-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_hg.py
171 lines (130 loc) · 5.95 KB
/
main_hg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import os.path as osp
import argparse
from tqdm import tqdm
from happy_config import ConfigLoader
from dataclasses import asdict
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from transformers import T5ForConditionalGeneration, AutoTokenizer
from transformers.optimization import Adafactor
from datasets import load_dataset, load_metric
from utils import print_dict
from hc_config import ExpConfig
DATASET_CONFIG = {
'gem-xsum': ['gem', 'xsum']
}
DATASET_FIELDS = {
'gem-xsum': {
'input': 'document',
'target': 'target'
}
}
def train(model: torch.nn.Module, optimizer: torch.optim.Optimizer,
train_loader: DataLoader, epoch: int):
model.train()
optimizer.zero_grad()
tot_loss = 0.0
tot_samples = 0
with tqdm(total=len(train_loader), desc=f'[TRAIN] epoch {epoch:05d}') as pbar:
for i, batch in enumerate(train_loader):
# batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
loss = loss.mean()
loss = loss / config.opt.acc_iter
loss.backward()
# num_batch_tokens = batch['attention_mask'].sum().item()
# acc_tokens += num_batch_tokens
# if acc_tokens >= config.opt.num_tokens_per_batch:
# acc_tokens = 0
# optimizer.step()
# optimizer.zero_grad()
if (i + 1) % config.opt.acc_iter == 0:
optimizer.step()
optimizer.zero_grad()
tot_loss += loss.item()
tot_samples += batch['input_ids'].size()[0]
pbar.update(1)
pbar.set_postfix({'loss': f'{tot_loss / tot_samples:.4f}'})
# do gradient descent at the end of epoch
if (i + 1) % config.opt.acc_iter != 0:
optimizer.step()
optimizer.zero_grad()
return tot_loss / tot_samples
def evaluate(model: torch.nn.Module, tokenizer: AutoTokenizer,
eval_loader: DataLoader, metric, epoch: int = 0):
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [[label.strip()] for label in labels]
return preds, labels
model.eval()
device = list(model.parameters())[0].data.device
with tqdm(total=len(eval_loader), desc=f'[EVAL] epoch {epoch:05d}') as pbar:
for batch in eval_loader:
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model.generate(batch['input_ids'], max_length=config.seq.max_target_length)
outputs = outputs.cpu().numpy()
labels = batch['labels'].cpu().numpy()
preds = tokenizer.batch_decode(outputs, skip_special_tokens=True)
refs = tokenizer.batch_decode(labels, skip_special_tokens=True)
preds, refs = postprocess_text(preds, refs)
metric.add_batch(predictions=preds, references=refs)
pbar.update(1)
return metric.compute()
def main(config: ExpConfig):
print_dict(asdict(config), name="Command-Line Arguments")
device = torch.device(config.device)
print('loading dataset')
dataset = load_dataset(*DATASET_CONFIG[config.dataset])
print(dataset)
print('loading model')
model = T5ForConditionalGeneration.from_pretrained(config.model_name)
tokenizer = AutoTokenizer.from_pretrained(config.model_name)
print("===== Model Config =====")
print(model.config)
print("========================")
model = model.to(device)
def tokenize(samples):
text_field = DATASET_FIELDS[config.dataset]['input']
target_field = DATASET_FIELDS[config.dataset]['target']
model_inputs = tokenizer(samples[text_field], max_length=config.seq.max_source_length, padding="max_length", truncation=True)
with tokenizer.as_target_tokenizer():
labels = tokenizer(samples[target_field], max_length=config.seq.max_target_length, padding="max_length", truncation=True).input_ids
return {
**model_inputs,
'labels': labels
}
print('preprocessing dataset')
preprocessed_dataset = dataset.map(tokenize, batched=True, num_proc=8)
KEEP_COLUMNS = ['input_ids', 'attention_mask', 'token_type_ids', 'labels']
columns_to_remove = [c for c in preprocessed_dataset['train'].column_names if c not in KEEP_COLUMNS]
print(f'columns to remove: {columns_to_remove}')
preprocessed_dataset = preprocessed_dataset.remove_columns(columns_to_remove)
preprocessed_dataset.set_format('torch')
print(f'current dataset columns: {preprocessed_dataset.column_names}')
train_dataset, test_dataset, val_dataset = [preprocessed_dataset[x] for x in ['train', 'test', 'validation']]
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=config.opt.step_size)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=config.opt.step_size)
val_loader = DataLoader(val_dataset, shuffle=False, batch_size=config.opt.step_size)
optimizer = Adafactor(model.parameters(), lr=config.opt.lr, beta1=config.opt.beta1, relative_step=False)
metric = load_metric('sacrebleu')
unwrapped_model = model
model = nn.DataParallel(model)
best_val_score = 0.0
best_val_epoch = 1
for epoch in range(1, config.opt.num_epochs + 1):
loss = train(model, optimizer, train_loader, epoch)
val_result = evaluate(unwrapped_model, tokenizer, val_loader, metric)
val_score = val_result['score']
if val_score > best_val_score:
best_val_score = val_score
best_val_epoch = epoch
print(f'epoch {epoch:05d}, loss {loss:.8f}, val {val_score:.4f}, best val {best_val_score:.4f}')
torch.save(unwrapped_model.state_dict(), osp.join(config.chkpt_dir, f'model_{epoch}.pt'))
if __name__ == '__main__':
loader = ConfigLoader(ExpConfig, config="params/default.yml")
config = loader()
os.makedirs(config.chkpt_dir, exist_ok=True)
main(config)