-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathapp.py
201 lines (155 loc) · 5.96 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""app.py
streamlit demo of yomikata"""
from pathlib import Path
import pandas as pd
import spacy
import streamlit as st
from speach import ttlig
from yomikata import utils
from yomikata.dictionary import Dictionary
from yomikata.utils import parse_furigana
@st.cache
def add_border(html: str):
WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.5rem; padding: 1rem; margin-bottom: 1.0rem; display: inline-block">{}</div>"""
html = html.replace("\n", " ")
return WRAPPER.format(html)
def get_random_sentence():
from yomikata.config.config import TEST_DATA_DIR
df = pd.read_csv(Path(TEST_DATA_DIR, "test_optimized_strict_heteronyms.csv"))
return df.sample(1).iloc[0].sentence
@st.cache
def get_dbert_prediction_and_heteronym_list(text):
from yomikata.dbert import dBert
reader = dBert()
return reader.furigana(text), reader.heteronyms
@st.cache
def get_stats():
from yomikata.config import config
from yomikata.utils import load_dict
stats = load_dict(Path(config.STORES_DIR, "dbert/training_performance.json"))
global_accuracy = stats["test"]["accuracy"]
stats = stats["test"]["heteronym_performance"]
heteronyms = stats.keys()
accuracy = [stats[heteronym]["accuracy"] for heteronym in heteronyms]
readings = [
"、".join(
[
"{reading} ({correct}/{n})".format(
reading=reading,
correct=stats[heteronym]["readings"][reading]["found"][reading],
n=stats[heteronym]["readings"][reading]["n"],
)
for reading in stats[heteronym]["readings"].keys()
if (
stats[heteronym]["readings"][reading]["found"][reading] != 0
or reading != "<OTHER>"
)
]
)
for heteronym in heteronyms
]
# if reading != '<OTHER>'
df = pd.DataFrame({"heteronym": heteronyms, "accuracy": accuracy, "readings": readings})
df = df[df["readings"].str.contains("、")]
df["readings"] = df["readings"].str.replace("<OTHER>", "Other")
df = df.rename(columns={"readings": "readings (correct/total)"})
df = df.sort_values("accuracy", ascending=False, ignore_index=True)
df.index += 1
return global_accuracy, df
@st.cache
def furigana_to_spacy(text_with_furigana):
tokens = parse_furigana(text_with_furigana)
ents = []
output_text = ""
heteronym_count = 0
for token in tokens.groups:
if isinstance(token, ttlig.RubyFrag):
if heteronym_count != 0:
output_text += ", "
ents.append(
{
"start": len(output_text),
"end": len(output_text) + len(token.text),
"label": token.furi,
}
)
output_text += token.text
heteronym_count += 1
else:
pass
return {
"text": output_text,
"ents": ents,
"title": None,
}
st.title("Yomikata: Disambiguate Japanese Heteronyms")
# Input text box
st.markdown("Input a Japanese sentence:")
if "default_sentence" not in st.session_state:
st.session_state.default_sentence = "え、{人間/にんげん}というものかい? {人間/にんげん}というものは{角/つの}の{生/は}えない、{生白/なまじろ}い{顔/かお}や{手足/てあし}をした、{何/なん}ともいわれず{気味/きみ}の{悪/わる}いものだよ。"
input_text = st.text_area(
"Input a Japanese sentence:",
utils.remove_furigana(st.session_state.default_sentence),
label_visibility="collapsed",
)
# Yomikata prediction
dbert_prediction, heteronyms = get_dbert_prediction_and_heteronym_list(input_text)
# spacy-style output for the predictions
colors = ["#85DCDF", "#DF85DC", "#DCDF85", "#85ABDF"]
spacy_dict = furigana_to_spacy(dbert_prediction)
label_colors = {
reading: colors[i % len(colors)]
for i, reading in enumerate(set([item["label"] for item in spacy_dict["ents"]]))
}
html = spacy.displacy.render(spacy_dict, style="ent", manual=True, options={"colors": label_colors})
if len(spacy_dict["ents"]) > 0:
st.markdown("**Yomikata** disambiguated the following words with multiple readings:")
st.write(
f"{add_border(html)}",
unsafe_allow_html=True,
)
else:
st.markdown("**Yomikata** found no heteronyms in the input text.")
# Dictionary + Yomikata prediction
st.markdown("**Yomikata** can be coupled with a dictionary to get full furigana:")
dictionary = st.radio(
"It can be coupled with a dictionary",
("sudachi", "unidic", "ipadic", "juman"),
horizontal=True,
label_visibility="collapsed",
)
dictreader = Dictionary(dictionary)
dictionary_prediction = dictreader.furigana(dbert_prediction)
html = parse_furigana(dictionary_prediction).to_html()
st.write(
f"{add_border(html)}",
unsafe_allow_html=True,
)
# Dictionary alone prediction
if len(spacy_dict["ents"]) > 0:
dictionary_prediction = dictreader.furigana(utils.remove_furigana(input_text))
html = parse_furigana(dictionary_prediction).to_html()
st.markdown("Without **Yomikata** disambiguation, the dictionary would yield:")
st.write(
f"{add_border(html)}",
unsafe_allow_html=True,
)
# Randomize button
if st.button("🎲 Randomize the input sentence"):
st.session_state.default_sentence = get_random_sentence()
st.experimental_rerun()
# Stats section
global_accuracy, stats_df = get_stats()
st.subheader(
f"**Yomikata** supports {len(stats_df)} heteronyms, with a global accuracy of {global_accuracy:.0%}!"
)
st.dataframe(stats_df)
st.subheader("Check out **Yomikata** on [GitHub](https://github.com/passaglia/yomikata) today!")
# Hide the footer
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)