-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbilateralPiezoCommands.m
executable file
·190 lines (140 loc) · 6.71 KB
/
bilateralPiezoCommands.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
function [stimset] = bilateralPiezoCommands(ang_displacements,N_withinPseudoBlock,N_nPseudoBlocks,factor_jointZero,singleStimDur, sample_fs, experimentHandle, armL, armR )
% negative displacements is always pull!
%
% inputs:
%
displacements = [-19.8000 -9.9000 0 9.9000 19.8000];
% N_withinPseudoBlock = 4;
% factor_jointZero = 2; % integer. Set to 1 to have the same number of baselines as all the other stimuli. 2 for two as many, and so forth.
% N_nPseudoBlocks = 2; % with the ability to stop earlier if need so
% singleStimDur = 1.25; % seconds
% sample_fs = 4e4;
%
displacementsL = armL * tand(ang_displacements);
displacementsR = armR * tand(ang_displacements);
seconds_addPre = 15;
seconds_addPost = 60;
window_size = 50; % for smoothing
piezo90_ratio_umperVolt = 9;
voltage_conditions = ang_displacements ./ piezo90_ratio_umperVolt;
N_conditionsPerAntenna = length(voltage_conditions);
singleStimDuration_fsp = sample_fs*singleStimDur;
baseline2add_start_fsp = sample_fs*seconds_addPre;
baseline2add_end_fsp = sample_fs*seconds_addPost;
%% fully randomize and build backbone trial-structure
% pre-build
trialTypes = 1 : N_conditionsPerAntenna^2; %will decode rA and lA from here. No redundancies for now
[L,R] = ind2sub([N_conditionsPerAntenna, N_conditionsPerAntenna],trialTypes); %this is used to map indices. No redundancies in here
% to overrepresent joint baseline:
i_vZero = find(voltage_conditions==0);
jointZero_condition = find(L==i_vZero & R==i_vZero);
% build backbone
both = [];
for n = 1: N_nPseudoBlocks
both_t = repmat([trialTypes, repmat(jointZero_condition, 1, factor_jointZero-1)], 1, N_withinPseudoBlock);
both = cat(2, both, both_t(randperm(length(both_t))) );
end
duration = length(both)*(singleStimDur); %seconds
duration = duration + seconds_addPre + seconds_addPost;
fprintf('------------\n')
fprintf('n conditions per antenna: %d\n',N_conditionsPerAntenna)
fprintf('n repetitions: %d\n',N_withinPseudoBlock*N_nPseudoBlocks)
fprintf('single sim duration: %.2f s\n',singleStimDur)
fprintf('total duration would be: %d:%02d (min:sec) == %d sec\n', floor(duration/60), round(mod(duration, 60)), round(duration) )
% tabulate(both)
% counts = tabulate_precedingStimulus(both);
nTrials = length(both);
allOnsetsPositions = (1 : singleStimDuration_fsp : nTrials*singleStimDuration_fsp ) + baseline2add_start_fsp; % all trials, independent of type
allOffsetsPositions = (singleStimDuration_fsp : singleStimDuration_fsp : nTrials*singleStimDuration_fsp ) + baseline2add_start_fsp;
%% split backbone into left/right directions
for n = 1 : length(both)
lAnt(n) = L(both(n));
rAnt(n) = R(both(n));
lDisplacements(n) = displacements(lAnt(n));
rDisplacements(n) = displacements(rAnt(n));
end
%% sample - build command based on DAQ proper.
% Since it will be background acquisition, I will have to save this to a
% dat file and read and queue just a few rows per time
lCommand = [];
rCommand = []; % will be inverted, since this probe comes from posterior, so that stim meaning is constant
for n = 1 : length(both)
lCommand_build = voltage_conditions(lAnt(n)) * ones(1, sample_fs*singleStimDur);
lCommand = cat(2, lCommand, lCommand_build);
rCommand_build = voltage_conditions(rAnt(n)) * ones(1, sample_fs*singleStimDur);
rCommand = cat(2, rCommand, rCommand_build);
end
rCommand = -rCommand; %IMPORTANT
% add pre- and post- windows before filtering
rCommand = cat(2, zeros(1, baseline2add_start_fsp), rCommand, zeros(1, baseline2add_end_fsp) );
lCommand = cat(2, zeros(1, baseline2add_start_fsp), lCommand, zeros(1, baseline2add_end_fsp) );
clear lCommand_build rCommand_build
%% smooth rather than filtering
rCommand_f = smoothdata(rCommand, 'lowess', window_size); %comparable to gaussian, better and faster
lCommand_f = smoothdata(lCommand, 'lowess', window_size);
for i = 1:11
rCommand_f = smoothdata(rCommand_f, 'lowess', window_size);
lCommand_f = smoothdata(lCommand_f, 'lowess', window_size);
end % much better than a single iteration with bigger window: sharper slope, and smoother edges - also faster
commandLR = cat(1, lCommand_f, rCommand_f);
%% write command to file
% rather than outputting the command to workspace, I need to write it to
% file.
identifierkey = datestr(now, 30);
logname = sprintf('p2comm_%s.bin', identifierkey); % will save in current folder wich should be runfolder
fid = fopen(logname, 'w');
fwrite(fid, commandLR, 'single');
fclose(fid);
% % note that I can read it back, specifying 2 rows and as many columns I
% % want my chunk to have. No need to specify the file position, which
% % continues from where the previous read ended, but only if file is never
% % closed and reopened. Example:
% fid = fopen(logname, 'r+');
% A = fread(fid, [2, chuncklengt] ,'single' );
% % when it reaches the end, A is empty.
%
% %% let's make a simpler example first
% saveData = [1:20; 101:120];
% fid = fopen(logname, 'w');
% fwrite(fid, saveData, 'single');
% fclose(fid);
%
%
% %% try to read back chunks
% fid = fopen(logname, 'r+');
% A = fread(fid, [2,5], 'single') %works indeed
%
% % repeat to see if continues automatically from previous position?
% A = fread(fid, [2,5], 'single') % it does indeed
%
% % check if this syntax is equivalent
% fseek(fid,0,'cof');
% A = fread(fid, [2,5], 'single') % it is indeed
% fclose(fid)
%% metadata to workspace and saved to disk
stimset.key.ID = identifierkey;
stimset.key.logname = logname;
stimset.joint.trialIndices = both;
stimset.joint.allOnsetsPositions = allOnsetsPositions;
stimset.joint.allOffsetsPositions = allOffsetsPositions;
stimset.singleAnt.L_indices = lAnt;
stimset.singleAnt.R_indices = rAnt;
stimset.singleAnt.L_displacements = lDisplacements; %positive is always push toward head, negative pull
stimset.singleAnt.R_displacements = rDisplacements; %positive is always push toward head, negative pull
%stimset.dec contains redundant information, that may simplify things
%later, possibly
stimset.dec.jointZero_index = jointZero_condition;
stimset.dec.joint2L_decoder_displ = displacements(L);
stimset.dec.joint2R_decoder_displ = displacements(R);
stimset.dec.joint2L_decoder_i = L;
stimset.dec.joint2R_decoder_i = R;
stimset.dec.i2displ_decoder = displacements;
stimset.userinput.N_withinPseudoBlock = N_withinPseudoBlock;
stimset.userinput.factor_jointZero = factor_jointZero;
stimset.userinput.N_nPseudoBlocks = N_nPseudoBlocks;
stimset.userinput.singleStimDur = singleStimDur;
stimset.userinput.DAQ_fs = sample_fs;
stimset.experimentHandle = experimentHandle; % for completeness of info all in the same place, and because this info is not included in the metadata filename
% save to disk
save(sprintf('metadata_%s.mat', identifierkey), '-struct', 'stimset' );
end