resolvers", ()) + tuple(resolvers)
    +        return _eval(expr, inplace=inplace, **kwargs)
    +
    +    def select_dtypes(self, include=None, exclude=None):
    +        """
    +        Return a subset of the DataFrame's columns based on the column dtypes.
    +
    +        Parameters
    +        ----------
    +        include, exclude : scalar or list-like
    +            A selection of dtypes or strings to be included/excluded. At least
    +            one of these parameters must be supplied.
    +
    +        Returns
    +        -------
    +        DataFrame
    +            The subset of the frame including the dtypes in ``include`` and
    +            excluding the dtypes in ``exclude``.
    +
    +        Raises
    +        ------
    +        ValueError
    +            * If both of ``include`` and ``exclude`` are empty
    +            * If ``include`` and ``exclude`` have overlapping elements
    +            * If any kind of string dtype is passed in.
    +
    +        Notes
    +        -----
    +        * To select all *numeric* types, use ``np.number`` or ``'number'``
    +        * To select strings you must use the ``object`` dtype, but note that
    +          this will return *all* object dtype columns
    +        * See the `numpy dtype hierarchy
    +          <http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__
    +        * To select datetimes, use ``np.datetime64``, ``'datetime'`` or
    +          ``'datetime64'``
    +        * To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or
    +          ``'timedelta64'``
    +        * To select Pandas categorical dtypes, use ``'category'``
    +        * To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in
    +          0.20.0) or ``'datetime64[ns, tz]'``
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({'a': [1, 2] * 3,
    +        ...                    'b': [True, False] * 3,
    +        ...                    'c': [1.0, 2.0] * 3})
    +        >>> df
    +                a      b  c
    +        0       1   True  1.0
    +        1       2  False  2.0
    +        2       1   True  1.0
    +        3       2  False  2.0
    +        4       1   True  1.0
    +        5       2  False  2.0
    +
    +        >>> df.select_dtypes(include='bool')
    +           b
    +        0  True
    +        1  False
    +        2  True
    +        3  False
    +        4  True
    +        5  False
    +
    +        >>> df.select_dtypes(include=['float64'])
    +           c
    +        0  1.0
    +        1  2.0
    +        2  1.0
    +        3  2.0
    +        4  1.0
    +        5  2.0
    +
    +        >>> df.select_dtypes(exclude=['int'])
    +               b    c
    +        0   True  1.0
    +        1  False  2.0
    +        2   True  1.0
    +        3  False  2.0
    +        4   True  1.0
    +        5  False  2.0
    +        """
    +
    +        def _get_info_slice(obj, indexer):
    +            """Slice the info axis of `obj` with `indexer`."""
    +            if not hasattr(obj, "_info_axis_number"):
    +                msg = "object of type {typ!r} has no info axis"
    +                raise TypeError(msg.format(typ=type(obj).__name__))
    +            slices = [slice(None)] * obj.ndim
    +            slices[obj._info_axis_number] = indexer
    +            return tuple(slices)
    +
    +        if not is_list_like(include):
    +            include = (include,) if include is not None else ()
    +        if not is_list_like(exclude):
    +            exclude = (exclude,) if exclude is not None else ()
    +
    +        selection = tuple(map(frozenset, (include, exclude)))
    +
    +        if not any(selection):
    +            raise ValueError("at least one of include or exclude must be " "nonempty")
    +
    +        # convert the myriad valid dtypes object to a single representation
    +        include, exclude = map(
    +            lambda x: frozenset(map(infer_dtype_from_object, x)), selection
    +        )
    +        for dtypes in (include, exclude):
    +            invalidate_string_dtypes(dtypes)
    +
    +        # can't both include AND exclude!
    +        if not include.isdisjoint(exclude):
    +            raise ValueError(
    +                "include and exclude overlap on {inc_ex}".format(
    +                    inc_ex=(include & exclude)
    +                )
    +            )
    +
    +        # empty include/exclude -> defaults to True
    +        # three cases (we've already raised if both are empty)
    +        # case 1: empty include, nonempty exclude
    +        # we have True, True, ... True for include, same for exclude
    +        # in the loop below we get the excluded
    +        # and when we call '&' below we get only the excluded
    +        # case 2: nonempty include, empty exclude
    +        # same as case 1, but with include
    +        # case 3: both nonempty
    +        # the "union" of the logic of case 1 and case 2:
    +        # we get the included and excluded, and return their logical and
    +        include_these = Series(not bool(include), index=self.columns)
    +        exclude_these = Series(not bool(exclude), index=self.columns)
    +
    +        def is_dtype_instance_mapper(idx, dtype):
    +            return idx, functools.partial(issubclass, dtype.type)
    +
    +        for idx, f in itertools.starmap(
    +            is_dtype_instance_mapper, enumerate(self.dtypes)
    +        ):
    +            if include:  # checks for the case of empty include or exclude
    +                include_these.iloc[idx] = any(map(f, include))
    +            if exclude:
    +                exclude_these.iloc[idx] = not any(map(f, exclude))
    +
    +        dtype_indexer = include_these & exclude_these
    +        return self.loc[_get_info_slice(self, dtype_indexer)]
    +
    +    def _box_item_values(self, key, values):
    +        items = self.columns[self.columns.get_loc(key)]
    +        if values.ndim == 2:
    +            return self._constructor(values.T, columns=items, index=self.index)
    +        else:
    +            return self._box_col_values(values, items)
    +
    +    def _box_col_values(self, values, items):
    +        """
    +        Provide boxed values for a column.
    +        """
    +        klass = self._constructor_sliced
    +        return klass(values, index=self.index, name=items, fastpath=True)
    +
    +    def __setitem__(self, key, value):
    +        key = com.apply_if_callable(key, self)
    +
    +        # see if we can slice the rows
    +        indexer = convert_to_index_sliceable(self, key)
    +        if indexer is not None:
    +            return self._setitem_slice(indexer, value)
    +
    +        if isinstance(key, DataFrame) or getattr(key, "ndim", None) == 2:
    +            self._setitem_frame(key, value)
    +        elif isinstance(key, (Series, np.ndarray, list, Index)):
    +            self._setitem_array(key, value)
    +        else:
    +            # set column
    +            self._set_item(key, value)
    +
    +    def _setitem_slice(self, key, value):
    +        self._check_setitem_copy()
    +        self.loc._setitem_with_indexer(key, value)
    +
    +    def _setitem_array(self, key, value):
    +        # also raises Exception if object array with NA values
    +        if com.is_bool_indexer(key):
    +            if len(key) != len(self.index):
    +                raise ValueError(
    +                    "Item wrong length %d instead of %d!" % (len(key), len(self.index))
    +                )
    +            key = check_bool_indexer(self.index, key)
    +            indexer = key.nonzero()[0]
    +            self._check_setitem_copy()
    +            self.loc._setitem_with_indexer(indexer, value)
    +        else:
    +            if isinstance(value, DataFrame):
    +                if len(value.columns) != len(key):
    +                    raise ValueError("Columns must be same length as key")
    +                for k1, k2 in zip(key, value.columns):
    +                    self[k1] = value[k2]
    +            else:
    +                indexer = self.loc._convert_to_indexer(key, axis=1)
    +                self._check_setitem_copy()
    +                self.loc._setitem_with_indexer((slice(None), indexer), value)
    +
    +    def _setitem_frame(self, key, value):
    +        # support boolean setting with DataFrame input, e.g.
    +        # df[df > df2] = 0
    +        if isinstance(key, np.ndarray):
    +            if key.shape != self.shape:
    +                raise ValueError("Array conditional must be same shape as self")
    +            key = self._constructor(key, **self._construct_axes_dict())
    +
    +        if key.values.size and not is_bool_dtype(key.values):
    +            raise TypeError(
    +                "Must pass DataFrame or 2-d ndarray with boolean values only"
    +            )
    +
    +        self._check_inplace_setting(value)
    +        self._check_setitem_copy()
    +        self._where(-key, value, inplace=True)
    +
    +    def _ensure_valid_index(self, value):
    +        """
    +        Ensure that if we don't have an index, that we can create one from the
    +        passed value.
    +        """
    +        # GH5632, make sure that we are a Series convertible
    +        if not len(self.index) and is_list_like(value):
    +            try:
    +                value = Series(value)
    +            except (ValueError, NotImplementedError, TypeError):
    +                raise ValueError(
    +                    "Cannot set a frame with no defined index "
    +                    "and a value that cannot be converted to a "
    +                    "Series"
    +                )
    +
    +            self._data = self._data.reindex_axis(
    +                value.index.copy(), axis=1, fill_value=np.nan
    +            )
    +
    +    def _set_item(self, key, value):
    +        """
    +        Add series to DataFrame in specified column.
    +
    +        If series is a numpy-array (not a Series/TimeSeries), it must be the
    +        same length as the DataFrames index or an error will be thrown.
    +
    +        Series/TimeSeries will be conformed to the DataFrames index to
    +        ensure homogeneity.
    +        """
    +
    +        self._ensure_valid_index(value)
    +        value = self._sanitize_column(key, value)
    +        NDFrame._set_item(self, key, value)
    +
    +        # check if we are modifying a copy
    +        # try to set first as we want an invalid
    +        # value exception to occur first
    +        if len(self):
    +            self._check_setitem_copy()
    +
    +    def insert(self, loc, column, value, allow_duplicates=False):
    +        """
    +        Insert column into DataFrame at specified location.
    +
    +        Raises a ValueError if `column` is already contained in the DataFrame,
    +        unless `allow_duplicates` is set to True.
    +
    +        Parameters
    +        ----------
    +        loc : int
    +            Insertion index. Must verify 0 <= loc <= len(columns)
    +        column : string, number, or hashable object
    +            label of the inserted column
    +        value : int, Series, or array-like
    +        allow_duplicates : bool, optional
    +        """
    +        self._ensure_valid_index(value)
    +        value = self._sanitize_column(column, value, broadcast=False)
    +        self._data.insert(loc, column, value, allow_duplicates=allow_duplicates)
    +
    +    def assign(self, **kwargs):
    +        r"""
    +        Assign new columns to a DataFrame.
    +
    +        Returns a new object with all original columns in addition to new ones.
    +        Existing columns that are re-assigned will be overwritten.
    +
    +        Parameters
    +        ----------
    +        **kwargs : dict of {str: callable or Series}
    +            The column names are keywords. If the values are
    +            callable, they are computed on the DataFrame and
    +            assigned to the new columns. The callable must not
    +            change input DataFrame (though pandas doesn't check it).
    +            If the values are not callable, (e.g. a Series, scalar, or array),
    +            they are simply assigned.
    +
    +        Returns
    +        -------
    +        DataFrame
    +            A new DataFrame with the new columns in addition to
    +            all the existing columns.
    +
    +        Notes
    +        -----
    +        Assigning multiple columns within the same ``assign`` is possible.
    +        For Python 3.6 and above, later items in '\*\*kwargs' may refer to
    +        newly created or modified columns in 'df'; items are computed and
    +        assigned into 'df' in order.  For Python 3.5 and below, the order of
    +        keyword arguments is not specified, you cannot refer to newly created
    +        or modified columns. All items are computed first, and then assigned
    +        in alphabetical order.
    +
    +        .. versionchanged :: 0.23.0
    +
    +           Keyword argument order is maintained for Python 3.6 and later.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({'temp_c': [17.0, 25.0]},
    +        ...                   index=['Portland', 'Berkeley'])
    +        >>> df
    +                  temp_c
    +        Portland    17.0
    +        Berkeley    25.0
    +
    +        Where the value is a callable, evaluated on `df`:
    +
    +        >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32)
    +                  temp_c  temp_f
    +        Portland    17.0    62.6
    +        Berkeley    25.0    77.0
    +
    +        Alternatively, the same behavior can be achieved by directly
    +        referencing an existing Series or sequence:
    +
    +        >>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32)
    +                  temp_c  temp_f
    +        Portland    17.0    62.6
    +        Berkeley    25.0    77.0
    +
    +        In Python 3.6+, you can create multiple columns within the same assign
    +        where one of the columns depends on another one defined within the same
    +        assign:
    +
    +        >>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32,
    +        ...           temp_k=lambda x: (x['temp_f'] +  459.67) * 5 / 9)
    +                  temp_c  temp_f  temp_k
    +        Portland    17.0    62.6  290.15
    +        Berkeley    25.0    77.0  298.15
    +        """
    +        data = self.copy()
    +
    +        # >= 3.6 preserve order of kwargs
    +        if PY36:
    +            for k, v in kwargs.items():
    +                data[k] = com.apply_if_callable(v, data)
    +        else:
    +            # <= 3.5: do all calculations first...
    +            results = OrderedDict()
    +            for k, v in kwargs.items():
    +                results[k] = com.apply_if_callable(v, data)
    +
    +            # <= 3.5 and earlier
    +            results = sorted(results.items())
    +            # ... and then assign
    +            for k, v in results:
    +                data[k] = v
    +        return data
    +
    +    def _sanitize_column(self, key, value, broadcast=True):
    +        """
    +        Ensures new columns (which go into the BlockManager as new blocks) are
    +        always copied and converted into an array.
    +
    +        Parameters
    +        ----------
    +        key : object
    +        value : scalar, Series, or array-like
    +        broadcast : bool, default True
    +            If ``key`` matches multiple duplicate column names in the
    +            DataFrame, this parameter indicates whether ``value`` should be
    +            tiled so that the returned array contains a (duplicated) column for
    +            each occurrence of the key. If False, ``value`` will not be tiled.
    +
    +        Returns
    +        -------
    +        numpy.ndarray
    +        """
    +
    +        def reindexer(value):
    +            # reindex if necessary
    +
    +            if value.index.equals(self.index) or not len(self.index):
    +                value = value._values.copy()
    +            else:
    +
    +                # GH 4107
    +                try:
    +                    value = value.reindex(self.index)._values
    +                except Exception as e:
    +
    +                    # duplicate axis
    +                    if not value.index.is_unique:
    +                        raise e
    +
    +                    # other
    +                    raise TypeError(
    +                        "incompatible index of inserted column " "with frame index"
    +                    )
    +            return value
    +
    +        if isinstance(value, Series):
    +            value = reindexer(value)
    +
    +        elif isinstance(value, DataFrame):
    +            # align right-hand-side columns if self.columns
    +            # is multi-index and self[key] is a sub-frame
    +            if isinstance(self.columns, MultiIndex) and key in self.columns:
    +                loc = self.columns.get_loc(key)
    +                if isinstance(loc, (slice, Series, np.ndarray, Index)):
    +                    cols = maybe_droplevels(self.columns[loc], key)
    +                    if len(cols) and not cols.equals(value.columns):
    +                        value = value.reindex(cols, axis=1)
    +            # now align rows
    +            value = reindexer(value).T
    +
    +        elif isinstance(value, ExtensionArray):
    +            # Explicitly copy here, instead of in sanitize_index,
    +            # as sanitize_index won't copy an EA, even with copy=True
    +            value = value.copy()
    +            value = sanitize_index(value, self.index, copy=False)
    +
    +        elif isinstance(value, Index) or is_sequence(value):
    +
    +            # turn me into an ndarray
    +            value = sanitize_index(value, self.index, copy=False)
    +            if not isinstance(value, (np.ndarray, Index)):
    +                if isinstance(value, list) and len(value) > 0:
    +                    value = maybe_convert_platform(value)
    +                else:
    +                    value = com.asarray_tuplesafe(value)
    +            elif value.ndim == 2:
    +                value = value.copy().T
    +            elif isinstance(value, Index):
    +                value = value.copy(deep=True)
    +            else:
    +                value = value.copy()
    +
    +            # possibly infer to datetimelike
    +            if is_object_dtype(value.dtype):
    +                value = maybe_infer_to_datetimelike(value)
    +
    +        else:
    +            # cast ignores pandas dtypes. so save the dtype first
    +            infer_dtype, _ = infer_dtype_from_scalar(value, pandas_dtype=True)
    +
    +            # upcast
    +            value = cast_scalar_to_array(len(self.index), value)
    +            value = maybe_cast_to_datetime(value, infer_dtype)
    +
    +        # return internal types directly
    +        if is_extension_type(value) or is_extension_array_dtype(value):
    +            return value
    +
    +        # broadcast across multiple columns if necessary
    +        if broadcast and key in self.columns and value.ndim == 1:
    +            if not self.columns.is_unique or isinstance(self.columns, MultiIndex):
    +                existing_piece = self[key]
    +                if isinstance(existing_piece, DataFrame):
    +                    value = np.tile(value, (len(existing_piece.columns), 1))
    +
    +        return np.atleast_2d(np.asarray(value))
    +
    +    @property
    +    def _series(self):
    +        return {
    +            item: Series(self._data.iget(idx), index=self.index, name=item)
    +            for idx, item in enumerate(self.columns)
    +        }
    +
    +    def lookup(self, row_labels, col_labels):
    +        """
    +        Label-based "fancy indexing" function for DataFrame.
    +
    +        Given equal-length arrays of row and column labels, return an
    +        array of the values corresponding to each (row, col) pair.
    +
    +        Parameters
    +        ----------
    +        row_labels : sequence
    +            The row labels to use for lookup
    +        col_labels : sequence
    +            The column labels to use for lookup
    +
    +        Returns
    +        -------
    +        numpy.ndarray
    +
    +        Notes
    +        -----
    +        Akin to::
    +
    +            result = [df.get_value(row, col)
    +                      for row, col in zip(row_labels, col_labels)]
    +
    +        Examples
    +        --------
    +        values : ndarray
    +            The found values
    +        """
    +        n = len(row_labels)
    +        if n != len(col_labels):
    +            raise ValueError("Row labels must have same size as column labels")
    +
    +        thresh = 1000
    +        if not self._is_mixed_type or n > thresh:
    +            values = self.values
    +            ridx = self.index.get_indexer(row_labels)
    +            cidx = self.columns.get_indexer(col_labels)
    +            if (ridx == -1).any():
    +                raise KeyError("One or more row labels was not found")
    +            if (cidx == -1).any():
    +                raise KeyError("One or more column labels was not found")
    +            flat_index = ridx * len(self.columns) + cidx
    +            result = values.flat[flat_index]
    +        else:
    +            result = np.empty(n, dtype="O")
    +            for i, (r, c) in enumerate(zip(row_labels, col_labels)):
    +                result[i] = self._get_value(r, c)
    +
    +        if is_object_dtype(result):
    +            result = lib.maybe_convert_objects(result)
    +
    +        return result
    +
    +    # ----------------------------------------------------------------------
    +    # Reindexing and alignment
    +
    +    def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy):
    +        frame = self
    +
    +        columns = axes["columns"]
    +        if columns is not None:
    +            frame = frame._reindex_columns(
    +                columns, method, copy, level, fill_value, limit, tolerance
    +            )
    +
    +        index = axes["index"]
    +        if index is not None:
    +            frame = frame._reindex_index(
    +                index, method, copy, level, fill_value, limit, tolerance
    +            )
    +
    +        return frame
    +
    +    def _reindex_index(
    +        self,
    +        new_index,
    +        method,
    +        copy,
    +        level,
    +        fill_value=np.nan,
    +        limit=None,
    +        tolerance=None,
    +    ):
    +        new_index, indexer = self.index.reindex(
    +            new_index, method=method, level=level, limit=limit, tolerance=tolerance
    +        )
    +        return self._reindex_with_indexers(
    +            {0: [new_index, indexer]},
    +            copy=copy,
    +            fill_value=fill_value,
    +            allow_dups=False,
    +        )
    +
    +    def _reindex_columns(
    +        self,
    +        new_columns,
    +        method,
    +        copy,
    +        level,
    +        fill_value=None,
    +        limit=None,
    +        tolerance=None,
    +    ):
    +        new_columns, indexer = self.columns.reindex(
    +            new_columns, method=method, level=level, limit=limit, tolerance=tolerance
    +        )
    +        return self._reindex_with_indexers(
    +            {1: [new_columns, indexer]},
    +            copy=copy,
    +            fill_value=fill_value,
    +            allow_dups=False,
    +        )
    +
    +    def _reindex_multi(self, axes, copy, fill_value):
    +        """
    +        We are guaranteed non-Nones in the axes.
    +        """
    +
    +        new_index, row_indexer = self.index.reindex(axes["index"])
    +        new_columns, col_indexer = self.columns.reindex(axes["columns"])
    +
    +        if row_indexer is not None and col_indexer is not None:
    +            indexer = row_indexer, col_indexer
    +            new_values = algorithms.take_2d_multi(
    +                self.values, indexer, fill_value=fill_value
    +            )
    +            return self._constructor(new_values, index=new_index, columns=new_columns)
    +        else:
    +            return self._reindex_with_indexers(
    +                {0: [new_index, row_indexer], 1: [new_columns, col_indexer]},
    +                copy=copy,
    +                fill_value=fill_value,
    +            )
    +
    +    @Appender(_shared_docs["align"] % _shared_doc_kwargs)
    +    def align(
    +        self,
    +        other,
    +        join="outer",
    +        axis=None,
    +        level=None,
    +        copy=True,
    +        fill_value=None,
    +        method=None,
    +        limit=None,
    +        fill_axis=0,
    +        broadcast_axis=None,
    +    ):
    +        return super().align(
    +            other,
    +            join=join,
    +            axis=axis,
    +            level=level,
    +            copy=copy,
    +            fill_value=fill_value,
    +            method=method,
    +            limit=limit,
    +            fill_axis=fill_axis,
    +            broadcast_axis=broadcast_axis,
    +        )
    +
    +    @Substitution(**_shared_doc_kwargs)
    +    @Appender(NDFrame.reindex.__doc__)
    +    @rewrite_axis_style_signature(
    +        "labels",
    +        [
    +            ("method", None),
    +            ("copy", True),
    +            ("level", None),
    +            ("fill_value", np.nan),
    +            ("limit", None),
    +            ("tolerance", None),
    +        ],
    +    )
    +    def reindex(self, *args, **kwargs):
    +        axes = validate_axis_style_args(self, args, kwargs, "labels", "reindex")
    +        kwargs.update(axes)
    +        # Pop these, since the values are in `kwargs` under different names
    +        kwargs.pop("axis", None)
    +        kwargs.pop("labels", None)
    +        return super().reindex(**kwargs)
    +
    +    def drop(
    +        self,
    +        labels=None,
    +        axis=0,
    +        index=None,
    +        columns=None,
    +        level=None,
    +        inplace=False,
    +        errors="raise",
    +    ):
    +        """
    +        Drop specified labels from rows or columns.
    +
    +        Remove rows or columns by specifying label names and corresponding
    +        axis, or by specifying directly index or column names. When using a
    +        multi-index, labels on different levels can be removed by specifying
    +        the level.
    +
    +        Parameters
    +        ----------
    +        labels : single label or list-like
    +            Index or column labels to drop.
    +        axis : {0 or 'index', 1 or 'columns'}, default 0
    +            Whether to drop labels from the index (0 or 'index') or
    +            columns (1 or 'columns').
    +        index : single label or list-like
    +            Alternative to specifying axis (``labels, axis=0``
    +            is equivalent to ``index=labels``).
    +
    +            .. versionadded:: 0.21.0
    +        columns : single label or list-like
    +            Alternative to specifying axis (``labels, axis=1``
    +            is equivalent to ``columns=labels``).
    +
    +            .. versionadded:: 0.21.0
    +        level : int or level name, optional
    +            For MultiIndex, level from which the labels will be removed.
    +        inplace : bool, default False
    +            If True, do operation inplace and return None.
    +        errors : {'ignore', 'raise'}, default 'raise'
    +            If 'ignore', suppress error and only existing labels are
    +            dropped.
    +
    +        Returns
    +        -------
    +        DataFrame
    +            DataFrame without the removed index or column labels.
    +
    +        Raises
    +        ------
    +        KeyError
    +            If any of the labels is not found in the selected axis.
    +
    +        See Also
    +        --------
    +        DataFrame.loc : Label-location based indexer for selection by label.
    +        DataFrame.dropna : Return DataFrame with labels on given axis omitted
    +            where (all or any) data are missing.
    +        DataFrame.drop_duplicates : Return DataFrame with duplicate rows
    +            removed, optionally only considering certain columns.
    +        Series.drop : Return Series with specified index labels removed.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame(np.arange(12).reshape(3, 4),
    +        ...                   columns=['A', 'B', 'C', 'D'])
    +        >>> df
    +           A  B   C   D
    +        0  0  1   2   3
    +        1  4  5   6   7
    +        2  8  9  10  11
    +
    +        Drop columns
    +
    +        >>> df.drop(['B', 'C'], axis=1)
    +           A   D
    +        0  0   3
    +        1  4   7
    +        2  8  11
    +
    +        >>> df.drop(columns=['B', 'C'])
    +           A   D
    +        0  0   3
    +        1  4   7
    +        2  8  11
    +
    +        Drop a row by index
    +
    +        >>> df.drop([0, 1])
    +           A  B   C   D
    +        2  8  9  10  11
    +
    +        Drop columns and/or rows of MultiIndex DataFrame
    +
    +        >>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],
    +        ...                              ['speed', 'weight', 'length']],
    +        ...                      codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
    +        ...                             [0, 1, 2, 0, 1, 2, 0, 1, 2]])
    +        >>> df = pd.DataFrame(index=midx, columns=['big', 'small'],
    +        ...                   data=[[45, 30], [200, 100], [1.5, 1], [30, 20],
    +        ...                         [250, 150], [1.5, 0.8], [320, 250],
    +        ...                         [1, 0.8], [0.3, 0.2]])
    +        >>> df
    +                        big     small
    +        lama    speed   45.0    30.0
    +                weight  200.0   100.0
    +                length  1.5     1.0
    +        cow     speed   30.0    20.0
    +                weight  250.0   150.0
    +                length  1.5     0.8
    +        falcon  speed   320.0   250.0
    +                weight  1.0     0.8
    +                length  0.3     0.2
    +
    +        >>> df.drop(index='cow', columns='small')
    +                        big
    +        lama    speed   45.0
    +                weight  200.0
    +                length  1.5
    +        falcon  speed   320.0
    +                weight  1.0
    +                length  0.3
    +
    +        >>> df.drop(index='length', level=1)
    +                        big     small
    +        lama    speed   45.0    30.0
    +                weight  200.0   100.0
    +        cow     speed   30.0    20.0
    +                weight  250.0   150.0
    +        falcon  speed   320.0   250.0
    +                weight  1.0     0.8
    +        """
    +        return super().drop(
    +            labels=labels,
    +            axis=axis,
    +            index=index,
    +            columns=columns,
    +            level=level,
    +            inplace=inplace,
    +            errors=errors,
    +        )
    +
    +    @rewrite_axis_style_signature(
    +        "mapper",
    +        [("copy", True), ("inplace", False), ("level", None), ("errors", "ignore")],
    +    )
    +    def rename(self, *args, **kwargs):
    +        """
    +        Alter axes labels.
    +
    +        Function / dict values must be unique (1-to-1). Labels not contained in
    +        a dict / Series will be left as-is. Extra labels listed don't throw an
    +        error.
    +
    +        See the :ref:`user guide <basics.rename>` for more.
    +
    +        Parameters
    +        ----------
    +        mapper : dict-like or function
    +            Dict-like or functions transformations to apply to
    +            that axis' values. Use either ``mapper`` and ``axis`` to
    +            specify the axis to target with ``mapper``, or ``index`` and
    +            ``columns``.
    +        index : dict-like or function
    +            Alternative to specifying axis (``mapper, axis=0``
    +            is equivalent to ``index=mapper``).
    +        columns : dict-like or function
    +            Alternative to specifying axis (``mapper, axis=1``
    +            is equivalent to ``columns=mapper``).
    +        axis : int or str
    +            Axis to target with ``mapper``. Can be either the axis name
    +            ('index', 'columns') or number (0, 1). The default is 'index'.
    +        copy : bool, default True
    +            Also copy underlying data.
    +        inplace : bool, default False
    +            Whether to return a new DataFrame. If True then value of copy is
    +            ignored.
    +        level : int or level name, default None
    +            In case of a MultiIndex, only rename labels in the specified
    +            level.
    +        errors : {'ignore', 'raise'}, default 'ignore'
    +            If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`,
    +            or `columns` contains labels that are not present in the Index
    +            being transformed.
    +            If 'ignore', existing keys will be renamed and extra keys will be
    +            ignored.
    +
    +        Returns
    +        -------
    +        DataFrame
    +            DataFrame with the renamed axis labels.
    +
    +        Raises
    +        ------
    +        KeyError
    +            If any of the labels is not found in the selected axis and
    +            "errors='raise'".
    +
    +        See Also
    +        --------
    +        DataFrame.rename_axis : Set the name of the axis.
    +
    +        Examples
    +        --------
    +
    +        ``DataFrame.rename`` supports two calling conventions
    +
    +        * ``(index=index_mapper, columns=columns_mapper, ...)``
    +        * ``(mapper, axis={'index', 'columns'}, ...)``
    +
    +        We *highly* recommend using keyword arguments to clarify your
    +        intent.
    +
    +        Rename columns using a mapping:
    +
    +        >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
    +        >>> df.rename(columns={"A": "a", "B": "c"})
    +           a  c
    +        0  1  4
    +        1  2  5
    +        2  3  6
    +
    +        Rename index using a mapping:
    +
    +        >>> df.rename(index={0: "x", 1: "y", 2: "z"})
    +           A  B
    +        x  1  4
    +        y  2  5
    +        z  3  6
    +
    +        Cast index labels to a different type:
    +
    +        >>> df.index
    +        RangeIndex(start=0, stop=3, step=1)
    +        >>> df.rename(index=str).index
    +        Index(['0', '1', '2'], dtype='object')
    +
    +        >>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise")
    +        Traceback (most recent call last):
    +        KeyError: ['C'] not found in axis
    +
    +        Using axis-style parameters
    +
    +        >>> df.rename(str.lower, axis='columns')
    +           a  b
    +        0  1  4
    +        1  2  5
    +        2  3  6
    +
    +        >>> df.rename({1: 2, 2: 4}, axis='index')
    +           A  B
    +        0  1  4
    +        2  2  5
    +        4  3  6
    +        """
    +        axes = validate_axis_style_args(self, args, kwargs, "mapper", "rename")
    +        kwargs.update(axes)
    +        # Pop these, since the values are in `kwargs` under different names
    +        kwargs.pop("axis", None)
    +        kwargs.pop("mapper", None)
    +        return super().rename(**kwargs)
    +
    +    @Substitution(**_shared_doc_kwargs)
    +    @Appender(NDFrame.fillna.__doc__)
    +    def fillna(
    +        self,
    +        value=None,
    +        method=None,
    +        axis=None,
    +        inplace=False,
    +        limit=None,
    +        downcast=None,
    +        **kwargs
    +    ):
    +        return super().fillna(
    +            value=value,
    +            method=method,
    +            axis=axis,
    +            inplace=inplace,
    +            limit=limit,
    +            downcast=downcast,
    +            **kwargs
    +        )
    +
    +    @Appender(_shared_docs["replace"] % _shared_doc_kwargs)
    +    def replace(
    +        self,
    +        to_replace=None,
    +        value=None,
    +        inplace=False,
    +        limit=None,
    +        regex=False,
    +        method="pad",
    +    ):
    +        return super().replace(
    +            to_replace=to_replace,
    +            value=value,
    +            inplace=inplace,
    +            limit=limit,
    +            regex=regex,
    +            method=method,
    +        )
    +
    +    @Appender(_shared_docs["shift"] % _shared_doc_kwargs)
    +    def shift(self, periods=1, freq=None, axis=0, fill_value=None):
    +        return super().shift(
    +            periods=periods, freq=freq, axis=axis, fill_value=fill_value
    +        )
    +
    +    def set_index(
    +        self, keys, drop=True, append=False, inplace=False, verify_integrity=False
    +    ):
    +        """
    +        Set the DataFrame index using existing columns.
    +
    +        Set the DataFrame index (row labels) using one or more existing
    +        columns or arrays (of the correct length). The index can replace the
    +        existing index or expand on it.
    +
    +        Parameters
    +        ----------
    +        keys : label or array-like or list of labels/arrays
    +            This parameter can be either a single column key, a single array of
    +            the same length as the calling DataFrame, or a list containing an
    +            arbitrary combination of column keys and arrays. Here, "array"
    +            encompasses :class:`Series`, :class:`Index`, ``np.ndarray``, and
    +            instances of :class:`~collections.abc.Iterator`.
    +        drop : bool, default True
    +            Delete columns to be used as the new index.
    +        append : bool, default False
    +            Whether to append columns to existing index.
    +        inplace : bool, default False
    +            Modify the DataFrame in place (do not create a new object).
    +        verify_integrity : bool, default False
    +            Check the new index for duplicates. Otherwise defer the check until
    +            necessary. Setting to False will improve the performance of this
    +            method.
    +
    +        Returns
    +        -------
    +        DataFrame
    +            Changed row labels.
    +
    +        See Also
    +        --------
    +        DataFrame.reset_index : Opposite of set_index.
    +        DataFrame.reindex : Change to new indices or expand indices.
    +        DataFrame.reindex_like : Change to same indices as other DataFrame.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({'month': [1, 4, 7, 10],
    +        ...                    'year': [2012, 2014, 2013, 2014],
    +        ...                    'sale': [55, 40, 84, 31]})
    +        >>> df
    +           month  year  sale
    +        0      1  2012    55
    +        1      4  2014    40
    +        2      7  2013    84
    +        3     10  2014    31
    +
    +        Set the index to become the 'month' column:
    +
    +        >>> df.set_index('month')
    +               year  sale
    +        month
    +        1      2012    55
    +        4      2014    40
    +        7      2013    84
    +        10     2014    31
    +
    +        Create a MultiIndex using columns 'year' and 'month':
    +
    +        >>> df.set_index(['year', 'month'])
    +                    sale
    +        year  month
    +        2012  1     55
    +        2014  4     40
    +        2013  7     84
    +        2014  10    31
    +
    +        Create a MultiIndex using an Index and a column:
    +
    +        >>> df.set_index([pd.Index([1, 2, 3, 4]), 'year'])
    +                 month  sale
    +           year
    +        1  2012  1      55
    +        2  2014  4      40
    +        3  2013  7      84
    +        4  2014  10     31
    +
    +        Create a MultiIndex using two Series:
    +
    +        >>> s = pd.Series([1, 2, 3, 4])
    +        >>> df.set_index([s, s**2])
    +              month  year  sale
    +        1 1       1  2012    55
    +        2 4       4  2014    40
    +        3 9       7  2013    84
    +        4 16     10  2014    31
    +        """
    +        inplace = validate_bool_kwarg(inplace, "inplace")
    +        if not isinstance(keys, list):
    +            keys = [keys]
    +
    +        err_msg = (
    +            'The parameter "keys" may be a column key, one-dimensional '
    +            "array, or a list containing only valid column keys and "
    +            "one-dimensional arrays."
    +        )
    +
    +        missing = []
    +        for col in keys:
    +            if isinstance(
    +                col, (ABCIndexClass, ABCSeries, np.ndarray, list, abc.Iterator)
    +            ):
    +                # arrays are fine as long as they are one-dimensional
    +                # iterators get converted to list below
    +                if getattr(col, "ndim", 1) != 1:
    +                    raise ValueError(err_msg)
    +            else:
    +                # everything else gets tried as a key; see GH 24969
    +                try:
    +                    found = col in self.columns
    +                except TypeError:
    +                    raise TypeError(
    +                        err_msg + " Received column of " "type {}".format(type(col))
    +                    )
    +                else:
    +                    if not found:
    +                        missing.append(col)
    +
    +        if missing:
    +            raise KeyError("None of {} are in the columns".format(missing))
    +
    +        if inplace:
    +            frame = self
    +        else:
    +            frame = self.copy()
    +
    +        arrays = []
    +        names = []
    +        if append:
    +            names = [x for x in self.index.names]
    +            if isinstance(self.index, ABCMultiIndex):
    +                for i in range(self.index.nlevels):
    +                    arrays.append(self.index._get_level_values(i))
    +            else:
    +                arrays.append(self.index)
    +
    +        to_remove = []
    +        for col in keys:
    +            if isinstance(col, ABCMultiIndex):
    +                for n in range(col.nlevels):
    +                    arrays.append(col._get_level_values(n))
    +                names.extend(col.names)
    +            elif isinstance(col, (ABCIndexClass, ABCSeries)):
    +                # if Index then not MultiIndex (treated above)
    +                arrays.append(col)
    +                names.append(col.name)
    +            elif isinstance(col, (list, np.ndarray)):
    +                arrays.append(col)
    +                names.append(None)
    +            elif isinstance(col, abc.Iterator):
    +                arrays.append(list(col))
    +                names.append(None)
    +            # from here, col can only be a column label
    +            else:
    +                arrays.append(frame[col]._values)
    +                names.append(col)
    +                if drop:
    +                    to_remove.append(col)
    +
    +            if len(arrays[-1]) != len(self):
    +                # check newest element against length of calling frame, since
    +                # ensure_index_from_sequences would not raise for append=False.
    +                raise ValueError(
    +                    "Length mismatch: Expected {len_self} rows, "
    +                    "received array of length {len_col}".format(
    +                        len_self=len(self), len_col=len(arrays[-1])
    +                    )
    +                )
    +
    +        index = ensure_index_from_sequences(arrays, names)
    +
    +        if verify_integrity and not index.is_unique:
    +            duplicates = index[index.duplicated()].unique()
    +            raise ValueError("Index has duplicate keys: {dup}".format(dup=duplicates))
    +
    +        # use set to handle duplicate column names gracefully in case of drop
    +        for c in set(to_remove):
    +            del frame[c]
    +
    +        # clear up memory usage
    +        index._cleanup()
    +
    +        frame.index = index
    +
    +        if not inplace:
    +            return frame
    +
    +    def reset_index(
    +        self, level=None, drop=False, inplace=False, col_level=0, col_fill=""
    +    ):
    +        """
    +        Reset the index, or a level of it.
    +
    +        Reset the index of the DataFrame, and use the default one instead.
    +        If the DataFrame has a MultiIndex, this method can remove one or more
    +        levels.
    +
    +        Parameters
    +        ----------
    +        level : int, str, tuple, or list, default None
    +            Only remove the given levels from the index. Removes all levels by
    +            default.
    +        drop : bool, default False
    +            Do not try to insert index into dataframe columns. This resets
    +            the index to the default integer index.
    +        inplace : bool, default False
    +            Modify the DataFrame in place (do not create a new object).
    +        col_level : int or str, default 0
    +            If the columns have multiple levels, determines which level the
    +            labels are inserted into. By default it is inserted into the first
    +            level.
    +        col_fill : object, default ''
    +            If the columns have multiple levels, determines how the other
    +            levels are named. If None then the index name is repeated.
    +
    +        Returns
    +        -------
    +        DataFrame
    +            DataFrame with the new index.
    +
    +        See Also
    +        --------
    +        DataFrame.set_index : Opposite of reset_index.
    +        DataFrame.reindex : Change to new indices or expand indices.
    +        DataFrame.reindex_like : Change to same indices as other DataFrame.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame([('bird', 389.0),
    +        ...                    ('bird', 24.0),
    +        ...                    ('mammal', 80.5),
    +        ...                    ('mammal', np.nan)],
    +        ...                   index=['falcon', 'parrot', 'lion', 'monkey'],
    +        ...                   columns=('class', 'max_speed'))
    +        >>> df
    +                 class  max_speed
    +        falcon    bird      389.0
    +        parrot    bird       24.0
    +        lion    mammal       80.5
    +        monkey  mammal        NaN
    +
    +        When we reset the index, the old index is added as a column, and a
    +        new sequential index is used:
    +
    +        >>> df.reset_index()
    +            index   class  max_speed
    +        0  falcon    bird      389.0
    +        1  parrot    bird       24.0
    +        2    lion  mammal       80.5
    +        3  monkey  mammal        NaN
    +
    +        We can use the `drop` parameter to avoid the old index being added as
    +        a column:
    +
    +        >>> df.reset_index(drop=True)
    +            class  max_speed
    +        0    bird      389.0
    +        1    bird       24.0
    +        2  mammal       80.5
    +        3  mammal        NaN
    +
    +        You can also use `reset_index` with `MultiIndex`.
    +
    +        >>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'),
    +        ...                                    ('bird', 'parrot'),
    +        ...                                    ('mammal', 'lion'),
    +        ...                                    ('mammal', 'monkey')],
    +        ...                                   names=['class', 'name'])
    +        >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'),
    +        ...                                      ('species', 'type')])
    +        >>> df = pd.DataFrame([(389.0, 'fly'),
    +        ...                    ( 24.0, 'fly'),
    +        ...                    ( 80.5, 'run'),
    +        ...                    (np.nan, 'jump')],
    +        ...                   index=index,
    +        ...                   columns=columns)
    +        >>> df
    +                       speed species
    +                         max    type
    +        class  name
    +        bird   falcon  389.0     fly
    +               parrot   24.0     fly
    +        mammal lion     80.5     run
    +               monkey    NaN    jump
    +
    +        If the index has multiple levels, we can reset a subset of them:
    +
    +        >>> df.reset_index(level='class')
    +                 class  speed species
    +                          max    type
    +        name
    +        falcon    bird  389.0     fly
    +        parrot    bird   24.0     fly
    +        lion    mammal   80.5     run
    +        monkey  mammal    NaN    jump
    +
    +        If we are not dropping the index, by default, it is placed in the top
    +        level. We can place it in another level:
    +
    +        >>> df.reset_index(level='class', col_level=1)
    +                        speed species
    +                 class    max    type
    +        name
    +        falcon    bird  389.0     fly
    +        parrot    bird   24.0     fly
    +        lion    mammal   80.5     run
    +        monkey  mammal    NaN    jump
    +
    +        When the index is inserted under another level, we can specify under
    +        which one with the parameter `col_fill`:
    +
    +        >>> df.reset_index(level='class', col_level=1, col_fill='species')
    +                      species  speed species
    +                        class    max    type
    +        name
    +        falcon           bird  389.0     fly
    +        parrot           bird   24.0     fly
    +        lion           mammal   80.5     run
    +        monkey         mammal    NaN    jump
    +
    +        If we specify a nonexistent level for `col_fill`, it is created:
    +
    +        >>> df.reset_index(level='class', col_level=1, col_fill='genus')
    +                        genus  speed species
    +                        class    max    type
    +        name
    +        falcon           bird  389.0     fly
    +        parrot           bird   24.0     fly
    +        lion           mammal   80.5     run
    +        monkey         mammal    NaN    jump
    +        """
    +        inplace = validate_bool_kwarg(inplace, "inplace")
    +        if inplace:
    +            new_obj = self
    +        else:
    +            new_obj = self.copy()
    +
    +        def _maybe_casted_values(index, labels=None):
    +            values = index._values
    +            if not isinstance(index, (PeriodIndex, DatetimeIndex)):
    +                if values.dtype == np.object_:
    +                    values = lib.maybe_convert_objects(values)
    +
    +            # if we have the labels, extract the values with a mask
    +            if labels is not None:
    +                mask = labels == -1
    +
    +                # we can have situations where the whole mask is -1,
    +                # meaning there is nothing found in labels, so make all nan's
    +                if mask.all():
    +                    values = np.empty(len(mask))
    +                    values.fill(np.nan)
    +                else:
    +                    values = values.take(labels)
    +
    +                    # TODO(https://github.com/pandas-dev/pandas/issues/24206)
    +                    # Push this into maybe_upcast_putmask?
    +                    # We can't pass EAs there right now. Looks a bit
    +                    # complicated.
    +                    # So we unbox the ndarray_values, op, re-box.
    +                    values_type = type(values)
    +                    values_dtype = values.dtype
    +
    +                    if issubclass(values_type, DatetimeLikeArray):
    +                        values = values._data
    +
    +                    if mask.any():
    +                        values, changed = maybe_upcast_putmask(values, mask, np.nan)
    +
    +                    if issubclass(values_type, DatetimeLikeArray):
    +                        values = values_type(values, dtype=values_dtype)
    +
    +            return values
    +
    +        new_index = ibase.default_index(len(new_obj))
    +        if level is not None:
    +            if not isinstance(level, (tuple, list)):
    +                level = [level]
    +            level = [self.index._get_level_number(lev) for lev in level]
    +            if len(level) < self.index.nlevels:
    +                new_index = self.index.droplevel(level)
    +
    +        if not drop:
    +            if isinstance(self.index, MultiIndex):
    +                names = [
    +                    n if n is not None else ("level_%d" % i)
    +                    for (i, n) in enumerate(self.index.names)
    +                ]
    +                to_insert = zip(self.index.levels, self.index.codes)
    +            else:
    +                default = "index" if "index" not in self else "level_0"
    +                names = [default] if self.index.name is None else [self.index.name]
    +                to_insert = ((self.index, None),)
    +
    +            multi_col = isinstance(self.columns, MultiIndex)
    +            for i, (lev, lab) in reversed(list(enumerate(to_insert))):
    +                if not (level is None or i in level):
    +                    continue
    +                name = names[i]
    +                if multi_col:
    +                    col_name = list(name) if isinstance(name, tuple) else [name]
    +                    if col_fill is None:
    +                        if len(col_name) not in (1, self.columns.nlevels):
    +                            raise ValueError(
    +                                "col_fill=None is incompatible "
    +                                "with incomplete column name "
    +                                "{}".format(name)
    +                            )
    +                        col_fill = col_name[0]
    +
    +                    lev_num = self.columns._get_level_number(col_level)
    +                    name_lst = [col_fill] * lev_num + col_name
    +                    missing = self.columns.nlevels - len(name_lst)
    +                    name_lst += [col_fill] * missing
    +                    name = tuple(name_lst)
    +                # to ndarray and maybe infer different dtype
    +                level_values = _maybe_casted_values(lev, lab)
    +                new_obj.insert(0, name, level_values)
    +
    +        new_obj.index = new_index
    +        if not inplace:
    +            return new_obj
    +
    +    # ----------------------------------------------------------------------
    +    # Reindex-based selection methods
    +
    +    @Appender(_shared_docs["isna"] % _shared_doc_kwargs)
    +    def isna(self):
    +        return super().isna()
    +
    +    @Appender(_shared_docs["isna"] % _shared_doc_kwargs)
    +    def isnull(self):
    +        return super().isnull()
    +
    +    @Appender(_shared_docs["notna"] % _shared_doc_kwargs)
    +    def notna(self):
    +        return super().notna()
    +
    +    @Appender(_shared_docs["notna"] % _shared_doc_kwargs)
    +    def notnull(self):
    +        return super().notnull()
    +
    +    def dropna(self, axis=0, how="any", thresh=None, subset=None, inplace=False):
    +        """
    +        Remove missing values.
    +
    +        See the :ref:`User Guide <missing_data>` for more on which values are
    +        considered missing, and how to work with missing data.
    +
    +        Parameters
    +        ----------
    +        axis : {0 or 'index', 1 or 'columns'}, default 0
    +            Determine if rows or columns which contain missing values are
    +            removed.
    +
    +            * 0, or 'index' : Drop rows which contain missing values.
    +            * 1, or 'columns' : Drop columns which contain missing value.
    +
    +            .. deprecated:: 0.23.0
    +
    +               Pass tuple or list to drop on multiple axes.
    +               Only a single axis is allowed.
    +
    +        how : {'any', 'all'}, default 'any'
    +            Determine if row or column is removed from DataFrame, when we have
    +            at least one NA or all NA.
    +
    +            * 'any' : If any NA values are present, drop that row or column.
    +            * 'all' : If all values are NA, drop that row or column.
    +
    +        thresh : int, optional
    +            Require that many non-NA values.
    +        subset : array-like, optional
    +            Labels along other axis to consider, e.g. if you are dropping rows
    +            these would be a list of columns to include.
    +        inplace : bool, default False
    +            If True, do operation inplace and return None.
    +
    +        Returns
    +        -------
    +        DataFrame
    +            DataFrame with NA entries dropped from it.
    +
    +        See Also
    +        --------
    +        DataFrame.isna: Indicate missing values.
    +        DataFrame.notna : Indicate existing (non-missing) values.
    +        DataFrame.fillna : Replace missing values.
    +        Series.dropna : Drop missing values.
    +        Index.dropna : Drop missing indices.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
    +        ...                    "toy": [np.nan, 'Batmobile', 'Bullwhip'],
    +        ...                    "born": [pd.NaT, pd.Timestamp("1940-04-25"),
    +        ...                             pd.NaT]})
    +        >>> df
    +               name        toy       born
    +        0    Alfred        NaN        NaT
    +        1    Batman  Batmobile 1940-04-25
    +        2  Catwoman   Bullwhip        NaT
    +
    +        Drop the rows where at least one element is missing.
    +
    +        >>> df.dropna()
    +             name        toy       born
    +        1  Batman  Batmobile 1940-04-25
    +
    +        Drop the columns where at least one element is missing.
    +
    +        >>> df.dropna(axis='columns')
    +               name
    +        0    Alfred
    +        1    Batman
    +        2  Catwoman
    +
    +        Drop the rows where all elements are missing.
    +
    +        >>> df.dropna(how='all')
    +               name        toy       born
    +        0    Alfred        NaN        NaT
    +        1    Batman  Batmobile 1940-04-25
    +        2  Catwoman   Bullwhip        NaT
    +
    +        Keep only the rows with at least 2 non-NA values.
    +
    +        >>> df.dropna(thresh=2)
    +               name        toy       born
    +        1    Batman  Batmobile 1940-04-25
    +        2  Catwoman   Bullwhip        NaT
    +
    +        Define in which columns to look for missing values.
    +
    +        >>> df.dropna(subset=['name', 'born'])
    +               name        toy       born
    +        1    Batman  Batmobile 1940-04-25
    +
    +        Keep the DataFrame with valid entries in the same variable.
    +
    +        >>> df.dropna(inplace=True)
    +        >>> df
    +             name        toy       born
    +        1  Batman  Batmobile 1940-04-25
    +        """
    +        inplace = validate_bool_kwarg(inplace, "inplace")
    +        if isinstance(axis, (tuple, list)):
    +            # GH20987
    +            msg = (
    +                "supplying multiple axes to axis is deprecated and "
    +                "will be removed in a future version."
    +            )
    +            warnings.warn(msg, FutureWarning, stacklevel=2)
    +
    +            result = self
    +            for ax in axis:
    +                result = result.dropna(how=how, thresh=thresh, subset=subset, axis=ax)
    +        else:
    +            axis = self._get_axis_number(axis)
    +            agg_axis = 1 - axis
    +
    +            agg_obj = self
    +            if subset is not None:
    +                ax = self._get_axis(agg_axis)
    +                indices = ax.get_indexer_for(subset)
    +                check = indices == -1
    +                if check.any():
    +                    raise KeyError(list(np.compress(check, subset)))
    +                agg_obj = self.take(indices, axis=agg_axis)
    +
    +            count = agg_obj.count(axis=agg_axis)
    +
    +            if thresh is not None:
    +                mask = count >= thresh
    +            elif how == "any":
    +                mask = count == len(agg_obj._get_axis(agg_axis))
    +            elif how == "all":
    +                mask = count > 0
    +            else:
    +                if how is not None:
    +                    raise ValueError("invalid how option: {h}".format(h=how))
    +                else:
    +                    raise TypeError("must specify how or thresh")
    +
    +            result = self.loc(axis=axis)[mask]
    +
    +        if inplace:
    +            self._update_inplace(result)
    +        else:
    +            return result
    +
    +    def drop_duplicates(self, subset=None, keep="first", inplace=False):
    +        """
    +        Return DataFrame with duplicate rows removed, optionally only
    +        considering certain columns. Indexes, including time indexes
    +        are ignored.
    +
    +        Parameters
    +        ----------
    +        subset : column label or sequence of labels, optional
    +            Only consider certain columns for identifying duplicates, by
    +            default use all of the columns
    +        keep : {'first', 'last', False}, default 'first'
    +            - ``first`` : Drop duplicates except for the first occurrence.
    +            - ``last`` : Drop duplicates except for the last occurrence.
    +            - False : Drop all duplicates.
    +        inplace : boolean, default False
    +            Whether to drop duplicates in place or to return a copy
    +
    +        Returns
    +        -------
    +        DataFrame
    +        """
    +        if self.empty:
    +            return self.copy()
    +
    +        inplace = validate_bool_kwarg(inplace, "inplace")
    +        duplicated = self.duplicated(subset, keep=keep)
    +
    +        if inplace:
    +            inds, = (-duplicated)._ndarray_values.nonzero()
    +            new_data = self._data.take(inds)
    +            self._update_inplace(new_data)
    +        else:
    +            return self[-duplicated]
    +
    +    def duplicated(self, subset=None, keep="first"):
    +        """
    +        Return boolean Series denoting duplicate rows, optionally only
    +        considering certain columns.
    +
    +        Parameters
    +        ----------
    +        subset : column label or sequence of labels, optional
    +            Only consider certain columns for identifying duplicates, by
    +            default use all of the columns
    +        keep : {'first', 'last', False}, default 'first'
    +            - ``first`` : Mark duplicates as ``True`` except for the
    +              first occurrence.
    +            - ``last`` : Mark duplicates as ``True`` except for the
    +              last occurrence.
    +            - False : Mark all duplicates as ``True``.
    +
    +        Returns
    +        -------
    +        Series
    +        """
    +        from pandas.core.sorting import get_group_index
    +        from pandas._libs.hashtable import duplicated_int64, _SIZE_HINT_LIMIT
    +
    +        if self.empty:
    +            return Series(dtype=bool)
    +
    +        def f(vals):
    +            labels, shape = algorithms.factorize(
    +                vals, size_hint=min(len(self), _SIZE_HINT_LIMIT)
    +            )
    +            return labels.astype("i8", copy=False), len(shape)
    +
    +        if subset is None:
    +            subset = self.columns
    +        elif (
    +            not np.iterable(subset)
    +            or isinstance(subset, str)
    +            or isinstance(subset, tuple)
    +            and subset in self.columns
    +        ):
    +            subset = (subset,)
    +
    +        # Verify all columns in subset exist in the queried dataframe
    +        # Otherwise, raise a KeyError, same as if you try to __getitem__ with a
    +        # key that doesn't exist.
    +        diff = Index(subset).difference(self.columns)
    +        if not diff.empty:
    +            raise KeyError(diff)
    +
    +        vals = (col.values for name, col in self.items() if name in subset)
    +        labels, shape = map(list, zip(*map(f, vals)))
    +
    +        ids = get_group_index(labels, shape, sort=False, xnull=False)
    +        return Series(duplicated_int64(ids, keep), index=self.index)
    +
    +    # ----------------------------------------------------------------------
    +    # Sorting
    +
    +    @Substitution(**_shared_doc_kwargs)
    +    @Appender(NDFrame.sort_values.__doc__)
    +    def sort_values(
    +        self,
    +        by,
    +        axis=0,
    +        ascending=True,
    +        inplace=False,
    +        kind="quicksort",
    +        na_position="last",
    +    ):
    +        inplace = validate_bool_kwarg(inplace, "inplace")
    +        axis = self._get_axis_number(axis)
    +
    +        if not isinstance(by, list):
    +            by = [by]
    +        if is_sequence(ascending) and len(by) != len(ascending):
    +            raise ValueError(
    +                "Length of ascending (%d) != length of by (%d)"
    +                % (len(ascending), len(by))
    +            )
    +        if len(by) > 1:
    +            from pandas.core.sorting import lexsort_indexer
    +
    +            keys = [self._get_label_or_level_values(x, axis=axis) for x in by]
    +            indexer = lexsort_indexer(keys, orders=ascending, na_position=na_position)
    +            indexer = ensure_platform_int(indexer)
    +        else:
    +            from pandas.core.sorting import nargsort
    +
    +            by = by[0]
    +            k = self._get_label_or_level_values(by, axis=axis)
    +
    +            if isinstance(ascending, (tuple, list)):
    +                ascending = ascending[0]
    +
    +            indexer = nargsort(
    +                k, kind=kind, ascending=ascending, na_position=na_position
    +            )
    +
    +        new_data = self._data.take(
    +            indexer, axis=self._get_block_manager_axis(axis), verify=False
    +        )
    +
    +        if inplace:
    +            return self._update_inplace(new_data)
    +        else:
    +            return self._constructor(new_data).__finalize__(self)
    +
    +    @Substitution(**_shared_doc_kwargs)
    +    @Appender(NDFrame.sort_index.__doc__)
    +    def sort_index(
    +        self,
    +        axis=0,
    +        level=None,
    +        ascending=True,
    +        inplace=False,
    +        kind="quicksort",
    +        na_position="last",
    +        sort_remaining=True,
    +        by=None,
    +    ):
    +
    +        # TODO: this can be combined with Series.sort_index impl as
    +        # almost identical
    +
    +        inplace = validate_bool_kwarg(inplace, "inplace")
    +        # 10726
    +        if by is not None:
    +            warnings.warn(
    +                "by argument to sort_index is deprecated, "
    +                "please use .sort_values(by=...)",
    +                FutureWarning,
    +                stacklevel=2,
    +            )
    +            if level is not None:
    +                raise ValueError("unable to simultaneously sort by and level")
    +            return self.sort_values(by, axis=axis, ascending=ascending, inplace=inplace)
    +
    +        axis = self._get_axis_number(axis)
    +        labels = self._get_axis(axis)
    +
    +        # make sure that the axis is lexsorted to start
    +        # if not we need to reconstruct to get the correct indexer
    +        labels = labels._sort_levels_monotonic()
    +        if level is not None:
    +
    +            new_axis, indexer = labels.sortlevel(
    +                level, ascending=ascending, sort_remaining=sort_remaining
    +            )
    +
    +        elif isinstance(labels, MultiIndex):
    +            from pandas.core.sorting import lexsort_indexer
    +
    +            indexer = lexsort_indexer(
    +                labels._get_codes_for_sorting(),
    +                orders=ascending,
    +                na_position=na_position,
    +            )
    +        else:
    +            from pandas.core.sorting import nargsort
    +
    +            # Check monotonic-ness before sort an index
    +            # GH11080
    +            if (ascending and labels.is_monotonic_increasing) or (
    +                not ascending and labels.is_monotonic_decreasing
    +            ):
    +                if inplace:
    +                    return
    +                else:
    +                    return self.copy()
    +
    +            indexer = nargsort(
    +                labels, kind=kind, ascending=ascending, na_position=na_position
    +            )
    +
    +        baxis = self._get_block_manager_axis(axis)
    +        new_data = self._data.take(indexer, axis=baxis, verify=False)
    +
    +        # reconstruct axis if needed
    +        new_data.axes[baxis] = new_data.axes[baxis]._sort_levels_monotonic()
    +
    +        if inplace:
    +            return self._update_inplace(new_data)
    +        else:
    +            return self._constructor(new_data).__finalize__(self)
    +
    +    def nlargest(self, n, columns, keep="first"):
    +        """
    +        Return the first `n` rows ordered by `columns` in descending order.
    +
    +        Return the first `n` rows with the largest values in `columns`, in
    +        descending order. The columns that are not specified are returned as
    +        well, but not used for ordering.
    +
    +        This method is equivalent to
    +        ``df.sort_values(columns, ascending=False).head(n)``, but more
    +        performant.
    +
    +        Parameters
    +        ----------
    +        n : int
    +            Number of rows to return.
    +        columns : label or list of labels
    +            Column label(s) to order by.
    +        keep : {'first', 'last', 'all'}, default 'first'
    +            Where there are duplicate values:
    +
    +            - `first` : prioritize the first occurrence(s)
    +            - `last` : prioritize the last occurrence(s)
    +            - ``all`` : do not drop any duplicates, even it means
    +                        selecting more than `n` items.
    +
    +            .. versionadded:: 0.24.0
    +
    +        Returns
    +        -------
    +        DataFrame
    +            The first `n` rows ordered by the given columns in descending
    +            order.
    +
    +        See Also
    +        --------
    +        DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in
    +            ascending order.
    +        DataFrame.sort_values : Sort DataFrame by the values.
    +        DataFrame.head : Return the first `n` rows without re-ordering.
    +
    +        Notes
    +        -----
    +        This function cannot be used with all column types. For example, when
    +        specifying columns with `object` or `category` dtypes, ``TypeError`` is
    +        raised.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000,
    +        ...                                   434000, 434000, 337000, 11300,
    +        ...                                   11300, 11300],
    +        ...                    'GDP': [1937894, 2583560 , 12011, 4520, 12128,
    +        ...                            17036, 182, 38, 311],
    +        ...                    'alpha-2': ["IT", "FR", "MT", "MV", "BN",
    +        ...                                "IS", "NR", "TV", "AI"]},
    +        ...                   index=["Italy", "France", "Malta",
    +        ...                          "Maldives", "Brunei", "Iceland",
    +        ...                          "Nauru", "Tuvalu", "Anguilla"])
    +        >>> df
    +                  population      GDP alpha-2
    +        Italy       59000000  1937894      IT
    +        France      65000000  2583560      FR
    +        Malta         434000    12011      MT
    +        Maldives      434000     4520      MV
    +        Brunei        434000    12128      BN
    +        Iceland       337000    17036      IS
    +        Nauru          11300      182      NR
    +        Tuvalu         11300       38      TV
    +        Anguilla       11300      311      AI
    +
    +        In the following example, we will use ``nlargest`` to select the three
    +        rows having the largest values in column "population".
    +
    +        >>> df.nlargest(3, 'population')
    +                population      GDP alpha-2
    +        France    65000000  2583560      FR
    +        Italy     59000000  1937894      IT
    +        Malta       434000    12011      MT
    +
    +        When using ``keep='last'``, ties are resolved in reverse order:
    +
    +        >>> df.nlargest(3, 'population', keep='last')
    +                population      GDP alpha-2
    +        France    65000000  2583560      FR
    +        Italy     59000000  1937894      IT
    +        Brunei      434000    12128      BN
    +
    +        When using ``keep='all'``, all duplicate items are maintained:
    +
    +        >>> df.nlargest(3, 'population', keep='all')
    +                  population      GDP alpha-2
    +        France      65000000  2583560      FR
    +        Italy       59000000  1937894      IT
    +        Malta         434000    12011      MT
    +        Maldives      434000     4520      MV
    +        Brunei        434000    12128      BN
    +
    +        To order by the largest values in column "population" and then "GDP",
    +        we can specify multiple columns like in the next example.
    +
    +        >>> df.nlargest(3, ['population', 'GDP'])
    +                population      GDP alpha-2
    +        France    65000000  2583560      FR
    +        Italy     59000000  1937894      IT
    +        Brunei      434000    12128      BN
    +        """
    +        return algorithms.SelectNFrame(self, n=n, keep=keep, columns=columns).nlargest()
    +
    +    def nsmallest(self, n, columns, keep="first"):
    +        """
    +        Return the first `n` rows ordered by `columns` in ascending order.
    +
    +        Return the first `n` rows with the smallest values in `columns`, in
    +        ascending order. The columns that are not specified are returned as
    +        well, but not used for ordering.
    +
    +        This method is equivalent to
    +        ``df.sort_values(columns, ascending=True).head(n)``, but more
    +        performant.
    +
    +        Parameters
    +        ----------
    +        n : int
    +            Number of items to retrieve.
    +        columns : list or str
    +            Column name or names to order by.
    +        keep : {'first', 'last', 'all'}, default 'first'
    +            Where there are duplicate values:
    +
    +            - ``first`` : take the first occurrence.
    +            - ``last`` : take the last occurrence.
    +            - ``all`` : do not drop any duplicates, even it means
    +              selecting more than `n` items.
    +
    +            .. versionadded:: 0.24.0
    +
    +        Returns
    +        -------
    +        DataFrame
    +
    +        See Also
    +        --------
    +        DataFrame.nlargest : Return the first `n` rows ordered by `columns` in
    +            descending order.
    +        DataFrame.sort_values : Sort DataFrame by the values.
    +        DataFrame.head : Return the first `n` rows without re-ordering.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000,
    +        ...                                   434000, 434000, 337000, 11300,
    +        ...                                   11300, 11300],
    +        ...                    'GDP': [1937894, 2583560 , 12011, 4520, 12128,
    +        ...                            17036, 182, 38, 311],
    +        ...                    'alpha-2': ["IT", "FR", "MT", "MV", "BN",
    +        ...                                "IS", "NR", "TV", "AI"]},
    +        ...                   index=["Italy", "France", "Malta",
    +        ...                          "Maldives", "Brunei", "Iceland",
    +        ...                          "Nauru", "Tuvalu", "Anguilla"])
    +        >>> df
    +                  population      GDP alpha-2
    +        Italy       59000000  1937894      IT
    +        France      65000000  2583560      FR
    +        Malta         434000    12011      MT
    +        Maldives      434000     4520      MV
    +        Brunei        434000    12128      BN
    +        Iceland       337000    17036      IS
    +        Nauru          11300      182      NR
    +        Tuvalu         11300       38      TV
    +        Anguilla       11300      311      AI
    +
    +        In the following example, we will use ``nsmallest`` to select the
    +        three rows having the smallest values in column "a".
    +
    +        >>> df.nsmallest(3, 'population')
    +                  population  GDP alpha-2
    +        Nauru          11300  182      NR
    +        Tuvalu         11300   38      TV
    +        Anguilla       11300  311      AI
    +
    +        When using ``keep='last'``, ties are resolved in reverse order:
    +
    +        >>> df.nsmallest(3, 'population', keep='last')
    +                  population  GDP alpha-2
    +        Anguilla       11300  311      AI
    +        Tuvalu         11300   38      TV
    +        Nauru          11300  182      NR
    +
    +        When using ``keep='all'``, all duplicate items are maintained:
    +
    +        >>> df.nsmallest(3, 'population', keep='all')
    +                  population  GDP alpha-2
    +        Nauru          11300  182      NR
    +        Tuvalu         11300   38      TV
    +        Anguilla       11300  311      AI
    +
    +        To order by the largest values in column "a" and then "c", we can
    +        specify multiple columns like in the next example.
    +
    +        >>> df.nsmallest(3, ['population', 'GDP'])
    +                  population  GDP alpha-2
    +        Tuvalu         11300   38      TV
    +        Nauru          11300  182      NR
    +        Anguilla       11300  311      AI
    +        """
    +        return algorithms.SelectNFrame(
    +            self, n=n, keep=keep, columns=columns
    +        ).nsmallest()
    +
    +    def swaplevel(self, i=-2, j=-1, axis=0):
    +        """
    +        Swap levels i and j in a MultiIndex on a particular axis.
    +
    +        Parameters
    +        ----------
    +        i, j : int, string (can be mixed)
    +            Level of index to be swapped. Can pass level name as string.
    +
    +        Returns
    +        -------
    +        DataFrame
    +
    +        .. versionchanged:: 0.18.1
    +
    +           The indexes ``i`` and ``j`` are now optional, and default to
    +           the two innermost levels of the index.
    +        """
    +        result = self.copy()
    +
    +        axis = self._get_axis_number(axis)
    +        if axis == 0:
    +            result.index = result.index.swaplevel(i, j)
    +        else:
    +            result.columns = result.columns.swaplevel(i, j)
    +        return result
    +
    +    def reorder_levels(self, order, axis=0):
    +        """
    +        Rearrange index levels using input order. May not drop or
    +        duplicate levels.
    +
    +        Parameters
    +        ----------
    +        order : list of int or list of str
    +            List representing new level order. Reference level by number
    +            (position) or by key (label).
    +        axis : int
    +            Where to reorder levels.
    +
    +        Returns
    +        -------
    +        type of caller (new object)
    +        """
    +        axis = self._get_axis_number(axis)
    +        if not isinstance(self._get_axis(axis), MultiIndex):  # pragma: no cover
    +            raise TypeError("Can only reorder levels on a hierarchical axis.")
    +
    +        result = self.copy()
    +
    +        if axis == 0:
    +            result.index = result.index.reorder_levels(order)
    +        else:
    +            result.columns = result.columns.reorder_levels(order)
    +        return result
    +
    +    # ----------------------------------------------------------------------
    +    # Arithmetic / combination related
    +
    +    def _combine_frame(self, other, func, fill_value=None, level=None):
    +        this, other = self.align(other, join="outer", level=level, copy=False)
    +        new_index, new_columns = this.index, this.columns
    +
    +        def _arith_op(left, right):
    +            # for the mixed_type case where we iterate over columns,
    +            # _arith_op(left, right) is equivalent to
    +            # left._binop(right, func, fill_value=fill_value)
    +            left, right = ops.fill_binop(left, right, fill_value)
    +            return func(left, right)
    +
    +        if ops.should_series_dispatch(this, other, func):
    +            # iterate over columns
    +            return ops.dispatch_to_series(this, other, _arith_op)
    +        else:
    +            result = _arith_op(this.values, other.values)
    +            return self._constructor(
    +                result, index=new_index, columns=new_columns, copy=False
    +            )
    +
    +    def _combine_match_index(self, other, func, level=None):
    +        left, right = self.align(other, join="outer", axis=0, level=level, copy=False)
    +        assert left.index.equals(right.index)
    +
    +        if left._is_mixed_type or right._is_mixed_type:
    +            # operate column-wise; avoid costly object-casting in `.values`
    +            return ops.dispatch_to_series(left, right, func)
    +        else:
    +            # fastpath --> operate directly on values
    +            with np.errstate(all="ignore"):
    +                new_data = func(left.values.T, right.values).T
    +            return self._constructor(
    +                new_data, index=left.index, columns=self.columns, copy=False
    +            )
    +
    +    def _combine_match_columns(self, other, func, level=None):
    +        assert isinstance(other, Series)
    +        left, right = self.align(other, join="outer", axis=1, level=level, copy=False)
    +        assert left.columns.equals(right.index)
    +        return ops.dispatch_to_series(left, right, func, axis="columns")
    +
    +    def _combine_const(self, other, func):
    +        assert lib.is_scalar(other) or np.ndim(other) == 0
    +        return ops.dispatch_to_series(self, other, func)
    +
    +    def combine(self, other, func, fill_value=None, overwrite=True):
    +        """
    +        Perform column-wise combine with another DataFrame.
    +
    +        Combines a DataFrame with `other` DataFrame using `func`
    +        to element-wise combine columns. The row and column indexes of the
    +        resulting DataFrame will be the union of the two.
    +
    +        Parameters
    +        ----------
    +        other : DataFrame
    +            The DataFrame to merge column-wise.
    +        func : function
    +            Function that takes two series as inputs and return a Series or a
    +            scalar. Used to merge the two dataframes column by columns.
    +        fill_value : scalar value, default None
    +            The value to fill NaNs with prior to passing any column to the
    +            merge func.
    +        overwrite : bool, default True
    +            If True, columns in `self` that do not exist in `other` will be
    +            overwritten with NaNs.
    +
    +        Returns
    +        -------
    +        DataFrame
    +            Combination of the provided DataFrames.
    +
    +        See Also
    +        --------
    +        DataFrame.combine_first : Combine two DataFrame objects and default to
    +            non-null values in frame calling the method.
    +
    +        Examples
    +        --------
    +        Combine using a simple function that chooses the smaller column.
    +
    +        >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})
    +        >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
    +        >>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2
    +        >>> df1.combine(df2, take_smaller)
    +           A  B
    +        0  0  3
    +        1  0  3
    +
    +        Example using a true element-wise combine function.
    +
    +        >>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]})
    +        >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
    +        >>> df1.combine(df2, np.minimum)
    +           A  B
    +        0  1  2
    +        1  0  3
    +
    +        Using `fill_value` fills Nones prior to passing the column to the
    +        merge function.
    +
    +        >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]})
    +        >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
    +        >>> df1.combine(df2, take_smaller, fill_value=-5)
    +           A    B
    +        0  0 -5.0
    +        1  0  4.0
    +
    +        However, if the same element in both dataframes is None, that None
    +        is preserved
    +
    +        >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]})
    +        >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]})
    +        >>> df1.combine(df2, take_smaller, fill_value=-5)
    +            A    B
    +        0  0 -5.0
    +        1  0  3.0
    +
    +        Example that demonstrates the use of `overwrite` and behavior when
    +        the axis differ between the dataframes.
    +
    +        >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})
    +        >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2])
    +        >>> df1.combine(df2, take_smaller)
    +             A    B     C
    +        0  NaN  NaN   NaN
    +        1  NaN  3.0 -10.0
    +        2  NaN  3.0   1.0
    +
    +        >>> df1.combine(df2, take_smaller, overwrite=False)
    +             A    B     C
    +        0  0.0  NaN   NaN
    +        1  0.0  3.0 -10.0
    +        2  NaN  3.0   1.0
    +
    +        Demonstrating the preference of the passed in dataframe.
    +
    +        >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2])
    +        >>> df2.combine(df1, take_smaller)
    +           A    B   C
    +        0  0.0  NaN NaN
    +        1  0.0  3.0 NaN
    +        2  NaN  3.0 NaN
    +
    +        >>> df2.combine(df1, take_smaller, overwrite=False)
    +             A    B   C
    +        0  0.0  NaN NaN
    +        1  0.0  3.0 1.0
    +        2  NaN  3.0 1.0
    +        """
    +        other_idxlen = len(other.index)  # save for compare
    +
    +        this, other = self.align(other, copy=False)
    +        new_index = this.index
    +
    +        if other.empty and len(new_index) == len(self.index):
    +            return self.copy()
    +
    +        if self.empty and len(other) == other_idxlen:
    +            return other.copy()
    +
    +        # sorts if possible
    +        new_columns = this.columns.union(other.columns)
    +        do_fill = fill_value is not None
    +        result = {}
    +        for col in new_columns:
    +            series = this[col]
    +            otherSeries = other[col]
    +
    +            this_dtype = series.dtype
    +            other_dtype = otherSeries.dtype
    +
    +            this_mask = isna(series)
    +            other_mask = isna(otherSeries)
    +
    +            # don't overwrite columns unnecessarily
    +            # DO propagate if this column is not in the intersection
    +            if not overwrite and other_mask.all():
    +                result[col] = this[col].copy()
    +                continue
    +
    +            if do_fill:
    +                series = series.copy()
    +                otherSeries = otherSeries.copy()
    +                series[this_mask] = fill_value
    +                otherSeries[other_mask] = fill_value
    +
    +            if col not in self.columns:
    +                # If self DataFrame does not have col in other DataFrame,
    +                # try to promote series, which is all NaN, as other_dtype.
    +                new_dtype = other_dtype
    +                try:
    +                    series = series.astype(new_dtype, copy=False)
    +                except ValueError:
    +                    # e.g. new_dtype is integer types
    +                    pass
    +            else:
    +                # if we have different dtypes, possibly promote
    +                new_dtype = find_common_type([this_dtype, other_dtype])
    +                if not is_dtype_equal(this_dtype, new_dtype):
    +                    series = series.astype(new_dtype)
    +                if not is_dtype_equal(other_dtype, new_dtype):
    +                    otherSeries = otherSeries.astype(new_dtype)
    +
    +            arr = func(series, otherSeries)
    +            arr = maybe_downcast_to_dtype(arr, this_dtype)
    +
    +            result[col] = arr
    +
    +        # convert_objects just in case
    +        return self._constructor(result, index=new_index, columns=new_columns)
    +
    +    def combine_first(self, other):
    +        """
    +        Update null elements with value in the same location in `other`.
    +
    +        Combine two DataFrame objects by filling null values in one DataFrame
    +        with non-null values from other DataFrame. The row and column indexes
    +        of the resulting DataFrame will be the union of the two.
    +
    +        Parameters
    +        ----------
    +        other : DataFrame
    +            Provided DataFrame to use to fill null values.
    +
    +        Returns
    +        -------
    +        DataFrame
    +
    +        See Also
    +        --------
    +        DataFrame.combine : Perform series-wise operation on two DataFrames
    +            using a given function.
    +
    +        Examples
    +        --------
    +
    +        >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]})
    +        >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
    +        >>> df1.combine_first(df2)
    +             A    B
    +        0  1.0  3.0
    +        1  0.0  4.0
    +
    +        Null values still persist if the location of that null value
    +        does not exist in `other`
    +
    +        >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]})
    +        >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2])
    +        >>> df1.combine_first(df2)
    +             A    B    C
    +        0  NaN  4.0  NaN
    +        1  0.0  3.0  1.0
    +        2  NaN  3.0  1.0
    +        """
    +        import pandas.core.computation.expressions as expressions
    +
    +        def extract_values(arr):
    +            # Does two things:
    +            # 1. maybe gets the values from the Series / Index
    +            # 2. convert datelike to i8
    +            if isinstance(arr, (ABCIndexClass, ABCSeries)):
    +                arr = arr._values
    +
    +            if needs_i8_conversion(arr):
    +                if is_extension_array_dtype(arr.dtype):
    +                    arr = arr.asi8
    +                else:
    +                    arr = arr.view("i8")
    +            return arr
    +
    +        def combiner(x, y):
    +            mask = isna(x)
    +            if isinstance(mask, (ABCIndexClass, ABCSeries)):
    +                mask = mask._values
    +
    +            x_values = extract_values(x)
    +            y_values = extract_values(y)
    +
    +            # If the column y in other DataFrame is not in first DataFrame,
    +            # just return y_values.
    +            if y.name not in self.columns:
    +                return y_values
    +
    +            return expressions.where(mask, y_values, x_values)
    +
    +        return self.combine(other, combiner, overwrite=False)
    +
    +    @deprecate_kwarg(
    +        old_arg_name="raise_conflict",
    +        new_arg_name="errors",
    +        mapping={False: "ignore", True: "raise"},
    +    )
    +    def update(
    +        self, other, join="left", overwrite=True, filter_func=None, errors="ignore"
    +    ):
    +        """
    +        Modify in place using non-NA values from another DataFrame.
    +
    +        Aligns on indices. There is no return value.
    +
    +        Parameters
    +        ----------
    +        other : DataFrame, or object coercible into a DataFrame
    +            Should have at least one matching index/column label
    +            with the original DataFrame. If a Series is passed,
    +            its name attribute must be set, and that will be
    +            used as the column name to align with the original DataFrame.
    +        join : {'left'}, default 'left'
    +            Only left join is implemented, keeping the index and columns of the
    +            original object.
    +        overwrite : bool, default True
    +            How to handle non-NA values for overlapping keys:
    +
    +            * True: overwrite original DataFrame's values
    +              with values from `other`.
    +            * False: only update values that are NA in
    +              the original DataFrame.
    +
    +        filter_func : callable(1d-array) -> bool 1d-array, optional
    +            Can choose to replace values other than NA. Return True for values
    +            that should be updated.
    +        errors : {'raise', 'ignore'}, default 'ignore'
    +            If 'raise', will raise a ValueError if the DataFrame and `other`
    +            both contain non-NA data in the same place.
    +
    +            .. versionchanged :: 0.24.0
    +               Changed from `raise_conflict=False|True`
    +               to `errors='ignore'|'raise'`.
    +
    +        Returns
    +        -------
    +        None : method directly changes calling object
    +
    +        Raises
    +        ------
    +        ValueError
    +            * When `errors='raise'` and there's overlapping non-NA data.
    +            * When `errors` is not either `'ignore'` or `'raise'`
    +        NotImplementedError
    +            * If `join != 'left'`
    +
    +        See Also
    +        --------
    +        dict.update : Similar method for dictionaries.
    +        DataFrame.merge : For column(s)-on-columns(s) operations.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({'A': [1, 2, 3],
    +        ...                    'B': [400, 500, 600]})
    +        >>> new_df = pd.DataFrame({'B': [4, 5, 6],
    +        ...                        'C': [7, 8, 9]})
    +        >>> df.update(new_df)
    +        >>> df
    +           A  B
    +        0  1  4
    +        1  2  5
    +        2  3  6
    +
    +        The DataFrame's length does not increase as a result of the update,
    +        only values at matching index/column labels are updated.
    +
    +        >>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
    +        ...                    'B': ['x', 'y', 'z']})
    +        >>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']})
    +        >>> df.update(new_df)
    +        >>> df
    +           A  B
    +        0  a  d
    +        1  b  e
    +        2  c  f
    +
    +        For Series, it's name attribute must be set.
    +
    +        >>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
    +        ...                    'B': ['x', 'y', 'z']})
    +        >>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2])
    +        >>> df.update(new_column)
    +        >>> df
    +           A  B
    +        0  a  d
    +        1  b  y
    +        2  c  e
    +        >>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
    +        ...                    'B': ['x', 'y', 'z']})
    +        >>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2])
    +        >>> df.update(new_df)
    +        >>> df
    +           A  B
    +        0  a  x
    +        1  b  d
    +        2  c  e
    +
    +        If `other` contains NaNs the corresponding values are not updated
    +        in the original dataframe.
    +
    +        >>> df = pd.DataFrame({'A': [1, 2, 3],
    +        ...                    'B': [400, 500, 600]})
    +        >>> new_df = pd.DataFrame({'B': [4, np.nan, 6]})
    +        >>> df.update(new_df)
    +        >>> df
    +           A      B
    +        0  1    4.0
    +        1  2  500.0
    +        2  3    6.0
    +        """
    +        import pandas.core.computation.expressions as expressions
    +
    +        # TODO: Support other joins
    +        if join != "left":  # pragma: no cover
    +            raise NotImplementedError("Only left join is supported")
    +        if errors not in ["ignore", "raise"]:
    +            raise ValueError(
    +                "The parameter errors must be either " "'ignore' or 'raise'"
    +            )
    +
    +        if not isinstance(other, DataFrame):
    +            other = DataFrame(other)
    +
    +        other = other.reindex_like(self)
    +
    +        for col in self.columns:
    +            this = self[col]._values
    +            that = other[col]._values
    +            if filter_func is not None:
    +                with np.errstate(all="ignore"):
    +                    mask = ~filter_func(this) | isna(that)
    +            else:
    +                if errors == "raise":
    +                    mask_this = notna(that)
    +                    mask_that = notna(this)
    +                    if any(mask_this & mask_that):
    +                        raise ValueError("Data overlaps.")
    +
    +                if overwrite:
    +                    mask = isna(that)
    +                else:
    +                    mask = notna(this)
    +
    +            # don't overwrite columns unnecessarily
    +            if mask.all():
    +                continue
    +
    +            self[col] = expressions.where(mask, this, that)
    +
    +    # ----------------------------------------------------------------------
    +    # Data reshaping
    +
    +    _shared_docs[
    +        "pivot"
    +    ] = """
    +        Return reshaped DataFrame organized by given index / column values.
    +
    +        Reshape data (produce a "pivot" table) based on column values. Uses
    +        unique values from specified `index` / `columns` to form axes of the
    +        resulting DataFrame. This function does not support data
    +        aggregation, multiple values will result in a MultiIndex in the
    +        columns. See the :ref:`User Guide <reshaping>` for more on reshaping.
    +
    +        Parameters
    +        ----------%s
    +        index : string or object, optional
    +            Column to use to make new frame's index. If None, uses
    +            existing index.
    +        columns : string or object
    +            Column to use to make new frame's columns.
    +        values : string, object or a list of the previous, optional
    +            Column(s) to use for populating new frame's values. If not
    +            specified, all remaining columns will be used and the result will
    +            have hierarchically indexed columns.
    +
    +            .. versionchanged :: 0.23.0
    +               Also accept list of column names.
    +
    +        Returns
    +        -------
    +        DataFrame
    +            Returns reshaped DataFrame.
    +
    +        Raises
    +        ------
    +        ValueError:
    +            When there are any `index`, `columns` combinations with multiple
    +            values. `DataFrame.pivot_table` when you need to aggregate.
    +
    +        See Also
    +        --------
    +        DataFrame.pivot_table : Generalization of pivot that can handle
    +            duplicate values for one index/column pair.
    +        DataFrame.unstack : Pivot based on the index values instead of a
    +            column.
    +
    +        Notes
    +        -----
    +        For finer-tuned control, see hierarchical indexing documentation along
    +        with the related stack/unstack methods.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two',
    +        ...                            'two'],
    +        ...                    'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
    +        ...                    'baz': [1, 2, 3, 4, 5, 6],
    +        ...                    'zoo': ['x', 'y', 'z', 'q', 'w', 't']})
    +        >>> df
    +            foo   bar  baz  zoo
    +        0   one   A    1    x
    +        1   one   B    2    y
    +        2   one   C    3    z
    +        3   two   A    4    q
    +        4   two   B    5    w
    +        5   two   C    6    t
    +
    +        >>> df.pivot(index='foo', columns='bar', values='baz')
    +        bar  A   B   C
    +        foo
    +        one  1   2   3
    +        two  4   5   6
    +
    +        >>> df.pivot(index='foo', columns='bar')['baz']
    +        bar  A   B   C
    +        foo
    +        one  1   2   3
    +        two  4   5   6
    +
    +        >>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo'])
    +              baz       zoo
    +        bar   A  B  C   A  B  C
    +        foo
    +        one   1  2  3   x  y  z
    +        two   4  5  6   q  w  t
    +
    +        A ValueError is raised if there are any duplicates.
    +
    +        >>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'],
    +        ...                    "bar": ['A', 'A', 'B', 'C'],
    +        ...                    "baz": [1, 2, 3, 4]})
    +        >>> df
    +           foo bar  baz
    +        0  one   A    1
    +        1  one   A    2
    +        2  two   B    3
    +        3  two   C    4
    +
    +        Notice that the first two rows are the same for our `index`
    +        and `columns` arguments.
    +
    +        >>> df.pivot(index='foo', columns='bar', values='baz')
    +        Traceback (most recent call last):
    +           ...
    +        ValueError: Index contains duplicate entries, cannot reshape
    +        """
    +
    +    @Substitution("")
    +    @Appender(_shared_docs["pivot"])
    +    def pivot(self, index=None, columns=None, values=None):
    +        from pandas.core.reshape.pivot import pivot
    +
    +        return pivot(self, index=index, columns=columns, values=values)
    +
    +    _shared_docs[
    +        "pivot_table"
    +    ] = """
    +        Create a spreadsheet-style pivot table as a DataFrame. The levels in
    +        the pivot table will be stored in MultiIndex objects (hierarchical
    +        indexes) on the index and columns of the result DataFrame.
    +
    +        Parameters
    +        ----------%s
    +        values : column to aggregate, optional
    +        index : column, Grouper, array, or list of the previous
    +            If an array is passed, it must be the same length as the data. The
    +            list can contain any of the other types (except list).
    +            Keys to group by on the pivot table index.  If an array is passed,
    +            it is being used as the same manner as column values.
    +        columns : column, Grouper, array, or list of the previous
    +            If an array is passed, it must be the same length as the data. The
    +            list can contain any of the other types (except list).
    +            Keys to group by on the pivot table column.  If an array is passed,
    +            it is being used as the same manner as column values.
    +        aggfunc : function, list of functions, dict, default numpy.mean
    +            If list of functions passed, the resulting pivot table will have
    +            hierarchical columns whose top level are the function names
    +            (inferred from the function objects themselves)
    +            If dict is passed, the key is column to aggregate and value
    +            is function or list of functions
    +        fill_value : scalar, default None
    +            Value to replace missing values with
    +        margins : boolean, default False
    +            Add all row / columns (e.g. for subtotal / grand totals)
    +        dropna : boolean, default True
    +            Do not include columns whose entries are all NaN
    +        margins_name : string, default 'All'
    +            Name of the row / column that will contain the totals
    +            when margins is True.
    +        observed : boolean, default False
    +            This only applies if any of the groupers are Categoricals.
    +            If True: only show observed values for categorical groupers.
    +            If False: show all values for categorical groupers.
    +
    +            .. versionchanged :: 0.25.0
    +
    +        Returns
    +        -------
    +        DataFrame
    +
    +        See Also
    +        --------
    +        DataFrame.pivot : Pivot without aggregation that can handle
    +            non-numeric data.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo",
    +        ...                          "bar", "bar", "bar", "bar"],
    +        ...                    "B": ["one", "one", "one", "two", "two",
    +        ...                          "one", "one", "two", "two"],
    +        ...                    "C": ["small", "large", "large", "small",
    +        ...                          "small", "large", "small", "small",
    +        ...                          "large"],
    +        ...                    "D": [1, 2, 2, 3, 3, 4, 5, 6, 7],
    +        ...                    "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]})
    +        >>> df
    +             A    B      C  D  E
    +        0  foo  one  small  1  2
    +        1  foo  one  large  2  4
    +        2  foo  one  large  2  5
    +        3  foo  two  small  3  5
    +        4  foo  two  small  3  6
    +        5  bar  one  large  4  6
    +        6  bar  one  small  5  8
    +        7  bar  two  small  6  9
    +        8  bar  two  large  7  9
    +
    +        This first example aggregates values by taking the sum.
    +
    +        >>> table = pd.pivot_table(df, values='D', index=['A', 'B'],
    +        ...                     columns=['C'], aggfunc=np.sum)
    +        >>> table
    +        C        large  small
    +        A   B
    +        bar one    4.0    5.0
    +            two    7.0    6.0
    +        foo one    4.0    1.0
    +            two    NaN    6.0
    +
    +        We can also fill missing values using the `fill_value` parameter.
    +
    +        >>> table = pd.pivot_table(df, values='D', index=['A', 'B'],
    +        ...                     columns=['C'], aggfunc=np.sum, fill_value=0)
    +        >>> table
    +        C        large  small
    +        A   B
    +        bar one      4      5
    +            two      7      6
    +        foo one      4      1
    +            two      0      6
    +
    +        The next example aggregates by taking the mean across multiple columns.
    +
    +        >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'],
    +        ...                     aggfunc={'D': np.mean,
    +        ...                              'E': np.mean})
    +        >>> table
    +                        D         E
    +        A   C
    +        bar large  5.500000  7.500000
    +            small  5.500000  8.500000
    +        foo large  2.000000  4.500000
    +            small  2.333333  4.333333
    +
    +        We can also calculate multiple types of aggregations for any given
    +        value column.
    +
    +        >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'],
    +        ...                     aggfunc={'D': np.mean,
    +        ...                              'E': [min, max, np.mean]})
    +        >>> table
    +                        D    E
    +                    mean  max      mean  min
    +        A   C
    +        bar large  5.500000  9.0  7.500000  6.0
    +            small  5.500000  9.0  8.500000  8.0
    +        foo large  2.000000  5.0  4.500000  4.0
    +            small  2.333333  6.0  4.333333  2.0
    +        """
    +
    +    @Substitution("")
    +    @Appender(_shared_docs["pivot_table"])
    +    def pivot_table(
    +        self,
    +        values=None,
    +        index=None,
    +        columns=None,
    +        aggfunc="mean",
    +        fill_value=None,
    +        margins=False,
    +        dropna=True,
    +        margins_name="All",
    +        observed=False,
    +    ):
    +        from pandas.core.reshape.pivot import pivot_table
    +
    +        return pivot_table(
    +            self,
    +            values=values,
    +            index=index,
    +            columns=columns,
    +            aggfunc=aggfunc,
    +            fill_value=fill_value,
    +            margins=margins,
    +            dropna=dropna,
    +            margins_name=margins_name,
    +            observed=observed,
    +        )
    +
    +    def stack(self, level=-1, dropna=True):
    +        """
    +        Stack the prescribed level(s) from columns to index.
    +
    +        Return a reshaped DataFrame or Series having a multi-level
    +        index with one or more new inner-most levels compared to the current
    +        DataFrame. The new inner-most levels are created by pivoting the
    +        columns of the current dataframe:
    +
    +          - if the columns have a single level, the output is a Series;
    +          - if the columns have multiple levels, the new index
    +            level(s) is (are) taken from the prescribed level(s) and
    +            the output is a DataFrame.
    +
    +        The new index levels are sorted.
    +
    +        Parameters
    +        ----------
    +        level : int, str, list, default -1
    +            Level(s) to stack from the column axis onto the index
    +            axis, defined as one index or label, or a list of indices
    +            or labels.
    +        dropna : bool, default True
    +            Whether to drop rows in the resulting Frame/Series with
    +            missing values. Stacking a column level onto the index
    +            axis can create combinations of index and column values
    +            that are missing from the original dataframe. See Examples
    +            section.
    +
    +        Returns
    +        -------
    +        DataFrame or Series
    +            Stacked dataframe or series.
    +
    +        See Also
    +        --------
    +        DataFrame.unstack : Unstack prescribed level(s) from index axis
    +             onto column axis.
    +        DataFrame.pivot : Reshape dataframe from long format to wide
    +             format.
    +        DataFrame.pivot_table : Create a spreadsheet-style pivot table
    +             as a DataFrame.
    +
    +        Notes
    +        -----
    +        The function is named by analogy with a collection of books
    +        being reorganized from being side by side on a horizontal
    +        position (the columns of the dataframe) to being stacked
    +        vertically on top of each other (in the index of the
    +        dataframe).
    +
    +        Examples
    +        --------
    +        **Single level columns**
    +
    +        >>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]],
    +        ...                                     index=['cat', 'dog'],
    +        ...                                     columns=['weight', 'height'])
    +
    +        Stacking a dataframe with a single level column axis returns a Series:
    +
    +        >>> df_single_level_cols
    +             weight height
    +        cat       0      1
    +        dog       2      3
    +        >>> df_single_level_cols.stack()
    +        cat  weight    0
    +             height    1
    +        dog  weight    2
    +             height    3
    +        dtype: int64
    +
    +        **Multi level columns: simple case**
    +
    +        >>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'),
    +        ...                                        ('weight', 'pounds')])
    +        >>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]],
    +        ...                                     index=['cat', 'dog'],
    +        ...                                     columns=multicol1)
    +
    +        Stacking a dataframe with a multi-level column axis:
    +
    +        >>> df_multi_level_cols1
    +             weight
    +                 kg    pounds
    +        cat       1        2
    +        dog       2        4
    +        >>> df_multi_level_cols1.stack()
    +                    weight
    +        cat kg           1
    +            pounds       2
    +        dog kg           2
    +            pounds       4
    +
    +        **Missing values**
    +
    +        >>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'),
    +        ...                                        ('height', 'm')])
    +        >>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]],
    +        ...                                     index=['cat', 'dog'],
    +        ...                                     columns=multicol2)
    +
    +        It is common to have missing values when stacking a dataframe
    +        with multi-level columns, as the stacked dataframe typically
    +        has more values than the original dataframe. Missing values
    +        are filled with NaNs:
    +
    +        >>> df_multi_level_cols2
    +            weight height
    +                kg      m
    +        cat    1.0    2.0
    +        dog    3.0    4.0
    +        >>> df_multi_level_cols2.stack()
    +                height  weight
    +        cat kg     NaN     1.0
    +            m      2.0     NaN
    +        dog kg     NaN     3.0
    +            m      4.0     NaN
    +
    +        **Prescribing the level(s) to be stacked**
    +
    +        The first parameter controls which level or levels are stacked:
    +
    +        >>> df_multi_level_cols2.stack(0)
    +                     kg    m
    +        cat height  NaN  2.0
    +            weight  1.0  NaN
    +        dog height  NaN  4.0
    +            weight  3.0  NaN
    +        >>> df_multi_level_cols2.stack([0, 1])
    +        cat  height  m     2.0
    +             weight  kg    1.0
    +        dog  height  m     4.0
    +             weight  kg    3.0
    +        dtype: float64
    +
    +        **Dropping missing values**
    +
    +        >>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]],
    +        ...                                     index=['cat', 'dog'],
    +        ...                                     columns=multicol2)
    +
    +        Note that rows where all values are missing are dropped by
    +        default but this behaviour can be controlled via the dropna
    +        keyword parameter:
    +
    +        >>> df_multi_level_cols3
    +            weight height
    +                kg      m
    +        cat    NaN    1.0
    +        dog    2.0    3.0
    +        >>> df_multi_level_cols3.stack(dropna=False)
    +                height  weight
    +        cat kg     NaN     NaN
    +            m      1.0     NaN
    +        dog kg     NaN     2.0
    +            m      3.0     NaN
    +        >>> df_multi_level_cols3.stack(dropna=True)
    +                height  weight
    +        cat m      1.0     NaN
    +        dog kg     NaN     2.0
    +            m      3.0     NaN
    +        """
    +        from pandas.core.reshape.reshape import stack, stack_multiple
    +
    +        if isinstance(level, (tuple, list)):
    +            return stack_multiple(self, level, dropna=dropna)
    +        else:
    +            return stack(self, level, dropna=dropna)
    +
    +    def explode(self, column: Union[str, Tuple]) -> "DataFrame":
    +        """
    +        Transform each element of a list-like to a row, replicating the
    +        index values.
    +
    +        .. versionadded:: 0.25.0
    +
    +        Parameters
    +        ----------
    +        column : str or tuple
    +
    +        Returns
    +        -------
    +        DataFrame
    +            Exploded lists to rows of the subset columns;
    +            index will be duplicated for these rows.
    +
    +        Raises
    +        ------
    +        ValueError :
    +            if columns of the frame are not unique.
    +
    +        See Also
    +        --------
    +        DataFrame.unstack : Pivot a level of the (necessarily hierarchical)
    +            index labels
    +        DataFrame.melt : Unpivot a DataFrame from wide format to long format
    +        Series.explode : Explode a DataFrame from list-like columns to long format.
    +
    +        Notes
    +        -----
    +        This routine will explode list-likes including lists, tuples,
    +        Series, and np.ndarray. The result dtype of the subset rows will
    +        be object. Scalars will be returned unchanged. Empty list-likes will
    +        result in a np.nan for that row.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({'A': [[1, 2, 3], 'foo', [], [3, 4]], 'B': 1})
    +        >>> df
    +                   A  B
    +        0  [1, 2, 3]  1
    +        1        foo  1
    +        2         []  1
    +        3     [3, 4]  1
    +
    +        >>> df.explode('A')
    +             A  B
    +        0    1  1
    +        0    2  1
    +        0    3  1
    +        1  foo  1
    +        2  NaN  1
    +        3    3  1
    +        3    4  1
    +        """
    +
    +        if not (is_scalar(column) or isinstance(column, tuple)):
    +            raise ValueError("column must be a scalar")
    +        if not self.columns.is_unique:
    +            raise ValueError("columns must be unique")
    +
    +        result = self[column].explode()
    +        return (
    +            self.drop([column], axis=1)
    +            .join(result)
    +            .reindex(columns=self.columns, copy=False)
    +        )
    +
    +    def unstack(self, level=-1, fill_value=None):
    +        """
    +        Pivot a level of the (necessarily hierarchical) index labels, returning
    +        a DataFrame having a new level of column labels whose inner-most level
    +        consists of the pivoted index labels.
    +
    +        If the index is not a MultiIndex, the output will be a Series
    +        (the analogue of stack when the columns are not a MultiIndex).
    +
    +        The level involved will automatically get sorted.
    +
    +        Parameters
    +        ----------
    +        level : int, string, or list of these, default -1 (last level)
    +            Level(s) of index to unstack, can pass level name
    +        fill_value : replace NaN with this value if the unstack produces
    +            missing values
    +
    +            .. versionadded:: 0.18.0
    +
    +        Returns
    +        -------
    +        Series or DataFrame
    +
    +        See Also
    +        --------
    +        DataFrame.pivot : Pivot a table based on column values.
    +        DataFrame.stack : Pivot a level of the column labels (inverse operation
    +            from `unstack`).
    +
    +        Examples
    +        --------
    +        >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'),
    +        ...                                    ('two', 'a'), ('two', 'b')])
    +        >>> s = pd.Series(np.arange(1.0, 5.0), index=index)
    +        >>> s
    +        one  a   1.0
    +             b   2.0
    +        two  a   3.0
    +             b   4.0
    +        dtype: float64
    +
    +        >>> s.unstack(level=-1)
    +             a   b
    +        one  1.0  2.0
    +        two  3.0  4.0
    +
    +        >>> s.unstack(level=0)
    +           one  two
    +        a  1.0   3.0
    +        b  2.0   4.0
    +
    +        >>> df = s.unstack(level=0)
    +        >>> df.unstack()
    +        one  a  1.0
    +             b  2.0
    +        two  a  3.0
    +             b  4.0
    +        dtype: float64
    +        """
    +        from pandas.core.reshape.reshape import unstack
    +
    +        return unstack(self, level, fill_value)
    +
    +    _shared_docs[
    +        "melt"
    +    ] = """
    +    Unpivot a DataFrame from wide format to long format, optionally
    +    leaving identifier variables set.
    +
    +    This function is useful to massage a DataFrame into a format where one
    +    or more columns are identifier variables (`id_vars`), while all other
    +    columns, considered measured variables (`value_vars`), are "unpivoted" to
    +    the row axis, leaving just two non-identifier columns, 'variable' and
    +    'value'.
    +    %(versionadded)s
    +    Parameters
    +    ----------
    +    frame : DataFrame
    +    id_vars : tuple, list, or ndarray, optional
    +        Column(s) to use as identifier variables.
    +    value_vars : tuple, list, or ndarray, optional
    +        Column(s) to unpivot. If not specified, uses all columns that
    +        are not set as `id_vars`.
    +    var_name : scalar
    +        Name to use for the 'variable' column. If None it uses
    +        ``frame.columns.name`` or 'variable'.
    +    value_name : scalar, default 'value'
    +        Name to use for the 'value' column.
    +    col_level : int or string, optional
    +        If columns are a MultiIndex then use this level to melt.
    +
    +    Returns
    +    -------
    +    DataFrame
    +        Unpivoted DataFrame.
    +
    +    See Also
    +    --------
    +    %(other)s
    +    pivot_table
    +    DataFrame.pivot
    +    Series.explode
    +
    +    Examples
    +    --------
    +    >>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'},
    +    ...                    'B': {0: 1, 1: 3, 2: 5},
    +    ...                    'C': {0: 2, 1: 4, 2: 6}})
    +    >>> df
    +       A  B  C
    +    0  a  1  2
    +    1  b  3  4
    +    2  c  5  6
    +
    +    >>> %(caller)sid_vars=['A'], value_vars=['B'])
    +       A variable  value
    +    0  a        B      1
    +    1  b        B      3
    +    2  c        B      5
    +
    +    >>> %(caller)sid_vars=['A'], value_vars=['B', 'C'])
    +       A variable  value
    +    0  a        B      1
    +    1  b        B      3
    +    2  c        B      5
    +    3  a        C      2
    +    4  b        C      4
    +    5  c        C      6
    +
    +    The names of 'variable' and 'value' columns can be customized:
    +
    +    >>> %(caller)sid_vars=['A'], value_vars=['B'],
    +    ...         var_name='myVarname', value_name='myValname')
    +       A myVarname  myValname
    +    0  a         B          1
    +    1  b         B          3
    +    2  c         B          5
    +
    +    If you have multi-index columns:
    +
    +    >>> df.columns = [list('ABC'), list('DEF')]
    +    >>> df
    +       A  B  C
    +       D  E  F
    +    0  a  1  2
    +    1  b  3  4
    +    2  c  5  6
    +
    +    >>> %(caller)scol_level=0, id_vars=['A'], value_vars=['B'])
    +       A variable  value
    +    0  a        B      1
    +    1  b        B      3
    +    2  c        B      5
    +
    +    >>> %(caller)sid_vars=[('A', 'D')], value_vars=[('B', 'E')])
    +      (A, D) variable_0 variable_1  value
    +    0      a          B          E      1
    +    1      b          B          E      3
    +    2      c          B          E      5
    +    """
    +
    +    @Appender(
    +        _shared_docs["melt"]
    +        % dict(
    +            caller="df.melt(", versionadded=".. versionadded:: 0.20.0\n", other="melt"
    +        )
    +    )
    +    def melt(
    +        self,
    +        id_vars=None,
    +        value_vars=None,
    +        var_name=None,
    +        value_name="value",
    +        col_level=None,
    +    ):
    +        from pandas.core.reshape.melt import melt
    +
    +        return melt(
    +            self,
    +            id_vars=id_vars,
    +            value_vars=value_vars,
    +            var_name=var_name,
    +            value_name=value_name,
    +            col_level=col_level,
    +        )
    +
    +    # ----------------------------------------------------------------------
    +    # Time series-related
    +
    +    def diff(self, periods=1, axis=0):
    +        """
    +        First discrete difference of element.
    +
    +        Calculates the difference of a DataFrame element compared with another
    +        element in the DataFrame (default is the element in the same column
    +        of the previous row).
    +
    +        Parameters
    +        ----------
    +        periods : int, default 1
    +            Periods to shift for calculating difference, accepts negative
    +            values.
    +        axis : {0 or 'index', 1 or 'columns'}, default 0
    +            Take difference over rows (0) or columns (1).
    +
    +            .. versionadded:: 0.16.1.
    +
    +        Returns
    +        -------
    +        DataFrame
    +
    +        See Also
    +        --------
    +        Series.diff: First discrete difference for a Series.
    +        DataFrame.pct_change: Percent change over given number of periods.
    +        DataFrame.shift: Shift index by desired number of periods with an
    +            optional time freq.
    +
    +        Examples
    +        --------
    +        Difference with previous row
    +
    +        >>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6],
    +        ...                    'b': [1, 1, 2, 3, 5, 8],
    +        ...                    'c': [1, 4, 9, 16, 25, 36]})
    +        >>> df
    +           a  b   c
    +        0  1  1   1
    +        1  2  1   4
    +        2  3  2   9
    +        3  4  3  16
    +        4  5  5  25
    +        5  6  8  36
    +
    +        >>> df.diff()
    +             a    b     c
    +        0  NaN  NaN   NaN
    +        1  1.0  0.0   3.0
    +        2  1.0  1.0   5.0
    +        3  1.0  1.0   7.0
    +        4  1.0  2.0   9.0
    +        5  1.0  3.0  11.0
    +
    +        Difference with previous column
    +
    +        >>> df.diff(axis=1)
    +            a    b     c
    +        0 NaN  0.0   0.0
    +        1 NaN -1.0   3.0
    +        2 NaN -1.0   7.0
    +        3 NaN -1.0  13.0
    +        4 NaN  0.0  20.0
    +        5 NaN  2.0  28.0
    +
    +        Difference with 3rd previous row
    +
    +        >>> df.diff(periods=3)
    +             a    b     c
    +        0  NaN  NaN   NaN
    +        1  NaN  NaN   NaN
    +        2  NaN  NaN   NaN
    +        3  3.0  2.0  15.0
    +        4  3.0  4.0  21.0
    +        5  3.0  6.0  27.0
    +
    +        Difference with following row
    +
    +        >>> df.diff(periods=-1)
    +             a    b     c
    +        0 -1.0  0.0  -3.0
    +        1 -1.0 -1.0  -5.0
    +        2 -1.0 -1.0  -7.0
    +        3 -1.0 -2.0  -9.0
    +        4 -1.0 -3.0 -11.0
    +        5  NaN  NaN   NaN
    +        """
    +        bm_axis = self._get_block_manager_axis(axis)
    +        new_data = self._data.diff(n=periods, axis=bm_axis)
    +        return self._constructor(new_data)
    +
    +    # ----------------------------------------------------------------------
    +    # Function application
    +
    +    def _gotitem(
    +        self,
    +        key: Union[str, List[str]],
    +        ndim: int,
    +        subset: Optional[Union[Series, ABCDataFrame]] = None,
    +    ) -> Union[Series, ABCDataFrame]:
    +        """
    +        Sub-classes to define. Return a sliced object.
    +
    +        Parameters
    +        ----------
    +        key : string / list of selections
    +        ndim : 1,2
    +            requested ndim of result
    +        subset : object, default None
    +            subset to act on
    +        """
    +        if subset is None:
    +            subset = self
    +        elif subset.ndim == 1:  # is Series
    +            return subset
    +
    +        # TODO: _shallow_copy(subset)?
    +        return subset[key]
    +
    +    _agg_summary_and_see_also_doc = dedent(
    +        """
    +    The aggregation operations are always performed over an axis, either the
    +    index (default) or the column axis. This behavior is different from
    +    `numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`,
    +    `var`), where the default is to compute the aggregation of the flattened
    +    array, e.g., ``numpy.mean(arr_2d)`` as opposed to
    +    ``numpy.mean(arr_2d, axis=0)``.
    +
    +    `agg` is an alias for `aggregate`. Use the alias.
    +
    +    See Also
    +    --------
    +    DataFrame.apply : Perform any type of operations.
    +    DataFrame.transform : Perform transformation type operations.
    +    core.groupby.GroupBy : Perform operations over groups.
    +    core.resample.Resampler : Perform operations over resampled bins.
    +    core.window.Rolling : Perform operations over rolling window.
    +    core.window.Expanding : Perform operations over expanding window.
    +    core.window.EWM : Perform operation over exponential weighted
    +        window.
    +    """
    +    )
    +
    +    _agg_examples_doc = dedent(
    +        """
    +    Examples
    +    --------
    +    >>> df = pd.DataFrame([[1, 2, 3],
    +    ...                    [4, 5, 6],
    +    ...                    [7, 8, 9],
    +    ...                    [np.nan, np.nan, np.nan]],
    +    ...                   columns=['A', 'B', 'C'])
    +
    +    Aggregate these functions over the rows.
    +
    +    >>> df.agg(['sum', 'min'])
    +            A     B     C
    +    sum  12.0  15.0  18.0
    +    min   1.0   2.0   3.0
    +
    +    Different aggregations per column.
    +
    +    >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})
    +            A    B
    +    max   NaN  8.0
    +    min   1.0  2.0
    +    sum  12.0  NaN
    +
    +    Aggregate over the columns.
    +
    +    >>> df.agg("mean", axis="columns")
    +    0    2.0
    +    1    5.0
    +    2    8.0
    +    3    NaN
    +    dtype: float64
    +    """
    +    )
    +
    +    @Substitution(
    +        see_also=_agg_summary_and_see_also_doc,
    +        examples=_agg_examples_doc,
    +        versionadded="\n.. versionadded:: 0.20.0\n",
    +        **_shared_doc_kwargs
    +    )
    +    @Appender(_shared_docs["aggregate"])
    +    def aggregate(self, func, axis=0, *args, **kwargs):
    +        axis = self._get_axis_number(axis)
    +
    +        result = None
    +        try:
    +            result, how = self._aggregate(func, axis=axis, *args, **kwargs)
    +        except TypeError:
    +            pass
    +        if result is None:
    +            return self.apply(func, axis=axis, args=args, **kwargs)
    +        return result
    +
    +    def _aggregate(self, arg, axis=0, *args, **kwargs):
    +        if axis == 1:
    +            # NDFrame.aggregate returns a tuple, and we need to transpose
    +            # only result
    +            result, how = self.T._aggregate(arg, *args, **kwargs)
    +            result = result.T if result is not None else result
    +            return result, how
    +        return super()._aggregate(arg, *args, **kwargs)
    +
    +    agg = aggregate
    +
    +    @Appender(_shared_docs["transform"] % _shared_doc_kwargs)
    +    def transform(self, func, axis=0, *args, **kwargs):
    +        axis = self._get_axis_number(axis)
    +        if axis == 1:
    +            return self.T.transform(func, *args, **kwargs).T
    +        return super().transform(func, *args, **kwargs)
    +
    +    def apply(
    +        self,
    +        func,
    +        axis=0,
    +        broadcast=None,
    +        raw=False,
    +        reduce=None,
    +        result_type=None,
    +        args=(),
    +        **kwds
    +    ):
    +        """
    +        Apply a function along an axis of the DataFrame.
    +
    +        Objects passed to the function are Series objects whose index is
    +        either the DataFrame's index (``axis=0``) or the DataFrame's columns
    +        (``axis=1``). By default (``result_type=None``), the final return type
    +        is inferred from the return type of the applied function. Otherwise,
    +        it depends on the `result_type` argument.
    +
    +        Parameters
    +        ----------
    +        func : function
    +            Function to apply to each column or row.
    +        axis : {0 or 'index', 1 or 'columns'}, default 0
    +            Axis along which the function is applied:
    +
    +            * 0 or 'index': apply function to each column.
    +            * 1 or 'columns': apply function to each row.
    +        broadcast : bool, optional
    +            Only relevant for aggregation functions:
    +
    +            * ``False`` or ``None`` : returns a Series whose length is the
    +              length of the index or the number of columns (based on the
    +              `axis` parameter)
    +            * ``True`` : results will be broadcast to the original shape
    +              of the frame, the original index and columns will be retained.
    +
    +            .. deprecated:: 0.23.0
    +               This argument will be removed in a future version, replaced
    +               by result_type='broadcast'.
    +
    +        raw : bool, default False
    +            * ``False`` : passes each row or column as a Series to the
    +              function.
    +            * ``True`` : the passed function will receive ndarray objects
    +              instead.
    +              If you are just applying a NumPy reduction function this will
    +              achieve much better performance.
    +        reduce : bool or None, default None
    +            Try to apply reduction procedures. If the DataFrame is empty,
    +            `apply` will use `reduce` to determine whether the result
    +            should be a Series or a DataFrame. If ``reduce=None`` (the
    +            default), `apply`'s return value will be guessed by calling
    +            `func` on an empty Series
    +            (note: while guessing, exceptions raised by `func` will be
    +            ignored).
    +            If ``reduce=True`` a Series will always be returned, and if
    +            ``reduce=False`` a DataFrame will always be returned.
    +
    +            .. deprecated:: 0.23.0
    +               This argument will be removed in a future version, replaced
    +               by ``result_type='reduce'``.
    +
    +        result_type : {'expand', 'reduce', 'broadcast', None}, default None
    +            These only act when ``axis=1`` (columns):
    +
    +            * 'expand' : list-like results will be turned into columns.
    +            * 'reduce' : returns a Series if possible rather than expanding
    +              list-like results. This is the opposite of 'expand'.
    +            * 'broadcast' : results will be broadcast to the original shape
    +              of the DataFrame, the original index and columns will be
    +              retained.
    +
    +            The default behaviour (None) depends on the return value of the
    +            applied function: list-like results will be returned as a Series
    +            of those. However if the apply function returns a Series these
    +            are expanded to columns.
    +
    +            .. versionadded:: 0.23.0
    +
    +        args : tuple
    +            Positional arguments to pass to `func` in addition to the
    +            array/series.
    +        **kwds
    +            Additional keyword arguments to pass as keywords arguments to
    +            `func`.
    +
    +        Returns
    +        -------
    +        Series or DataFrame
    +            Result of applying ``func`` along the given axis of the
    +            DataFrame.
    +
    +        See Also
    +        --------
    +        DataFrame.applymap: For elementwise operations.
    +        DataFrame.aggregate: Only perform aggregating type operations.
    +        DataFrame.transform: Only perform transforming type operations.
    +
    +        Notes
    +        -----
    +        In the current implementation apply calls `func` twice on the
    +        first column/row to decide whether it can take a fast or slow
    +        code path. This can lead to unexpected behavior if `func` has
    +        side-effects, as they will take effect twice for the first
    +        column/row.
    +
    +        Examples
    +        --------
    +
    +        >>> df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B'])
    +        >>> df
    +           A  B
    +        0  4  9
    +        1  4  9
    +        2  4  9
    +
    +        Using a numpy universal function (in this case the same as
    +        ``np.sqrt(df)``):
    +
    +        >>> df.apply(np.sqrt)
    +             A    B
    +        0  2.0  3.0
    +        1  2.0  3.0
    +        2  2.0  3.0
    +
    +        Using a reducing function on either axis
    +
    +        >>> df.apply(np.sum, axis=0)
    +        A    12
    +        B    27
    +        dtype: int64
    +
    +        >>> df.apply(np.sum, axis=1)
    +        0    13
    +        1    13
    +        2    13
    +        dtype: int64
    +
    +        Returning a list-like will result in a Series
    +
    +        >>> df.apply(lambda x: [1, 2], axis=1)
    +        0    [1, 2]
    +        1    [1, 2]
    +        2    [1, 2]
    +        dtype: object
    +
    +        Passing result_type='expand' will expand list-like results
    +        to columns of a Dataframe
    +
    +        >>> df.apply(lambda x: [1, 2], axis=1, result_type='expand')
    +           0  1
    +        0  1  2
    +        1  1  2
    +        2  1  2
    +
    +        Returning a Series inside the function is similar to passing
    +        ``result_type='expand'``. The resulting column names
    +        will be the Series index.
    +
    +        >>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1)
    +           foo  bar
    +        0    1    2
    +        1    1    2
    +        2    1    2
    +
    +        Passing ``result_type='broadcast'`` will ensure the same shape
    +        result, whether list-like or scalar is returned by the function,
    +        and broadcast it along the axis. The resulting column names will
    +        be the originals.
    +
    +        >>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast')
    +           A  B
    +        0  1  2
    +        1  1  2
    +        2  1  2
    +        """
    +        from pandas.core.apply import frame_apply
    +
    +        op = frame_apply(
    +            self,
    +            func=func,
    +            axis=axis,
    +            broadcast=broadcast,
    +            raw=raw,
    +            reduce=reduce,
    +            result_type=result_type,
    +            args=args,
    +            kwds=kwds,
    +        )
    +        return op.get_result()
    +
    +    def applymap(self, func):
    +        """
    +        Apply a function to a Dataframe elementwise.
    +
    +        This method applies a function that accepts and returns a scalar
    +        to every element of a DataFrame.
    +
    +        Parameters
    +        ----------
    +        func : callable
    +            Python function, returns a single value from a single value.
    +
    +        Returns
    +        -------
    +        DataFrame
    +            Transformed DataFrame.
    +
    +        See Also
    +        --------
    +        DataFrame.apply : Apply a function along input axis of DataFrame.
    +
    +        Notes
    +        -----
    +        In the current implementation applymap calls `func` twice on the
    +        first column/row to decide whether it can take a fast or slow
    +        code path. This can lead to unexpected behavior if `func` has
    +        side-effects, as they will take effect twice for the first
    +        column/row.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]])
    +        >>> df
    +               0      1
    +        0  1.000  2.120
    +        1  3.356  4.567
    +
    +        >>> df.applymap(lambda x: len(str(x)))
    +           0  1
    +        0  3  4
    +        1  5  5
    +
    +        Note that a vectorized version of `func` often exists, which will
    +        be much faster. You could square each number elementwise.
    +
    +        >>> df.applymap(lambda x: x**2)
    +                   0          1
    +        0   1.000000   4.494400
    +        1  11.262736  20.857489
    +
    +        But it's better to avoid applymap in that case.
    +
    +        >>> df ** 2
    +                   0          1
    +        0   1.000000   4.494400
    +        1  11.262736  20.857489
    +        """
    +
    +        # if we have a dtype == 'M8[ns]', provide boxed values
    +        def infer(x):
    +            if x.empty:
    +                return lib.map_infer(x, func)
    +            return lib.map_infer(x.astype(object).values, func)
    +
    +        return self.apply(infer)
    +
    +    # ----------------------------------------------------------------------
    +    # Merging / joining methods
    +
    +    def append(self, other, ignore_index=False, verify_integrity=False, sort=None):
    +        """
    +        Append rows of `other` to the end of caller, returning a new object.
    +
    +        Columns in `other` that are not in the caller are added as new columns.
    +
    +        Parameters
    +        ----------
    +        other : DataFrame or Series/dict-like object, or list of these
    +            The data to append.
    +        ignore_index : boolean, default False
    +            If True, do not use the index labels.
    +        verify_integrity : boolean, default False
    +            If True, raise ValueError on creating index with duplicates.
    +        sort : boolean, default None
    +            Sort columns if the columns of `self` and `other` are not aligned.
    +            The default sorting is deprecated and will change to not-sorting
    +            in a future version of pandas. Explicitly pass ``sort=True`` to
    +            silence the warning and sort. Explicitly pass ``sort=False`` to
    +            silence the warning and not sort.
    +
    +            .. versionadded:: 0.23.0
    +
    +        Returns
    +        -------
    +        DataFrame
    +
    +        See Also
    +        --------
    +        concat : General function to concatenate DataFrame or Series objects.
    +
    +        Notes
    +        -----
    +        If a list of dict/series is passed and the keys are all contained in
    +        the DataFrame's index, the order of the columns in the resulting
    +        DataFrame will be unchanged.
    +
    +        Iteratively appending rows to a DataFrame can be more computationally
    +        intensive than a single concatenate. A better solution is to append
    +        those rows to a list and then concatenate the list with the original
    +        DataFrame all at once.
    +
    +        Examples
    +        --------
    +
    +        >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
    +        >>> df
    +           A  B
    +        0  1  2
    +        1  3  4
    +        >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
    +        >>> df.append(df2)
    +           A  B
    +        0  1  2
    +        1  3  4
    +        0  5  6
    +        1  7  8
    +
    +        With `ignore_index` set to True:
    +
    +        >>> df.append(df2, ignore_index=True)
    +           A  B
    +        0  1  2
    +        1  3  4
    +        2  5  6
    +        3  7  8
    +
    +        The following, while not recommended methods for generating DataFrames,
    +        show two ways to generate a DataFrame from multiple data sources.
    +
    +        Less efficient:
    +
    +        >>> df = pd.DataFrame(columns=['A'])
    +        >>> for i in range(5):
    +        ...     df = df.append({'A': i}, ignore_index=True)
    +        >>> df
    +           A
    +        0  0
    +        1  1
    +        2  2
    +        3  3
    +        4  4
    +
    +        More efficient:
    +
    +        >>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)],
    +        ...           ignore_index=True)
    +           A
    +        0  0
    +        1  1
    +        2  2
    +        3  3
    +        4  4
    +        """
    +        if isinstance(other, (Series, dict)):
    +            if isinstance(other, dict):
    +                other = Series(other)
    +            if other.name is None and not ignore_index:
    +                raise TypeError(
    +                    "Can only append a Series if ignore_index=True"
    +                    " or if the Series has a name"
    +                )
    +
    +            if other.name is None:
    +                index = None
    +            else:
    +                # other must have the same index name as self, otherwise
    +                # index name will be reset
    +                index = Index([other.name], name=self.index.name)
    +
    +            idx_diff = other.index.difference(self.columns)
    +            try:
    +                combined_columns = self.columns.append(idx_diff)
    +            except TypeError:
    +                combined_columns = self.columns.astype(object).append(idx_diff)
    +            other = other.reindex(combined_columns, copy=False)
    +            other = DataFrame(
    +                other.values.reshape((1, len(other))),
    +                index=index,
    +                columns=combined_columns,
    +            )
    +            other = other._convert(datetime=True, timedelta=True)
    +            if not self.columns.equals(combined_columns):
    +                self = self.reindex(columns=combined_columns)
    +        elif isinstance(other, list) and not isinstance(other[0], DataFrame):
    +            other = DataFrame(other)
    +            if (self.columns.get_indexer(other.columns) >= 0).all():
    +                other = other.reindex(columns=self.columns)
    +
    +        from pandas.core.reshape.concat import concat
    +
    +        if isinstance(other, (list, tuple)):
    +            to_concat = [self] + other
    +        else:
    +            to_concat = [self, other]
    +        return concat(
    +            to_concat,
    +            ignore_index=ignore_index,
    +            verify_integrity=verify_integrity,
    +            sort=sort,
    +        )
    +
    +    def join(self, other, on=None, how="left", lsuffix="", rsuffix="", sort=False):
    +        """
    +        Join columns of another DataFrame.
    +
    +        Join columns with `other` DataFrame either on index or on a key
    +        column. Efficiently join multiple DataFrame objects by index at once by
    +        passing a list.
    +
    +        Parameters
    +        ----------
    +        other : DataFrame, Series, or list of DataFrame
    +            Index should be similar to one of the columns in this one. If a
    +            Series is passed, its name attribute must be set, and that will be
    +            used as the column name in the resulting joined DataFrame.
    +        on : str, list of str, or array-like, optional
    +            Column or index level name(s) in the caller to join on the index
    +            in `other`, otherwise joins index-on-index. If multiple
    +            values given, the `other` DataFrame must have a MultiIndex. Can
    +            pass an array as the join key if it is not already contained in
    +            the calling DataFrame. Like an Excel VLOOKUP operation.
    +        how : {'left', 'right', 'outer', 'inner'}, default 'left'
    +            How to handle the operation of the two objects.
    +
    +            * left: use calling frame's index (or column if on is specified)
    +            * right: use `other`'s index.
    +            * outer: form union of calling frame's index (or column if on is
    +              specified) with `other`'s index, and sort it.
    +              lexicographically.
    +            * inner: form intersection of calling frame's index (or column if
    +              on is specified) with `other`'s index, preserving the order
    +              of the calling's one.
    +        lsuffix : str, default ''
    +            Suffix to use from left frame's overlapping columns.
    +        rsuffix : str, default ''
    +            Suffix to use from right frame's overlapping columns.
    +        sort : bool, default False
    +            Order result DataFrame lexicographically by the join key. If False,
    +            the order of the join key depends on the join type (how keyword).
    +
    +        Returns
    +        -------
    +        DataFrame
    +            A dataframe containing columns from both the caller and `other`.
    +
    +        See Also
    +        --------
    +        DataFrame.merge : For column(s)-on-columns(s) operations.
    +
    +        Notes
    +        -----
    +        Parameters `on`, `lsuffix`, and `rsuffix` are not supported when
    +        passing a list of `DataFrame` objects.
    +
    +        Support for specifying index levels as the `on` parameter was added
    +        in version 0.23.0.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
    +        ...                    'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
    +
    +        >>> df
    +          key   A
    +        0  K0  A0
    +        1  K1  A1
    +        2  K2  A2
    +        3  K3  A3
    +        4  K4  A4
    +        5  K5  A5
    +
    +        >>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
    +        ...                       'B': ['B0', 'B1', 'B2']})
    +
    +        >>> other
    +          key   B
    +        0  K0  B0
    +        1  K1  B1
    +        2  K2  B2
    +
    +        Join DataFrames using their indexes.
    +
    +        >>> df.join(other, lsuffix='_caller', rsuffix='_other')
    +          key_caller   A key_other    B
    +        0         K0  A0        K0   B0
    +        1         K1  A1        K1   B1
    +        2         K2  A2        K2   B2
    +        3         K3  A3       NaN  NaN
    +        4         K4  A4       NaN  NaN
    +        5         K5  A5       NaN  NaN
    +
    +        If we want to join using the key columns, we need to set key to be
    +        the index in both `df` and `other`. The joined DataFrame will have
    +        key as its index.
    +
    +        >>> df.set_index('key').join(other.set_index('key'))
    +              A    B
    +        key
    +        K0   A0   B0
    +        K1   A1   B1
    +        K2   A2   B2
    +        K3   A3  NaN
    +        K4   A4  NaN
    +        K5   A5  NaN
    +
    +        Another option to join using the key columns is to use the `on`
    +        parameter. DataFrame.join always uses `other`'s index but we can use
    +        any column in `df`. This method preserves the original DataFrame's
    +        index in the result.
    +
    +        >>> df.join(other.set_index('key'), on='key')
    +          key   A    B
    +        0  K0  A0   B0
    +        1  K1  A1   B1
    +        2  K2  A2   B2
    +        3  K3  A3  NaN
    +        4  K4  A4  NaN
    +        5  K5  A5  NaN
    +        """
    +        # For SparseDataFrame's benefit
    +        return self._join_compat(
    +            other, on=on, how=how, lsuffix=lsuffix, rsuffix=rsuffix, sort=sort
    +        )
    +
    +    def _join_compat(
    +        self, other, on=None, how="left", lsuffix="", rsuffix="", sort=False
    +    ):
    +        from pandas.core.reshape.merge import merge
    +        from pandas.core.reshape.concat import concat
    +
    +        if isinstance(other, Series):
    +            if other.name is None:
    +                raise ValueError("Other Series must have a name")
    +            other = DataFrame({other.name: other})
    +
    +        if isinstance(other, DataFrame):
    +            return merge(
    +                self,
    +                other,
    +                left_on=on,
    +                how=how,
    +                left_index=on is None,
    +                right_index=True,
    +                suffixes=(lsuffix, rsuffix),
    +                sort=sort,
    +            )
    +        else:
    +            if on is not None:
    +                raise ValueError(
    +                    "Joining multiple DataFrames only supported" " for joining on index"
    +                )
    +
    +            frames = [self] + list(other)
    +
    +            can_concat = all(df.index.is_unique for df in frames)
    +
    +            # join indexes only using concat
    +            if can_concat:
    +                if how == "left":
    +                    res = concat(frames, axis=1, join="outer", verify_integrity=True)
    +                    return res.reindex(self.index, copy=False)
    +                else:
    +                    return concat(frames, axis=1, join=how, verify_integrity=True)
    +
    +            joined = frames[0]
    +
    +            for frame in frames[1:]:
    +                joined = merge(
    +                    joined, frame, how=how, left_index=True, right_index=True
    +                )
    +
    +            return joined
    +
    +    @Substitution("")
    +    @Appender(_merge_doc, indents=2)
    +    def merge(
    +        self,
    +        right,
    +        how="inner",
    +        on=None,
    +        left_on=None,
    +        right_on=None,
    +        left_index=False,
    +        right_index=False,
    +        sort=False,
    +        suffixes=("_x", "_y"),
    +        copy=True,
    +        indicator=False,
    +        validate=None,
    +    ):
    +        from pandas.core.reshape.merge import merge
    +
    +        return merge(
    +            self,
    +            right,
    +            how=how,
    +            on=on,
    +            left_on=left_on,
    +            right_on=right_on,
    +            left_index=left_index,
    +            right_index=right_index,
    +            sort=sort,
    +            suffixes=suffixes,
    +            copy=copy,
    +            indicator=indicator,
    +            validate=validate,
    +        )
    +
    +    def round(self, decimals=0, *args, **kwargs):
    +        """
    +        Round a DataFrame to a variable number of decimal places.
    +
    +        Parameters
    +        ----------
    +        decimals : int, dict, Series
    +            Number of decimal places to round each column to. If an int is
    +            given, round each column to the same number of places.
    +            Otherwise dict and Series round to variable numbers of places.
    +            Column names should be in the keys if `decimals` is a
    +            dict-like, or in the index if `decimals` is a Series. Any
    +            columns not included in `decimals` will be left as is. Elements
    +            of `decimals` which are not columns of the input will be
    +            ignored.
    +        *args
    +            Additional keywords have no effect but might be accepted for
    +            compatibility with numpy.
    +        **kwargs
    +            Additional keywords have no effect but might be accepted for
    +            compatibility with numpy.
    +
    +        Returns
    +        -------
    +        DataFrame
    +            A DataFrame with the affected columns rounded to the specified
    +            number of decimal places.
    +
    +        See Also
    +        --------
    +        numpy.around : Round a numpy array to the given number of decimals.
    +        Series.round : Round a Series to the given number of decimals.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame([(.21, .32), (.01, .67), (.66, .03), (.21, .18)],
    +        ...                   columns=['dogs', 'cats'])
    +        >>> df
    +            dogs  cats
    +        0  0.21  0.32
    +        1  0.01  0.67
    +        2  0.66  0.03
    +        3  0.21  0.18
    +
    +        By providing an integer each column is rounded to the same number
    +        of decimal places
    +
    +        >>> df.round(1)
    +            dogs  cats
    +        0   0.2   0.3
    +        1   0.0   0.7
    +        2   0.7   0.0
    +        3   0.2   0.2
    +
    +        With a dict, the number of places for specific columns can be
    +        specified with the column names as key and the number of decimal
    +        places as value
    +
    +        >>> df.round({'dogs': 1, 'cats': 0})
    +            dogs  cats
    +        0   0.2   0.0
    +        1   0.0   1.0
    +        2   0.7   0.0
    +        3   0.2   0.0
    +
    +        Using a Series, the number of places for specific columns can be
    +        specified with the column names as index and the number of
    +        decimal places as value
    +
    +        >>> decimals = pd.Series([0, 1], index=['cats', 'dogs'])
    +        >>> df.round(decimals)
    +            dogs  cats
    +        0   0.2   0.0
    +        1   0.0   1.0
    +        2   0.7   0.0
    +        3   0.2   0.0
    +        """
    +        from pandas.core.reshape.concat import concat
    +
    +        def _dict_round(df, decimals):
    +            for col, vals in df.items():
    +                try:
    +                    yield _series_round(vals, decimals[col])
    +                except KeyError:
    +                    yield vals
    +
    +        def _series_round(s, decimals):
    +            if is_integer_dtype(s) or is_float_dtype(s):
    +                return s.round(decimals)
    +            return s
    +
    +        nv.validate_round(args, kwargs)
    +
    +        if isinstance(decimals, (dict, Series)):
    +            if isinstance(decimals, Series):
    +                if not decimals.index.is_unique:
    +                    raise ValueError("Index of decimals must be unique")
    +            new_cols = [col for col in _dict_round(self, decimals)]
    +        elif is_integer(decimals):
    +            # Dispatch to Series.round
    +            new_cols = [_series_round(v, decimals) for _, v in self.items()]
    +        else:
    +            raise TypeError("decimals must be an integer, a dict-like or a " "Series")
    +
    +        if len(new_cols) > 0:
    +            return self._constructor(
    +                concat(new_cols, axis=1), index=self.index, columns=self.columns
    +            )
    +        else:
    +            return self
    +
    +    # ----------------------------------------------------------------------
    +    # Statistical methods, etc.
    +
    +    def corr(self, method="pearson", min_periods=1):
    +        """
    +        Compute pairwise correlation of columns, excluding NA/null values.
    +
    +        Parameters
    +        ----------
    +        method : {'pearson', 'kendall', 'spearman'} or callable
    +            * pearson : standard correlation coefficient
    +            * kendall : Kendall Tau correlation coefficient
    +            * spearman : Spearman rank correlation
    +            * callable: callable with input two 1d ndarrays
    +                and returning a float. Note that the returned matrix from corr
    +                will have 1 along the diagonals and will be symmetric
    +                regardless of the callable's behavior
    +                .. versionadded:: 0.24.0
    +
    +        min_periods : int, optional
    +            Minimum number of observations required per pair of columns
    +            to have a valid result. Currently only available for Pearson
    +            and Spearman correlation.
    +
    +        Returns
    +        -------
    +        DataFrame
    +            Correlation matrix.
    +
    +        See Also
    +        --------
    +        DataFrame.corrwith
    +        Series.corr
    +
    +        Examples
    +        --------
    +        >>> def histogram_intersection(a, b):
    +        ...     v = np.minimum(a, b).sum().round(decimals=1)
    +        ...     return v
    +        >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)],
    +        ...                   columns=['dogs', 'cats'])
    +        >>> df.corr(method=histogram_intersection)
    +              dogs  cats
    +        dogs   1.0   0.3
    +        cats   0.3   1.0
    +        """
    +        numeric_df = self._get_numeric_data()
    +        cols = numeric_df.columns
    +        idx = cols.copy()
    +        mat = numeric_df.values
    +
    +        if method == "pearson":
    +            correl = libalgos.nancorr(ensure_float64(mat), minp=min_periods)
    +        elif method == "spearman":
    +            correl = libalgos.nancorr_spearman(ensure_float64(mat), minp=min_periods)
    +        elif method == "kendall" or callable(method):
    +            if min_periods is None:
    +                min_periods = 1
    +            mat = ensure_float64(mat).T
    +            corrf = nanops.get_corr_func(method)
    +            K = len(cols)
    +            correl = np.empty((K, K), dtype=float)
    +            mask = np.isfinite(mat)
    +            for i, ac in enumerate(mat):
    +                for j, bc in enumerate(mat):
    +                    if i > j:
    +                        continue
    +
    +                    valid = mask[i] & mask[j]
    +                    if valid.sum() < min_periods:
    +                        c = np.nan
    +                    elif i == j:
    +                        c = 1.0
    +                    elif not valid.all():
    +                        c = corrf(ac[valid], bc[valid])
    +                    else:
    +                        c = corrf(ac, bc)
    +                    correl[i, j] = c
    +                    correl[j, i] = c
    +        else:
    +            raise ValueError(
    +                "method must be either 'pearson', "
    +                "'spearman', 'kendall', or a callable, "
    +                "'{method}' was supplied".format(method=method)
    +            )
    +
    +        return self._constructor(correl, index=idx, columns=cols)
    +
    +    def cov(self, min_periods=None):
    +        """
    +        Compute pairwise covariance of columns, excluding NA/null values.
    +
    +        Compute the pairwise covariance among the series of a DataFrame.
    +        The returned data frame is the `covariance matrix
    +        <https://en.wikipedia.org/wiki/Covariance_matrix>`__ of the columns
    +        of the DataFrame.
    +
    +        Both NA and null values are automatically excluded from the
    +        calculation. (See the note below about bias from missing values.)
    +        A threshold can be set for the minimum number of
    +        observations for each value created. Comparisons with observations
    +        below this threshold will be returned as ``NaN``.
    +
    +        This method is generally used for the analysis of time series data to
    +        understand the relationship between different measures
    +        across time.
    +
    +        Parameters
    +        ----------
    +        min_periods : int, optional
    +            Minimum number of observations required per pair of columns
    +            to have a valid result.
    +
    +        Returns
    +        -------
    +        DataFrame
    +            The covariance matrix of the series of the DataFrame.
    +
    +        See Also
    +        --------
    +        Series.cov : Compute covariance with another Series.
    +        core.window.EWM.cov: Exponential weighted sample covariance.
    +        core.window.Expanding.cov : Expanding sample covariance.
    +        core.window.Rolling.cov : Rolling sample covariance.
    +
    +        Notes
    +        -----
    +        Returns the covariance matrix of the DataFrame's time series.
    +        The covariance is normalized by N-1.
    +
    +        For DataFrames that have Series that are missing data (assuming that
    +        data is `missing at random
    +        <https://en.wikipedia.org/wiki/Missing_data#Missing_at_random>`__)
    +        the returned covariance matrix will be an unbiased estimate
    +        of the variance and covariance between the member Series.
    +
    +        However, for many applications this estimate may not be acceptable
    +        because the estimate covariance matrix is not guaranteed to be positive
    +        semi-definite. This could lead to estimate correlations having
    +        absolute values which are greater than one, and/or a non-invertible
    +        covariance matrix. See `Estimation of covariance matrices
    +        <http://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_
    +        matrices>`__ for more details.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)],
    +        ...                   columns=['dogs', 'cats'])
    +        >>> df.cov()
    +                  dogs      cats
    +        dogs  0.666667 -1.000000
    +        cats -1.000000  1.666667
    +
    +        >>> np.random.seed(42)
    +        >>> df = pd.DataFrame(np.random.randn(1000, 5),
    +        ...                   columns=['a', 'b', 'c', 'd', 'e'])
    +        >>> df.cov()
    +                  a         b         c         d         e
    +        a  0.998438 -0.020161  0.059277 -0.008943  0.014144
    +        b -0.020161  1.059352 -0.008543 -0.024738  0.009826
    +        c  0.059277 -0.008543  1.010670 -0.001486 -0.000271
    +        d -0.008943 -0.024738 -0.001486  0.921297 -0.013692
    +        e  0.014144  0.009826 -0.000271 -0.013692  0.977795
    +
    +        **Minimum number of periods**
    +
    +        This method also supports an optional ``min_periods`` keyword
    +        that specifies the required minimum number of non-NA observations for
    +        each column pair in order to have a valid result:
    +
    +        >>> np.random.seed(42)
    +        >>> df = pd.DataFrame(np.random.randn(20, 3),
    +        ...                   columns=['a', 'b', 'c'])
    +        >>> df.loc[df.index[:5], 'a'] = np.nan
    +        >>> df.loc[df.index[5:10], 'b'] = np.nan
    +        >>> df.cov(min_periods=12)
    +                  a         b         c
    +        a  0.316741       NaN -0.150812
    +        b       NaN  1.248003  0.191417
    +        c -0.150812  0.191417  0.895202
    +        """
    +        numeric_df = self._get_numeric_data()
    +        cols = numeric_df.columns
    +        idx = cols.copy()
    +        mat = numeric_df.values
    +
    +        if notna(mat).all():
    +            if min_periods is not None and min_periods > len(mat):
    +                baseCov = np.empty((mat.shape[1], mat.shape[1]))
    +                baseCov.fill(np.nan)
    +            else:
    +                baseCov = np.cov(mat.T)
    +            baseCov = baseCov.reshape((len(cols), len(cols)))
    +        else:
    +            baseCov = libalgos.nancorr(ensure_float64(mat), cov=True, minp=min_periods)
    +
    +        return self._constructor(baseCov, index=idx, columns=cols)
    +
    +    def corrwith(self, other, axis=0, drop=False, method="pearson"):
    +        """
    +        Compute pairwise correlation between rows or columns of DataFrame
    +        with rows or columns of Series or DataFrame.  DataFrames are first
    +        aligned along both axes before computing the correlations.
    +
    +        Parameters
    +        ----------
    +        other : DataFrame, Series
    +            Object with which to compute correlations.
    +        axis : {0 or 'index', 1 or 'columns'}, default 0
    +            0 or 'index' to compute column-wise, 1 or 'columns' for row-wise.
    +        drop : bool, default False
    +            Drop missing indices from result.
    +        method : {'pearson', 'kendall', 'spearman'} or callable
    +            * pearson : standard correlation coefficient
    +            * kendall : Kendall Tau correlation coefficient
    +            * spearman : Spearman rank correlation
    +            * callable: callable with input two 1d ndarrays
    +                and returning a float
    +
    +            .. versionadded:: 0.24.0
    +
    +        Returns
    +        -------
    +        Series
    +            Pairwise correlations.
    +
    +        See Also
    +        --------
    +        DataFrame.corr
    +        """
    +        axis = self._get_axis_number(axis)
    +        this = self._get_numeric_data()
    +
    +        if isinstance(other, Series):
    +            return this.apply(lambda x: other.corr(x, method=method), axis=axis)
    +
    +        other = other._get_numeric_data()
    +        left, right = this.align(other, join="inner", copy=False)
    +
    +        if axis == 1:
    +            left = left.T
    +            right = right.T
    +
    +        if method == "pearson":
    +            # mask missing values
    +            left = left + right * 0
    +            right = right + left * 0
    +
    +            # demeaned data
    +            ldem = left - left.mean()
    +            rdem = right - right.mean()
    +
    +            num = (ldem * rdem).sum()
    +            dom = (left.count() - 1) * left.std() * right.std()
    +
    +            correl = num / dom
    +
    +        elif method in ["kendall", "spearman"] or callable(method):
    +
    +            def c(x):
    +                return nanops.nancorr(x[0], x[1], method=method)
    +
    +            correl = Series(
    +                map(c, zip(left.values.T, right.values.T)), index=left.columns
    +            )
    +
    +        else:
    +            raise ValueError(
    +                "Invalid method {method} was passed, "
    +                "valid methods are: 'pearson', 'kendall', "
    +                "'spearman', or callable".format(method=method)
    +            )
    +
    +        if not drop:
    +            # Find non-matching labels along the given axis
    +            # and append missing correlations (GH 22375)
    +            raxis = 1 if axis == 0 else 0
    +            result_index = this._get_axis(raxis).union(other._get_axis(raxis))
    +            idx_diff = result_index.difference(correl.index)
    +
    +            if len(idx_diff) > 0:
    +                correl = correl.append(Series([np.nan] * len(idx_diff), index=idx_diff))
    +
    +        return correl
    +
    +    # ----------------------------------------------------------------------
    +    # ndarray-like stats methods
    +
    +    def count(self, axis=0, level=None, numeric_only=False):
    +        """
    +        Count non-NA cells for each column or row.
    +
    +        The values `None`, `NaN`, `NaT`, and optionally `numpy.inf` (depending
    +        on `pandas.options.mode.use_inf_as_na`) are considered NA.
    +
    +        Parameters
    +        ----------
    +        axis : {0 or 'index', 1 or 'columns'}, default 0
    +            If 0 or 'index' counts are generated for each column.
    +            If 1 or 'columns' counts are generated for each **row**.
    +        level : int or str, optional
    +            If the axis is a `MultiIndex` (hierarchical), count along a
    +            particular `level`, collapsing into a `DataFrame`.
    +            A `str` specifies the level name.
    +        numeric_only : bool, default False
    +            Include only `float`, `int` or `boolean` data.
    +
    +        Returns
    +        -------
    +        Series or DataFrame
    +            For each column/row the number of non-NA/null entries.
    +            If `level` is specified returns a `DataFrame`.
    +
    +        See Also
    +        --------
    +        Series.count: Number of non-NA elements in a Series.
    +        DataFrame.shape: Number of DataFrame rows and columns (including NA
    +            elements).
    +        DataFrame.isna: Boolean same-sized DataFrame showing places of NA
    +            elements.
    +
    +        Examples
    +        --------
    +        Constructing DataFrame from a dictionary:
    +
    +        >>> df = pd.DataFrame({"Person":
    +        ...                    ["John", "Myla", "Lewis", "John", "Myla"],
    +        ...                    "Age": [24., np.nan, 21., 33, 26],
    +        ...                    "Single": [False, True, True, True, False]})
    +        >>> df
    +           Person   Age  Single
    +        0    John  24.0   False
    +        1    Myla   NaN    True
    +        2   Lewis  21.0    True
    +        3    John  33.0    True
    +        4    Myla  26.0   False
    +
    +        Notice the uncounted NA values:
    +
    +        >>> df.count()
    +        Person    5
    +        Age       4
    +        Single    5
    +        dtype: int64
    +
    +        Counts for each **row**:
    +
    +        >>> df.count(axis='columns')
    +        0    3
    +        1    2
    +        2    3
    +        3    3
    +        4    3
    +        dtype: int64
    +
    +        Counts for one level of a `MultiIndex`:
    +
    +        >>> df.set_index(["Person", "Single"]).count(level="Person")
    +                Age
    +        Person
    +        John      2
    +        Lewis     1
    +        Myla      1
    +        """
    +        axis = self._get_axis_number(axis)
    +        if level is not None:
    +            return self._count_level(level, axis=axis, numeric_only=numeric_only)
    +
    +        if numeric_only:
    +            frame = self._get_numeric_data()
    +        else:
    +            frame = self
    +
    +        # GH #423
    +        if len(frame._get_axis(axis)) == 0:
    +            result = Series(0, index=frame._get_agg_axis(axis))
    +        else:
    +            if frame._is_mixed_type or frame._data.any_extension_types:
    +                # the or any_extension_types is really only hit for single-
    +                # column frames with an extension array
    +                result = notna(frame).sum(axis=axis)
    +            else:
    +                # GH13407
    +                series_counts = notna(frame).sum(axis=axis)
    +                counts = series_counts.values
    +                result = Series(counts, index=frame._get_agg_axis(axis))
    +
    +        return result.astype("int64")
    +
    +    def _count_level(self, level, axis=0, numeric_only=False):
    +        if numeric_only:
    +            frame = self._get_numeric_data()
    +        else:
    +            frame = self
    +
    +        count_axis = frame._get_axis(axis)
    +        agg_axis = frame._get_agg_axis(axis)
    +
    +        if not isinstance(count_axis, MultiIndex):
    +            raise TypeError(
    +                "Can only count levels on hierarchical "
    +                "{ax}.".format(ax=self._get_axis_name(axis))
    +            )
    +
    +        if frame._is_mixed_type:
    +            # Since we have mixed types, calling notna(frame.values) might
    +            # upcast everything to object
    +            mask = notna(frame).values
    +        else:
    +            # But use the speedup when we have homogeneous dtypes
    +            mask = notna(frame.values)
    +
    +        if axis == 1:
    +            # We're transposing the mask rather than frame to avoid potential
    +            # upcasts to object, which induces a ~20x slowdown
    +            mask = mask.T
    +
    +        if isinstance(level, str):
    +            level = count_axis._get_level_number(level)
    +
    +        level_index = count_axis.levels[level]
    +        level_codes = ensure_int64(count_axis.codes[level])
    +        counts = lib.count_level_2d(mask, level_codes, len(level_index), axis=0)
    +
    +        result = DataFrame(counts, index=level_index, columns=agg_axis)
    +
    +        if axis == 1:
    +            # Undo our earlier transpose
    +            return result.T
    +        else:
    +            return result
    +
    +    def _reduce(
    +        self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds
    +    ):
    +        if axis is None and filter_type == "bool":
    +            labels = None
    +            constructor = None
    +        else:
    +            # TODO: Make other agg func handle axis=None properly
    +            axis = self._get_axis_number(axis)
    +            labels = self._get_agg_axis(axis)
    +            constructor = self._constructor
    +
    +        def f(x):
    +            return op(x, axis=axis, skipna=skipna, **kwds)
    +
    +        # exclude timedelta/datetime unless we are uniform types
    +        if (
    +            axis == 1
    +            and self._is_datelike_mixed_type
    +            and (
    +                not self._is_homogeneous_type
    +                and not is_datetime64tz_dtype(self.dtypes[0])
    +            )
    +        ):
    +            numeric_only = True
    +
    +        if numeric_only is None:
    +            try:
    +                values = self.values
    +                result = f(values)
    +
    +                if filter_type == "bool" and is_object_dtype(values) and axis is None:
    +                    # work around https://github.com/numpy/numpy/issues/10489
    +                    # TODO: combine with hasattr(result, 'dtype') further down
    +                    # hard since we don't have `values` down there.
    +                    result = np.bool_(result)
    +            except Exception as e:
    +
    +                # try by-column first
    +                if filter_type is None and axis == 0:
    +                    try:
    +
    +                        # this can end up with a non-reduction
    +                        # but not always. if the types are mixed
    +                        # with datelike then need to make sure a series
    +
    +                        # we only end up here if we have not specified
    +                        # numeric_only and yet we have tried a
    +                        # column-by-column reduction, where we have mixed type.
    +                        # So let's just do what we can
    +                        from pandas.core.apply import frame_apply
    +
    +                        opa = frame_apply(
    +                            self, func=f, result_type="expand", ignore_failures=True
    +                        )
    +                        result = opa.get_result()
    +                        if result.ndim == self.ndim:
    +                            result = result.iloc[0]
    +                        return result
    +                    except Exception:
    +                        pass
    +
    +                if filter_type is None or filter_type == "numeric":
    +                    data = self._get_numeric_data()
    +                elif filter_type == "bool":
    +                    data = self._get_bool_data()
    +                else:  # pragma: no cover
    +                    e = NotImplementedError(
    +                        "Handling exception with filter_type {f} not"
    +                        "implemented.".format(f=filter_type)
    +                    )
    +                    raise_with_traceback(e)
    +                with np.errstate(all="ignore"):
    +                    result = f(data.values)
    +                labels = data._get_agg_axis(axis)
    +        else:
    +            if numeric_only:
    +                if filter_type is None or filter_type == "numeric":
    +                    data = self._get_numeric_data()
    +                elif filter_type == "bool":
    +                    # GH 25101, # GH 24434
    +                    data = self._get_bool_data() if axis == 0 else self
    +                else:  # pragma: no cover
    +                    msg = (
    +                        "Generating numeric_only data with filter_type {f}"
    +                        "not supported.".format(f=filter_type)
    +                    )
    +                    raise NotImplementedError(msg)
    +                values = data.values
    +                labels = data._get_agg_axis(axis)
    +            else:
    +                values = self.values
    +            result = f(values)
    +
    +        if hasattr(result, "dtype") and is_object_dtype(result.dtype):
    +            try:
    +                if filter_type is None or filter_type == "numeric":
    +                    result = result.astype(np.float64)
    +                elif filter_type == "bool" and notna(result).all():
    +                    result = result.astype(np.bool_)
    +            except (ValueError, TypeError):
    +
    +                # try to coerce to the original dtypes item by item if we can
    +                if axis == 0:
    +                    result = coerce_to_dtypes(result, self.dtypes)
    +
    +        if constructor is not None:
    +            result = Series(result, index=labels)
    +        return result
    +
    +    def nunique(self, axis=0, dropna=True):
    +        """
    +        Count distinct observations over requested axis.
    +
    +        Return Series with number of distinct observations. Can ignore NaN
    +        values.
    +
    +        .. versionadded:: 0.20.0
    +
    +        Parameters
    +        ----------
    +        axis : {0 or 'index', 1 or 'columns'}, default 0
    +            The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for
    +            column-wise.
    +        dropna : bool, default True
    +            Don't include NaN in the counts.
    +
    +        Returns
    +        -------
    +        Series
    +
    +        See Also
    +        --------
    +        Series.nunique: Method nunique for Series.
    +        DataFrame.count: Count non-NA cells for each column or row.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]})
    +        >>> df.nunique()
    +        A    3
    +        B    1
    +        dtype: int64
    +
    +        >>> df.nunique(axis=1)
    +        0    1
    +        1    2
    +        2    2
    +        dtype: int64
    +        """
    +        return self.apply(Series.nunique, axis=axis, dropna=dropna)
    +
    +    def idxmin(self, axis=0, skipna=True):
    +        """
    +        Return index of first occurrence of minimum over requested axis.
    +        NA/null values are excluded.
    +
    +        Parameters
    +        ----------
    +        axis : {0 or 'index', 1 or 'columns'}, default 0
    +            0 or 'index' for row-wise, 1 or 'columns' for column-wise
    +        skipna : boolean, default True
    +            Exclude NA/null values. If an entire row/column is NA, the result
    +            will be NA.
    +
    +        Returns
    +        -------
    +        Series
    +            Indexes of minima along the specified axis.
    +
    +        Raises
    +        ------
    +        ValueError
    +            * If the row/column is empty
    +
    +        See Also
    +        --------
    +        Series.idxmin
    +
    +        Notes
    +        -----
    +        This method is the DataFrame version of ``ndarray.argmin``.
    +        """
    +        axis = self._get_axis_number(axis)
    +        indices = nanops.nanargmin(self.values, axis=axis, skipna=skipna)
    +        index = self._get_axis(axis)
    +        result = [index[i] if i >= 0 else np.nan for i in indices]
    +        return Series(result, index=self._get_agg_axis(axis))
    +
    +    def idxmax(self, axis=0, skipna=True):
    +        """
    +        Return index of first occurrence of maximum over requested axis.
    +        NA/null values are excluded.
    +
    +        Parameters
    +        ----------
    +        axis : {0 or 'index', 1 or 'columns'}, default 0
    +            0 or 'index' for row-wise, 1 or 'columns' for column-wise
    +        skipna : boolean, default True
    +            Exclude NA/null values. If an entire row/column is NA, the result
    +            will be NA.
    +
    +        Returns
    +        -------
    +        Series
    +            Indexes of maxima along the specified axis.
    +
    +        Raises
    +        ------
    +        ValueError
    +            * If the row/column is empty
    +
    +        See Also
    +        --------
    +        Series.idxmax
    +
    +        Notes
    +        -----
    +        This method is the DataFrame version of ``ndarray.argmax``.
    +        """
    +        axis = self._get_axis_number(axis)
    +        indices = nanops.nanargmax(self.values, axis=axis, skipna=skipna)
    +        index = self._get_axis(axis)
    +        result = [index[i] if i >= 0 else np.nan for i in indices]
    +        return Series(result, index=self._get_agg_axis(axis))
    +
    +    def _get_agg_axis(self, axis_num):
    +        """
    +        Let's be explicit about this.
    +        """
    +        if axis_num == 0:
    +            return self.columns
    +        elif axis_num == 1:
    +            return self.index
    +        else:
    +            raise ValueError("Axis must be 0 or 1 (got %r)" % axis_num)
    +
    +    def mode(self, axis=0, numeric_only=False, dropna=True):
    +        """
    +        Get the mode(s) of each element along the selected axis.
    +
    +        The mode of a set of values is the value that appears most often.
    +        It can be multiple values.
    +
    +        Parameters
    +        ----------
    +        axis : {0 or 'index', 1 or 'columns'}, default 0
    +            The axis to iterate over while searching for the mode:
    +
    +            * 0 or 'index' : get mode of each column
    +            * 1 or 'columns' : get mode of each row
    +        numeric_only : bool, default False
    +            If True, only apply to numeric columns.
    +        dropna : bool, default True
    +            Don't consider counts of NaN/NaT.
    +
    +            .. versionadded:: 0.24.0
    +
    +        Returns
    +        -------
    +        DataFrame
    +            The modes of each column or row.
    +
    +        See Also
    +        --------
    +        Series.mode : Return the highest frequency value in a Series.
    +        Series.value_counts : Return the counts of values in a Series.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame([('bird', 2, 2),
    +        ...                    ('mammal', 4, np.nan),
    +        ...                    ('arthropod', 8, 0),
    +        ...                    ('bird', 2, np.nan)],
    +        ...                   index=('falcon', 'horse', 'spider', 'ostrich'),
    +        ...                   columns=('species', 'legs', 'wings'))
    +        >>> df
    +                   species  legs  wings
    +        falcon        bird     2    2.0
    +        horse       mammal     4    NaN
    +        spider   arthropod     8    0.0
    +        ostrich       bird     2    NaN
    +
    +        By default, missing values are not considered, and the mode of wings
    +        are both 0 and 2. The second row of species and legs contains ``NaN``,
    +        because they have only one mode, but the DataFrame has two rows.
    +
    +        >>> df.mode()
    +          species  legs  wings
    +        0    bird   2.0    0.0
    +        1     NaN   NaN    2.0
    +
    +        Setting ``dropna=False`` ``NaN`` values are considered and they can be
    +        the mode (like for wings).
    +
    +        >>> df.mode(dropna=False)
    +          species  legs  wings
    +        0    bird     2    NaN
    +
    +        Setting ``numeric_only=True``, only the mode of numeric columns is
    +        computed, and columns of other types are ignored.
    +
    +        >>> df.mode(numeric_only=True)
    +           legs  wings
    +        0   2.0    0.0
    +        1   NaN    2.0
    +
    +        To compute the mode over columns and not rows, use the axis parameter:
    +
    +        >>> df.mode(axis='columns', numeric_only=True)
    +                   0    1
    +        falcon   2.0  NaN
    +        horse    4.0  NaN
    +        spider   0.0  8.0
    +        ostrich  2.0  NaN
    +        """
    +        data = self if not numeric_only else self._get_numeric_data()
    +
    +        def f(s):
    +            return s.mode(dropna=dropna)
    +
    +        return data.apply(f, axis=axis)
    +
    +    def quantile(self, q=0.5, axis=0, numeric_only=True, interpolation="linear"):
    +        """
    +        Return values at the given quantile over requested axis.
    +
    +        Parameters
    +        ----------
    +        q : float or array-like, default 0.5 (50% quantile)
    +            Value between 0 <= q <= 1, the quantile(s) to compute.
    +        axis : {0, 1, 'index', 'columns'} (default 0)
    +            Equals 0 or 'index' for row-wise, 1 or 'columns' for column-wise.
    +        numeric_only : bool, default True
    +            If False, the quantile of datetime and timedelta data will be
    +            computed as well.
    +        interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
    +            This optional parameter specifies the interpolation method to use,
    +            when the desired quantile lies between two data points `i` and `j`:
    +
    +            * linear: `i + (j - i) * fraction`, where `fraction` is the
    +              fractional part of the index surrounded by `i` and `j`.
    +            * lower: `i`.
    +            * higher: `j`.
    +            * nearest: `i` or `j` whichever is nearest.
    +            * midpoint: (`i` + `j`) / 2.
    +
    +            .. versionadded:: 0.18.0
    +
    +        Returns
    +        -------
    +        Series or DataFrame
    +
    +            If ``q`` is an array, a DataFrame will be returned where the
    +              index is ``q``, the columns are the columns of self, and the
    +              values are the quantiles.
    +            If ``q`` is a float, a Series will be returned where the
    +              index is the columns of self and the values are the quantiles.
    +
    +        See Also
    +        --------
    +        core.window.Rolling.quantile: Rolling quantile.
    +        numpy.percentile: Numpy function to compute the percentile.
    +
    +        Examples
    +        --------
    +        >>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
    +        ...                   columns=['a', 'b'])
    +        >>> df.quantile(.1)
    +        a    1.3
    +        b    3.7
    +        Name: 0.1, dtype: float64
    +        >>> df.quantile([.1, .5])
    +               a     b
    +        0.1  1.3   3.7
    +        0.5  2.5  55.0
    +
    +        Specifying `numeric_only=False` will also compute the quantile of
    +        datetime and timedelta data.
    +
    +        >>> df = pd.DataFrame({'A': [1, 2],
    +        ...                    'B': [pd.Timestamp('2010'),
    +        ...                          pd.Timestamp('2011')],
    +        ...                    'C': [pd.Timedelta('1 days'),
    +        ...                          pd.Timedelta('2 days')]})
    +        >>> df.quantile(0.5, numeric_only=False)
    +        A                    1.5
    +        B    2010-07-02 12:00:00
    +        C        1 days 12:00:00
    +        Name: 0.5, dtype: object
    +        """
    +        self._check_percentile(q)
    +
    +        data = self._get_numeric_data() if numeric_only else self
    +        axis = self._get_axis_number(axis)
    +        is_transposed = axis == 1
    +
    +        if is_transposed:
    +            data = data.T
    +
    +        result = data._data.quantile(
    +            qs=q, axis=1, interpolation=interpolation, transposed=is_transposed
    +        )
    +
    +        if result.ndim == 2:
    +            result = self._constructor(result)
    +        else:
    +            result = self._constructor_sliced(result, name=q)
    +
    +        if is_transposed:
    +            result = result.T
    +
    +        return result
    +
    +    def to_timestamp(self, freq=None, how="start", axis=0, copy=True):
    +        """
    +        Cast to DatetimeIndex of timestamps, at *beginning* of period.
    +
    +        Parameters
    +        ----------
    +        freq : str, default frequency of PeriodIndex
    +            Desired frequency.
    +        how : {'s', 'e', 'start', 'end'}
    +            Convention for converting period to timestamp; start of period
    +            vs. end.
    +        axis : {0 or 'index', 1 or 'columns'}, default 0
    +            The axis to convert (the index by default).
    +        copy : bool, default True
    +            If False then underlying input data is not copied.
    +
    +        Returns
    +        -------
    +        DataFrame with DatetimeIndex
    +        """
    +        new_data = self._data
    +        if copy:
    +            new_data = new_data.copy()
    +
    +        axis = self._get_axis_number(axis)
    +        if axis == 0:
    +            new_data.set_axis(1, self.index.to_timestamp(freq=freq, how=how))
    +        elif axis == 1:
    +            new_data.set_axis(0, self.columns.to_timestamp(freq=freq, how=how))
    +        else:  # pragma: no cover
    +            raise AssertionError("Axis must be 0 or 1. Got {ax!s}".format(ax=axis))
    +
    +        return self._constructor(new_data)
    +
    +    def to_period(self, freq=None, axis=0, copy=True):
    +        """
    +        Convert DataFrame from DatetimeIndex to PeriodIndex with desired
    +        frequency (inferred from index if not passed).
    +
    +        Parameters
    +        ----------
    +        freq : str, default
    +            Frequency of the PeriodIndex.
    +        axis : {0 or 'index', 1 or 'columns'}, default 0
    +            The axis to convert (the index by default).
    +        copy : bool, default True
    +            If False then underlying input data is not copied.
    +
    +        Returns
    +        -------
    +        TimeSeries with PeriodIndex
    +        """
    +        new_data = self._data
    +        if copy:
    +            new_data = new_data.copy()
    +
    +        axis = self._get_axis_number(axis)
    +        if axis == 0:
    +            new_data.set_axis(1, self.index.to_period(freq=freq))
    +        elif axis == 1:
    +            new_data.set_axis(0, self.columns.to_period(freq=freq))
    +        else:  # pragma: no cover
    +            raise AssertionError("Axis must be 0 or 1. Got {ax!s}".format(ax=axis))
    +
    +        return self._constructor(new_data)
    +
    +    def isin(self, values):
    +        """
    +        Whether each element in the DataFrame is contained in values.
    +
    +        Parameters
    +        ----------
    +        values : iterable, Series, DataFrame or dict
    +            The result will only be true at a location if all the
    +            labels match. If `values` is a Series, that's the index. If
    +            `values` is a dict, the keys must be the column names,
    +            which must match. If `values` is a DataFrame,
    +            then both the index and column labels must match.
    +
    +        Returns
    +        -------
    +        DataFrame
    +            DataFrame of booleans showing whether each element in the DataFrame
    +            is contained in values.
    +
    +        See Also
    +        --------
    +        DataFrame.eq: Equality test for DataFrame.
    +        Series.isin: Equivalent method on Series.
    +        Series.str.contains: Test if pattern or regex is contained within a
    +            string of a Series or Index.
    +
    +        Examples
    +        --------
    +
    +        >>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]},
    +        ...                   index=['falcon', 'dog'])
    +        >>> df
    +                num_legs  num_wings
    +        falcon         2          2
    +        dog            4          0
    +
    +        When ``values`` is a list check whether every value in the DataFrame
    +        is present in the list (which animals have 0 or 2 legs or wings)
    +
    +        >>> df.isin([0, 2])
    +                num_legs  num_wings
    +        falcon      True       True
    +        dog        False       True
    +
    +        When ``values`` is a dict, we can pass values to check for each
    +        column separately:
    +
    +        >>> df.isin({'num_wings': [0, 3]})
    +                num_legs  num_wings
    +        falcon     False      False
    +        dog        False       True
    +
    +        When ``values`` is a Series or DataFrame the index and column must
    +        match. Note that 'falcon' does not match based on the number of legs
    +        in df2.
    +
    +        >>> other = pd.DataFrame({'num_legs': [8, 2], 'num_wings': [0, 2]},
    +        ...                      index=['spider', 'falcon'])
    +        >>> df.isin(other)
    +                num_legs  num_wings
    +        falcon      True       True
    +        dog        False      False
    +        """
    +        if isinstance(values, dict):
    +            from pandas.core.reshape.concat import concat
    +
    +            values = collections.defaultdict(list, values)
    +            return concat(
    +                (
    +                    self.iloc[:, [i]].isin(values[col])
    +                    for i, col in enumerate(self.columns)
    +                ),
    +                axis=1,
    +            )
    +        elif isinstance(values, Series):
    +            if not values.index.is_unique:
    +                raise ValueError("cannot compute isin with " "a duplicate axis.")
    +            return self.eq(values.reindex_like(self), axis="index")
    +        elif isinstance(values, DataFrame):
    +            if not (values.columns.is_unique and values.index.is_unique):
    +                raise ValueError("cannot compute isin with " "a duplicate axis.")
    +            return self.eq(values.reindex_like(self))
    +        else:
    +            if not is_list_like(values):
    +                raise TypeError(
    +                    "only list-like or dict-like objects are "
    +                    "allowed to be passed to DataFrame.isin(), "
    +                    "you passed a "
    +                    "{0!r}".format(type(values).__name__)
    +                )
    +            return DataFrame(
    +                algorithms.isin(self.values.ravel(), values).reshape(self.shape),
    +                self.index,
    +                self.columns,
    +            )
    +
    +    # ----------------------------------------------------------------------
    +    # Add plotting methods to DataFrame
    +    plot = CachedAccessor("plot", pandas.plotting.PlotAccessor)
    +    hist = pandas.plotting.hist_frame
    +    boxplot = pandas.plotting.boxplot_frame
    +    sparse = CachedAccessor("sparse", SparseFrameAccessor)
    +
    +
    +DataFrame._setup_axes(
    +    ["index", "columns"],
    +    info_axis=1,
    +    stat_axis=0,
    +    axes_are_reversed=True,
    +    aliases={"rows": 0},
    +    docs={
    +        "index": "The index (row labels) of the DataFrame.",
    +        "columns": "The column labels of the DataFrame.",
    +    },
    +)
    +DataFrame._add_numeric_operations()
    +DataFrame._add_series_or_dataframe_operations()
    +
    +ops.add_flex_arithmetic_methods(DataFrame)
    +ops.add_special_arithmetic_methods(DataFrame)
    +
    +
    +def _from_nested_dict(data):
    +    # TODO: this should be seriously cythonized
    +    new_data = OrderedDict()
    +    for index, s in data.items():
    +        for col, v in s.items():
    +            new_data[col] = new_data.get(col, OrderedDict())
    +            new_data[col][index] = v
    +    return new_data
    +
    +
    +def _put_str(s, space):
    +    return "{s}".format(s=s)[:space].ljust(space)
    +
    + +
    + +
    +
    +
    +
    +

    + Back to top + +
    + + +

    +

    + © Copyright 2018, geosnap developers.
    + Created using Sphinx 2.1.2.
    +

    +
    +
    + + \ No newline at end of file diff --git a/docs/_sources/api.rst.txt b/docs/_sources/api.rst.txt index f0976d0f..8b70e620 100644 --- a/docs/_sources/api.rst.txt +++ b/docs/_sources/api.rst.txt @@ -10,18 +10,48 @@ API reference Data Module -------------- -geosnap provides contructors for several common datasets +Storing data +''''''''''''''' + +geosnap's data module provides functions for collecting and storing a variety of datasets +including U.S. Census data from 1990-2010, LEHD data from any vintage, and external longitudinal databases. .. currentmodule:: geosnap.data .. autosummary:: :toctree: generated/ - data.data_store + data.store_census + data.store_blocks_2000 + data.store_blocks_2010 data.store_ltdb data.store_ncdb data.get_lehd +Accessing Stored Datasets +''''''''''''''''''''''''''''''' + +It also provides a storage container (called a "data_store") that provides access to datasets that have been imported with the functions above + +.. currentmodule:: geosnap.data + +.. autosummary:: + :toctree: generated/ + + data.data_store + data_store.blocks_2000 + data_store.blocks_2010 + data_store.codebook + data_store.counties + data_store.ltdb + data_store.msa_definitions + data_store.msas + data_store.ncdb + data_store.states + data_store.tracts_1990 + data_store.tracts_2000 + data_store.tracts_2010 + The Community Class ----------------------- @@ -127,6 +157,8 @@ Model neighborhood change using optimal-matching algorithms or spatial discrete geosnap.analyze.sequence geosnap.analyze.transition +.. _harmonize_api: + Harmonize Module ---------------- .. currentmodule:: geosnap.data.Community @@ -136,6 +168,8 @@ Harmonize Module Community.harmonize +.. _visualize_api: + Visualize Module ---------------- diff --git a/docs/_sources/generated/geosnap.data.data.DataStore.rst.txt b/docs/_sources/generated/geosnap.data.data.DataStore.rst.txt new file mode 100644 index 00000000..7fe9446d --- /dev/null +++ b/docs/_sources/generated/geosnap.data.data.DataStore.rst.txt @@ -0,0 +1,39 @@ +geosnap.data.data.DataStore +=========================== + +.. currentmodule:: geosnap.data.data + +.. autoclass:: DataStore + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~DataStore.__init__ + ~DataStore.blocks_2000 + ~DataStore.blocks_2010 + ~DataStore.counties + ~DataStore.msas + ~DataStore.states + ~DataStore.tracts_1990 + ~DataStore.tracts_2000 + ~DataStore.tracts_2010 + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~DataStore.codebook + ~DataStore.ltdb + ~DataStore.msa_definitions + ~DataStore.ncdb + + \ No newline at end of file diff --git a/docs/_sources/generated/geosnap.data.data.store_blocks_2000.rst.txt b/docs/_sources/generated/geosnap.data.data.store_blocks_2000.rst.txt new file mode 100644 index 00000000..afb0a96d --- /dev/null +++ b/docs/_sources/generated/geosnap.data.data.store_blocks_2000.rst.txt @@ -0,0 +1,6 @@ +geosnap.data.data.store\_blocks\_2000 +===================================== + +.. currentmodule:: geosnap.data.data + +.. autofunction:: store_blocks_2000 \ No newline at end of file diff --git a/docs/_sources/generated/geosnap.data.data.store_blocks_2010.rst.txt b/docs/_sources/generated/geosnap.data.data.store_blocks_2010.rst.txt new file mode 100644 index 00000000..578769b3 --- /dev/null +++ b/docs/_sources/generated/geosnap.data.data.store_blocks_2010.rst.txt @@ -0,0 +1,6 @@ +geosnap.data.data.store\_blocks\_2010 +===================================== + +.. currentmodule:: geosnap.data.data + +.. autofunction:: store_blocks_2010 \ No newline at end of file diff --git a/docs/_sources/generated/geosnap.data.data.store_census.rst.txt b/docs/_sources/generated/geosnap.data.data.store_census.rst.txt new file mode 100644 index 00000000..fdfc49ac --- /dev/null +++ b/docs/_sources/generated/geosnap.data.data.store_census.rst.txt @@ -0,0 +1,6 @@ +geosnap.data.data.store\_census +=============================== + +.. currentmodule:: geosnap.data.data + +.. autofunction:: store_census \ No newline at end of file diff --git a/docs/_sources/generated/geosnap.data.data_store.blocks_2000.rst.txt b/docs/_sources/generated/geosnap.data.data_store.blocks_2000.rst.txt new file mode 100644 index 00000000..d159ab2b --- /dev/null +++ b/docs/_sources/generated/geosnap.data.data_store.blocks_2000.rst.txt @@ -0,0 +1,6 @@ +geosnap.data.data\_store.blocks\_2000 +===================================== + +.. currentmodule:: geosnap.data + +.. automethod:: data_store.blocks_2000 \ No newline at end of file diff --git a/docs/_sources/generated/geosnap.data.data_store.blocks_2010.rst.txt b/docs/_sources/generated/geosnap.data.data_store.blocks_2010.rst.txt new file mode 100644 index 00000000..1cd8933c --- /dev/null +++ b/docs/_sources/generated/geosnap.data.data_store.blocks_2010.rst.txt @@ -0,0 +1,6 @@ +geosnap.data.data\_store.blocks\_2010 +===================================== + +.. currentmodule:: geosnap.data + +.. automethod:: data_store.blocks_2010 \ No newline at end of file diff --git a/docs/_sources/generated/geosnap.data.data_store.codebook.rst.txt b/docs/_sources/generated/geosnap.data.data_store.codebook.rst.txt new file mode 100644 index 00000000..10c55a4d --- /dev/null +++ b/docs/_sources/generated/geosnap.data.data_store.codebook.rst.txt @@ -0,0 +1,6 @@ +geosnap.data.data\_store.codebook +================================= + +.. currentmodule:: geosnap.data + +.. autoattribute:: data_store.codebook \ No newline at end of file diff --git a/docs/_sources/generated/geosnap.data.data_store.counties.rst.txt b/docs/_sources/generated/geosnap.data.data_store.counties.rst.txt new file mode 100644 index 00000000..eea25507 --- /dev/null +++ b/docs/_sources/generated/geosnap.data.data_store.counties.rst.txt @@ -0,0 +1,6 @@ +geosnap.data.data\_store.counties +================================= + +.. currentmodule:: geosnap.data + +.. automethod:: data_store.counties \ No newline at end of file diff --git a/docs/_sources/generated/geosnap.data.data_store.ltdb.rst.txt b/docs/_sources/generated/geosnap.data.data_store.ltdb.rst.txt new file mode 100644 index 00000000..7c0ab3e1 --- /dev/null +++ b/docs/_sources/generated/geosnap.data.data_store.ltdb.rst.txt @@ -0,0 +1,6 @@ +geosnap.data.data\_store.ltdb +============================= + +.. currentmodule:: geosnap.data + +.. autoattribute:: data_store.ltdb \ No newline at end of file diff --git a/docs/_sources/generated/geosnap.data.data_store.msa_definitions.rst.txt b/docs/_sources/generated/geosnap.data.data_store.msa_definitions.rst.txt new file mode 100644 index 00000000..ac714706 --- /dev/null +++ b/docs/_sources/generated/geosnap.data.data_store.msa_definitions.rst.txt @@ -0,0 +1,6 @@ +geosnap.data.data\_store.msa\_definitions +========================================= + +.. currentmodule:: geosnap.data + +.. autoattribute:: data_store.msa_definitions \ No newline at end of file diff --git a/docs/_sources/generated/geosnap.data.data_store.msas.rst.txt b/docs/_sources/generated/geosnap.data.data_store.msas.rst.txt new file mode 100644 index 00000000..ea7c3e86 --- /dev/null +++ b/docs/_sources/generated/geosnap.data.data_store.msas.rst.txt @@ -0,0 +1,6 @@ +geosnap.data.data\_store.msas +============================= + +.. currentmodule:: geosnap.data + +.. automethod:: data_store.msas \ No newline at end of file diff --git a/docs/_sources/generated/geosnap.data.data_store.ncdb.rst.txt b/docs/_sources/generated/geosnap.data.data_store.ncdb.rst.txt new file mode 100644 index 00000000..3445994c --- /dev/null +++ b/docs/_sources/generated/geosnap.data.data_store.ncdb.rst.txt @@ -0,0 +1,6 @@ +geosnap.data.data\_store.ncdb +============================= + +.. currentmodule:: geosnap.data + +.. autoattribute:: data_store.ncdb \ No newline at end of file diff --git a/docs/_sources/generated/geosnap.data.data_store.states.rst.txt b/docs/_sources/generated/geosnap.data.data_store.states.rst.txt new file mode 100644 index 00000000..fb46ff7a --- /dev/null +++ b/docs/_sources/generated/geosnap.data.data_store.states.rst.txt @@ -0,0 +1,6 @@ +geosnap.data.data\_store.states +=============================== + +.. currentmodule:: geosnap.data + +.. automethod:: data_store.states \ No newline at end of file diff --git a/docs/_sources/generated/geosnap.data.data_store.tracts_1990.rst.txt b/docs/_sources/generated/geosnap.data.data_store.tracts_1990.rst.txt new file mode 100644 index 00000000..3138a074 --- /dev/null +++ b/docs/_sources/generated/geosnap.data.data_store.tracts_1990.rst.txt @@ -0,0 +1,6 @@ +geosnap.data.data\_store.tracts\_1990 +===================================== + +.. currentmodule:: geosnap.data + +.. automethod:: data_store.tracts_1990 \ No newline at end of file diff --git a/docs/_sources/generated/geosnap.data.data_store.tracts_2000.rst.txt b/docs/_sources/generated/geosnap.data.data_store.tracts_2000.rst.txt new file mode 100644 index 00000000..ae1e024d --- /dev/null +++ b/docs/_sources/generated/geosnap.data.data_store.tracts_2000.rst.txt @@ -0,0 +1,6 @@ +geosnap.data.data\_store.tracts\_2000 +===================================== + +.. currentmodule:: geosnap.data + +.. automethod:: data_store.tracts_2000 \ No newline at end of file diff --git a/docs/_sources/generated/geosnap.data.data_store.tracts_2010.rst.txt b/docs/_sources/generated/geosnap.data.data_store.tracts_2010.rst.txt new file mode 100644 index 00000000..bf481f45 --- /dev/null +++ b/docs/_sources/generated/geosnap.data.data_store.tracts_2010.rst.txt @@ -0,0 +1,6 @@ +geosnap.data.data\_store.tracts\_2010 +===================================== + +.. currentmodule:: geosnap.data + +.. automethod:: data_store.tracts_2010 \ No newline at end of file diff --git a/docs/api.html b/docs/api.html index c169b4b7..e9351073 100644 --- a/docs/api.html +++ b/docs/api.html @@ -15,7 +15,7 @@ - + @@ -88,7 +88,11 @@ role="menu" aria-labelledby="dLabelLocalToc">
    + +
    +
    +
    +
    +

    + Back to top + +
    + +

    + +

    +

    + © Copyright 2018, geosnap developers.
    + Created using Sphinx 2.1.2.
    +

    +
    +
    + + \ No newline at end of file diff --git a/docs/generated/geosnap.data.data.data_store.html b/docs/generated/geosnap.data.data.data_store.html index 60daf5eb..d8af18fc 100644 --- a/docs/generated/geosnap.data.data.data_store.html +++ b/docs/generated/geosnap.data.data.data_store.html @@ -15,8 +15,8 @@ - - + + diff --git a/docs/generated/geosnap.data.data.get_lehd.html b/docs/generated/geosnap.data.data.get_lehd.html index 1934c761..a8bf600b 100644 --- a/docs/generated/geosnap.data.data.get_lehd.html +++ b/docs/generated/geosnap.data.data.get_lehd.html @@ -15,7 +15,7 @@ - + diff --git a/docs/generated/geosnap.data.data.html b/docs/generated/geosnap.data.data.html index af311309..25b36e18 100644 --- a/docs/generated/geosnap.data.data.html +++ b/docs/generated/geosnap.data.data.html @@ -723,8 +723,13 @@ property codebook

    Codebook.

    -
    Returns
    +
    Parameters
    +
    None
    +
    +
    +
    Returns
    +
    pandas.DataFrame.

    codebook that stores variable names, definitions, and formulas.

    @@ -758,8 +763,13 @@ property ltdb

    Longitudinal Tract Database (LTDB).

    -
    Returns
    +
    Parameters
    +
    None
    +
    +
    +
    Returns
    +
    pandas.DataFrame or geopandas.GeoDataFrame

    LTDB as a long-form geo/dataframe

    @@ -772,8 +782,13 @@ property msa_definitions

    2010 Metropolitan Statistical Area definitions.

    -
    Returns
    +
    Parameters
    +
    None
    +
    +
    +
    Returns
    +
    pandas.DataFrame.

    dataframe that stores state/county –> MSA crosswalk definitions.

    @@ -807,8 +822,13 @@ property ncdb

    Geolytics Neighborhood Change Database (NCDB).

    -
    Returns
    +
    Parameters
    +
    None
    +
    +
    +
    Returns
    +
    pandas.DataFrarme

    NCDB as a long-form dataframe

    @@ -913,8 +933,13 @@ geosnap.data.data.store_blocks_2000()[source]

    Save census 2000 census block data to the local quilt package storage.

    -
    Returns
    +
    Parameters
    +
    None
    +
    +
    +
    Returns
    +
    None

    Data will be available in the geosnap.data.data_store and will be used in place of streaming data for all census queries.

    @@ -928,8 +953,13 @@ geosnap.data.data.store_blocks_2010()[source]

    Save census 2010 census block data to the local quilt package storage.

    -
    Returns
    +
    Parameters
    +
    None
    +
    +
    +
    Returns
    +
    None

    Data will be available in the geosnap.data.data_store and will be used in place of streaming data for all census queries.

    @@ -943,8 +973,13 @@ geosnap.data.data.store_census()[source]

    Save census data to the local quilt package storage.

    -
    Returns
    +
    Parameters
    +
    None
    +
    +
    +
    Returns
    +
    None

    Data will be available in the geosnap.data.data_store and will be used in place of streaming data for all census queries. The raster package is 3.05 GB.

    diff --git a/docs/generated/geosnap.data.data.store_blocks_2000.html b/docs/generated/geosnap.data.data.store_blocks_2000.html new file mode 100644 index 00000000..1d807e0b --- /dev/null +++ b/docs/generated/geosnap.data.data.store_blocks_2000.html @@ -0,0 +1,169 @@ + + + + + + geosnap.data.data.store_blocks_2000 — geosnap v0.0.2 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    + +
    +

    geosnap.data.data.store_blocks_2000

    +
    +
    +geosnap.data.data.store_blocks_2000()[source]
    +

    Save census 2000 census block data to the local quilt package storage.

    +
    +
    Parameters
    +
    +
    None
    +
    +
    +
    Returns
    +
    +
    None

    Data will be available in the geosnap.data.data_store and will be used +in place of streaming data for all census queries.

    +
    +
    +
    +
    +
    + +
    + + +
    + +
    +
    +
    +
    +

    + Back to top + +
    + +

    + +

    +

    + © Copyright 2018, geosnap developers.
    + Created using Sphinx 2.1.2.
    +

    +
    +
    + + \ No newline at end of file diff --git a/docs/generated/geosnap.data.data.store_blocks_2010.html b/docs/generated/geosnap.data.data.store_blocks_2010.html new file mode 100644 index 00000000..342e557d --- /dev/null +++ b/docs/generated/geosnap.data.data.store_blocks_2010.html @@ -0,0 +1,169 @@ + + + + + + geosnap.data.data.store_blocks_2010 — geosnap v0.0.2 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    + +
    +

    geosnap.data.data.store_blocks_2010

    +
    +
    +geosnap.data.data.store_blocks_2010()[source]
    +

    Save census 2010 census block data to the local quilt package storage.

    +
    +
    Parameters
    +
    +
    None
    +
    +
    +
    Returns
    +
    +
    None

    Data will be available in the geosnap.data.data_store and will be used +in place of streaming data for all census queries.

    +
    +
    +
    +
    +
    + +
    + + +
    + +
    +
    +
    +
    +

    + Back to top + +
    + +

    + +

    +

    + © Copyright 2018, geosnap developers.
    + Created using Sphinx 2.1.2.
    +

    +
    +
    + + \ No newline at end of file diff --git a/docs/generated/geosnap.data.data.store_census.html b/docs/generated/geosnap.data.data.store_census.html new file mode 100644 index 00000000..6f75e5d6 --- /dev/null +++ b/docs/generated/geosnap.data.data.store_census.html @@ -0,0 +1,170 @@ + + + + + + geosnap.data.data.store_census — geosnap v0.0.2 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    + +
    +

    geosnap.data.data.store_census

    +
    +
    +geosnap.data.data.store_census()[source]
    +

    Save census data to the local quilt package storage.

    +
    +
    Parameters
    +
    +
    None
    +
    +
    +
    Returns
    +
    +
    None

    Data will be available in the geosnap.data.data_store and will be used +in place of streaming data for all census queries. The raster package +is 3.05 GB.

    +
    +
    +
    +
    +
    + +
    + + +
    + +
    +
    +
    +
    +

    + Back to top + +
    + +

    + +

    +

    + © Copyright 2018, geosnap developers.
    + Created using Sphinx 2.1.2.
    +

    +
    +
    + + \ No newline at end of file diff --git a/docs/generated/geosnap.data.data.store_ltdb.html b/docs/generated/geosnap.data.data.store_ltdb.html index 454729ec..c32a2af0 100644 --- a/docs/generated/geosnap.data.data.store_ltdb.html +++ b/docs/generated/geosnap.data.data.store_ltdb.html @@ -16,7 +16,7 @@ - + diff --git a/docs/generated/geosnap.data.data_store.blocks_2000.html b/docs/generated/geosnap.data.data_store.blocks_2000.html new file mode 100644 index 00000000..c2793f18 --- /dev/null +++ b/docs/generated/geosnap.data.data_store.blocks_2000.html @@ -0,0 +1,173 @@ + + + + + + geosnap.data.data_store.blocks_2000 — geosnap v0.0.2 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    + +
    +

    geosnap.data.data_store.blocks_2000

    +
    +
    +classmethod data_store.blocks_2000(states=None, convert=True)
    +

    Census blocks for 2000.

    +
    +
    Parameters
    +
    +
    stateslist-like

    list of state fips codes to return as a datafrrame.

    +
    +
    convertbool
    +
    if True, return geodataframe, else return dataframe (the default is True).
    +
    +
    +
    Returns
    +
    +
    type
    +
    pandas.DataFrame or geopandas.GeoDataFrame.

    2000 blocks as a geodataframe or as a dataframe with geometry +stored as well-known binary on the ‘wkb’ column.

    +
    +
    +
    +
    +
    + +
    + + +
    + +
    +
    +
    +
    +

    + Back to top + +
    + +

    + +

    +

    + © Copyright 2018, geosnap developers.
    + Created using Sphinx 2.1.2.
    +

    +
    +
    + + \ No newline at end of file diff --git a/docs/generated/geosnap.data.data_store.blocks_2010.html b/docs/generated/geosnap.data.data_store.blocks_2010.html new file mode 100644 index 00000000..32bcd7a3 --- /dev/null +++ b/docs/generated/geosnap.data.data_store.blocks_2010.html @@ -0,0 +1,173 @@ + + + + + + geosnap.data.data_store.blocks_2010 — geosnap v0.0.2 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    + +
    +

    geosnap.data.data_store.blocks_2010

    +
    +
    +classmethod data_store.blocks_2010(states=None, convert=True)
    +

    Census blocks for 2010.

    +
    +
    Parameters
    +
    +
    stateslist-like

    list of state fips codes to return as a datafrrame.

    +
    +
    convertbool
    +
    if True, return geodataframe, else return dataframe (the default is True).
    +
    +
    +
    Returns
    +
    +
    type
    +
    pandas.DataFrame or geopandas.GeoDataFrame.

    2010 blocks as a geodataframe or as a dataframe with geometry +stored as well-known binary on the ‘wkb’ column.

    +
    +
    +
    +
    +
    + +
    + + +
    + +
    +
    +
    +
    +

    + Back to top + +
    + +

    + +

    +

    + © Copyright 2018, geosnap developers.
    + Created using Sphinx 2.1.2.
    +

    +
    +
    + + \ No newline at end of file diff --git a/docs/generated/geosnap.data.data_store.codebook.html b/docs/generated/geosnap.data.data_store.codebook.html new file mode 100644 index 00000000..c19b7938 --- /dev/null +++ b/docs/generated/geosnap.data.data_store.codebook.html @@ -0,0 +1,154 @@ + + + + + + geosnap.data.data_store.codebook — geosnap v0.0.2 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    + +
    +

    geosnap.data.data_store.codebook

    +
    +
    +data_store.codebook = variable ... notes 0 geoid ... NaN 1 n_mexican_pop ... NaN 2 n_cuban_pop ... NaN 3 n_puerto_rican_pop ... NaN 4 n_russian_pop ... ruancXX (page 17 of LTDB codebook) suggests th... .. ... ... ... 189 p_poverty_rate_black ... NaN 190 p_poverty_rate_hispanic ... NaN 191 p_poverty_rate_native ... NaN 192 p_poverty_rate_asian ... NaN 193 n_total_pop ... NaN [194 rows x 12 columns]
    +
    + +
    + + +
    + +
    +
    +
    +
    +

    + Back to top + +
    + +

    + +

    +

    + © Copyright 2018, geosnap developers.
    + Created using Sphinx 2.1.2.
    +

    +
    +
    + + \ No newline at end of file diff --git a/docs/generated/geosnap.data.data_store.counties.html b/docs/generated/geosnap.data.data_store.counties.html new file mode 100644 index 00000000..5fc45708 --- /dev/null +++ b/docs/generated/geosnap.data.data_store.counties.html @@ -0,0 +1,170 @@ + + + + + + geosnap.data.data_store.counties — geosnap v0.0.2 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    + +
    +

    geosnap.data.data_store.counties

    +
    +
    +classmethod data_store.counties(convert=True)
    +

    Nationwide counties as drawn in 2010.

    +
    +
    Parameters
    +
    +
    convertbool

    if True, return geodataframe, else return dataframe (the default is True).

    +
    +
    +
    +
    Returns
    +
    +
    geopandas.GeoDataFrame.

    2010 counties as a geodataframe or as a dataframe with geometry +stored as well-known binary on the ‘wkb’ column.

    +
    +
    +
    +
    +
    + +
    + + +
    + +
    +
    +
    +
    +

    + Back to top + +
    + +

    + +

    +

    + © Copyright 2018, geosnap developers.
    + Created using Sphinx 2.1.2.
    +

    +
    +
    + + \ No newline at end of file diff --git a/docs/generated/geosnap.data.data_store.ltdb.html b/docs/generated/geosnap.data.data_store.ltdb.html new file mode 100644 index 00000000..c3083e96 --- /dev/null +++ b/docs/generated/geosnap.data.data_store.ltdb.html @@ -0,0 +1,154 @@ + + + + + + geosnap.data.data_store.ltdb — geosnap v0.0.2 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    + +
    +

    geosnap.data.data_store.ltdb

    +
    +
    +data_store.ltdb = n_asian_under_15 n_black_under_15 ... p_asian_over_60 p_disabled geoid ... 01001020500 NaN 1.121662 ... NaN 4.737847 01003010100 NaN 609.000000 ... NaN 5.821326 01003010200 NaN 37.567365 ... NaN 6.248800 01003010300 NaN 374.853457 ... NaN 7.214156 01003010400 NaN 113.203816 ... NaN 11.205555 ... ... ... ... ... ... 56043000200 0.0 0.000000 ... NaN NaN 56043000301 0.0 0.000000 ... NaN NaN 56043000302 0.0 0.000000 ... NaN NaN 56045951100 0.0 0.000000 ... NaN NaN 56045951300 12.0 0.000000 ... NaN NaN [330388 rows x 192 columns]
    +
    + +
    + + +
    + +
    +
    +
    +
    +

    + Back to top + +
    + +

    + +

    +

    + © Copyright 2018, geosnap developers.
    + Created using Sphinx 2.1.2.
    +

    +
    +
    + + \ No newline at end of file diff --git a/docs/generated/geosnap.data.data_store.msa_definitions.html b/docs/generated/geosnap.data.data_store.msa_definitions.html new file mode 100644 index 00000000..25c16d92 --- /dev/null +++ b/docs/generated/geosnap.data.data_store.msa_definitions.html @@ -0,0 +1,154 @@ + + + + + + geosnap.data.data_store.msa_definitions — geosnap v0.0.2 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    + +
    +

    geosnap.data.data_store.msa_definitions

    +
    +
    +data_store.msa_definitions = CBSA Code Metropolitan Division Code CSA Code ... FIPS County Code Central/Outlying County stcofips 0 10100 NaN NaN ... 013 Central 46013 1 10100 NaN NaN ... 045 Outlying 46045 2 10140 NaN NaN ... 027 Central 53027 3 10180 NaN NaN ... 059 Outlying 48059 4 10180 NaN NaN ... 253 Outlying 48253 ... ... ... ... ... ... ... ... 1910 49700 NaN 472.0 ... 101 Central 06101 1911 49700 NaN 472.0 ... 115 Central 06115 1912 49740 NaN NaN ... 027 Central 04027 1913 49780 NaN 198.0 ... 119 Central 39119 1914 49820 NaN NaN ... 505 Central 48505 [1915 rows x 13 columns]
    +
    + +
    + + +
    + +
    +
    +
    +
    +

    + Back to top + +
    + +

    + +

    +

    + © Copyright 2018, geosnap developers.
    + Created using Sphinx 2.1.2.
    +

    +
    +
    + + \ No newline at end of file diff --git a/docs/generated/geosnap.data.data_store.msas.html b/docs/generated/geosnap.data.data_store.msas.html new file mode 100644 index 00000000..b2b619c0 --- /dev/null +++ b/docs/generated/geosnap.data.data_store.msas.html @@ -0,0 +1,170 @@ + + + + + + geosnap.data.data_store.msas — geosnap v0.0.2 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    + +
    +

    geosnap.data.data_store.msas

    +
    +
    +classmethod data_store.msas(convert=True)
    +

    Metropolitan Statistical Areas as drawn in 2010.

    +
    +
    Parameters
    +
    +
    convertbool

    if True, return geodataframe, else return dataframe (the default is True).

    +
    +
    +
    +
    Returns
    +
    +
    geopandas.GeoDataFrame.

    2010 MSAs as a geodataframe or as a dataframe with geometry +stored as well-known binary on the ‘wkb’ column.

    +
    +
    +
    +
    +
    + +
    + + +
    + +
    +
    +
    +
    +

    + Back to top + +
    + +

    + +

    +

    + © Copyright 2018, geosnap developers.
    + Created using Sphinx 2.1.2.
    +

    +
    +
    + + \ No newline at end of file diff --git a/docs/generated/geosnap.data.data_store.ncdb.html b/docs/generated/geosnap.data.data_store.ncdb.html new file mode 100644 index 00000000..7d404ac5 --- /dev/null +++ b/docs/generated/geosnap.data.data_store.ncdb.html @@ -0,0 +1,154 @@ + + + + + + geosnap.data.data_store.ncdb — geosnap v0.0.2 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    + +
    +

    geosnap.data.data_store.ncdb

    +
    +
    +data_store.ncdb = year n_mexican_pop ... p_poverty_rate_hispanic p_poverty_rate_native geoid ... 01001020100 1980 0 ... NaN 0.000000 01001020100 1990 0 ... NaN 0.000000 01001020100 2000 0 ... NaN 0.000000 01001020100 2010 30 ... NaN NaN 01001020200 1980 7 ... NaN 0.000000 ... ... ... ... ... ... 56045951100 2000 44 ... NaN 0.002497 56045951100 2010 64 ... NaN NaN 56045951300 1990 11 ... NaN 0.003609 56045951300 2000 35 ... NaN 0.007939 56045951300 2010 103 ... NaN NaN [328633 rows x 77 columns]
    +
    + +
    + + +
    + +
    +
    +
    +
    +

    + Back to top + +
    + +

    + +

    +

    + © Copyright 2018, geosnap developers.
    + Created using Sphinx 2.1.2.
    +

    +
    +
    + + \ No newline at end of file diff --git a/docs/generated/geosnap.data.data_store.states.html b/docs/generated/geosnap.data.data_store.states.html new file mode 100644 index 00000000..e7c825ac --- /dev/null +++ b/docs/generated/geosnap.data.data_store.states.html @@ -0,0 +1,170 @@ + + + + + + geosnap.data.data_store.states — geosnap v0.0.2 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    + +
    +

    geosnap.data.data_store.states

    +
    +
    +classmethod data_store.states(convert=True)
    +

    States.

    +
    +
    Parameters
    +
    +
    convertbool

    if True, return geodataframe, else return dataframe (the default is True).

    +
    +
    +
    +
    Returns
    +
    +
    geopandas.GeoDataFrame.

    US States as a geodataframe or as a dataframe with geometry +stored as well-known binary on the ‘wkb’ column.

    +
    +
    +
    +
    +
    + +
    + + +
    + +
    +
    +
    +
    +

    + Back to top + +
    + +

    + +

    +

    + © Copyright 2018, geosnap developers.
    + Created using Sphinx 2.1.2.
    +

    +
    +
    + + \ No newline at end of file diff --git a/docs/generated/geosnap.data.data_store.tracts_1990.html b/docs/generated/geosnap.data.data_store.tracts_1990.html new file mode 100644 index 00000000..61029294 --- /dev/null +++ b/docs/generated/geosnap.data.data_store.tracts_1990.html @@ -0,0 +1,172 @@ + + + + + + geosnap.data.data_store.tracts_1990 — geosnap v0.0.2 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    + +
    +

    geosnap.data.data_store.tracts_1990

    +
    +
    +classmethod data_store.tracts_1990(states=None, convert=True)
    +

    Nationwide Census Tracts as drawn in 1990 (cartographic 500k).

    +
    +
    Parameters
    +
    +
    stateslist-like

    list of state fips to subset the national dataframe

    +
    +
    convertbool

    if True, return geodataframe, else return dataframe (the default is True).

    +
    +
    +
    +
    Returns
    +
    +
    pandas.DataFrame or geopandas.GeoDataFrame.

    1990 tracts as a geodataframe or as a dataframe with geometry +stored as well-known binary on the ‘wkb’ column.

    +
    +
    +
    +
    +
    + +
    + + +
    + +
    +
    +
    +
    +

    + Back to top + +
    + +

    + +

    +

    + © Copyright 2018, geosnap developers.
    + Created using Sphinx 2.1.2.
    +

    +
    +
    + + \ No newline at end of file diff --git a/docs/generated/geosnap.data.data_store.tracts_2000.html b/docs/generated/geosnap.data.data_store.tracts_2000.html new file mode 100644 index 00000000..cb372b61 --- /dev/null +++ b/docs/generated/geosnap.data.data_store.tracts_2000.html @@ -0,0 +1,172 @@ + + + + + + geosnap.data.data_store.tracts_2000 — geosnap v0.0.2 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    + +
    +

    geosnap.data.data_store.tracts_2000

    +
    +
    +classmethod data_store.tracts_2000(states=None, convert=True)
    +

    Nationwide Census Tracts as drawn in 2000 (cartographic 500k).

    +
    +
    Parameters
    +
    +
    stateslist-like

    list of state fips to subset the national dataframe

    +
    +
    convertbool

    if True, return geodataframe, else return dataframe (the default is True).

    +
    +
    +
    +
    Returns
    +
    +
    pandas.DataFrame.

    2000 tracts as a geodataframe or as a dataframe with geometry +stored as well-known binary on the ‘wkb’ column.

    +
    +
    +
    +
    +
    + +
    + + +
    + +
    +
    +
    +
    +

    + Back to top + +
    + +

    + +

    +

    + © Copyright 2018, geosnap developers.
    + Created using Sphinx 2.1.2.
    +

    +
    +
    + + \ No newline at end of file diff --git a/docs/generated/geosnap.data.data_store.tracts_2010.html b/docs/generated/geosnap.data.data_store.tracts_2010.html new file mode 100644 index 00000000..888f9502 --- /dev/null +++ b/docs/generated/geosnap.data.data_store.tracts_2010.html @@ -0,0 +1,172 @@ + + + + + + geosnap.data.data_store.tracts_2010 — geosnap v0.0.2 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    + +
    +

    geosnap.data.data_store.tracts_2010

    +
    +
    +classmethod data_store.tracts_2010(states=None, convert=True)
    +

    Nationwide Census Tracts as drawn in 2010 (cartographic 500k).

    +
    +
    Parameters
    +
    +
    stateslist-like

    list of state fips to subset the national dataframe

    +
    +
    convertbool

    if True, return geodataframe, else return dataframe (the default is True).

    +
    +
    +
    +
    Returns
    +
    +
    pandas.DataFrame.

    2010 tracts as a geodataframe or as a dataframe with geometry +stored as well-known binary on the ‘wkb’ column.

    +
    +
    +
    +
    +
    + +
    + + +
    + +
    +
    +
    +
    +

    + Back to top + +
    + +

    + +

    +

    + © Copyright 2018, geosnap developers.
    + Created using Sphinx 2.1.2.
    +

    +
    +
    + + \ No newline at end of file diff --git a/docs/generated/geosnap.data.store_census.html b/docs/generated/geosnap.data.store_census.html index 68d411f5..d83a6067 100644 --- a/docs/generated/geosnap.data.store_census.html +++ b/docs/generated/geosnap.data.store_census.html @@ -122,8 +122,13 @@

    geosnap.data.store_censusgeosnap.data.store_census()[source]

    Save census data to the local quilt package storage.

    -
    Returns
    +
    Parameters
    +
    None
    +
    +
    +
    Returns
    +
    None

    Data will be available in the geosnap.data.data_store and will be used in place of streaming data for all census queries. The raster package is 3.05 GB.

    diff --git a/docs/genindex.html b/docs/genindex.html index fd6f3c31..8c451e1b 100644 --- a/docs/genindex.html +++ b/docs/genindex.html @@ -139,15 +139,19 @@

    Index

    _

    A

    @@ -225,7 +243,7 @@

    D

    @@ -283,7 +301,7 @@

    F

    G

      -
    • hdbscan() (in module geosnap.analyze.analytics), [1] +
    • hdbscan() (in module geosnap.analyze.analytics)
      • (in module geosnap.analyze.cluster) @@ -361,7 +379,7 @@

        I

        K

          -
        • kmeans() (in module geosnap.analyze.analytics), [1] +
        • kmeans() (in module geosnap.analyze.analytics)
          • (in module geosnap.analyze.cluster) @@ -373,7 +391,7 @@

            K

            L

            @@ -391,7 +411,7 @@

            M

            N

            +
            -
          • skater() (in module geosnap.analyze.analytics), [1] +
          • skater() (in module geosnap.analyze.analytics)
          • -
          • spectral() (in module geosnap.analyze.analytics), [1] +
          • spectral() (in module geosnap.analyze.analytics)
          • -
          • spenc() (in module geosnap.analyze.analytics), [1] +
          • spenc() (in module geosnap.analyze.analytics)
            • states() (geosnap.data.data.DataStore method) + +
            • +
            • store_blocks_2000() (in module geosnap.data.data), [1]
            • -
            • store_blocks_2010() (in module geosnap.data.data) +
            • store_blocks_2010() (in module geosnap.data.data), [1]
            • store_census() (in module geosnap.data)
            • -
            • store_ltdb() (in module geosnap.data), [1] +
            • store_ltdb() (in module geosnap.data)
            • -
            • store_ncdb() (in module geosnap.data), [1] +
            • store_ncdb() (in module geosnap.data)
              • (in module geosnap.data.data), [1] @@ -478,11 +512,23 @@

                T

                • transition() (geosnap.data.Community method) @@ -501,7 +547,7 @@

                  T

                  W

                    -
                  • ward_spatial() (in module geosnap.analyze.analytics), [1] +
                  • ward_spatial() (in module geosnap.analyze.analytics)
                    • (in module geosnap.analyze.cluster) diff --git a/docs/objects.inv b/docs/objects.inv index 45c8cd74..68f95b79 100644 Binary files a/docs/objects.inv and b/docs/objects.inv differ diff --git a/docs/searchindex.js b/docs/searchindex.js index a2ff5fa8..007d574b 100644 --- a/docs/searchindex.js +++ b/docs/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["api","generated/geosnap","generated/geosnap.analyze","generated/geosnap.analyze.Sequence","generated/geosnap.analyze.Transition","generated/geosnap.analyze.analytics","generated/geosnap.analyze.analytics.affinity_propagation","generated/geosnap.analyze.analytics.azp","generated/geosnap.analyze.analytics.gaussian_mixture","generated/geosnap.analyze.analytics.hdbscan","generated/geosnap.analyze.analytics.kmeans","generated/geosnap.analyze.analytics.max_p","generated/geosnap.analyze.analytics.skater","generated/geosnap.analyze.analytics.spectral","generated/geosnap.analyze.analytics.spenc","generated/geosnap.analyze.analytics.ward","generated/geosnap.analyze.analytics.ward_spatial","generated/geosnap.analyze.cluster","generated/geosnap.analyze.cluster_spatial","generated/geosnap.analyze.dynamics","generated/geosnap.analyze.incs","generated/geosnap.analyze.linc","generated/geosnap.data","generated/geosnap.data.Community","generated/geosnap.data.Community.cluster","generated/geosnap.data.Community.cluster_spatial","generated/geosnap.data.Community.from_census","generated/geosnap.data.Community.from_geodataframes","generated/geosnap.data.Community.from_lodes","generated/geosnap.data.Community.from_ltdb","generated/geosnap.data.Community.from_ncdb","generated/geosnap.data.Community.harmonize","generated/geosnap.data.Community.sequence","generated/geosnap.data.Community.transition","generated/geosnap.data.data","generated/geosnap.data.data.data_store","generated/geosnap.data.data.get_lehd","generated/geosnap.data.data.store_ltdb","generated/geosnap.data.data.store_ncdb","generated/geosnap.data.data_store","generated/geosnap.data.get_lehd","generated/geosnap.data.store_census","generated/geosnap.data.store_ltdb","generated/geosnap.data.store_ncdb","generated/geosnap.util","generated/geosnap.util.cenpy_fetch","generated/geosnap.visualize","generated/geosnap.visualize.commviz","generated/geosnap.visualize.explore","generated/geosnap.visualize.indexplot_seq","generated/geosnap.visualize.other","generated/geosnap.visualize.seq","generated/geosnap.visualize.viz","generated/modules","generated/osnap.analyze.Transition","generated/osnap.analyze.analytics.affinity_propagation","generated/osnap.analyze.analytics.azp","generated/osnap.analyze.analytics.gaussian_mixture","generated/osnap.analyze.analytics.hdbscan","generated/osnap.analyze.analytics.kmeans","generated/osnap.analyze.analytics.max_p","generated/osnap.analyze.analytics.skater","generated/osnap.analyze.analytics.spectral","generated/osnap.analyze.analytics.spenc","generated/osnap.analyze.analytics.ward","generated/osnap.analyze.analytics.ward_spatial","generated/osnap.analyze.cluster","generated/osnap.analyze.cluster_spatial","generated/osnap.analyze.linc","generated/osnap.data.Community","generated/osnap.data.Community.plot","generated/osnap.data.Community.to_crs","generated/osnap.data.db","generated/osnap.data.metros","generated/osnap.data.read_ltdb","generated/osnap.data.read_ncdb","index","installation","references"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,"sphinx.ext.intersphinx":1,"sphinx.ext.viewcode":1,sphinx:56},filenames:["api.rst","generated/geosnap.rst","generated/geosnap.analyze.rst","generated/geosnap.analyze.Sequence.rst","generated/geosnap.analyze.Transition.rst","generated/geosnap.analyze.analytics.rst","generated/geosnap.analyze.analytics.affinity_propagation.rst","generated/geosnap.analyze.analytics.azp.rst","generated/geosnap.analyze.analytics.gaussian_mixture.rst","generated/geosnap.analyze.analytics.hdbscan.rst","generated/geosnap.analyze.analytics.kmeans.rst","generated/geosnap.analyze.analytics.max_p.rst","generated/geosnap.analyze.analytics.skater.rst","generated/geosnap.analyze.analytics.spectral.rst","generated/geosnap.analyze.analytics.spenc.rst","generated/geosnap.analyze.analytics.ward.rst","generated/geosnap.analyze.analytics.ward_spatial.rst","generated/geosnap.analyze.cluster.rst","generated/geosnap.analyze.cluster_spatial.rst","generated/geosnap.analyze.dynamics.rst","generated/geosnap.analyze.incs.rst","generated/geosnap.analyze.linc.rst","generated/geosnap.data.rst","generated/geosnap.data.Community.rst","generated/geosnap.data.Community.cluster.rst","generated/geosnap.data.Community.cluster_spatial.rst","generated/geosnap.data.Community.from_census.rst","generated/geosnap.data.Community.from_geodataframes.rst","generated/geosnap.data.Community.from_lodes.rst","generated/geosnap.data.Community.from_ltdb.rst","generated/geosnap.data.Community.from_ncdb.rst","generated/geosnap.data.Community.harmonize.rst","generated/geosnap.data.Community.sequence.rst","generated/geosnap.data.Community.transition.rst","generated/geosnap.data.data.rst","generated/geosnap.data.data.data_store.rst","generated/geosnap.data.data.get_lehd.rst","generated/geosnap.data.data.store_ltdb.rst","generated/geosnap.data.data.store_ncdb.rst","generated/geosnap.data.data_store.rst","generated/geosnap.data.get_lehd.rst","generated/geosnap.data.store_census.rst","generated/geosnap.data.store_ltdb.rst","generated/geosnap.data.store_ncdb.rst","generated/geosnap.util.rst","generated/geosnap.util.cenpy_fetch.rst","generated/geosnap.visualize.rst","generated/geosnap.visualize.commviz.rst","generated/geosnap.visualize.explore.rst","generated/geosnap.visualize.indexplot_seq.rst","generated/geosnap.visualize.other.rst","generated/geosnap.visualize.seq.rst","generated/geosnap.visualize.viz.rst","generated/modules.rst","generated/osnap.analyze.Transition.rst","generated/osnap.analyze.analytics.affinity_propagation.rst","generated/osnap.analyze.analytics.azp.rst","generated/osnap.analyze.analytics.gaussian_mixture.rst","generated/osnap.analyze.analytics.hdbscan.rst","generated/osnap.analyze.analytics.kmeans.rst","generated/osnap.analyze.analytics.max_p.rst","generated/osnap.analyze.analytics.skater.rst","generated/osnap.analyze.analytics.spectral.rst","generated/osnap.analyze.analytics.spenc.rst","generated/osnap.analyze.analytics.ward.rst","generated/osnap.analyze.analytics.ward_spatial.rst","generated/osnap.analyze.cluster.rst","generated/osnap.analyze.cluster_spatial.rst","generated/osnap.analyze.linc.rst","generated/osnap.data.Community.rst","generated/osnap.data.Community.plot.rst","generated/osnap.data.Community.to_crs.rst","generated/osnap.data.db.rst","generated/osnap.data.metros.rst","generated/osnap.data.read_ltdb.rst","generated/osnap.data.read_ncdb.rst","index.rst","installation.rst","references.rst"],objects:{"":{geosnap:[1,0,0,"-"]},"geosnap.analyze":{analytics:[5,0,0,"-"],cluster:[17,0,0,"-"],cluster_spatial:[67,1,1,""],dynamics:[19,0,0,"-"],incs:[20,0,0,"-"],linc:[68,1,1,""],sequence:[2,1,1,""],transition:[2,1,1,""]},"geosnap.analyze.analytics":{affinity_propagation:[55,1,1,""],azp:[56,1,1,""],cluster:[5,1,1,""],cluster_spatial:[5,1,1,""],gaussian_mixture:[57,1,1,""],hdbscan:[58,1,1,""],kmeans:[59,1,1,""],max_p:[60,1,1,""],skater:[61,1,1,""],spectral:[62,1,1,""],spenc:[63,1,1,""],ward:[64,1,1,""],ward_spatial:[65,1,1,""]},"geosnap.analyze.cluster":{affinity_propagation:[17,1,1,""],azp:[17,1,1,""],gaussian_mixture:[17,1,1,""],hdbscan:[17,1,1,""],kmeans:[17,1,1,""],max_p:[17,1,1,""],skater:[17,1,1,""],spectral:[17,1,1,""],spenc:[17,1,1,""],ward:[17,1,1,""],ward_spatial:[17,1,1,""]},"geosnap.analyze.dynamics":{sequence:[19,1,1,""],transition:[19,1,1,""]},"geosnap.analyze.incs":{linc:[20,1,1,""]},"geosnap.data":{Community:[69,2,1,""],data:[34,0,0,"-"],data_store:[39,4,1,""],get_lehd:[40,1,1,""],store_census:[41,1,1,""],store_ltdb:[74,1,1,""],store_ncdb:[75,1,1,""]},"geosnap.data.Community":{__init__:[69,3,1,""],cluster:[24,3,1,""],cluster_spatial:[25,3,1,""],from_census:[26,3,1,""],from_geodataframes:[27,3,1,""],from_lodes:[28,3,1,""],from_ltdb:[29,3,1,""],from_ncdb:[30,3,1,""],harmonize:[31,3,1,""],sequence:[32,3,1,""],transition:[33,3,1,""]},"geosnap.data.data":{Community:[34,2,1,""],DataStore:[34,2,1,""],data_store:[35,4,1,""],get_lehd:[36,1,1,""],store_blocks_2000:[34,1,1,""],store_blocks_2010:[34,1,1,""],store_census:[34,1,1,""],store_ltdb:[37,1,1,""],store_ncdb:[38,1,1,""]},"geosnap.data.data.Community":{cluster:[34,3,1,""],cluster_spatial:[34,3,1,""],from_census:[34,3,1,""],from_geodataframes:[34,3,1,""],from_lodes:[34,3,1,""],from_ltdb:[34,3,1,""],from_ncdb:[34,3,1,""],harmonize:[34,3,1,""],sequence:[34,3,1,""],transition:[34,3,1,""]},"geosnap.data.data.DataStore":{blocks_2000:[34,3,1,""],blocks_2010:[34,3,1,""],codebook:[34,3,1,""],counties:[34,3,1,""],ltdb:[34,3,1,""],msa_definitions:[34,3,1,""],msas:[34,3,1,""],ncdb:[34,3,1,""],states:[34,3,1,""],tracts_1990:[34,3,1,""],tracts_2000:[34,3,1,""],tracts_2010:[34,3,1,""]},"geosnap.util":{cenpy_fetch:[45,0,0,"-"]},"geosnap.util.cenpy_fetch":{main:[45,1,1,""]},"geosnap.visualize":{commviz:[47,0,0,"-"],explore:[48,1,1,""],indexplot_seq:[49,1,1,""],seq:[51,0,0,"-"]},"geosnap.visualize.commviz":{explore:[47,1,1,""]},"geosnap.visualize.seq":{indexplot_seq:[51,1,1,""]},geosnap:{analyze:[2,0,0,"-"],data:[22,0,0,"-"],util:[44,0,0,"-"],visualize:[46,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","class","Python class"],"3":["py","method","Python method"],"4":["py","data","Python data"]},objtypes:{"0":"py:module","1":"py:function","2":"py:class","3":"py:method","4":"py:data"},terms:{"3rd":78,"500k":34,"\u03c4":78,"boolean":[31,34],"case":[27,31,34],"class":[2,5,18,23,24,25,34,66,67,69],"default":[2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,24,25,26,28,29,30,31,32,33,34,36,37,40,42,47,48,55,56,57,58,59,60,61,62,63,64,65,66,67,74],"float":[2,6,17,19,32,34,55],"function":[26,29,30,34,45,47,48,49,51],"import":[2,19,49,51],"int":[2,5,6,7,8,9,10,11,12,14,15,16,17,18,19,24,25,31,32,33,34,55,56,57,58,59,60,61,63,64,65,66,67],"long":[2,5,18,19,23,24,25,32,33,34,66,67,69],"new":[2,5,18,23,24,25,26,27,28,29,30,31,34,66,67,69],"return":[2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,21,24,25,26,28,29,30,31,34,36,37,40,41,42,47,48,55,56,57,58,59,60,61,62,63,64,65,66,67,68,74],"short":[13,17,31,34,62],"true":[6,9,10,17,31,34,55,58,59],ACS:[],And:[2,20,21,68],NOT:[31,34],Not:[],The:[2,5,6,7,8,10,12,13,14,15,16,17,18,20,21,24,25,27,31,32,33,34,36,40,41,55,56,57,59,61,62,63,64,65,66,67,68,76,77,78],Will:[2,5,18,24,25,34,66,67],__init__:[23,69],abbrevi:[36,40],abs:78,accord:[8,17,31,34,57],accur:[],acggtag:[],activ:77,added:[31,34],addit:[26,28,29,30,34],adjust:[],adjust_infl:[],adopt:[32,33,34],affin:[6,13,17,55,62],affinity_propag:17,affinitypropag:[6,17,55],after:[32,33,34],agglom:[2,15,16,17,19,32,34,64,65],agglomerativeclust:[15,16,17,64,65],aggreg:[2,5,18,25,34,67],alan:78,algorithm:[2,5,6,7,8,10,11,12,17,18,24,25,34,55,56,57,59,60,61,66,67,78],all:[2,20,21,26,28,29,30,34,41,68],alloc:[31,34],allocate_tot:[31,34],allow:[2,20,21,47,48,68],also:[27,34,77],altern:[26,28,29,30,34],alwai:[],american:78,anaconda:77,analysi:[2,5,18,19,24,25,32,34,53,66,67,78],analyt:[1,2],analyz:[1,53,76],ani:[26,28,29,30,34],anim:1,annal:78,anselin:78,api:[],append:[2,5,18,24,25,34,66,67],appli:[2,5,18,24,25,34,66,67],applic:78,approach:[2,19,32,33,34,78],arbitrari:[2,19,26,28,29,30,32,34],area:[2,5,18,20,21,24,25,26,27,28,29,30,31,34,36,40,66,67,68,78],argument:[23,26,28,29,30,34,69],arrai:[2,6,7,8,9,10,11,12,14,15,16,17,19,20,21,32,34,55,56,57,58,59,60,61,63,64,65,68],arral:[13,17,62],arriba:78,art:78,articl:78,arxiv:78,aspx:[34,37,42,74],assign_label:[13,17,62],associ:78,attribut:[2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,23,24,25,27,34,55,56,57,58,59,60,61,62,63,64,65,66,67,69],auto:[10,17,59],avaial:[36,40],avail:[34,41,53],azp:17,back:[],base:[2,19,31,32,33,34,47,48],base_year:[],bayesian:[8,17,57],bb03:78,becom:[31,34],been:[2,5,18,23,25,34,67,69,77],bel:78,best:[2,5,24,34,66],best_model:[2,5,8,17,24,25,34,57,66],between:[2,19,32,34],bf02736122:78,bic:[2,5,24,34,66],bickenbach:78,bie11:[2,19,32,34,78],biemann:78,binari:34,block:[2,20,21,23,34,36,40,68,69],blocks_2000:34,blocks_2010:34,bode:78,bool:[2,5,8,9,17,23,24,25,31,34,57,58,66,69],boundari:[1,23,26,28,29,30,31,34,69],brian:78,brown:[34,37,42,74],browser:[47,48],buhong:78,calcul:[11,17,60,78],call:0,cambridg:78,can:[2,11,17,20,21,23,31,34,60,68,69,77],cannot:[],cartograph:34,categor:[],cctaag:[],cctaaga:[],cctaagc:[],cenpy_fetch:[1,44],censu:[23,26,28,34,35,36,39,40,41,45,47,48,69],central:0,centroid:[10,13,17,59,62],chain:[0,78],chang:[0,1,2,5,19,20,21,34,38,43,68,75,76,77],characterist:[28,34,36,40],choos:[2,5,24,34,66],choropleth:[47,48],chr05:78,christensen:78,citi:[2,20,21,68],classmethod:[26,27,28,29,30,34],clip:[26,28,29,30,34],clone:77,cluster:[1,2,5,6,7,8,9,10,11,12,13,14,15,16,18,19,25,32,34,49,51,55,56,57,58,59,60,61,62,63,64,65,67],cluster_col:[2,19,32,33,34],cluster_spati:[0,2,5,34],cluster_typ:[],code:[26,28,29,30,31,34,36,40,49,51],codebook:34,coef0:[13,17,62],collect:[23,34,36,40,69],columbia:[],columbu:[2,19],columbus1:[2,19],columbusfip:[2,19],column:[2,5,18,19,24,25,27,32,33,34,36,40,66,67],com:78,combin:[],command:77,common:0,commun:[2,19,34],commviz:[1,46],compos:[2,20,21,68],composit:[2,20,21,23,34,68,69,76],comput:78,concord:78,conda:77,condit:78,conduct:[31,34],connect:[16,17,65],consid:[31,34],consider:[31,34],consist:[1,23,34,69],constant:[2,19,32,34],constraint:[2,5,16,17,18,25,34,65,67],construct:0,consult:[36,40],contain:[2,5,19,24,34,37,42,66,74],content:53,context:[31,34],contigu:[2,5,18,25,34,67],conting:78,contrast:[2,20,21,68],contribut:77,contructor:0,converg:78,convergence_it:[6,17,55],convert:[34,49,51],convert_gdf:[],copi:[6,17,55],copy_x:[10,17,59],cost:[2,19,32,34],could:[],count:[2,5,11,17,18,25,34,60,67],counti:[26,28,29,30,34],county_fip:[26,28,29,30,34],covari:[8,17,57],covariance_typ:[8,17,57],creat:[2,5,18,24,25,26,27,28,29,30,34,47,48,66,67,77],criterion:[8,17,57],crosswalk:34,csv:[34,37,38,42,43,49,51,74,75],currenc:[],current:[34,35,39,47,48],damp:[6,17,55],daniel:78,dar12:[11,17,60,78],dash:[47,48],data:[1,2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,45,47,48,49,51,53,55,56,57,58,59,60,61,62,63,64,65,66,67],data_stor:[34,41],databas:[34,37,38,42,43,74,75],datafram:[2,5,18,19,24,27,31,34,36,37,40,42,66,67,74],datafrarm:34,datafrram:34,dataset:[0,2,5,18,27,28,34,36,40,47,48,66,67],datastor:[34,35,39],david:78,dbscan:[9,17,58],decad:[29,30,34],defin:[2,5,11,17,18,19,20,21,25,26,27,28,29,30,32,33,34,60,66,67,68],definit:34,degre:[13,17,62],delet:[2,19,32,34],demarc:1,denomin:[31,34],depend:78,describ:[23,34,69],descript:[9,13,17,25,34,58,62],desir:[2,19,33,34],detail:[31,34,36,40],develop:78,df_la:[49,51],df_traj:[49,51],df_wide:[2,19],dict:[],dictionari:[],differ:[2,19,32,34],differenti:0,digit:[26,28,29,30,34,36,40],dimens:[],directli:0,directori:77,discret:[0,23,34,69,78],dissimilar:[32,34],dist_typ:[2,19,32,34],distanc:[2,19,32,34],distribut:78,district:[],divers:[34,37,42,74],docstr:1,document:[36,40,53],doi:78,dollar:[],download:[26,29,30,34,37,42,45,74,77],drawn:34,dtype:[],duqu:78,dvd:[34,38,43,75],dynam:[1,2,33,34,78],each:[2,20,21,23,27,31,34,49,51,68,69],eckhardt:78,econom:78,econometr:78,edit:78,editor:78,edu:[34,37,42,74],effect:78,eigen_solv:[13,17,62],eigen_tol:[13,17,62],either:[36,40],els:34,empir:[2,19,32,34,78],encod:[],encourag:[14,17,63],endogen:[8,17,57],env:77,environ:77,equal:[],error:[],etc:[2,19,32,33,34],euclidean:[6,17,55],evalu:[32,34,78],everi:[32,34],evolut:78,exampl:[2,19,20,21,36,40,49,51,68],exhaust:[31,34],experiment:[47,48],explor:47,extens:[31,34],extensive_vari:[31,34],extent:[26,28,29,30,34,76],extra:[23,69],extract:[34,38,43,75],fail:[],fals:[2,5,6,8,12,17,18,24,25,31,34,49,51,55,57,61,66,67],fast:78,featur:[26,28,29,30,34],fetch_ac:[],fig_suffix:[49,51],file:[34,37,38,42,43,74,75],filepath:[34,38,43,75],find:[8,17,57],finit:78,fip:[26,28,29,30,34,36,40],first:[26,29,30,34,36,40],five:[26,28,29,30,34],flanneri:78,floor:[11,12,17,60,61],folch:78,follow:[0,77],force_crs_match:[31,34],fork:77,form:[1,2,5,7,8,10,12,13,14,15,16,17,18,19,23,24,25,32,33,34,56,57,59,61,62,63,64,65,66,67,69],formbi:78,formula:34,four:[2,20,21,68],frank:78,from:[2,19,23,26,27,28,29,30,31,32,34,36,37,38,40,42,43,49,51,69,74,75],from_censu:34,from_geodatafram:34,from_lod:34,from_ltdb:[2,19,34],from_ncdb:34,fsz04:78,ftp:[36,40],full:[8,17,57],fullcount:[34,37,42,74],further:[24,25,34],gamma:[13,14,17,62,63],gaussian:[2,5,8,17,24,34,57,66],gaussian_mixtur:17,gaussianmixtur:[8,17,57],gdf:[2,5,18,19,23,24,25,26,27,28,29,30,34,66,67,69],gdf_new:[2,19],gen_min_span_tre:[9,17,58],gener:[8,9,10,13,17,57,58,59,62],geo2010:[49,51],geo:[2,5,19,24,34,66],geocod:[23,34,69],geodatafram:[2,5,18,23,25,26,27,28,29,30,34,67,69],geodemograph:[2,5,18,24,25,34,66,67],geograph:78,geoid:[2,5,18,19,32,33,34,66,67],geolyt:[34,38,43,75],geometr:[],geometri:[2,5,18,23,25,27,34,67,69],geonap:0,geopanda:[2,5,18,23,25,26,28,29,30,34,67,69],geosnap:[0,76,77],geospati:53,get:[2,20,21,68,77],get_lehd:[],geti:78,give:[],given:[],given_year:[],global:[2,20,21,68],gpd:[],grab:[36,40],group:[11,17,60],grow:[2,5,18,25,34,67],growth:78,guidanc:[2,19,32,34],guti:78,ham:[2,19,32,34],hampshir:78,handful:[23,34,69],happen:[],harmon:[1,23,27,29,30,34,69],has:[2,20,21,31,34,68,77],have:[2,5,18,23,25,27,34,67,69],hdbscan:17,help:[],here:[2,20,21,68],hex:[],hierarch:[9,17,58],hire:[49,51],histor:[],hold:[0,2,5,18,23,25,27,34,67,69],hollow:[2,19,32,34],how:[27,34],html:1,http:[1,34,37,42,74,78],id_var:[2,5,18,19,32,33,34,66,67],ident:[31,34],identifi:[2,5,18,19,24,25,32,33,34,66,67],imag:[31,34],implement:[2,20,21,68],inc:[1,2],includ:[2,5,18,25,26,28,29,30,31,34,47,48,67,76],incom:78,increas:[12,17,61],indel:[2,19,32,34],index:[2,5,18,27,34,36,40,49,51,66,67,77],indexplot_seq:51,indic:[2,20,21,68,78],inequ:78,inf:[12,17,61],infer:[2,19,33,34,78],inflat:[],inform:[8,17,57],ingest:1,init:[10,17,59],initi:[2,20,21,23,68,69],input:[31,32,33,34,38,43,75],input_column:[],insert:[2,19,32,34],instanc:[6,7,8,9,10,11,12,13,14,15,16,17,24,25,34,55,56,57,58,59,60,61,62,63,64,65],instanti:0,instianti:[26,28,29,30,34],integ:[11,17,60],intens:[31,34],intensive_vari:[31,34],interact:[0,47,48],interlant:78,intern:78,interpol:[31,34],intersect:[26,28,29,30,31,34],interv:[2,19,32,34],introduc:[31,34],island:[12,17,61],iter:[6,17,55],its:[2,19,32,34],jame:78,jan:78,john:78,joint:78,journal:78,jstor:78,juan:78,kang:78,kemeni:78,kendal:78,kernel:[2,19,33,34],kernel_param:[13,17,62],keyword:[23,69],kkk62:78,kmean:[2,13,17,19,32,33,34,62],knn:[2,19,33,34],known:34,kr18:78,ks67:78,kullback:78,kupperman:78,kwarg:[2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,23,24,25,34,55,56,57,58,59,60,61,62,63,64,65,66,67,69],la_sequ:[49,51],label:[2,5,18,24,25,32,33,34,66,67],label_dict:[],labels_0:[2,20,21,68],labels_1:[2,20,21,68],labels_2:[2,20,21,68],labels_sequ:[2,20,21,68],lag:[],lambda:[49,51],land:[31,34],land_type_area:[31,34],land_type_gaussian_regress:[31,34],land_type_poisson_regress:[31,34],larg:[23,34,69],largest:[26,28,29,30,34],last:[],launch:[47,48],lauri:78,lazili:[26,28,29,30,34],learn:[2,5,6,8,17,18,24,25,34,55,57,66,67],lehd:[28,34],length:[],letter:78,level:[23,34,69],levi:78,libpys:[],like:[2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,24,25,27,34,55,56,57,58,59,60,61,62,63,64,65,66,67],limit:[11,17,60],linc:[2,20],lindsei:78,linkag:[2,15,16,17,19,32,34,64,65],list:[2,5,18,24,25,26,27,28,29,30,31,34,66,67],local:[2,20,21,34,41,68,77,78],locat:[34,38,43,75],lode:[28,34,36,40],longitudin:[34,37,42,74],loop:[],ltbddload:[34,37,42,74],ltdb:[29,30,34,37,42,47,48,74],luc:78,mai:[0,23,26,27,28,29,30,34,69],main:45,make:77,manipul:[1,34],manual:77,map:[47,48],mar:78,markov:[0,2,19,32,33,34,78],maryland:[],match:[0,2,19,31,32,34,78],matplotlib:[49,51],matric:78,matrix:[2,5,7,11,12,14,16,17,18,19,25,32,34,56,60,61,63,65,67],max:[2,5,8,11,17,18,25,34,57,60,67,78],max_clust:[8,17,57],max_it:[6,10,17,55,59],max_p:17,maximum:[6,17,55],maxpregionsheu:[11,17,60],mean:[10,17,59],measur:78,median_household_incom:[2,19],messag:[2,5,24,34,66],method:[2,5,18,19,23,24,25,31,34,51,66,67,69,77],methodolog:78,metric:[2,19,32,34],metro:[2,5,18,25,34,67],metropolitan:[23,34,47,48,69,78],min_cluster_s:[9,17,58],minimum:[9,17,58],misc:[23,34,69],mixtur:[2,5,8,17,24,34,57,66],mobil:78,model:[0,2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,24,25,34,55,56,57,58,59,60,61,62,63,64,65,66,67,76,78],modul:53,more:[2,20,21,23,31,34,36,40,68,69],most:[0,36,40],msa:[26,28,29,30,34],msa_definit:34,msa_fip:[2,19,26,28,29,30,34],multipl:[23,34,69],multivari:0,murrai:78,must:[26,27,29,30,34],myrna:78,n_cluster:[2,5,7,8,10,12,13,14,15,16,17,18,19,24,25,34,56,57,59,61,62,63,64,65,66,67],n_init:[10,13,17,59,62],n_job:[10,13,17,59,62],n_neighbor:[13,17,62],n_sampl:[6,17,55],name:[2,5,18,19,24,25,32,33,34,66,67],nation:34,nationwid:34,ncdb:[30,34,47,48],ncol:[49,51],necessari:[9,17,58],neg:[2,19,32,34],neighborhood:[0,2,5,18,19,20,21,23,24,25,27,32,33,34,38,43,49,51,53,66,67,68,69,75],nlcd_2011:[31,34],non:[2,19,32,33,34],none:[2,5,6,8,10,13,17,18,19,23,24,25,26,27,28,29,30,31,32,33,34,41,47,48,49,51,55,57,59,62,66,67,69],normalize_rel:[],nostrand:78,note:[2,20,21,31,34,68],nov:78,now:[2,19,32,34],number:[2,5,6,7,8,9,10,12,13,14,15,16,17,18,19,24,25,32,33,34,55,56,57,58,59,61,62,63,64,65,66,67],numer:[2,5,18,25,34,67,78],numpi:[],object:[34,35,39],observ:[],one:[23,34,69],onli:[2,19,31,32,34,77],onlinelibrari:78,oper:77,optim:[0,2,19,32,34,78],option:[2,6,7,8,10,12,14,15,16,17,19,28,32,33,34,47,48,55,56,57,59,61,63,64,65],org:[1,78],orient:[2,19,32,34,78],origin:[26,34],other:[1,46],over:[2,5,18,20,21,23,27,34,66,67,68,69,76],overwrit:[2,5,18,24,25,34,66,67],p_edu_college_great:[2,19],p_poverty_r:[2,19],p_unemployment_r:[2,19],packag:[34,41,53,77],page:78,pair:[],pairwis:[2,19,32,34],palett:[49,51],palgrav:78,panda:[2,5,24,34,36,37,40,42,49,51,66,74],paramet:[2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,23,24,25,26,27,28,29,30,31,32,33,34,36,37,38,40,42,43,47,48,55,56,57,58,59,60,61,62,63,64,65,66,67,69,74,75],pass:[0,2,6,8,17,20,21,26,28,29,30,34,55,57,68],pastel:[49,51],path:[31,34,37,42,74],pattern:78,pdf:[49,51],per:[],period:[2,20,21,23,34,68,69],permut:[2,19,33,34],pertain:[23,34,69],pii:78,pixel:[31,34],place:[34,41],pleas:77,plot:[1,49,51],plotli:[47,48],plt:[49,51],png:[49,51],point:[9,17,23,34,58,69],polygon:[2,5,18,25,31,34,67],pool:[],popul:[31,34],portal:[47,48],pre:[29,30,34],precompute_dist:[10,17,59],prefer:[6,17,55],preprocess:[2,5,18,24,25,34,66,67],press:78,primit:[2,20,21,68],print:[2,5,24,34,66],probabl:[2,19,32,34],problem:78,proce:[],process_column:[],program:[2,19],prohibit:[2,20,21,68],project:[34,37,42,74],propag:[6,17,55],proper:[],properti:[34,76,78],provid:[0,26,28,29,30,34,47,48,76],ptvf07:78,pull:77,pyplot:[49,51],pysal:[7,11,12,14,16,17,56,60,61,63,65],python:[1,77],quarterli:78,queen:[2,5,18,19,25,33,34,67],queri:[34,41],quilt:[34,41],rac:[28,34,36,40],raf:[2,20,21,68,78],rais:[],random:[2,19,33,34],random_st:[8,10,13,17,57,59,62],rank:78,rapidli:[47,48],raster:[31,34,41],raster_path:[31,34],rate:[2,19,33,34],rbf:[13,17,62],read:[34,37,38,42,43,74,75],read_csv:[49,51],recent:[],recip:78,recommend:77,reffer:[36,40],region:[2,5,7,11,17,18,23,25,34,56,60,67,69,78],regist:[26,29,30,34],regress:[31,34],rei:78,relat:[],releas:[],replic:[8,17,57],repo:77,repositori:77,repres:[23,34,36,40,69],represent:[],representative_point:[26,28,29,30,34],reproject:[31,34],request:77,requir:[32,33,34],res:[2,20,21,68],rescal:[2,5,18,24,25,34,66,67],research:[34,37,42,74],resid:[28,34,36,40],resourc:78,respect:[],result:[8,17,57],return_model:[2,5,18,24,25,34,66,67],review:78,rey01:78,rey04:78,rey14:78,rey16:78,rkw16:78,rma11:78,rook:[2,5,18,19,25,33,34,67],row:[],rrez:78,run:[2,5,18,24,25,34,66,67,77],s00168:78,s00180:78,s0304407603002112:78,s0304:78,s10109:78,s12076:78,same:[2,5,18,19,20,21,24,25,32,34,66,67,68],sampl:[34,37,42,74],sastr:78,saul:78,save:[34,41],save_fig:[49,51],scale:[47,48],scaler:[2,5,18,24,25,34,66,67],scienc:78,sciencedirect:78,scientif:78,scikit:[2,5,6,8,17,18,24,25,34,55,57,66,67],see:[31,34],seed:[8,17,57],segment:[2,19,32,33,34],select:[26,28,29,30,34],self:[23,24,25,31,32,33,34,69],sensor:[23,34,69],seq1:[],seq2:[],seq3:[],seq:[1,46],seq_clust:[2,19,32,34],seq_dis_mat:[2,19],seq_ham:[2,19],seqana:[],seqc1:[49,51],sequenc:[2,5,18,19,27,33,34,49,51,66,67],sergio:78,server:[36,40],set1:[49,51],set:[23,26,28,29,30,31,34,47,48,69],setup:77,sever:0,shape:[6,17,55],should:[0,2,5,18,19,25,28,31,32,33,34,67],show:[49,51],signatur:[],sinc:[32,33,34],singl:[2,11,17,20,21,60,68],singleton:[2,20,21,68],skater:17,sklearn:[2,5,6,8,10,13,15,16,17,18,19,24,25,32,34,55,57,59,62,64,65,66,67],slight:[2,20,21,68],slightli:[],small:[23,34,69],smith:78,snell:78,social:76,sociolog:78,sourc:[2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,23,24,25,26,27,28,29,30,31,32,33,34,36,37,38,40,41,42,43,45,47,48,49,51,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,74,75,77],space:78,spatial:[2,5,7,11,12,14,16,17,18,19,23,25,31,32,33,34,56,60,61,63,65,67,69,76,78],spatial_weight:[2,5,18,25,34,67],spatialucr:77,spatiotempor:[0,1],specif:[2,5,18,25,34,67],specifi:[],spectral:[14,17,63],spectralclust:[13,17,62],spenc:17,stabl:[2,5,18,27,34,66,67,78],standard:[34,37,42,74],standardscal:[2,5,18,24,25,34,66,67],start:77,state:[2,19,26,28,29,30,32,34,36,40],state_fip:[26,28,29,30,34],statist:[34,78],still:[47,48],storag:[34,35,39,41],store:[1,23,34,37,38,42,43,69,74,75],store_blocks_2000:34,store_blocks_2010:34,store_censu:[26,34],store_ltdb:[29,34,74],store_ncdb:[30,34,75],str:[2,5,8,11,17,18,24,25,26,28,29,30,31,34,36,37,38,40,42,43,47,48,49,51,57,60,66,67,74,75],stream:[34,41],string:[2,19,26,28,29,30,31,32,33,34],strong:[2,19,32,34],structur:[2,19,33,34],studi:[2,5,24,26,27,28,29,30,34,66,78],sub:53,submit:77,submodul:[1,53],subpackag:53,subs_mat:[2,19,32,34],subset:[2,5,18,24,25,34,66,67],substitut:[2,19,32,34],suit:76,summari:[13,17,31,34,62],support:[34,35,39,77],sure:77,survei:[23,34,69],symmetr:[2,19,32,34],system:78,tabl:78,tabul:[],tabular:[23,34,69],taken:[31,34],target:[31,34],target_year:[31,34],tb00444:78,technometr:78,test:[8,17,57,78],teukolski:78,text:[],than:[2,20,21,68],thei:0,theori:[2,19,32,34],thi:[2,5,18,20,21,26,28,29,30,31,34,47,48,66,67,68,77],threshold:[2,5,11,17,18,25,34,60,67],threshold_vari:[2,5,11,17,18,25,34,60,67],through:[],time:[2,5,18,19,20,21,23,27,32,33,34,66,67,68,69,76,78],time_var:[2,5,18,19,32,33,34,66,67],todo:[12,14,17,61,63],tol:[10,17,59],tool:[5,34,76],torsten:78,total:[26,28,29,30,31,34],trace:[12,17,61],traceback:[],tract:[2,20,21,23,26,28,29,30,34,37,42,68,69,74],tracts_1990:34,tracts_2000:34,tracts_2010:34,tran:[2,19,32,34],transit:[2,19,32,34,78],two:[1,2,20,21,26,28,29,30,31,32,34,36,40,68],type:[2,5,12,13,17,18,19,24,25,26,28,29,30,31,32,33,34,61,62,66,67],typolog:[2,5,18,24,25,34,66,67],underli:[24,25,34],unequ:[],unharmon:[26,34],uniqu:[2,5,18,19,26,27,28,29,30,32,33,34,66,67],unit:[2,5,18,19,20,21,23,27,32,33,34,66,67,68,69],univ:78,until:[2,5,18,25,34,67],upon:0,upper:[11,17,60],url:78,use:[2,5,11,17,18,19,24,25,26,28,29,30,33,34,60,66,67],used:[0,2,5,8,17,18,19,24,25,26,28,29,30,31,32,33,34,41,57,66,67],user:[47,48],using:[0,2,5,8,15,16,17,24,26,29,30,34,47,48,57,64,65,66],util:[1,2,19,32,34,53],valu:[31,34],valueerror:[],van:78,vari:[],variabl:[2,5,11,17,18,25,27,31,34,60,67],varieti:[47,48],verbos:[2,5,6,10,17,24,34,55,59,66],vetterl:78,vintag:[26,34],visual:[1,53,78],viz:[1,46],w_kwd:[],w_type:[2,19,33,34],wac:[28,34,36,40],wai:[0,76],ward:[2,16,17,19,32,33,34,65],ward_spati:17,warn:[2,5,24,34,66],web:[47,48],webmap:[47,48],webpag:1,wei:78,weight:[2,5,7,11,12,14,16,17,18,19,25,31,33,34,56,60,61,63,65,67],weights_method:[31,34],weights_typ:[2,5,18,25,34,67],well:[10,13,17,34,59,62],were:[],when:[11,17,31,34,60],whether:[2,5,23,24,25,31,34,66,69],which:[2,5,18,20,21,23,24,25,27,28,34,36,40,47,48,66,67,68,69],wide:[2,5,18,66,67],widget:[47,48],wilei:78,william:78,wise:[2,20,21,68],within:[49,51],wkb:34,wkt:[],wolf2018:[14,17,63],wolf:78,workplac:[28,34,36,40],would:[2,5,18,31,34,66,67],www:78,year:[2,5,18,19,26,28,29,30,31,32,33,34,36,40,49,51,66,67],yet:[31,34,77],yml:77,you:[26,28,29,30,34,77],your:[34,38,43,75,77],zheng:78,zip:[34,37,42,74],zoeller:78},titles:["API reference","geosnap package","geosnap.analyze package","geosnap.analyze.Sequence","geosnap.analyze.Transition","geosnap.analyze.analytics module","geosnap.analyze.analytics.affinity_propagation","geosnap.analyze.analytics.azp","geosnap.analyze.analytics.gaussian_mixture","geosnap.analyze.analytics.hdbscan","geosnap.analyze.analytics.kmeans","geosnap.analyze.analytics.max_p","geosnap.analyze.analytics.skater","geosnap.analyze.analytics.spectral","geosnap.analyze.analytics.spenc","geosnap.analyze.analytics.ward","geosnap.analyze.analytics.ward_spatial","geosnap.analyze.cluster module","geosnap.analyze.cluster_spatial","geosnap.analyze.dynamics module","geosnap.analyze.incs module","geosnap.analyze.linc","geosnap.data package","geosnap.data.Community","geosnap.data.Community.cluster","geosnap.data.Community.cluster_spatial","geosnap.data.Community.from_census","geosnap.data.Community.from_geodataframes","geosnap.data.Community.from_lodes","geosnap.data.Community.from_ltdb","geosnap.data.Community.from_ncdb","geosnap.data.Community.harmonize","geosnap.data.Community.sequence","geosnap.data.Community.transition","geosnap.data.data module","geosnap.data.data.data_store","geosnap.data.data.get_lehd","geosnap.data.data.store_ltdb","geosnap.data.data.store_ncdb","geosnap.data.data_store","geosnap.data.get_lehd","geosnap.data.store_census","geosnap.data.store_ltdb","geosnap.data.store_ncdb","geosnap.util package","geosnap.util.cenpy_fetch module","geosnap.visualize package","geosnap.visualize.commviz module","geosnap.visualize.explore","geosnap.visualize.indexplot_seq","geosnap.visualize.other module","geosnap.visualize.seq module","geosnap.visualize.viz module","geosnap","geosnap.analyze.Transition","geosnap.analyze.analytics.affinity_propagation","geosnap.analyze.analytics.azp","geosnap.analyze.analytics.gaussian_mixture","geosnap.analyze.analytics.hdbscan","geosnap.analyze.analytics.kmeans","geosnap.analyze.analytics.max_p","geosnap.analyze.analytics.skater","geosnap.analyze.analytics.spectral","geosnap.analyze.analytics.spenc","geosnap.analyze.analytics.ward","geosnap.analyze.analytics.ward_spatial","geosnap.analyze.cluster","geosnap.analyze.cluster_spatial","geosnap.analyze.linc","geosnap.data.Community","geosnap.data.Community.plot","geosnap.data.Community.to_crs","geosnap.data.db","geosnap.data.metros","geosnap.data.read_ltdb","geosnap.data.read_ncdb","Open Source Neighborhood Analysis Package","Installation","References"],titleterms:{"class":0,The:0,affinity_propag:[6,55],algorithm:0,analysi:[1,76],analyt:[0,5,6,7,8,9,10,11,12,13,14,15,16,55,56,57,58,59,60,61,62,63,64,65],analyz:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68],api:0,aspati:0,avail:1,azp:[7,56],cenpy_fetch:45,classic:0,cluster:[0,17,24,66],cluster_spati:[18,25,67],commun:[0,23,24,25,26,27,28,29,30,31,32,33,69,70,71],commviz:47,constructor:0,content:[1,2,22,44,46],data:[0,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,69,70,71,72,73,74,75],data_stor:[35,39],develop:77,document:1,dynam:[0,19],explor:48,from_censu:26,from_geodatafram:27,from_lod:28,from_ltdb:29,from_ncdb:30,gaussian_mixtur:[8,57],geosnap:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75],geospati:1,get_lehd:[36,40],harmon:[0,31],hdbscan:[9,58],inc:20,indexplot_seq:49,instal:77,kmean:[10,59],linc:[21,68],max_p:[11,60],method:0,metro:73,modul:[0,1,2,5,17,19,20,22,34,44,45,46,47,50,51,52],neighborhod:0,neighborhood:[1,76],open:76,other:50,packag:[1,2,22,44,46,76],plot:70,read_ltdb:74,read_ncdb:75,refer:[0,78],releas:77,seq:51,sequenc:[3,32],skater:[12,61],sourc:76,spatial:0,spectral:[13,62],spenc:[14,63],store_censu:41,store_ltdb:[37,42],store_ncdb:[38,43],sub:1,submodul:[2,22,44,46],subpackag:1,to_cr:71,transit:[4,33,54],util:[44,45],version:77,visual:[0,46,47,48,49,50,51,52],viz:52,ward:[15,64],ward_spati:[16,65]}}) \ No newline at end of file +Search.setIndex({docnames:["api","generated/geosnap","generated/geosnap.analyze","generated/geosnap.analyze.Sequence","generated/geosnap.analyze.Transition","generated/geosnap.analyze.analytics","generated/geosnap.analyze.analytics.affinity_propagation","generated/geosnap.analyze.analytics.azp","generated/geosnap.analyze.analytics.gaussian_mixture","generated/geosnap.analyze.analytics.hdbscan","generated/geosnap.analyze.analytics.kmeans","generated/geosnap.analyze.analytics.max_p","generated/geosnap.analyze.analytics.skater","generated/geosnap.analyze.analytics.spectral","generated/geosnap.analyze.analytics.spenc","generated/geosnap.analyze.analytics.ward","generated/geosnap.analyze.analytics.ward_spatial","generated/geosnap.analyze.cluster","generated/geosnap.analyze.cluster_spatial","generated/geosnap.analyze.dynamics","generated/geosnap.analyze.incs","generated/geosnap.analyze.linc","generated/geosnap.data","generated/geosnap.data.Community","generated/geosnap.data.Community.cluster","generated/geosnap.data.Community.cluster_spatial","generated/geosnap.data.Community.from_census","generated/geosnap.data.Community.from_geodataframes","generated/geosnap.data.Community.from_lodes","generated/geosnap.data.Community.from_ltdb","generated/geosnap.data.Community.from_ncdb","generated/geosnap.data.Community.harmonize","generated/geosnap.data.Community.sequence","generated/geosnap.data.Community.transition","generated/geosnap.data.data","generated/geosnap.data.data.DataStore","generated/geosnap.data.data.data_store","generated/geosnap.data.data.get_lehd","generated/geosnap.data.data.store_blocks_2000","generated/geosnap.data.data.store_blocks_2010","generated/geosnap.data.data.store_census","generated/geosnap.data.data.store_ltdb","generated/geosnap.data.data.store_ncdb","generated/geosnap.data.data_store","generated/geosnap.data.data_store.blocks_2000","generated/geosnap.data.data_store.blocks_2010","generated/geosnap.data.data_store.codebook","generated/geosnap.data.data_store.counties","generated/geosnap.data.data_store.ltdb","generated/geosnap.data.data_store.msa_definitions","generated/geosnap.data.data_store.msas","generated/geosnap.data.data_store.ncdb","generated/geosnap.data.data_store.states","generated/geosnap.data.data_store.tracts_1990","generated/geosnap.data.data_store.tracts_2000","generated/geosnap.data.data_store.tracts_2010","generated/geosnap.data.get_lehd","generated/geosnap.data.store_census","generated/geosnap.data.store_ltdb","generated/geosnap.data.store_ncdb","generated/geosnap.util","generated/geosnap.util.cenpy_fetch","generated/geosnap.visualize","generated/geosnap.visualize.commviz","generated/geosnap.visualize.explore","generated/geosnap.visualize.indexplot_seq","generated/geosnap.visualize.other","generated/geosnap.visualize.seq","generated/geosnap.visualize.viz","generated/modules","index","installation","references"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,"sphinx.ext.intersphinx":1,"sphinx.ext.viewcode":1,sphinx:56},filenames:["api.rst","generated/geosnap.rst","generated/geosnap.analyze.rst","generated/geosnap.analyze.Sequence.rst","generated/geosnap.analyze.Transition.rst","generated/geosnap.analyze.analytics.rst","generated/geosnap.analyze.analytics.affinity_propagation.rst","generated/geosnap.analyze.analytics.azp.rst","generated/geosnap.analyze.analytics.gaussian_mixture.rst","generated/geosnap.analyze.analytics.hdbscan.rst","generated/geosnap.analyze.analytics.kmeans.rst","generated/geosnap.analyze.analytics.max_p.rst","generated/geosnap.analyze.analytics.skater.rst","generated/geosnap.analyze.analytics.spectral.rst","generated/geosnap.analyze.analytics.spenc.rst","generated/geosnap.analyze.analytics.ward.rst","generated/geosnap.analyze.analytics.ward_spatial.rst","generated/geosnap.analyze.cluster.rst","generated/geosnap.analyze.cluster_spatial.rst","generated/geosnap.analyze.dynamics.rst","generated/geosnap.analyze.incs.rst","generated/geosnap.analyze.linc.rst","generated/geosnap.data.rst","generated/geosnap.data.Community.rst","generated/geosnap.data.Community.cluster.rst","generated/geosnap.data.Community.cluster_spatial.rst","generated/geosnap.data.Community.from_census.rst","generated/geosnap.data.Community.from_geodataframes.rst","generated/geosnap.data.Community.from_lodes.rst","generated/geosnap.data.Community.from_ltdb.rst","generated/geosnap.data.Community.from_ncdb.rst","generated/geosnap.data.Community.harmonize.rst","generated/geosnap.data.Community.sequence.rst","generated/geosnap.data.Community.transition.rst","generated/geosnap.data.data.rst","generated/geosnap.data.data.DataStore.rst","generated/geosnap.data.data.data_store.rst","generated/geosnap.data.data.get_lehd.rst","generated/geosnap.data.data.store_blocks_2000.rst","generated/geosnap.data.data.store_blocks_2010.rst","generated/geosnap.data.data.store_census.rst","generated/geosnap.data.data.store_ltdb.rst","generated/geosnap.data.data.store_ncdb.rst","generated/geosnap.data.data_store.rst","generated/geosnap.data.data_store.blocks_2000.rst","generated/geosnap.data.data_store.blocks_2010.rst","generated/geosnap.data.data_store.codebook.rst","generated/geosnap.data.data_store.counties.rst","generated/geosnap.data.data_store.ltdb.rst","generated/geosnap.data.data_store.msa_definitions.rst","generated/geosnap.data.data_store.msas.rst","generated/geosnap.data.data_store.ncdb.rst","generated/geosnap.data.data_store.states.rst","generated/geosnap.data.data_store.tracts_1990.rst","generated/geosnap.data.data_store.tracts_2000.rst","generated/geosnap.data.data_store.tracts_2010.rst","generated/geosnap.data.get_lehd.rst","generated/geosnap.data.store_census.rst","generated/geosnap.data.store_ltdb.rst","generated/geosnap.data.store_ncdb.rst","generated/geosnap.util.rst","generated/geosnap.util.cenpy_fetch.rst","generated/geosnap.visualize.rst","generated/geosnap.visualize.commviz.rst","generated/geosnap.visualize.explore.rst","generated/geosnap.visualize.indexplot_seq.rst","generated/geosnap.visualize.other.rst","generated/geosnap.visualize.seq.rst","generated/geosnap.visualize.viz.rst","generated/modules.rst","index.rst","installation.rst","references.rst"],objects:{"":{geosnap:[1,0,0,"-"]},"geosnap.analyze":{analytics:[5,0,0,"-"],cluster:[17,0,0,"-"],cluster_spatial:[18,1,1,""],dynamics:[19,0,0,"-"],incs:[20,0,0,"-"],linc:[21,1,1,""],sequence:[2,1,1,""],transition:[2,1,1,""]},"geosnap.analyze.analytics":{affinity_propagation:[6,1,1,""],azp:[7,1,1,""],cluster:[5,1,1,""],cluster_spatial:[5,1,1,""],gaussian_mixture:[8,1,1,""],hdbscan:[9,1,1,""],kmeans:[10,1,1,""],max_p:[11,1,1,""],skater:[12,1,1,""],spectral:[13,1,1,""],spenc:[14,1,1,""],ward:[15,1,1,""],ward_spatial:[16,1,1,""]},"geosnap.analyze.cluster":{affinity_propagation:[17,1,1,""],azp:[17,1,1,""],gaussian_mixture:[17,1,1,""],hdbscan:[17,1,1,""],kmeans:[17,1,1,""],max_p:[17,1,1,""],skater:[17,1,1,""],spectral:[17,1,1,""],spenc:[17,1,1,""],ward:[17,1,1,""],ward_spatial:[17,1,1,""]},"geosnap.analyze.dynamics":{sequence:[19,1,1,""],transition:[19,1,1,""]},"geosnap.analyze.incs":{linc:[20,1,1,""]},"geosnap.data":{Community:[23,2,1,""],data:[34,0,0,"-"],data_store:[43,4,1,""],get_lehd:[56,1,1,""],store_census:[57,1,1,""],store_ltdb:[58,1,1,""],store_ncdb:[59,1,1,""]},"geosnap.data.Community":{__init__:[23,3,1,""],cluster:[24,3,1,""],cluster_spatial:[25,3,1,""],from_census:[26,3,1,""],from_geodataframes:[27,3,1,""],from_lodes:[28,3,1,""],from_ltdb:[29,3,1,""],from_ncdb:[30,3,1,""],harmonize:[31,3,1,""],sequence:[32,3,1,""],transition:[33,3,1,""]},"geosnap.data.data":{Community:[34,2,1,""],DataStore:[35,2,1,""],data_store:[36,4,1,""],get_lehd:[37,1,1,""],store_blocks_2000:[38,1,1,""],store_blocks_2010:[39,1,1,""],store_census:[40,1,1,""],store_ltdb:[41,1,1,""],store_ncdb:[42,1,1,""]},"geosnap.data.data.Community":{cluster:[34,3,1,""],cluster_spatial:[34,3,1,""],from_census:[34,3,1,""],from_geodataframes:[34,3,1,""],from_lodes:[34,3,1,""],from_ltdb:[34,3,1,""],from_ncdb:[34,3,1,""],harmonize:[34,3,1,""],sequence:[34,3,1,""],transition:[34,3,1,""]},"geosnap.data.data.DataStore":{__init__:[35,3,1,""],blocks_2000:[34,3,1,""],blocks_2010:[34,3,1,""],codebook:[34,3,1,""],counties:[34,3,1,""],ltdb:[34,3,1,""],msa_definitions:[34,3,1,""],msas:[34,3,1,""],ncdb:[34,3,1,""],states:[34,3,1,""],tracts_1990:[34,3,1,""],tracts_2000:[34,3,1,""],tracts_2010:[34,3,1,""]},"geosnap.data.data_store":{blocks_2000:[44,3,1,""],blocks_2010:[45,3,1,""],codebook:[46,5,1,""],counties:[47,3,1,""],ltdb:[48,5,1,""],msa_definitions:[49,5,1,""],msas:[50,3,1,""],ncdb:[51,5,1,""],states:[52,3,1,""],tracts_1990:[53,3,1,""],tracts_2000:[54,3,1,""],tracts_2010:[55,3,1,""]},"geosnap.util":{cenpy_fetch:[61,0,0,"-"]},"geosnap.util.cenpy_fetch":{main:[61,1,1,""]},"geosnap.visualize":{commviz:[63,0,0,"-"],explore:[64,1,1,""],indexplot_seq:[65,1,1,""],seq:[67,0,0,"-"]},"geosnap.visualize.commviz":{explore:[63,1,1,""]},"geosnap.visualize.seq":{indexplot_seq:[67,1,1,""]},geosnap:{analyze:[2,0,0,"-"],data:[22,0,0,"-"],util:[60,0,0,"-"],visualize:[62,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","class","Python class"],"3":["py","method","Python method"],"4":["py","data","Python data"],"5":["py","attribute","Python attribute"]},objtypes:{"0":"py:module","1":"py:function","2":"py:class","3":"py:method","4":"py:data","5":"py:attribute"},terms:{"3rd":72,"500k":[34,53,54,55],"\u03c4":72,"boolean":[31,34],"case":[27,31,34],"class":[2,5,18,23,24,25,34,35],"default":[2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,24,25,26,28,29,30,31,32,33,34,37,41,44,45,47,50,52,53,54,55,56,58,63,64],"float":[2,6,17,19,32,34],"function":[0,26,29,30,34,61,63,64,65,67],"import":[0,2,19,65,67],"int":[2,5,6,7,8,9,10,11,12,14,15,16,17,18,19,24,25,31,32,33,34],"long":[2,5,18,19,23,24,25,32,33,34],"new":[2,5,18,23,24,25,26,27,28,29,30,31,34,35],"return":[2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,21,24,25,26,28,29,30,31,34,37,38,39,40,41,44,45,47,50,52,53,54,55,56,57,58,63,64],"short":[13,17,31,34],"true":[6,9,10,17,31,34,44,45,47,50,52,53,54,55],And:[2,20,21],NOT:[31,34],The:[2,5,6,7,8,10,12,13,14,15,16,17,18,20,21,24,25,27,31,32,33,34,37,40,56,57,70,71,72],Will:[2,5,18,24,25,34],__init__:[23,35],abbrevi:[37,56],abov:0,abs:72,access:[],accord:[8,17,31,34],activ:71,added:[31,34],addit:[26,28,29,30,34],adopt:[32,33,34],affin:[6,13,17],affinity_propag:17,affinitypropag:[6,17],after:[32,33,34],agglom:[2,15,16,17,19,32,34],agglomerativeclust:[15,16,17],aggreg:[2,5,18,25,34],alan:72,algorithm:[2,5,6,7,8,10,11,12,17,18,24,25,34,72],all:[2,20,21,26,28,29,30,34,38,39,40,57],alloc:[31,34],allocate_tot:[31,34],allow:[2,20,21,63,64],also:[0,27,34,71],altern:[26,28,29,30,34],american:72,anaconda:71,analysi:[2,5,18,19,24,25,32,34,69,72],analyt:[1,2],analyz:[1,69,70],ani:[0,26,28,29,30,34],anim:1,annal:72,anselin:72,append:[2,5,18,24,25,34],appli:[2,5,18,24,25,34],applic:72,approach:[2,19,32,33,34,72],arbitrari:[2,19,26,28,29,30,32,34],area:[2,5,18,20,21,24,25,26,27,28,29,30,31,34,35,37,50,56,72],argument:[23,26,28,29,30,34],arrai:[2,6,7,8,9,10,11,12,14,15,16,17,19,20,21,32,34],arral:[13,17],arriba:72,art:72,articl:72,arxiv:72,aspx:[34,41,58],assign_label:[13,17],associ:72,attribut:[2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,23,24,25,27,34,35],auto:[10,17],avaial:[37,56],avail:[34,38,39,40,57,69],azp:17,base:[2,19,31,32,33,34,63,64],bayesian:[8,17],bb03:72,becom:[31,34],been:[0,2,5,18,23,25,34,71],bel:72,best:[2,5,24,34],best_model:[2,5,8,17,24,25,34],between:[2,19,32,34],bf02736122:72,bic:[2,5,24,34],bickenbach:72,bie11:[2,19,32,34,72],biemann:72,binari:[34,44,45,47,50,52,53,54,55],block:[2,20,21,23,34,37,38,39,44,45,56],blocks_2000:34,blocks_2010:34,bode:72,bool:[2,5,8,9,17,23,24,25,31,34,44,45,47,50,52,53,54,55],boundari:[1,23,26,28,29,30,31,34],brian:72,brown:[34,41,58],browser:[63,64],buhong:72,calcul:[11,17,72],call:0,cambridg:72,can:[2,11,17,20,21,23,31,34,71],cartograph:[34,53,54,55],cbsa:49,cenpy_fetch:[1,60],censu:[0,23,26,28,34,35,36,37,38,39,40,43,44,45,53,54,55,56,57,61,63,64],central:[0,49],centroid:[10,13,17],chain:[0,72],chang:[0,1,2,5,19,20,21,34,35,42,59,70,71],characterist:[28,34,37,56],choos:[2,5,24,34],choropleth:[63,64],chr05:72,christensen:72,citi:[2,20,21],classmethod:[26,27,28,29,30,34,44,45,47,50,52,53,54,55],clip:[26,28,29,30,34],clone:71,cluster:[1,2,5,6,7,8,9,10,11,12,13,14,15,16,18,19,25,32,34,65,67],cluster_col:[2,19,32,33,34],cluster_spati:[0,2,5,34],code:[26,28,29,30,31,34,37,44,45,49,56,65,67],codebook:[34,35],coef0:[13,17],collect:[0,23,34,37,56],columbu:[2,19],columbus1:[2,19],columbusfip:[2,19],column:[2,5,18,19,24,25,27,32,33,34,37,44,45,46,47,48,49,50,51,52,53,54,55,56],com:72,command:71,common:0,commun:[2,19,34],commviz:[1,62],compos:[2,20,21],composit:[2,20,21,23,34,70],comput:72,concord:72,conda:71,condit:72,conduct:[31,34],connect:[16,17],consid:[31,34],consider:[31,34],consist:[1,23,34],constant:[2,19,32,34],constraint:[2,5,16,17,18,25,34],construct:0,consult:[37,56],contain:[0,2,5,19,24,34,41,58],content:69,context:[31,34],contigu:[2,5,18,25,34],conting:72,contrast:[2,20,21],contribut:71,contructor:[],converg:72,convergence_it:[6,17],convert:[34,44,45,47,50,52,53,54,55,65,67],copi:[6,17],copy_x:[10,17],cost:[2,19,32,34],count:[2,5,11,17,18,25,34],counti:[26,28,29,30,34,49],county_fip:[26,28,29,30,34],covari:[8,17],covariance_typ:[8,17],creat:[2,5,18,24,25,26,27,28,29,30,34,63,64,71],criterion:[8,17],crosswalk:34,csa:49,csv:[34,41,42,58,59,65,67],current:[34,35,36,43,63,64],currentmodul:[],damp:[6,17],daniel:72,dar12:[11,17,72],dash:[63,64],data:[1,2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,61,63,64,65,67,69],data_stor:[0,34,38,39,40,57],databas:[0,34,35,41,42,58,59],datafram:[2,5,18,19,24,27,31,34,37,41,44,45,47,50,52,53,54,55,56,58],datafrarm:34,datafrram:[34,44,45],dataset:[2,5,18,27,28,34,37,56,63,64],datastor:[34,36,43],david:72,dbscan:[9,17],decad:[29,30,34],defin:[2,5,11,17,18,19,20,21,25,26,27,28,29,30,32,33,34],definit:[34,35],degre:[13,17],delet:[2,19,32,34],demarc:1,denomin:[31,34],depend:72,describ:[23,34],descript:[9,13,17,25,34],desir:[2,19,33,34],detail:[31,34,37,56],develop:72,df_la:[65,67],df_traj:[65,67],df_wide:[2,19],differ:[2,19,32,34],differenti:0,digit:[26,28,29,30,34,37,56],directli:0,directori:71,discret:[0,23,34,72],dissimilar:[32,34],dist_typ:[2,19,32,34],distanc:[2,19,32,34],distribut:72,divers:[34,41,58],divis:49,docstr:1,document:[37,56,69],doi:72,download:[26,29,30,34,41,58,61,71],drawn:[34,47,50,53,54,55],duqu:72,dvd:[34,42,59],dynam:[1,2,33,34,72],each:[2,20,21,23,27,31,34,65,67],eckhardt:72,econom:72,econometr:72,edit:72,editor:72,edu:[34,41,58],effect:72,eigen_solv:[13,17],eigen_tol:[13,17],either:[37,56],els:[34,44,45,47,50,52,53,54,55],empir:[2,19,32,34,72],encourag:[14,17],endogen:[8,17],env:71,environ:71,etc:[2,19,32,33,34],euclidean:[6,17],evalu:[32,34,72],everi:[32,34],evolut:72,exampl:[2,19,20,21,37,56,65,67],exhaust:[31,34],experiment:[63,64],explor:63,extens:[31,34],extensive_vari:[31,34],extent:[26,28,29,30,34,70],extern:0,extra:23,extract:[34,42,59],fals:[2,5,6,8,12,17,18,24,25,31,34,65,67],fast:72,featur:[26,28,29,30,34],fig_suffix:[65,67],file:[34,41,42,58,59],filepath:[34,42,59],find:[8,17],finit:72,fip:[26,28,29,30,34,37,44,45,49,53,54,55,56],first:[26,29,30,34,37,56],five:[26,28,29,30,34],flanneri:72,floor:[11,12,17],folch:72,follow:[0,71],force_crs_match:[31,34],fork:71,form:[1,2,5,7,8,10,12,13,14,15,16,17,18,19,23,24,25,32,33,34],formbi:72,formula:34,four:[2,20,21],frank:72,from:[0,2,19,23,26,27,28,29,30,31,32,34,37,41,42,56,58,59,65,67],from_censu:34,from_geodatafram:34,from_lod:34,from_ltdb:[2,19,34],from_ncdb:34,fsz04:72,ftp:[37,56],full:[8,17],fullcount:[34,41,58],further:[24,25,34],gamma:[13,14,17],gaussian:[2,5,8,17,24,34],gaussian_mixtur:17,gaussianmixtur:[8,17],gdf:[2,5,18,19,23,24,25,26,27,28,29,30,34],gdf_new:[2,19],gen_min_span_tre:[9,17],gener:[8,9,10,13,17],geo2010:[65,67],geo:[2,5,19,24,34],geocod:[23,34],geodatafram:[2,5,18,23,25,26,27,28,29,30,34,44,45,47,50,52,53,54,55],geodemograph:[2,5,18,24,25,34],geograph:72,geoid:[2,5,18,19,32,33,34,46,48,51],geolyt:[34,35,42,59],geometri:[2,5,18,23,25,27,34,44,45,47,50,52,53,54,55],geonap:0,geopanda:[2,5,18,23,25,26,28,29,30,34,44,45,47,50,52,53],geosnap:[0,70,71],geospati:69,get:[2,20,21,71],geti:72,global:[2,20,21],grab:[37,56],group:[11,17],grow:[2,5,18,25,34],growth:72,guidanc:[2,19,32,34],guti:72,ham:[2,19,32,34],hampshir:72,handful:[23,34],harmon:[1,23,27,29,30,34],has:[2,20,21,31,34,71],have:[0,2,5,18,23,25,27,34],hdbscan:17,here:[2,20,21],hierarch:[9,17],hire:[65,67],hold:[0,2,5,18,23,25,27,34],hollow:[2,19,32,34],how:[27,34],html:1,http:[1,34,41,58,72],id_var:[2,5,18,19,32,33,34],ident:[31,34],identifi:[2,5,18,19,24,25,32,33,34],imag:[31,34],implement:[2,20,21],inc:[1,2],includ:[0,2,5,18,25,26,28,29,30,31,34,63,64,70],incom:72,increas:[12,17],indel:[2,19,32,34],index:[2,5,18,27,34,37,56,65,67,71],indexplot_seq:67,indic:[2,20,21,72],inequ:72,inf:[12,17],infer:[2,19,33,34,72],inform:[8,17],ingest:1,init:[10,17],initi:[2,20,21,23],input:[31,32,33,34,42,59],insert:[2,19,32,34],instanc:[6,7,8,9,10,11,12,13,14,15,16,17,24,25,34],instanti:[0,35],instianti:[26,28,29,30,34],integ:[11,17],intens:[31,34],intensive_vari:[31,34],interact:[0,63,64],interlant:72,intern:72,interpol:[31,34],intersect:[26,28,29,30,31,34],interv:[2,19,32,34],introduc:[31,34],island:[12,17],iter:[6,17],its:[2,19,32,34],jame:72,jan:72,john:72,joint:72,journal:72,jstor:72,juan:72,kang:72,kemeni:72,kendal:72,kernel:[2,19,33,34],kernel_param:[13,17],keyword:23,kkk62:72,kmean:[2,13,17,19,32,33,34],knn:[2,19,33,34],known:[34,44,45,47,50,52,53,54,55],kr18:72,ks67:72,kullback:72,kupperman:72,kwarg:[2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,23,24,25,34],la_sequ:[65,67],label:[2,5,18,24,25,32,33,34],labels_0:[2,20,21],labels_1:[2,20,21],labels_2:[2,20,21],labels_sequ:[2,20,21],lambda:[65,67],land:[31,34],land_type_area:[31,34],land_type_gaussian_regress:[31,34],land_type_poisson_regress:[31,34],larg:[23,34],largest:[26,28,29,30,34],launch:[63,64],lauri:72,lazili:[26,28,29,30,34],learn:[2,5,6,8,17,18,24,25,34],lehd:[0,28,34],letter:72,level:[23,34],levi:72,like:[2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,24,25,27,34,44,45,53,54,55],limit:[11,17],linc:[2,20],lindsei:72,linkag:[2,15,16,17,19,32,34],list:[2,5,18,24,25,26,27,28,29,30,31,34,44,45,53,54,55],local:[2,20,21,34,38,39,40,57,71,72],locat:[34,42,59],lode:[28,34,37,56],longitudin:[0,34,35,41,58],ltbddload:[34,41,58],ltdb:[29,30,34,35,41,46,58,63,64],luc:72,mai:[0,23,26,27,28,29,30,34],main:61,make:71,manipul:[1,34],manual:71,map:[63,64],mar:72,markov:[0,2,19,32,33,34,72],match:[0,2,19,31,32,34,72],matplotlib:[65,67],matric:72,matrix:[2,5,7,11,12,14,16,17,18,19,25,32,34],max:[2,5,8,11,17,18,25,34,72],max_clust:[8,17],max_it:[6,10,17],max_p:17,maximum:[6,17],maxpregionsheu:[11,17],mean:[10,17],measur:72,median_household_incom:[2,19],messag:[2,5,24,34],method:[2,5,18,19,23,24,25,31,34,35,67,71],methodolog:72,metric:[2,19,32,34],metro:[2,5,18,25,34],metropolitan:[23,34,35,49,50,63,64,72],min_cluster_s:[9,17],minimum:[9,17],misc:[23,34],mixtur:[2,5,8,17,24,34],mobil:72,model:[0,2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,24,25,34,70,72],modul:69,more:[2,20,21,23,31,34,37,56],most:[0,37,56],msa:[26,28,29,30,34],msa_definit:[34,35],msa_fip:[2,19,26,28,29,30,34],multipl:[23,34],multivari:0,murrai:72,must:[26,27,29,30,34],myrna:72,n_asian_under_15:48,n_black_under_15:48,n_cluster:[2,5,7,8,10,12,13,14,15,16,17,18,19,24,25,34],n_cuban_pop:46,n_init:[10,13,17],n_job:[10,13,17],n_mexican_pop:[46,51],n_neighbor:[13,17],n_puerto_rican_pop:46,n_russian_pop:46,n_sampl:[6,17],n_total_pop:46,name:[2,5,18,19,24,25,32,33,34],nan:[46,48,49,51],nation:[34,53,54,55],nationwid:[34,47,53,54,55],ncdb:[30,34,35,63,64],ncol:[65,67],necessari:[9,17],neg:[2,19,32,34],neighborhood:[0,2,5,18,19,20,21,23,24,25,27,32,33,34,35,42,59,65,67,69],nlcd_2011:[31,34],non:[2,19,32,33,34],none:[2,5,6,8,10,13,17,18,19,23,24,25,26,27,28,29,30,31,32,33,34,38,39,40,44,45,53,54,55,57,63,64,65,67],nostrand:72,note:[2,20,21,31,34,46],nov:72,now:[2,19,32,34],number:[2,5,6,7,8,9,10,12,13,14,15,16,17,18,19,24,25,32,33,34],numer:[2,5,18,25,34,72],object:[34,35,36,43],one:[23,34],onli:[2,19,31,32,34,71],onlinelibrari:72,oper:71,optim:[0,2,19,32,34,72],option:[2,6,7,8,10,12,14,15,16,17,19,28,32,33,34,63,64],org:[1,72],orient:[2,19,32,34,72],origin:[26,34],other:[1,62],outli:49,over:[2,5,18,20,21,23,27,34,70],overwrit:[2,5,18,24,25,34],p_asian_over_60:48,p_disabl:48,p_edu_college_great:[2,19],p_poverty_r:[2,19],p_poverty_rate_asian:46,p_poverty_rate_black:46,p_poverty_rate_hispan:[46,51],p_poverty_rate_n:[46,51],p_unemployment_r:[2,19],packag:[34,38,39,40,57,69,71],page:[46,72],pairwis:[2,19,32,34],palett:[65,67],palgrav:72,panda:[2,5,24,34,37,41,44,45,53,54,55,56,58,65,67],paramet:[2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,23,24,25,26,27,28,29,30,31,32,33,34,37,38,39,40,41,42,44,45,47,50,52,53,54,55,56,57,58,59,63,64],pass:[0,2,6,8,17,20,21,26,28,29,30,34],pastel:[65,67],path:[31,34,41,58],pattern:72,pdf:[65,67],period:[2,20,21,23,34],permut:[2,19,33,34],pertain:[23,34],pii:72,pixel:[31,34],place:[34,38,39,40,57],pleas:71,plot:[1,65,67],plotli:[63,64],plt:[65,67],png:[65,67],point:[9,17,23,34],polygon:[2,5,18,25,31,34],popul:[31,34],portal:[63,64],pre:[29,30,34],precompute_dist:[10,17],prefer:[6,17],preprocess:[2,5,18,24,25,34],press:72,primit:[2,20,21],print:[2,5,24,34],probabl:[2,19,32,34],problem:72,program:[2,19],prohibit:[2,20,21],project:[34,41,58],propag:[6,17],properti:[34,70,72],provid:[0,26,28,29,30,34,63,64,70],ptvf07:72,pull:71,pyplot:[65,67],pysal:[7,11,12,14,16,17],python:[1,71],quarterli:72,queen:[2,5,18,19,25,33,34],queri:[34,38,39,40,57],quilt:[34,38,39,40,57],rac:[28,34,37,56],raf:[2,20,21,72],random:[2,19,33,34],random_st:[8,10,13,17],rank:72,rapidli:[63,64],raster:[31,34,40,57],raster_path:[31,34],rate:[2,19,33,34],rbf:[13,17],read:[34,41,42,58,59],read_csv:[65,67],recip:72,recommend:71,reffer:[37,56],region:[2,5,7,11,17,18,23,25,34,72],regist:[26,29,30,34],regress:[31,34],rei:72,replic:[8,17],repo:71,repositori:71,repres:[23,34,37,56],representative_point:[26,28,29,30,34],reproject:[31,34],request:71,requir:[32,33,34],res:[2,20,21],rescal:[2,5,18,24,25,34],research:[34,41,58],resid:[28,34,37,56],resourc:72,result:[8,17],return_model:[2,5,18,24,25,34],review:72,rey01:72,rey04:72,rey14:72,rey16:72,rkw16:72,rma11:72,rook:[2,5,18,19,25,33,34],row:[46,48,49,51],rrez:72,ruancxx:46,run:[2,5,18,24,25,34,71],s00168:72,s00180:72,s0304407603002112:72,s0304:72,s10109:72,s12076:72,same:[2,5,18,19,20,21,24,25,32,34],sampl:[34,41,58],sastr:72,saul:72,save:[34,38,39,40,57],save_fig:[65,67],scale:[63,64],scaler:[2,5,18,24,25,34],scienc:72,sciencedirect:72,scientif:72,scikit:[2,5,6,8,17,18,24,25,34],see:[31,34],seed:[8,17],segment:[2,19,32,33,34],select:[26,28,29,30,34],self:[23,24,25,31,32,33,34,35],sensor:[23,34],seq:[1,62],seq_clust:[2,19,32,34],seq_dis_mat:[2,19],seq_ham:[2,19],seqc1:[65,67],sequenc:[2,5,18,19,27,33,34,65,67],sergio:72,server:[37,56],set1:[65,67],set:[23,26,28,29,30,31,34,63,64],setup:71,sever:[],shape:[6,17],should:[0,2,5,18,19,25,28,31,32,33,34],show:[65,67],sinc:[32,33,34],singl:[2,11,17,20,21],singleton:[2,20,21],skater:17,sklearn:[2,5,6,8,10,13,15,16,17,18,19,24,25,32,34],slight:[2,20,21],small:[23,34],smith:72,snell:72,social:70,sociolog:72,sourc:[2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,23,24,25,26,27,28,29,30,31,32,33,34,35,37,38,39,40,41,42,56,57,58,59,61,63,64,65,67,71],space:72,spatial:[2,5,7,11,12,14,16,17,18,19,23,25,31,32,33,34,70,72],spatial_weight:[2,5,18,25,34],spatialucr:71,spatiotempor:[0,1],specif:[2,5,18,25,34],spectral:[14,17],spectralclust:[13,17],spenc:17,stabl:[2,5,18,27,34,72],standard:[34,41,58],standardscal:[2,5,18,24,25,34],start:71,state:[2,19,26,28,29,30,32,34,37,44,45,53,54,55,56],state_fip:[26,28,29,30,34],statist:[34,35,50,72],stcofip:49,still:[63,64],storag:[0,34,35,36,38,39,40,43,57],store:[1,23,34,41,42,44,45,47,50,52,53,54,55,58,59],store_blocks_2000:34,store_blocks_2010:34,store_censu:[26,34],store_ltdb:[29,34],store_ncdb:[30,34],str:[2,5,8,11,17,18,24,25,26,28,29,30,31,34,37,41,42,56,58,59,63,64,65,67],stream:[34,38,39,40,57],string:[2,19,26,28,29,30,31,32,33,34],strong:[2,19,32,34],structur:[2,19,33,34],studi:[2,5,24,26,27,28,29,30,34,72],sub:69,submit:71,submodul:[1,69],subpackag:69,subs_mat:[2,19,32,34],subset:[2,5,18,24,25,34,53,54,55],substitut:[2,19,32,34],suggest:46,suit:70,summari:[13,17,31,34],support:[34,35,36,43,71],sure:71,survei:[23,34],symmetr:[2,19,32,34],system:72,tabl:72,tabular:[23,34],taken:[31,34],target:[31,34],target_year:[31,34],tb00444:72,technometr:72,test:[8,17,72],teukolski:72,than:[2,20,21],thei:0,theori:[2,19,32,34],thi:[2,5,18,20,21,26,28,29,30,31,34,63,64,71],threshold:[2,5,11,17,18,25,34],threshold_vari:[2,5,11,17,18,25,34],time:[2,5,18,19,20,21,23,27,32,33,34,70,72],time_var:[2,5,18,19,32,33,34],todo:[12,14,17],tol:[10,17],tool:[5,34,70],torsten:72,total:[26,28,29,30,31,34],trace:[12,17],tract:[2,20,21,23,26,28,29,30,34,35,41,53,54,55,58],tracts_1990:34,tracts_2000:34,tracts_2010:34,tran:[2,19,32,34],transit:[2,19,32,34,72],two:[1,2,20,21,26,28,29,30,31,32,34,37,56],type:[2,5,12,13,17,18,19,24,25,26,28,29,30,31,32,33,34,44,45],typolog:[2,5,18,24,25,34],underli:[24,25,34],unharmon:[26,34],uniqu:[2,5,18,19,26,27,28,29,30,32,33,34],unit:[2,5,18,19,20,21,23,27,32,33,34],univ:72,until:[2,5,18,25,34],upon:0,upper:[11,17],url:72,use:[2,5,11,17,18,19,24,25,26,28,29,30,33,34],used:[0,2,5,8,17,18,19,24,25,26,28,29,30,31,32,33,34,38,39,40,57],user:[63,64],using:[0,2,5,8,15,16,17,24,26,29,30,34,63,64],util:[1,2,19,32,34,69],valu:[31,34],van:72,variabl:[2,5,11,17,18,25,27,31,34,46],varieti:[0,63,64],verbos:[2,5,6,10,17,24,34],vetterl:72,vintag:[0,26,34],visual:[1,69,72],viz:[1,62],w_type:[2,19,33,34],wac:[28,34,37,56],wai:[0,70],ward:[2,16,17,19,32,33,34],ward_spati:17,warn:[2,5,24,34],web:[63,64],webmap:[63,64],webpag:1,wei:72,weight:[2,5,7,11,12,14,16,17,18,19,25,31,33,34],weights_method:[31,34],weights_typ:[2,5,18,25,34],well:[10,13,17,34,44,45,47,50,52,53,54,55],when:[11,17,31,34],whether:[2,5,23,24,25,31,34],which:[2,5,18,20,21,23,24,25,27,28,34,37,56,63,64],wide:[2,5,18],widget:[63,64],wilei:72,william:72,wise:[2,20,21],within:[65,67],wkb:[34,44,45,47,50,52,53,54,55],wolf2018:[14,17],wolf:72,workplac:[28,34,37,56],would:[2,5,18,31,34],www:72,year:[2,5,18,19,26,28,29,30,31,32,33,34,37,51,56,65,67],yet:[31,34,71],yml:71,you:[26,28,29,30,34,71],your:[34,42,59,71],zheng:72,zip:[34,41,58],zoeller:72},titles:["API reference","geosnap package","geosnap.analyze package","geosnap.analyze.Sequence","geosnap.analyze.Transition","geosnap.analyze.analytics module","geosnap.analyze.analytics.affinity_propagation","geosnap.analyze.analytics.azp","geosnap.analyze.analytics.gaussian_mixture","geosnap.analyze.analytics.hdbscan","geosnap.analyze.analytics.kmeans","geosnap.analyze.analytics.max_p","geosnap.analyze.analytics.skater","geosnap.analyze.analytics.spectral","geosnap.analyze.analytics.spenc","geosnap.analyze.analytics.ward","geosnap.analyze.analytics.ward_spatial","geosnap.analyze.cluster module","geosnap.analyze.cluster_spatial","geosnap.analyze.dynamics module","geosnap.analyze.incs module","geosnap.analyze.linc","geosnap.data package","geosnap.data.Community","geosnap.data.Community.cluster","geosnap.data.Community.cluster_spatial","geosnap.data.Community.from_census","geosnap.data.Community.from_geodataframes","geosnap.data.Community.from_lodes","geosnap.data.Community.from_ltdb","geosnap.data.Community.from_ncdb","geosnap.data.Community.harmonize","geosnap.data.Community.sequence","geosnap.data.Community.transition","geosnap.data.data module","geosnap.data.data.DataStore","geosnap.data.data.data_store","geosnap.data.data.get_lehd","geosnap.data.data.store_blocks_2000","geosnap.data.data.store_blocks_2010","geosnap.data.data.store_census","geosnap.data.data.store_ltdb","geosnap.data.data.store_ncdb","geosnap.data.data_store","geosnap.data.data_store.blocks_2000","geosnap.data.data_store.blocks_2010","geosnap.data.data_store.codebook","geosnap.data.data_store.counties","geosnap.data.data_store.ltdb","geosnap.data.data_store.msa_definitions","geosnap.data.data_store.msas","geosnap.data.data_store.ncdb","geosnap.data.data_store.states","geosnap.data.data_store.tracts_1990","geosnap.data.data_store.tracts_2000","geosnap.data.data_store.tracts_2010","geosnap.data.get_lehd","geosnap.data.store_census","geosnap.data.store_ltdb","geosnap.data.store_ncdb","geosnap.util package","geosnap.util.cenpy_fetch module","geosnap.visualize package","geosnap.visualize.commviz module","geosnap.visualize.explore","geosnap.visualize.indexplot_seq","geosnap.visualize.other module","geosnap.visualize.seq module","geosnap.visualize.viz module","geosnap","Open Source Neighborhood Analysis Package","Installation","References"],titleterms:{"class":0,The:0,access:0,affinity_propag:6,algorithm:0,analysi:[1,70],analyt:[0,5,6,7,8,9,10,11,12,13,14,15,16],analyz:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21],api:0,aspati:0,avail:1,azp:7,blocks_2000:44,blocks_2010:45,cenpy_fetch:61,classic:0,cluster:[0,17,24],cluster_spati:[18,25],codebook:46,commun:[0,23,24,25,26,27,28,29,30,31,32,33],commviz:63,constructor:0,content:[1,2,22,60,62],counti:47,data:[0,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59],data_stor:[36,43,44,45,46,47,48,49,50,51,52,53,54,55],dataset:0,datastor:35,develop:71,document:1,dynam:[0,19],explor:64,from_censu:26,from_geodatafram:27,from_lod:28,from_ltdb:29,from_ncdb:30,gaussian_mixtur:8,geosnap:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69],geospati:1,get_lehd:[37,56],harmon:[0,31],hdbscan:9,inc:20,indexplot_seq:65,instal:71,kmean:10,linc:21,ltdb:48,max_p:11,method:0,metro:[],modul:[0,1,2,5,17,19,20,22,34,60,61,62,63,66,67,68],msa:50,msa_definit:49,ncdb:51,neighborhod:0,neighborhood:[1,70],open:70,other:66,packag:[1,2,22,60,62,70],plot:[],read_ltdb:[],read_ncdb:[],refer:[0,72],releas:71,seq:67,sequenc:[3,32],skater:12,sourc:70,spatial:0,spectral:13,spenc:14,state:52,store:0,store_blocks_2000:38,store_blocks_2010:39,store_censu:[40,57],store_ltdb:[41,58],store_ncdb:[42,59],sub:1,submodul:[2,22,60,62],subpackag:1,to_cr:[],tracts_1990:53,tracts_2000:54,tracts_2010:55,transit:[4,33],util:[60,61],version:71,visual:[0,62,63,64,65,66,67,68],viz:68,ward:15,ward_spati:16}}) \ No newline at end of file