forked from kirillkovalenko/nssm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.txt
1052 lines (755 loc) · 42.3 KB
/
README.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
NSSM: The Non-Sucking Service Manager
Version 2.24, 2014-08-31
NSSM is a service helper program similar to srvany and cygrunsrv. It can
start any application as an NT service and will restart the service if it
fails for any reason.
NSSM also has a graphical service installer and remover.
Full documentation can be found online at
http://nssm.cc/
Since version 2.0, the GUI can be bypassed by entering all appropriate
options on the command line.
Since version 2.1, NSSM can be compiled for x64 platforms.
Thanks Benjamin Mayrargue.
Since version 2.2, NSSM can be configured to take different actions
based on the exit code of the managed application.
Since version 2.3, NSSM logs to the Windows event log more elegantly.
Since version 2.5, NSSM respects environment variables in its parameters.
Since version 2.8, NSSM tries harder to shut down the managed application
gracefully and throttles restart attempts if the application doesn't run
for a minimum amount of time.
Since version 2.11, NSSM respects srvany's AppEnvironment parameter.
Since version 2.13, NSSM is translated into French.
Thanks François-Régis Tardy.
Since version 2.15, NSSM is translated into Italian.
Thanks Riccardo Gusmeroli.
Since version 2.17, NSSM can try to shut down console applications by
simulating a Control-C keypress. If they have installed a handler routine
they can clean up and shut down gracefully on receipt of the event.
Since version 2.17, NSSM can redirect the managed application's I/O streams
to an arbitrary path.
Since version 2.18, NSSM can be configured to wait a user-specified amount
of time for the application to exit when shutting down.
Since version 2.19, many more service options can be configured with the
GUI installer as well as via the registry.
Since version 2.19, NSSM can add to the service's environment by setting
AppEnvironmentExtra in place of or in addition to the srvany-compatible
AppEnvironment.
Since version 2.22, NSSM can set the managed application's process priority
and CPU affinity.
Since version 2.22, NSSM can apply an unconditional delay before restarting
an application which has exited.
Since version 2.22, NSSM can rotate existing output files when redirecting I/O.
Since version 2.22, NSSM can set service display name, description, startup
type, log on details and dependencies.
Since version 2.22, NSSM can manage existing services.
Since version 2.25, NSSM can execute commands in response to service events.
Since version 2.25, NSSM can list services it manages.
Since version 2.25, NSSM can dump the configuration of services it manages.
Since version 2.25, NSSM can show the processes managed by a service.
Usage
-----
In the usage notes below, arguments to the program may be written in angle
brackets and/or square brackets. <string> means you must insert the
appropriate string and [<string>] means the string is optional. See the
examples below...
Note that everywhere <servicename> appears you may substitute the
service's display name.
Installation using the GUI
--------------------------
To install a service, run
nssm install <servicename>
You will be prompted to enter the full path to the application you wish
to run and any command line options to pass to that application.
Use the system service manager (services.msc) to control advanced service
properties such as startup method and desktop interaction. NSSM may
support these options at a later time...
Installation using the command line
-----------------------------------
To install a service, run
nssm install <servicename> <application> [<options>]
NSSM will then attempt to install a service which runs the named application
with the given options (if you specified any).
Don't forget to enclose paths in "quotes" if they contain spaces!
If you want to include quotes in the options you will need to """quote""" the
quotes.
Managing the service
--------------------
NSSM will launch the application listed in the registry when you send it a
start signal and will terminate it when you send a stop signal. So far, so
much like srvany. But NSSM is the Non-Sucking service manager and can take
action if/when the application dies.
With no configuration from you, NSSM will try to restart itself if it notices
that the application died but you didn't send it a stop signal. NSSM will
keep trying, pausing between each attempt, until the service is successfully
started or you send it a stop signal.
NSSM will pause an increasingly longer time between subsequent restart attempts
if the service fails to start in a timely manner, up to a maximum of four
minutes. This is so it does not consume an excessive amount of CPU time trying
to start a failed application over and over again. If you identify the cause
of the failure and don't want to wait you can use the Windows service console
(where the service will be shown in Paused state) to send a continue signal to
NSSM and it will retry within a few seconds.
By default, NSSM defines "a timely manner" to be within 1500 milliseconds.
You can change the threshold for the service by setting the number of
milliseconds as a REG_DWORD value in the registry at
HKLM\SYSTEM\CurrentControlSet\Services\<service>\Parameters\AppThrottle.
Alternatively, NSSM can pause for a configurable amount of time before
attempting to restart the application even if it successfully ran for the
amount of time specified by AppThrottle. NSSM will consult the REG_DWORD value
at HKLM\SYSTEM\CurrentControlSet\Services\<service>\Parameters\AppRestartDelay
for the number of milliseconds to wait before attempting a restart. If
AppRestartDelay is set and the application is determined to be subject to
throttling, NSSM will pause the service for whichever is longer of the
configured restart delay and the calculated throttle period.
If AppRestartDelay is missing or invalid, only throttling will be applied.
NSSM will look in the registry under
HKLM\SYSTEM\CurrentControlSet\Services\<service>\Parameters\AppExit for
string (REG_EXPAND_SZ) values corresponding to the exit code of the application.
If the application exited with code 1, for instance, NSSM will look for a
string value under AppExit called "1" or, if it does not find it, will
fall back to the AppExit (Default) value. You can find out the exit code
for the application by consulting the system event log. NSSM will log the
exit code when the application exits.
Based on the data found in the registry, NSSM will take one of three actions:
If the value data is "Restart" NSSM will try to restart the application as
described above. This is its default behaviour.
If the value data is "Ignore" NSSM will not try to restart the application
but will continue running itself. This emulates the (usually undesirable)
behaviour of srvany. The Windows Services console would show the service
as still running even though the application has exited.
If the value data is "Exit" NSSM will exit gracefully. The Windows Services
console would show the service as stopped. If you wish to provide
finer-grained control over service recovery you should use this code and
edit the failure action manually. Please note that Windows versions prior
to Vista will not consider such an exit to be a failure. On older versions
of Windows you should use "Suicide" instead.
If the value data is "Suicide" NSSM will simulate a crash and exit without
informing the service manager. This option should only be used for
pre-Vista systems where you wish to apply a service recovery action. Note
that if the monitored application exits with code 0, NSSM will only honour a
request to suicide if you explicitly configure a registry key for exit code 0.
If only the default action is set to Suicide NSSM will instead exit gracefully.
Application priority
--------------------
NSSM can set the priority class of the managed application. NSSM will look in
the registry under HKLM\SYSTEM\CurrentControlSet\Services\<service>\Parameters
for the REG_DWORD entry AppPriority. Valid values correspond to arguments to
SetPriorityClass(). If AppPriority() is missing or invalid the
application will be launched with normal priority.
Processor affinity
------------------
NSSM can set the CPU affinity of the managed application. NSSM will look in
the registry under HKLM\SYSTEM\CurrentControlSet\Services\<service>\Parameters
for the REG_SZ entry AppAffinity. It should specify a comma-separated listed
of zero-indexed processor IDs. A range of processors may optionally be
specified with a dash. No other characters are allowed in the string.
For example, to specify the first; second; third and fifth CPUs, an appropriate
AppAffinity would be 0-2,4.
If AppAffinity is missing or invalid, NSSM will not attempt to restrict the
application to specific CPUs.
Note that the 64-bit version of NSSM can configure a maximum of 64 CPUs in this
way and that the 32-bit version can configure a maxium of 32 CPUs even when
running on 64-bit Windows.
Stopping the service
--------------------
When stopping a service NSSM will attempt several different methods of killing
the monitored application, each of which can be disabled if necessary.
First NSSM will attempt to generate a Control-C event and send it to the
application's console. Batch scripts or console applications may intercept
the event and shut themselves down gracefully. GUI applications do not have
consoles and will not respond to this method.
Secondly NSSM will enumerate all windows created by the application and send
them a WM_CLOSE message, requesting a graceful exit.
Thirdly NSSM will enumerate all threads created by the application and send
them a WM_QUIT message, requesting a graceful exit. Not all applications'
threads have message queues; those which do not will not respond to this
method.
Finally NSSM will call TerminateProcess() to request that the operating
system forcibly terminate the application. TerminateProcess() cannot be
trapped or ignored, so in most circumstances the application will be killed.
However, there is no guarantee that it will have a chance to perform any
tidyup operations before it exits.
Any or all of the methods above may be disabled. NSSM will look for the
HKLM\SYSTEM\CurrentControlSet\Services\<service>\Parameters\AppStopMethodSkip
registry value which should be of type REG_DWORD set to a bit field describing
which methods should not be applied.
If AppStopMethodSkip includes 1, Control-C events will not be generated.
If AppStopMethodSkip includes 2, WM_CLOSE messages will not be posted.
If AppStopMethodSkip includes 4, WM_QUIT messages will not be posted.
If AppStopMethodSkip includes 8, TerminateProcess() will not be called.
If, for example, you knew that an application did not respond to Control-C
events and did not have a thread message queue, you could set AppStopMethodSkip
to 5 and NSSM would not attempt to use those methods to stop the application.
Take great care when including 8 in the value of AppStopMethodSkip. If NSSM
does not call TerminateProcess() it is possible that the application will not
exit when the service stops.
By default NSSM will allow processes 1500ms to respond to each of the methods
described above before proceeding to the next one. The timeout can be
configured on a per-method basis by creating REG_DWORD entries in the
registry under HKLM\SYSTEM\CurrentControlSet\Services\<service>\Parameters.
AppStopMethodConsole
AppStopMethodWindow
AppStopMethodThreads
Each value should be set to the number of milliseconds to wait. Please note
that the timeout applies to each process in the application's process tree,
so the actual time to shutdown may be longer than the sum of all configured
timeouts if the application spawns multiple subprocesses.
To skip applying the above stop methods to all processes in the application's
process tree, applying them only to the original application process, set the
HKLM\SYSTEM\CurrentControlSet\Services\<service>\Parameters\AppKillProcessTree
registry value, which should be of type REG_DWORD, to 0.
Console window
--------------
By default, NSSM will create a console window so that applications which
are capable of reading user input can do so - subject to the service being
allowed to interact with the desktop.
Creation of the console can be suppressed by setting the integer (REG_DWORD)
HKLM\SYSTEM\CurrentControlSet\Services\<service>\Parameters\AppNoConsole
registry value to 1.
I/O redirection
---------------
NSSM can redirect the managed application's I/O to any path capable of being
opened by CreateFile(). This enables, for example, capturing the log output
of an application which would otherwise only write to the console or accepting
input from a serial port.
NSSM will look in the registry under
HKLM\SYSTEM\CurrentControlSet\Services\<service>\Parameters for the keys
corresponding to arguments to CreateFile(). All are optional. If no path is
given for a particular stream it will not be redirected. If a path is given
but any of the other values are omitted they will be receive sensible defaults.
AppStdin: Path to receive input.
AppStdout: Path to receive output.
AppStderr: Path to receive error output.
Parameters for CreateFile() are providing with the "AppStdinShareMode",
"AppStdinCreationDisposition" and "AppStdinFlagsAndAttributes" values (and
analogously for stdout and stderr).
In general, if you want the service to log its output, set AppStdout and
AppStderr to the same path, eg C:\Users\Public\service.log, and it should
work. Remember, however, that the path must be accessible to the user
running the service.
File rotation
-------------
When using I/O redirection, NSSM can rotate existing output files prior to
opening stdout and/or stderr. An existing file will be renamed with a
suffix based on the file's last write time, to millisecond precision. For
example, the file nssm.log might be rotated to nssm-20131221T113939.457.log.
NSSM will look in the registry under
HKLM\SYSTEM\CurrentControlSet\Services\<service>\Parameters for REG_DWORD
entries which control how rotation happens.
If AppRotateFiles is missing or set to 0, rotation is disabled. Any non-zero
value enables rotation.
If AppRotateSeconds is non-zero, a file will not be rotated if its last write
time is less than the given number of seconds in the past.
If AppRotateBytes is non-zero, a file will not be rotated if it is smaller
than the given number of bytes. 64-bit file sizes can be handled by setting
a non-zero value of AppRotateBytesHigh.
If AppRotateDelay is non-zero, NSSM will pause for the given number of
milliseconds after rotation.
If AppStdoutCopyAndTruncate or AppStderrCopyAndTruncate are non-zero, the
stdout (or stderr respectively) file will be rotated by first taking a copy
of the file then truncating the original file to zero size. This allows
NSSM to rotate files which are held open by other processes, preventing the
usual MoveFile() from succeeding. Note that the copy process may take some
time if the file is large, and will temporarily consume twice as much disk
space as the original file. Note also that applications reading the log file
may not notice that the file size changed. Using this option in conjunction
with AppRotateDelay may help in that case.
Rotation is independent of the CreateFile() parameters used to open the files.
They will be rotated regardless of whether NSSM would otherwise have appended
or replaced them.
NSSM can also rotate files which hit the configured size threshold while the
service is running. Additionally, you can trigger an on-demand rotation by
running the command
nssm rotate <servicename>
On-demand rotations will happen after the next line of data is read from
the managed application, regardless of the value of AppRotateBytes. Be aware
that if the application is not particularly verbose the rotation may not
happen for some time.
To enable online and on-demand rotation, set AppRotateOnline to a non-zero
value.
Note that online rotation requires NSSM to intercept the application's I/O
and create the output files on its behalf. This is more complex and
error-prone than simply redirecting the I/O streams before launching the
application. Therefore online rotation is not enabled by default.
Timestamping output
-------------------
When redirecting output, NSSM can prefix each line of output with a
millisecond-precision timestamp, for example:
2016-09-06 10:17:09.451 Pipeline main started
To enable timestamp prefixing, set AppTimestampLog to a non-zero value.
The prefix applies to both stdout and stderr. Prefixing requires
intercepting the application's I/O in the same way that online rotation
does. If log rotation and timestamp prefixing are both enabled, the
rotation will be online.
Environment variables
---------------------
NSSM can replace or append to the managed application's environment. Two
multi-valued string (REG_MULTI_SZ) registry values are recognised under
HKLM\SYSTEM\CurrentControlSet\Services\<service>\Parameters.
AppEnvironment defines a list of environment variables which will override
the service's environment. AppEnvironmentExtra defines a list of
environment variables which will be added to the service's environment.
Each entry in the list should be of the form KEY=VALUE. It is possible to
omit the VALUE but the = symbol is mandatory.
Environment variables listed in both AppEnvironment and AppEnvironmentExtra
are subject to normal expansion, so it is possible, for example, to update the
system path by setting "PATH=C:\bin;%PATH%" in AppEnvironmentExtra. Variables
are expanded in the order in which they appear, so if you want to include the
value of one variable in another variable you should declare the dependency
first.
Because variables defined in AppEnvironment override the existing
environment it is not possible to refer to any variables which were previously
defined.
For example, the following AppEnvironment block:
PATH=C:\Windows\System32;C:\Windows
PATH=C:\bin;%PATH%
Would result in a PATH of "C:\bin;C:\Windows\System32;C:\Windows" as expected.
Whereas the following AppEnvironment block:
PATH=C:\bin;%PATH%
Would result in a path containing only C:\bin and probably cause the
application to fail to start.
Most people will want to use AppEnvironmentExtra exclusively. srvany only
supports AppEnvironment.
As of version 2.25, NSSM parses AppEnvironment and AppEnvironmentExtra
itself, before reading any other registry values. As a result it is now
possible to refer to custom environment variables in Application,
AppDirectory and other parameters.
Merged service environment
--------------------------
All Windows services can be passed additional environment variables by
creating a multi-valued string (REG_MULTI_SZ) registry value named
HLKM\SYSTEM\CurrentControlSet\Services\<service>\Environment.
The contents of this environment block will be merged into the system
environment before the service starts.
Note, however, that the merged environment will be sorted alphabetically
before being processed. This means that in practice you cannot set,
for example, DIR=%PROGRAMFILES% in the Environment block because the
environment passed to the service will not have defined %PROGRAMFILES%
by the time it comes to define %DIR%. Environment variables defined in
AppEnvironmentExtra do not suffer from this limitation.
As of version 2.25, NSSM can get and set the Environment block using
commands similar to:
nssm get <servicename> Environment
It is worth reiterating that the Environment block is available to all
Windows services, not just NSSM services.
Service startup environment
---------------------------
The environment NSSM passes to the application depends on how various
registry values are configured. The following flow describes how the
environment is modified.
By default:
The service inherits the system environment.
If <service>\Environment is defined:
The contents of Environment are MERGED into the environment.
If <service>\Parameters\AppEnvironment is defined:
The service inherits the environment specified in AppEnvironment.
If <service>\Parameters\AppEnvironmentExtra is defined:
The contents of AppEnvironmentExtra are APPENDED to the environment.
Note that AppEnvironment overrides the system environment and the
merged Environment block. Note also that AppEnvironmentExtra is
guaranteed to be appended to the startup environment if it is defined.
Event hooks
-----------
NSSM can run user-configurable commands in response to application events.
These commands are referred to as "hooks" below.
All hooks are optional. Any hooks which are run will be launched with the
environment configured for the service. NSSM will place additional
variables into the environment which hooks can query to learn how and why
they were called.
Hooks are categorised by Event and Action. Some hooks are run synchronously
and some are run asynchronously. Hooks prefixed with an *asterisk are run
synchronously. NSSM will wait for these hooks to complete before continuing
its work. Note, however, that ALL hooks are subject to a deadline after which
they will be killed, regardless of whether they are run asynchronously
or not.
Event: Start - Triggered when the service is requested to start.
*Action: Pre - Called before NSSM attempts to launch the application.
Action: Post - Called after the application successfully starts.
Event: Stop - Triggered when the service is requested to stop.
*Action: Pre - Called before NSSM attempts to kill the application.
Event: Exit - Triggered when the application exits.
*Action: Post - Called after NSSM has cleaned up the application.
Event: Rotate - Triggered when online log rotation is requested.
*Action: Pre - Called before NSSM rotates logs.
Action: Post - Called after NSSM rotates logs.
Event: Power
Action: Change - Called when the system power status has changed.
Action: Resume - Called when the system has resumed from standby.
Note that there is no Stop/Post hook. This is because Exit/Post is called
when the application exits, regardless of whether it did so in response to
a service shutdown request. Stop/Pre is only called before a graceful
shutdown attempt.
NSSM sets the environment variable NSSM_HOOK_VERSION to a positive number.
Hooks can check the value of the number to determine which other environment
variables are available to them.
If NSSM_HOOK_VERSION is 1 or greater, these variables are provided:
NSSM_EXE - Path to NSSM itself.
NSSM_CONFIGURATION - Build information for the NSSM executable,
eg 64-bit debug.
NSSM_VERSION - Version of the NSSM executable.
NSSM_BUILD_DATE - Build date of NSSM.
NSSM_PID - Process ID of the running NSSM executable.
NSSM_DEADLINE - Deadline number of milliseconds after which NSSM will
kill the hook if it is still running.
NSSM_SERVICE_NAME - Name of the service controlled by NSSM.
NSSM_SERVICE_DISPLAYNAME - Display name of the service.
NSSM_COMMAND_LINE - Command line used to launch the application.
NSSM_APPLICATION_PID - Process ID of the primary application process.
May be blank if the process is not running.
NSSM_EVENT - Event class triggering the hook.
NSSM_ACTION - Event action triggering the hook.
NSSM_TRIGGER - Service control triggering the hook. May be blank if
the hook was not triggered by a service control, eg Exit/Post.
NSSM_LAST_CONTROL - Last service control handled by NSSM.
NSSM_START_REQUESTED_COUNT - Number of times the application was
requested to start.
NSSM_START_COUNT - Number of times the application successfully started.
NSSM_THROTTLE_COUNT - Number of times the application ran for less than
the throttle period. Reset to zero on successful start or when the
service is explicitly unpaused.
NSSM_EXIT_COUNT - Number of times the application exited.
NSSM_EXITCODE - Exit code of the application. May be blank if the
application is still running or has not started yet.
NSSM_RUNTIME - Number of milliseconds for which the NSSM executable has
been running.
NSSM_APPLICATION_RUNTIME - Number of milliseconds for which the
application has been running since it was last started. May be blank
if the application has not been started yet.
Future versions of NSSM may provide more environment variables, in which
case NSSM_HOOK_VERSION will be set to a higher number.
Hooks are configured by creating string (REG_EXPAND_SZ) values in the
registry named after the hook action and placed under
HKLM\SYSTEM\CurrentControlSet\Services\<service>\Parameters\AppEvents\<event>.
For example the service could be configured to restart when the system
resumes from standby by setting AppEvents\Power\Resume to:
%NSSM_EXE% restart %NSSM_SERVICE_NAME%
To set a hook on the command line, use
nssm set <servicename> AppEvents <event>/<action> <command>
Note that NSSM will abort the startup of the application if a Start/Pre hook
returns exit code of 99.
A service will normally run hooks in the following order:
Start/Pre
Start/Post
Stop/Pre
Exit/Post
If the application crashes and is restarted by NSSM, the order might be:
Start/Pre
Start/Post
Exit/Post
Start/Pre
Start/Post
Stop/Pre
Exit/Post
If NSSM is redirecting stdout or stderr it can be configured to redirect
the output of any hooks it runs. Set AppRedirectHooks to 1 to enable
that functionality. A hook can of course redirect its own I/O independently
of NSSM.
Managing services using the GUI
-------------------------------
NSSM can edit the settings of existing services with the same GUI that is
used to install them. Run
nssm edit <servicename>
to bring up the GUI.
NSSM offers limited editing capabilities for services other than those which
run NSSM itself. When NSSM is asked to edit a service which does not have
the App* registry settings described above, the GUI will allow editing only
system settings such as the service display name and description.
Managing services using the command line
----------------------------------------
NSSM can retrieve or set individual service parameters from the command line.
In general the syntax is as follows, though see below for exceptions.
nssm get <servicename> <parameter>
nssm set <servicename> <parameter> <value>
Parameters can also be reset to their default values.
nssm reset <servicename> <parameter>
The parameter names recognised by NSSM are the same as the registry entry
names described above, eg AppDirectory.
NSSM offers limited editing capabilities for Services other than those which
run NSSM itself. The parameters recognised are as follows:
Description: Service description.
DisplayName: Service display name.
Environment: Service merged environment.
ImagePath: Path to the service executable.
ObjectName: User account which runs the service.
Name: Service key name.
Start: Service startup type.
Type: Service type.
These correspond to the registry values under the service's key
HKLM\SYSTEM\CurrentControlSet\Services\<service>.
Note that NSSM will concatenate all arguments passed on the command line
with spaces to form the value to set. Thus the following two invocations
would have the same effect.
nssm set <servicename> Description "NSSM managed service"
nssm set <servicename> Description NSSM managed service
Non-standard parameters
-----------------------
The AppEnvironment, AppEnvironmentExtra and Environment parameters
recognise an additional argument when querying the environment. The
following syntax will print all extra environment variables configured
for a service
nssm get <servicename> AppEnvironmentExtra
whereas the syntax below will print only the value of the CLASSPATH
variable if it is configured in the environment block, or the empty string
if it is not configured.
nssm get <servicename> AppEnvironmentExtra CLASSPATH
When setting an environment block, each variable should be specified as a
KEY=VALUE pair in separate command line arguments. For example:
nssm set <servicename> AppEnvironment CLASSPATH=C:\Classes TEMP=C:\Temp
Alternatively the KEY can be prefixed with a + or - symbol to respectively
add or remove a pair from the block.
The following two lines set CLASSPATH and TEMP:
nssm set <servicename> AppEnvironment CLASSPATH=C:\Classes
nssm set <servicename> AppEnvironment +TEMP=C:\Temp
If the key is already present, specifying +KEY will override the value
while preserving the order of keys:
nssm set <servicename> AppEnvironment +CLASSPATH=C:\NewClasses
The following syntax removes a single variable from the block while
leaving any other variables in place.
nssm set <servicename> AppEnvironment -TEMP
Specifying -KEY=VALUE will remove the variable only if the existing
value matches.
The following syntax would not remove TEMP=C:\Temp
nssm set <servicename> AppEnvironment -TEMP=C:\Work\Temporary
The + and - symbols are valid characters in environment variables.
The syntax :KEY=VALUE is equivalent to KEY=VALUE and can be used to
set variables which start with +/- or to explicitly reset the block in
a script:
nssm set <servicename> AppEnvironment :CLASSPATH=C:\Classes
nssm set <servicename> AppEnvironment +TEMP=C:\Temp
The AppExit parameter requires an additional argument specifying the exit
code to get or set. The default action can be specified with the string
Default.
For example, to get the default exit action for a service you should run
nssm get <servicename> AppExit Default
To get the exit action when the application exits with exit code 2, run
nssm get <servicename> AppExit 2
Note that if no explicit action is configured for a specified exit code,
NSSM will print the default exit action.
To set configure the service to stop when the application exits with an
exit code of 2, run
nssm set <servicename> AppExit 2 Exit
The AppPriority parameter is used to set the priority class of the
managed application. Valid priorities are as follows:
REALTIME_PRIORITY_CLASS
HIGH_PRIORITY_CLASS
ABOVE_NORMAL_PRIORITY_CLASS
NORMAL_PRIORITY_CLASS
BELOW_NORMAL_PRIORITY_CLASS
IDLE_PRIORITY_CLASS
The DependOnGroup and DependOnService parameters are used to query or set
the dependencies for the service. When setting dependencies, each service
or service group (preceded with the + symbol) should be specified in
separate command line arguments. For example:
nssm set <servicename> DependOnService RpcSs LanmanWorkstation
Alternatively the dependency name can be prefixed with a + or - symbol to
respectively add or remove a dependency.
The following two lines set dependencies on RpcSs and LanmanWorkstation:
nssm set <servicename> DependOnService RpcSs
nssm set <servicename> DependOnService +LanmanWorkstation
The follwing syntax removes the dependency on RpcSs:
nssm set <servicename> DependOnService -RpcSs
Service groups should, strictly speaking, be prefixed with the + symbol.
To specify a single dependency on a group, the + symbol can be prefixed
with the : symbol.
The following lines are equivalent, and each set a dependency ONLY on
NetBIOSGroup:
nssm set <servicename> DependOnGroup NetBIOSGroup
nssm set <servicename> DependOnGroup :NetBIOSGroup
nssm set <servicename> DependOnGroup :+NetBIOSGroup
Whereas these lines add to any existing dependencies:
nssm set <servicename> DependOnGroup +NetBIOSGroup
nssm set <servicename> DependOnGroup ++NetBIOSGroup
The Name parameter can only be queried, not set. It returns the service's
registry key name. This may be useful to know if you take advantage of
the fact that you can substitute the service's display name anywhere where
the syntax calls for <servicename>.
The ObjectName parameter requires an additional argument only when setting
a username. The additional argument is the password of the user.
To retrieve the username, run
nssm get <servicename> ObjectName
To set the username and password, run
nssm set <servicename> ObjectName <username> <password>
Note that the rules of argument concatenation still apply. The following
invocation is valid and will have the expected effect.
nssm set <servicename> ObjectName <username> correct horse battery staple
The following well-known usernames do not need a password. The password
parameter can be omitted when using them:
"LocalSystem" aka "System" aka "NT Authority\System"
"LocalService" aka "Local Service" aka "NT Authority\Local Service"
"NetworkService" aka "Network Service" aka "NT Authority\Network Service"
Virtual service account "NT Service\<servicename>"
The Start parameter is used to query or set the startup type of the service.
Valid service startup types are as follows:
SERVICE_AUTO_START: Automatic startup at boot.
SERVICE_DELAYED_START: Delayed startup at boot.
SERVICE_DEMAND_START: Manual service startup.
SERVICE_DISABLED: The service is disabled.
Note that SERVICE_DELAYED_START is not supported on versions of Windows prior
to Vista. NSSM will set the service to automatic startup if delayed start is
unavailable.
The Type parameter is used to query or set the service type. NSSM recognises
all currently documented service types but will only allow setting one of two
types:
SERVICE_WIN32_OWN_PROCESS: A standalone service. This is the default.
SERVICE_INTERACTIVE_PROCESS: A service which can interact with the desktop.
Note that a service may only be configured as interactive if it runs under
the LocalSystem account. The safe way to configure an interactive service
is in two stages as follows.
nssm reset <servicename> ObjectName
nssm set <servicename> Type SERVICE_INTERACTIVE_PROCESS
Controlling services using the command line
-------------------------------------------
NSSM offers rudimentary service control features.
nssm start <servicename>
nssm restart <servicename>
nssm stop <servicename>
nssm status <servicename>
nssm statuscode <servicename>
The output of "nssm status" and "nssm statuscode" is a string
representing the service state, eg SERVICE_RUNNING.
The exit code of "nssm status" will be 0 if the status was
succesfully retrieved. If the exit code is not zero there was
an error.
The exit code of "nssm statuscode" will be the numeric value
of the service state, eg 4 for SERVICE_RUNNING. Zero is not a
valid service state code. If the exit code is zero there was
an error.
Removing services using the GUI
-------------------------------
NSSM can also remove services. Run
nssm remove <servicename>
to remove a service. You will prompted for confirmation before the service
is removed. Try not to remove essential system services...
Removing service using the command line
---------------------------------------
To remove a service without confirmation from the GUI, run
nssm remove <servicename> confirm
Try not to remove essential system services...
Logging
-------
NSSM logs to the Windows event log. It registers itself as an event log source
and uses unique event IDs for each type of message it logs. New versions may
add event types but existing event IDs will never be changed.
Because of the way NSSM registers itself you should be aware that you may not
be able to replace the NSSM binary if you have the event viewer open and that
running multiple instances of NSSM from different locations may be confusing if
they are not all the same version.
Listing managed services
------------------------
The following command will print the names of all services managed by NSSM:
nssm list
To see all services on the system, not just NSSM's, use list all:
nssm list all
Showing processes started by a service
--------------------------------------
The following command will print the process ID and executable path of
processes started by a given service:
nssm processes <servicename>
Note that if 32-bit NSSM is run on a 64-bit system running an older version of
Windows than Vista it will not be able to query the paths of 64-bit processes.
Exporting service configuration
-------------------------------
NSSM can dump commands which would recreate the configuration of a service.
The output can be pasted into a batch script to back up the service or
transfer to another computer.
nssm dump <servicename>
Because the service configuration may contain characters which need to be
quoted or escaped from the command prompt, NSSM tries hard to produce
output which will work correctly when run as a script, by adding quotes
and caret escapes as appropriate.
To facilitate copying a service, the dump command accepts a second
argument which specifies the name of the service to be used in the output.
nssm dump <servicename> <newname>
Lines in the dump will reference the <newname> service while showing the
configuration of <servicename>.
Example usage
-------------
To install an Unreal Tournament server:
nssm install UT2004 c:\games\ut2004\system\ucc.exe server
To run the server as the "games" user:
nssm set UT2004 ObjectName games password
To configure the server to log to a file:
nssm set UT2004 AppStdout c:\games\ut2004\service.log
To restrict the server to a single CPU:
nssm set UT2004 AppAffinity 0
To remove the server:
nssm remove UT2004 confirm
To find out the service name of a service with a display name:
nssm get "Background Intelligent Transfer Service" Name
Building NSSM from source
-------------------------
NSSM is known to compile with Visual Studio 2008 and later. Older Visual
Studio releases may or may not work if you install an appropriate SDK and
edit the nssm.vcproj and nssm.sln files to set a lower version number.
They are known not to work with default settings.
NSSM will also compile with Visual Studio 2010 but the resulting executable
will not run on versions of Windows older than XP SP2. If you require
compatiblity with older Windows releases you should change the Platform
Toolset to v90 in the General section of the project's Configuration
Properties.
Credits
-------
Thanks to Bernard Loh for finding a bug with service recovery.
Thanks to Benjamin Mayrargue (www.softlion.com) for adding 64-bit support.
Thanks to Joel Reingold for spotting a command line truncation bug.
Thanks to Arve Knudsen for spotting that child processes of the monitored
application could be left running on service shutdown, and that a missing
registry value for AppDirectory confused NSSM.
Thanks to Peter Wagemans and Laszlo Keresztfalvi for suggesting throttling
restarts.
Thanks to Eugene Lifshitz for finding an edge case in CreateProcess() and for
advising how to build messages.mc correctly in paths containing spaces.
Thanks to Rob Sharp for pointing out that NSSM did not respect the
AppEnvironment registry value used by srvany.
Thanks to Szymon Nowak for help with Windows 2000 compatibility.