-
Notifications
You must be signed in to change notification settings - Fork 123
/
Copy pathplate_recognition.py
executable file
·529 lines (462 loc) · 16.9 KB
/
plate_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
#!/usr/bin/env python
import argparse
import csv
import io
import json
import math
import sys
import time
from collections import OrderedDict
from itertools import combinations
from pathlib import Path
import requests
from PIL import Image, ImageDraw, ImageFont
if sys.version_info.major == 3 and sys.version_info.minor >= 10:
from collections.abc import MutableMapping
else:
# ruff: noqa
from collections import MutableMapping # type: ignore[attr-defined]
def parse_arguments(args_hook=lambda _: _):
parser = argparse.ArgumentParser(
description="Read license plates from images and output the result as JSON or CSV.",
epilog="""Examples:
Process images from a folder:
python plate_recognition.py -a MY_API_KEY /path/to/vehicle-*.jpg
Use the Snapshot SDK instead of the Cloud Api:
python plate_recognition.py -s http://localhost:8080 /path/to/vehicle-*.jpg
Specify Camera ID and/or two Regions:
plate_recognition.py -a MY_API_KEY --camera-id Camera1 -r us-ca -r th-37 /path/to/vehicle-*.jpg""",
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument("-a", "--api-key", help="Your API key.", required=False)
parser.add_argument(
"-r",
"--regions",
help="Match the license plate pattern of a specific region",
required=False,
action="append",
)
parser.add_argument(
"-s",
"--sdk-url",
help="Url to self hosted sdk For example, http://localhost:8080",
required=False,
)
parser.add_argument(
"--camera-id", help="Name of the source camera.", required=False
)
parser.add_argument("files", nargs="+", type=Path, help="Path to vehicle images")
args_hook(parser)
args = parser.parse_args()
if not args.sdk_url and not args.api_key:
raise Exception("api-key is required")
return args
_session = None
def recognition_api(
fp,
regions=None,
api_key=None,
sdk_url=None,
config=None,
camera_id=None,
timestamp=None,
mmc=None,
exit_on_error=True,
):
if regions is None:
regions = []
if config is None:
config = {}
global _session
data = dict(regions=regions, config=json.dumps(config))
if camera_id:
data["camera_id"] = camera_id
if mmc:
data["mmc"] = mmc
if timestamp:
data["timestamp"] = timestamp
response = None
if sdk_url:
fp.seek(0)
if "container-api" in sdk_url:
response = requests.post(
"https://container-api.parkpow.com/api/v1/predict/",
files=dict(image=fp),
headers={
"Authorization": "Token " + api_key,
},
)
else:
response = requests.post(
sdk_url + "/v1/plate-reader/", files=dict(upload=fp), data=data
)
else:
if not _session:
_session = requests.Session()
_session.headers.update({"Authorization": "Token " + api_key})
for _ in range(3):
fp.seek(0)
response = _session.post(
"https://api.platerecognizer.com/v1/plate-reader/",
files=dict(upload=fp),
data=data,
)
if response.status_code == 429: # Max calls per second reached
time.sleep(1)
else:
break
if response is None:
return {}
if response.status_code < 200 or response.status_code > 300:
print(response.text)
if exit_on_error:
exit(1)
return response.json(object_pairs_hook=OrderedDict)
def flatten_dict(d, parent_key="", sep="_"):
items = []
for k, v in d.items():
new_key = parent_key + sep + k if parent_key else k
if isinstance(v, MutableMapping):
items.extend(flatten_dict(v, new_key, sep=sep).items())
else:
if isinstance(v, list):
items.append((new_key, json.dumps(v)))
else:
items.append((new_key, v))
return dict(items)
def flatten(result):
plates = result["results"]
del result["results"]
if "usage" in result:
del result["usage"]
flattened_data = [] # Accumulate flattened data for each plate
for plate in plates:
data = result.copy()
data.update(flatten_dict(plate))
flattened_data.append(data)
return flattened_data
def save_cropped(api_res, path, args):
dest = args.crop_lp or args.crop_vehicle
dest.mkdir(exist_ok=True, parents=True)
image = Image.open(path).convert("RGB")
for i, result in enumerate(api_res.get("results", []), 1):
if args.crop_lp and result["plate"]:
box = result["box"]
cropped = image.crop((box["xmin"], box["ymin"], box["xmax"], box["ymax"]))
cropped.save(
dest / f'{result["plate"]}_{result["region"]["code"]}_{path.name}'
)
if args.crop_vehicle and result["vehicle"]["score"]:
box = result["vehicle"]["box"]
cropped = image.crop((box["xmin"], box["ymin"], box["xmax"], box["ymax"]))
make_model = result.get("model_make", [None])[0]
filename = f'{i}_{result["vehicle"]["type"]}_{path.name}'
if make_model:
filename = f'{make_model["make"]}_{make_model["model"]}_' + filename
cropped.save(dest / filename)
def save_results(results, args):
path = args.output_file
if not Path(path).parent.exists():
print("%s does not exist" % path)
return
if not results:
return
if args.format == "json":
with open(path, "w") as fp:
json.dump(results, fp)
elif args.format == "csv":
fieldnames = []
for result in results[:10]:
candidates = flatten(result.copy())
for candidate in candidates:
if len(fieldnames) < len(candidate):
fieldnames = candidate.keys()
with open(path, "w") as fp:
writer = csv.DictWriter(fp, fieldnames=fieldnames)
writer.writeheader()
for result in results:
flattened_results = flatten(result) # Get flattened data for each plate
for flattened_result in flattened_results:
writer.writerow(flattened_result)
def custom_args(parser):
parser.epilog += """
Specify additional engine configuration:
plate_recognition.py -a MY_API_KEY --engine-config \'{"region":"strict"}\' /path/to/vehicle-*.jpg
Specify an output file and format for the results:
plate_recognition.py -a MY_API_KEY -o data.csv --format csv /path/to/vehicle-*.jpg
Enable Make Model and Color prediction:
plate_recognition.py -a MY_API_KEY --mmc /path/to/vehicle-*.jpg"""
parser.add_argument("--engine-config", help="Engine configuration.")
parser.add_argument(
"--crop-lp", type=Path, help="Save cropped license plates to folder."
)
parser.add_argument(
"--crop-vehicle", type=Path, help="Save cropped vehicles to folder."
)
parser.add_argument("-o", "--output-file", type=Path, help="Save result to file.")
parser.add_argument(
"--format",
help="Format of the result.",
default="json",
choices="json csv".split(),
)
parser.add_argument(
"--mmc",
action="store_true",
help="Predict vehicle make and model. Only available to paying users.",
)
parser.add_argument(
"--show-boxes",
action="store_true",
help="Draw bounding boxes around license plates and display the resulting image.",
)
parser.add_argument(
"--annotate-images",
action="store_true",
help="Draw bounding boxes around license plates and save the resulting image.",
)
parser.add_argument(
"--split-image",
action="store_true",
help="Do extra lookups on parts of the image. Useful on high resolution images.",
)
parser.add_argument("--split-x", type=int, default=0, help="Splits on the x-axis")
parser.add_argument("--split-y", type=int, default=0, help="Splits on the y-axis")
parser.add_argument(
"--split-overlap",
type=int,
default=10,
help="Percentage of window overlap when splitting",
)
def draw_bb(im, data, new_size=(1920, 1050), text_func=None):
draw = ImageDraw.Draw(im)
font_path = Path("assets/DejaVuSansMono.ttf")
if font_path.exists():
font = ImageFont.truetype(str(font_path), 10)
else:
font = ImageFont.load_default()
rect_color = (0, 255, 0)
for result in data:
b = result["box"]
coord = [(b["xmin"], b["ymin"]), (b["xmax"], b["ymax"])]
draw.rectangle(coord, outline=rect_color)
draw.rectangle(
((coord[0][0] - 1, coord[0][1] - 1), (coord[1][0] - 1, coord[1][1] - 1)),
outline=rect_color,
)
draw.rectangle(
((coord[0][0] - 2, coord[0][1] - 2), (coord[1][0] - 2, coord[1][1] - 2)),
outline=rect_color,
)
if text_func:
text = text_func(result)
(text_width, text_height) = font.font.getsize(text)[0]
margin = math.ceil(0.05 * text_height)
draw.rectangle(
[
(b["xmin"] - margin, b["ymin"] - text_height - 2 * margin),
(b["xmin"] + text_width + 2 * margin, b["ymin"]),
],
fill="white",
)
draw.text(
(b["xmin"] + margin, b["ymin"] - text_height - margin),
text,
fill="black",
font=font,
)
if new_size:
im = im.resize(new_size)
return im
def text_function(result):
return result["plate"]
def bb_iou(a, b):
# determine the (x, y)-coordinates of the intersection rectangle
x_a = max(a["xmin"], b["xmin"])
y_a = max(a["ymin"], b["ymin"])
x_b = min(a["xmax"], b["xmax"])
y_b = min(a["ymax"], b["ymax"])
# compute the area of both the prediction and ground-truth
# rectangles
area_a = (a["xmax"] - a["xmin"]) * (a["ymax"] - a["ymin"])
area_b = (b["xmax"] - b["xmin"]) * (b["ymax"] - b["ymin"])
# compute the area of intersection rectangle
area_inter = max(0, x_b - x_a) * max(0, y_b - y_a)
return area_inter / float(max(area_a + area_b - area_inter, 1))
def clean_objs(objects, threshold=0.1):
# Only keep the ones with best score or no overlap
for o1, o2 in combinations(objects, 2):
if (
"remove" in o1
or "remove" in o2
or bb_iou(o1["box"], o2["box"]) <= threshold
):
continue
if o1["score"] > o2["score"]:
o2["remove"] = True
else:
o1["remove"] = True
return [x for x in objects if "remove" not in x]
def merge_results(images):
result = dict(results=[])
for data in images:
for item in data["prediction"]["results"]:
result["results"].append(item)
for b in [item["box"], item["vehicle"].get("box", {})]:
b["ymin"] += data["y"]
b["xmin"] += data["x"]
b["ymax"] += data["y"]
b["xmax"] += data["x"]
result["results"] = clean_objs(result["results"])
return result
def inside(a, b):
return (
a["xmin"] > b["xmin"]
and a["ymin"] > b["ymin"]
and a["xmax"] < b["xmax"]
and a["ymax"] < b["ymax"]
)
def post_processing(results):
new_list = []
for item in results["results"]:
if item["score"] < 0.2 and any(
[inside(x["box"], item["box"]) for x in results["results"] if x != item]
):
continue
new_list.append(item)
results["results"] = new_list
return results
def output_image(args, path, results):
if args.show_boxes or args.annotate_images and "results" in results:
image = Image.open(path)
annotated_image = draw_bb(image, results["results"], None, text_function)
if args.show_boxes:
annotated_image.show()
if args.annotate_images:
annotated_image.save(path.with_name(f"{path.stem}_annotated{path.suffix}"))
if args.crop_lp or args.crop_vehicle:
save_cropped(results, path, args)
def process_split_image(path, args, engine_config):
if args.split_x == 0 or args.split_y == 0:
raise ValueError("Please specify --split-x or --split-y")
# Predictions
fp = Image.open(path)
if fp.mode != "RGB":
fp = fp.convert("RGB")
images = [((0, 0), fp)] # Entire image
overlap_pct = args.split_overlap
window_width = fp.width / (args.split_x + 1)
window_height = fp.height / (args.split_y + 1)
overlap_width = int(window_width * overlap_pct / 100)
overlap_height = int(window_height * overlap_pct / 100)
draw = ImageDraw.Draw(fp)
for i in range(args.split_x + 1):
for j in range(args.split_y + 1):
ymin = j * window_height
ymax = ymin + window_height
xmin = i * window_width
xmax = xmin + window_width
# Add x-axis Overlap
if i == 0: # Overlap `end` of first Window only
xmax = xmax + overlap_width
elif i == args.split_x: # Overlap `start` of last Window only
xmin = xmin - overlap_width
else: # Overlap both `start` and `end` of middle Windows
xmin = xmin - overlap_width
xmax = xmax + overlap_width
# Add y-axis Overlap
if j == 0: # Overlap `bottom` of first Window only
ymax = ymax + overlap_height
pass
elif j == args.split_y: # Overlap `top` of last Window only
ymin = ymin - overlap_height
pass
else: # Overlap both `top` and `bottom` of middle Windows
ymin = ymin - overlap_height
ymax = ymax + overlap_height
images.append(((xmin, ymin), fp.crop((xmin, ymin, xmax, ymax))))
# Inference
api_results = {}
results = []
usage = []
camera_ids = []
timestamps = []
processing_times = []
for (x, y), im in images:
im_bytes = io.BytesIO()
im.save(im_bytes, "JPEG", quality=95)
im_bytes.seek(0)
api_res = recognition_api(
im_bytes,
args.regions,
args.api_key,
args.sdk_url,
config=engine_config,
camera_id=args.camera_id,
mmc=args.mmc,
)
results.append(dict(prediction=api_res, x=x, y=y))
if "usage" in api_res:
usage.append(api_res["usage"])
camera_ids.append(api_res["camera_id"])
timestamps.append(api_res["timestamp"])
processing_times.append(api_res["processing_time"])
api_results["filename"] = Path(path).name
api_results["timestamp"] = timestamps[len(timestamps) - 1]
api_results["camera_id"] = camera_ids[len(camera_ids) - 1]
results = post_processing(merge_results(results))
results = OrderedDict(list(api_results.items()) + list(results.items()))
if len(usage):
results["usage"] = usage[len(usage) - 1]
results["processing_time"] = round(sum(processing_times), 3)
# Set bounding box padding
for item in results["results"]:
# Decrease padding size for large bounding boxes
b = item["box"]
width, height = b["xmax"] - b["xmin"], b["ymax"] - b["ymin"]
padding_x = int(max(0, width * (0.3 * math.exp(-10 * width / fp.width))))
padding_y = int(max(0, height * (0.3 * math.exp(-10 * height / fp.height))))
b["xmin"] = b["xmin"] - padding_x
b["ymin"] = b["ymin"] - padding_y
b["xmax"] = b["xmax"] + padding_x
b["ymax"] = b["ymax"] + padding_y
output_image(args, path, results)
return results
def process_full_image(path, args, engine_config):
with open(path, "rb") as fp:
api_res = recognition_api(
fp,
args.regions,
args.api_key,
args.sdk_url,
config=engine_config,
camera_id=args.camera_id,
mmc=args.mmc,
)
output_image(args, path, api_res)
return api_res
def main():
args = parse_arguments(custom_args)
paths = args.files
results = []
engine_config = {}
if args.engine_config:
try:
engine_config = json.loads(args.engine_config)
except json.JSONDecodeError as e:
print(e)
return
for path in paths:
if not path.exists():
continue
if Path(path).is_file():
if args.split_image:
results.append(process_split_image(path, args, engine_config))
else:
results.append(process_full_image(path, args, engine_config))
if args.output_file:
save_results(results, args)
else:
print(json.dumps(results, indent=2))
if __name__ == "__main__":
main()