forked from FlorianEisenbarth/DataCamp_DeputiesWatcher
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathestimator.py
421 lines (371 loc) · 15.1 KB
/
estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# %%
import sys
import os
path = "\\".join(os.path.abspath(__file__).split("\\")[:-3])
sys.path.insert(0, path)
from problem import get_actor_party_data
from sklearn.base import is_classifier
import re, unidecode
import pandas as pd
import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.compose import make_column_transformer
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.tree import DecisionTreeClassifier
from sklearn.utils import class_weight
class FindGroupVoteDemandeurTransformer(BaseEstimator, TransformerMixin):
def __init__(self):
"""Through regex, find the groups mentioned in column vote_demandeur.
There is often more than one group mentioned, so this returns a list.
"""
pass
def fit(self, X, y, **params):
return self
def transform(self, X, y=None, **params):
X["demandeur_group"] = X["demandeur"].apply(self.find_parti_demandeur)
X["demandeur_group"].fillna("[UNK]", inplace=True)
X["demandeur_group"] = X["demandeur_group"].apply(lambda x: np.str_(x))
return X
def find_parti_demandeur(self, txt: str) -> list:
def clean_groupe_name(txt: str) -> str:
# TODO: rendre obsolète ce genre de remplacement
# A mettre dans problem.py !
txt = txt.strip()
# Add missing accents
txt = txt.replace("Les Republicains", "Les Républicains")
txt = txt.replace("democrate et republicaine", "démocrate et républicaine")
txt = txt.replace("Republique", "République")
# Remove déterminants
txt = txt.replace(
"de la Gauche démocrate et républicaine",
"Gauche démocrate et républicaine",
)
txt = txt.replace(
"du Mouvement Démocrate et apparentés",
"Mouvement Démocrate et apparentés",
)
# Add capital letter
txt = txt.replace("UDI Agir et indépendants", "UDI Agir et Indépendants")
# Remove non relevant text
txt = txt.replace("President(e) du groupe", "")
txt = txt.replace("\xa0", " ")
return txt
if type(txt) == str:
groupe = re.findall('"(.*?)"', txt)
# if len(groupe) > 1:
# print(groupe)
else:
# NaN value for txt
groupe = []
groupe = [
clean_groupe_name(name) for name in groupe if clean_groupe_name(name) != ""
]
return groupe
class DecomposeVoteObjetTransformer(BaseEstimator, TransformerMixin):
def __init__(self):
"""In column libelle, there are several info.
We use this tranformer to extract relevant ones :
- libelle_type: the string with type of vote (look at self.types_votes)
- libelle_desc: the string with a description of the object vote (ex: loi bioéthique)
- libelle_auteur: the list of actors mentioned (ex: M. Melenchon)
"""
# Liste établie "à la main"
self.types_votes = [
"l'amendement",
"le sous-amendement",
"l'article",
"l'ensemble du projet de loi",
"l'ensemble de la proposition de loi",
"la proposition de résolution",
"l'ensemble de la proposition de résolution",
"les crédits",
"la motion",
"la motion référendaire",
"la motion de renvoi en commission",
"la motion de rejet préalable",
"la motion d'ajournement",
"la motion de censure",
"la déclaration",
"la première partie du projet de loi de finances",
"la demande de",
]
# TODO: (peut-être ??)
# Grouper : les motions
# Grouper : amendement et sous-amendement
# Grouper : l'ensemble du projet du loi, l'ensemble de la proposition de loi
# Grouper : la proposition de résolution, l'ensemble de la proposition de résolution
def fit(self, X, y, **params):
return self
def transform(self, X: pd.DataFrame, y=None, **params) -> pd.DataFrame:
X["libelle_type"] = X["libelle"].apply(self.find_type_vote)
X["libelle_desc"] = X["libelle"].apply(self.find_descriptif)
X["libelle_auteur"] = X["libelle"].apply(self.find_auteur_loi)
return X
def find_type_vote(self, txt: str) -> str:
self.weird_type_votes_ = []
if type(txt) == str:
type_vote = "[UNK]"
# Fix common typos
txt = txt.replace("le sous-amendment", "le sous-amendement")
txt = txt.replace("declaration", "déclaration")
txt = txt.replace(
"la motion de renvoi en commision",
"la motion de renvoi en commission",
)
txt = txt.replace("le demande de", "la demande de")
for t in self.types_votes:
if txt.startswith(t):
type_vote = t
break
if type_vote == "[UNK]":
self.weird_type_votes_.append(txt)
else:
type_vote = "[UNK]"
return type_vote
def find_descriptif(self, txt: str) -> str:
self.weird_descriptifs_ = []
if type(txt) == str:
# Correct typo
txt = txt.replace(" ", " ")
descriptif = re.findall(
"[le projet|du projet|de la proposition|au projet|à la proposition] de loi (.*?).?$",
txt,
)
if descriptif != []:
descriptif = descriptif[0]
else:
# Try another regex
descriptif = re.findall(
"[la proposition de résolution|du Gouvernement sur|du Gouvernement relative|projet de loi, adopté par le Sénat,] (.*?).?$",
txt,
)
if descriptif != []:
descriptif = descriptif[0]
else:
self.weird_descriptifs_.append(txt)
descriptif = "[UNK]"
else:
print(txt)
descriptif = "[UNK]"
return descriptif
def find_auteur_loi(self, txt: str) -> list:
"""
Returns a list of slugs of the auteurs found inside libelle.
"""
self.weird_auteurs_loi_ = []
def cut_at_stop_word(auteur):
stop_words = ["et", "à", "après", "", "avant", "sur"]
for i, l in enumerate(auteur):
if l in stop_words:
auteur = auteur[:i]
break
return auteur
def merge_auteur(auteur):
return " ".join([a.strip() for a in auteur])
if type(txt) == str:
# Match the two next word after "de M. XXX XXX"
auteur = re.findall(
"[du?e?|par] (Mm?e?\.?) ([A-Za-zÀ-ú]*) ([A-Za-zÀ-ú]*) ([A-Za-zÀ-ú]*)",
txt,
)
if auteur != []:
if len(auteur) == 1 or (
len(auteur) == 2 and txt.startswith("le sous-amend")
):
# In the case of sous-amendement, you may have 2 auteurs. Then, pick only the first auteur found.
auteur = auteur[0]
# Sometimes you have (first_name, last_name), sometimes (last_name, stop_word). We keep only last names.
auteur = [cut_at_stop_word(auteur)]
else:
# You may have several auteurs for motions as well. In this case, keep all the auteurs.
auteur = [cut_at_stop_word(a) for a in auteur]
auteur = [merge_auteur(a) for a in auteur]
elif "du Gouvernement" in txt:
auteur = ["Gouvernement"]
else:
auteur = ["Autre"]
self.weird_auteurs_loi_.append(txt)
else:
# NaN value for txt
auteur = ["Autre"]
return auteur
class FindPartyActorTransformer(BaseEstimator, TransformerMixin):
def __init__(self, actors: pd.DataFrame):
"""The column libelle_auteur is a list of peoples' names with irregularities.
This transformer find the party of these people, as they are stored in the
dataframe actors, accounting for those irregularities.
Args:
actors (pd.DataFrame): df with external info about deputies.
"""
self.actors = self._create_slug_actors(actors.copy())
def _normalize_txt(self, txt: str) -> str:
"""Remove accents and lowercase text."""
if type(txt) == str:
return unidecode.unidecode(txt).lower()
else:
return txt
def _create_slug_actors(self, actors):
"""
Create several slug columns for each actor.
The slug is for example "m. melenchon" ou "m. jean-luc melenchon".
"""
actors["slug_1"] = actors.apply(
lambda x: x["membre_civ"] + " " + x["membre_nom"].replace("'", ""),
axis=1,
).apply(self._normalize_txt)
actors["slug_2"] = actors.apply(
lambda x: x["membre_civ"] + " " + x["membre_fullname"], axis=1
).apply(self._normalize_txt)
actors["slug_3"] = actors.apply(
lambda x: x["membre_civ"]
+ " "
+ x["membre_prenom"]
+ " "
+ x["membre_nom"],
axis=1,
).apply(self._normalize_txt)
return actors
def fit(self, X, y, **params):
return self
def transform(self, X, y=None, **params):
X_ = X.copy()
X_ = X_.explode("libelle_auteur")
# Normalize libelle_auteur on specific autor names
def replace_batch_auteur(list_of_s: list, replace: str):
for s in list_of_s:
X_["libelle_auteur"] = X_["libelle_auteur"].apply(
lambda x: x.replace(s, replace)
)
replace_batch_auteur(
["M. Édouard Philippe", "M. Edouard Philippe", "M. Jean Castex"],
"Gouvernement",
)
replace_batch_auteur(["Mme x", "M. XXX"], "Anonyme")
# Add a slug column by removing accents and setting it lowercase
X_["slug"] = X_["libelle_auteur"].apply(self._normalize_txt)
# Try to merge with self.actors on several version of the lusgs
va_merge_1 = X_.merge(
self.actors, how="inner", left_on="slug", right_on="slug_1"
)
va_merge_2 = X_.merge(
self.actors, how="inner", left_on="slug", right_on="slug_2"
)
va_merge_3 = X_.merge(
self.actors, how="inner", left_on="slug", right_on="slug_3"
)
# Special case with "Gouvernement", that is not in self.actors
va_merge_4 = X_.merge(
pd.DataFrame({"slug": ["gouvernement"], "membre_parti": ["Gouvernement"]}),
on="slug",
)
# Merge all the joins together
va_merge = va_merge_1.append(va_merge_2).append(va_merge_3).append(va_merge_4)
va_merge.rename({"membre_parti": "auteur_parti"}, axis=1, inplace=True)
# Reverse the explosion made over X, using a groupby.
X_ = (
va_merge.groupby("vote_uid")
.agg({"auteur_parti": lambda x: x.tolist()})
.reset_index()
)
# Drop non-relevant column
X_ = X_[["vote_uid", "auteur_parti"]]
# print(X_.head(5))
# print(X.head(5))
# Join with the original dataframe
X = X.merge(X_, how="left", on="vote_uid")
X["auteur_parti"].fillna("[NAN]", inplace=True)
X["auteur_parti"] = X["auteur_parti"].apply(lambda x: np.str_(x))
return X
class DenseTransformer(TransformerMixin):
def fit(self, X, y=None, **fit_params):
return self
def transform(self, X, y=None, **fit_params):
return X.todense()
class NeuralNet(BaseEstimator):
def __init__(self, neuralNet, epochs, batch_size, verbose):
self.neuralNet = neuralNet
self.epochs = epochs
self.batch_size = batch_size
self.verbose = verbose
def fit(self, X, y):
weights = np.mean(np.sum(y, axis=0)) / np.sum(y, axis=0)
self.dict_weights = dict(enumerate(weights))
self.classifier = KerasClassifier(
build_fn=self.neuralNet,
epochs=self.epochs,
batch_size=self.batch_size,
verbose=self.verbose,
class_weight=self.dict_weights,
)
self.classifier.fit(X, y)
return self
def predict(self, X):
return self.classifier.predict_proba(X) > 0.5
def score(self, X, y):
return self.classifier.score(X, y)
def predict_proba(self, X):
return self.classifier.predict_proba(X)
# %%
from sklearn.preprocessing import Normalizer, FunctionTransformer
from keras import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import Adam
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from sklearn.utils import class_weight
def get_estimator():
actors = get_actor_party_data() # Additional data about deputies
# Doing this is allowed
find_group_vote_demandeur = FindGroupVoteDemandeurTransformer()
decompose_vote_object = DecomposeVoteObjetTransformer()
find_party_actor = FindPartyActorTransformer(actors)
encode_category = make_pipeline(
SimpleImputer(strategy="constant", fill_value=["unknown"])
)
idty = lambda x: x
def encode_party_presence(x):
y = x.iloc[:, 0].apply(pd.Series)
return y
vectorize_vote = make_column_transformer(
(OneHotEncoder(), ["libelle_type_vote"]),
(
CountVectorizer(binary=True, preprocessor=idty, tokenizer=idty),
"demandeur_group",
),
(
CountVectorizer(binary=True, preprocessor=idty, tokenizer=idty),
"auteur_parti",
),
(
FunctionTransformer(func=encode_party_presence),
["presence_per_party"],
),
# (CountVectorizer(binary=True), "libelle_desc"),
(TfidfVectorizer(binary=True), "libelle_desc"),
)
def create_nn_model():
nn = Sequential()
nn.add(Dense(128, activation="relu"))
nn.add(Dropout(0.2))
nn.add(Dense(10, activation="sigmoid"))
nn.compile(
optimizer=Adam(learning_rate=2e-3, decay=1e-2 / 500),
loss="binary_crossentropy",
metrics=["accuracy"],
)
return nn
classifier = NeuralNet(create_nn_model, epochs=1200, batch_size=200, verbose=0)
model = Pipeline(
[
("find_group_vote_demandeur", find_group_vote_demandeur),
("decompose_vote_object", decompose_vote_object),
("find_party_actor", find_party_actor),
("vectorize_vote", vectorize_vote),
("densify", DenseTransformer()),
("normalize", Normalizer()),
("nn", classifier),
]
)
return model