From bbad86858a13a7fe13857d84929e3b9881c288a1 Mon Sep 17 00:00:00 2001 From: Thibault Monsel Date: Thu, 27 Jul 2023 10:08:11 +0200 Subject: [PATCH] In progress commit on branch delay. --- diffrax/__init__.py | 179 +-- diffrax/_adjoint.py | 12 + diffrax/_delays.py | 381 ++++++ diffrax/_integrate.py | 244 +++- diffrax/_term.py | 18 +- docs/api/delays.md | 42 + examples/dde.ipynb | 261 ++++ examples/neural_dde.ipynb | 319 +++++ mkdocs.yml | 3 + test/julia_dde/dde.jl | 315 +++++ test/julia_dde/test_basic_check_1.txt | 1001 +++++++++++++++ test/julia_dde/test_basic_check_10.txt | 401 ++++++ test/julia_dde/test_basic_check_11.txt | 351 ++++++ test/julia_dde/test_basic_check_2.txt | 1001 +++++++++++++++ test/julia_dde/test_basic_check_3.txt | 1001 +++++++++++++++ test/julia_dde/test_basic_check_4.txt | 1001 +++++++++++++++ test/julia_dde/test_basic_check_5.txt | 1001 +++++++++++++++ test/julia_dde/test_basic_check_6.txt | 1001 +++++++++++++++ test/julia_dde/test_basic_check_7.txt | 1001 +++++++++++++++ test/julia_dde/test_basic_check_8.txt | 101 ++ test/julia_dde/test_basic_check_9.txt | 501 ++++++++ .../test_basic_numerical_check_1.txt | 351 ++++++ .../test_basic_numerical_check_2.txt | 901 +++++++++++++ test/test_delays.py | 1110 +++++++++++++++++ 24 files changed, 12391 insertions(+), 106 deletions(-) create mode 100644 diffrax/_delays.py create mode 100644 docs/api/delays.md create mode 100644 examples/dde.ipynb create mode 100644 examples/neural_dde.ipynb create mode 100644 test/julia_dde/dde.jl create mode 100644 test/julia_dde/test_basic_check_1.txt create mode 100644 test/julia_dde/test_basic_check_10.txt create mode 100644 test/julia_dde/test_basic_check_11.txt create mode 100644 test/julia_dde/test_basic_check_2.txt create mode 100644 test/julia_dde/test_basic_check_3.txt create mode 100644 test/julia_dde/test_basic_check_4.txt create mode 100644 test/julia_dde/test_basic_check_5.txt create mode 100644 test/julia_dde/test_basic_check_6.txt create mode 100644 test/julia_dde/test_basic_check_7.txt create mode 100644 test/julia_dde/test_basic_check_8.txt create mode 100644 test/julia_dde/test_basic_check_9.txt create mode 100644 test/julia_dde/test_basic_numerical_check_1.txt create mode 100644 test/julia_dde/test_basic_numerical_check_2.txt create mode 100644 test/test_delays.py diff --git a/diffrax/__init__.py b/diffrax/__init__.py index 30dc4f50..c03f4763 100644 --- a/diffrax/__init__.py +++ b/diffrax/__init__.py @@ -1,106 +1,113 @@ import importlib.metadata -from ._adjoint import ( - AbstractAdjoint as AbstractAdjoint, - BacksolveAdjoint as BacksolveAdjoint, - DirectAdjoint as DirectAdjoint, - ImplicitAdjoint as ImplicitAdjoint, - RecursiveCheckpointAdjoint as RecursiveCheckpointAdjoint, -) -from ._autocitation import citation as citation, citation_rules as citation_rules -from ._brownian import ( - AbstractBrownianPath as AbstractBrownianPath, - UnsafeBrownianPath as UnsafeBrownianPath, - VirtualBrownianTree as VirtualBrownianTree, -) -from ._event import ( - AbstractDiscreteTerminatingEvent as AbstractDiscreteTerminatingEvent, - DiscreteTerminatingEvent as DiscreteTerminatingEvent, - SteadyStateEvent as SteadyStateEvent, -) +from ._adjoint import AbstractAdjoint as AbstractAdjoint +from ._adjoint import BacksolveAdjoint as BacksolveAdjoint +from ._adjoint import DirectAdjoint as DirectAdjoint +from ._adjoint import ImplicitAdjoint as ImplicitAdjoint +from ._adjoint import RecursiveCheckpointAdjoint as RecursiveCheckpointAdjoint +from ._autocitation import citation as citation +from ._autocitation import citation_rules as citation_rules +from ._brownian import AbstractBrownianPath +from ._brownian import AbstractBrownianPath as AbstractBrownianPath +from ._brownian import UnsafeBrownianPath +from ._brownian import UnsafeBrownianPath as UnsafeBrownianPath +from ._brownian import VirtualBrownianTree +from ._brownian import VirtualBrownianTree as VirtualBrownianTree +from ._delays import Delays as Delays +from ._delays import bind_history as bind_history +from ._delays import history_extrapolation_implicit as history_extrapolation_implicit +from ._delays import maybe_find_discontinuity as maybe_find_discontinuity +from ._event import AbstractDiscreteTerminatingEvent +from ._event import AbstractDiscreteTerminatingEvent as AbstractDiscreteTerminatingEvent +from ._event import DiscreteTerminatingEvent +from ._event import DiscreteTerminatingEvent as DiscreteTerminatingEvent +from ._event import SteadyStateEvent +from ._event import SteadyStateEvent as SteadyStateEvent from ._global_interpolation import ( AbstractGlobalInterpolation as AbstractGlobalInterpolation, +) +from ._global_interpolation import CubicInterpolation as CubicInterpolation +from ._global_interpolation import DenseInterpolation as DenseInterpolation +from ._global_interpolation import LinearInterpolation as LinearInterpolation +from ._global_interpolation import ( backward_hermite_coefficients as backward_hermite_coefficients, - CubicInterpolation as CubicInterpolation, - DenseInterpolation as DenseInterpolation, - linear_interpolation as linear_interpolation, - LinearInterpolation as LinearInterpolation, +) +from ._global_interpolation import linear_interpolation as linear_interpolation +from ._global_interpolation import ( rectilinear_interpolation as rectilinear_interpolation, ) from ._integrate import diffeqsolve as diffeqsolve from ._local_interpolation import ( AbstractLocalInterpolation as AbstractLocalInterpolation, +) +from ._local_interpolation import ( FourthOrderPolynomialInterpolation as FourthOrderPolynomialInterpolation, - LocalLinearInterpolation as LocalLinearInterpolation, - ThirdOrderHermitePolynomialInterpolation as ThirdOrderHermitePolynomialInterpolation, # noqa: E501 ) +from ._local_interpolation import LocalLinearInterpolation as LocalLinearInterpolation +from ._local_interpolation import ( + ThirdOrderHermitePolynomialInterpolation as ThirdOrderHermitePolynomialInterpolation, +) # noqa: E501 from ._misc import adjoint_rms_seminorm as adjoint_rms_seminorm from ._path import AbstractPath as AbstractPath -from ._root_finder import ( - VeryChord as VeryChord, - with_stepsize_controller_tols as with_stepsize_controller_tols, -) -from ._saveat import SaveAt as SaveAt, SubSaveAt as SubSaveAt -from ._solution import ( - is_event as is_event, - is_okay as is_okay, - is_successful as is_successful, - RESULTS as RESULTS, - Solution as Solution, -) -from ._solver import ( - AbstractAdaptiveSolver as AbstractAdaptiveSolver, - AbstractDIRK as AbstractDIRK, - AbstractERK as AbstractERK, - AbstractESDIRK as AbstractESDIRK, - AbstractImplicitSolver as AbstractImplicitSolver, - AbstractItoSolver as AbstractItoSolver, - AbstractRungeKutta as AbstractRungeKutta, - AbstractSDIRK as AbstractSDIRK, - AbstractSolver as AbstractSolver, - AbstractStratonovichSolver as AbstractStratonovichSolver, - AbstractWrappedSolver as AbstractWrappedSolver, - Bosh3 as Bosh3, - ButcherTableau as ButcherTableau, - CalculateJacobian as CalculateJacobian, - Dopri5 as Dopri5, - Dopri8 as Dopri8, - Euler as Euler, - EulerHeun as EulerHeun, - HalfSolver as HalfSolver, - Heun as Heun, - ImplicitEuler as ImplicitEuler, - ItoMilstein as ItoMilstein, - KenCarp3 as KenCarp3, - KenCarp4 as KenCarp4, - KenCarp5 as KenCarp5, - Kvaerno3 as Kvaerno3, - Kvaerno4 as Kvaerno4, - Kvaerno5 as Kvaerno5, - LeapfrogMidpoint as LeapfrogMidpoint, - Midpoint as Midpoint, - MultiButcherTableau as MultiButcherTableau, - Ralston as Ralston, - ReversibleHeun as ReversibleHeun, - SemiImplicitEuler as SemiImplicitEuler, - Sil3 as Sil3, - StratonovichMilstein as StratonovichMilstein, - Tsit5 as Tsit5, -) +from ._root_finder import VeryChord as VeryChord +from ._root_finder import with_stepsize_controller_tols as with_stepsize_controller_tols +from ._saveat import SaveAt as SaveAt +from ._saveat import SubSaveAt as SubSaveAt +from ._solution import RESULTS as RESULTS +from ._solution import Solution as Solution +from ._solution import is_event as is_event +from ._solution import is_okay as is_okay +from ._solution import is_successful as is_successful +from ._solver import AbstractAdaptiveSolver as AbstractAdaptiveSolver +from ._solver import AbstractDIRK as AbstractDIRK +from ._solver import AbstractERK as AbstractERK +from ._solver import AbstractESDIRK as AbstractESDIRK +from ._solver import AbstractImplicitSolver as AbstractImplicitSolver +from ._solver import AbstractItoSolver as AbstractItoSolver +from ._solver import AbstractRungeKutta as AbstractRungeKutta +from ._solver import AbstractSDIRK as AbstractSDIRK +from ._solver import AbstractSolver as AbstractSolver +from ._solver import AbstractStratonovichSolver as AbstractStratonovichSolver +from ._solver import AbstractWrappedSolver as AbstractWrappedSolver +from ._solver import Bosh3 as Bosh3 +from ._solver import ButcherTableau as ButcherTableau +from ._solver import CalculateJacobian as CalculateJacobian +from ._solver import Dopri5 as Dopri5 +from ._solver import Dopri8 as Dopri8 +from ._solver import Euler as Euler +from ._solver import EulerHeun as EulerHeun +from ._solver import HalfSolver as HalfSolver +from ._solver import Heun as Heun +from ._solver import ImplicitEuler as ImplicitEuler +from ._solver import ItoMilstein as ItoMilstein +from ._solver import KenCarp3 as KenCarp3 +from ._solver import KenCarp4 as KenCarp4 +from ._solver import KenCarp5 as KenCarp5 +from ._solver import Kvaerno3 as Kvaerno3 +from ._solver import Kvaerno4 as Kvaerno4 +from ._solver import Kvaerno5 as Kvaerno5 +from ._solver import LeapfrogMidpoint as LeapfrogMidpoint +from ._solver import Midpoint as Midpoint +from ._solver import MultiButcherTableau as MultiButcherTableau +from ._solver import Ralston as Ralston +from ._solver import ReversibleHeun as ReversibleHeun +from ._solver import SemiImplicitEuler as SemiImplicitEuler +from ._solver import Sil3 as Sil3 +from ._solver import StratonovichMilstein as StratonovichMilstein +from ._solver import Tsit5 as Tsit5 from ._step_size_controller import ( AbstractAdaptiveStepSizeController as AbstractAdaptiveStepSizeController, - AbstractStepSizeController as AbstractStepSizeController, - ConstantStepSize as ConstantStepSize, - PIDController as PIDController, - StepTo as StepTo, ) -from ._term import ( - AbstractTerm as AbstractTerm, - ControlTerm as ControlTerm, - MultiTerm as MultiTerm, - ODETerm as ODETerm, - WeaklyDiagonalControlTerm as WeaklyDiagonalControlTerm, +from ._step_size_controller import ( + AbstractStepSizeController as AbstractStepSizeController, ) - +from ._step_size_controller import ConstantStepSize as ConstantStepSize +from ._step_size_controller import PIDController as PIDController +from ._step_size_controller import StepTo as StepTo +from ._term import AbstractTerm as AbstractTerm +from ._term import ControlTerm as ControlTerm +from ._term import MultiTerm as MultiTerm +from ._term import ODETerm as ODETerm +from ._term import WeaklyDiagonalControlTerm as WeaklyDiagonalControlTerm __version__ = importlib.metadata.version("diffrax") diff --git a/diffrax/_adjoint.py b/diffrax/_adjoint.py index 94fe6092..5cefbf8c 100644 --- a/diffrax/_adjoint.py +++ b/diffrax/_adjoint.py @@ -119,6 +119,7 @@ def loop( solver, stepsize_controller, discrete_terminating_event, + delays, saveat, t0, t1, @@ -128,6 +129,7 @@ def loop( init_state, passed_solver_state, passed_controller_state, + y0_history, ) -> Any: """Runs the main solve loop. Subclasses can override this to provide custom backpropagation behaviour; see for example the implementation of @@ -550,6 +552,7 @@ def _loop_backsolve_bwd( solver, stepsize_controller, discrete_terminating_event, + delays, saveat, t0, t1, @@ -557,6 +560,7 @@ def _loop_backsolve_bwd( max_steps, throw, init_state, + y0_history, ): assert discrete_terminating_event is None @@ -594,6 +598,8 @@ def _loop_backsolve_bwd( adjoint=self, solver=solver, stepsize_controller=stepsize_controller, + discrete_terminating_event=discrete_terminating_event, + delays=delays, terms=adjoint_terms, dt0=None if dt0 is None else -dt0, max_steps=max_steps, @@ -773,6 +779,7 @@ def loop( passed_solver_state, passed_controller_state, discrete_terminating_event, + delays, **kwargs, ): if jtu.tree_structure(saveat.subs, is_leaf=_is_subsaveat) != jtu.tree_structure( @@ -818,6 +825,10 @@ def loop( raise NotImplementedError( "`diffrax.BacksolveAdjoint` is not compatible with events." ) + if delays is not None: + raise NotImplementedError( + "Cannot use `delays` with `adjoint=BacksolveAdjoint()`" + ) y = init_state.y init_state = eqx.tree_at(lambda s: s.y, init_state, object()) @@ -832,6 +843,7 @@ def loop( init_state=init_state, solver=solver, discrete_terminating_event=discrete_terminating_event, + delays=delays, **kwargs, ) final_state = _only_transpose_ys(final_state) diff --git a/diffrax/_delays.py b/diffrax/_delays.py new file mode 100644 index 00000000..d2e44850 --- /dev/null +++ b/diffrax/_delays.py @@ -0,0 +1,381 @@ +from typing import Callable, Optional + +import equinox as eqx +import jax.lax as lax +import jax.numpy as jnp +import jax.tree_util as jtu +from equinox.internal import unvmap_any +from jaxtyping import Array, PyTree +from optimistix import ( + BestSoFarFixedPoint, + fixed_point, + FixedPointIteration, + Newton, + root_find, +) + +from ._custom_types import IntScalarLike, RealScalarLike, VF +from ._global_interpolation import DenseInterpolation +from ._local_interpolation import AbstractLocalInterpolation +from ._term import VectorFieldWrapper + + +class Delays(eqx.Module): + """Module that incorportes all the information needed for integrating DDEs""" + + delays: PyTree[Callable] + initial_discontinuities: Optional[Array] = jnp.array([0.0]) + max_discontinuities: IntScalarLike = 100 + recurrent_checking: bool = False + sub_intervals: IntScalarLike = 10 + max_steps: IntScalarLike = 20 + rtol: RealScalarLike = 10e-3 + atol: RealScalarLike = 10e-3 + + +class HistoryVectorField(eqx.Module): + """VectorField equivalent for a DDE solver that incorporates former + estimated values of y(t). + + **Arguments:** + - `vector_field`: vector field of the delayed differential equation. + - `t0`: global integration start time + - `tprev`: start time of current integration step + - `tnext`: end time of current integration step + - `dense_info` : dense_info from current integration step + - `y0_history` : DDE's history function + - `delays` : DDE's different deviated arguments + """ + + vector_field: VF + t0: RealScalarLike + tprev: RealScalarLike + tnext: RealScalarLike + dense_info: PyTree[Array] + dense_interp: Optional[DenseInterpolation] + interpolation_cls: Callable[..., AbstractLocalInterpolation] + y0_history: Callable + delays: PyTree[Callable] + + def __call__(self, t, y, args): + history_vals = [] + delays, treedef = jtu.tree_flatten(self.delays) + if self.dense_interp is None: + assert self.dense_info is None + for delay in self.delays: + delay_val = delay(t, y, args) + alpha_val = t - delay_val + y0_val = self.y0_history(alpha_val) + history_vals.append(y0_val) + else: + assert self.dense_info is not None + for delay in delays: + delay_val = delay(t, y, args) + alpha_val = t - delay_val + + is_before_t0 = alpha_val < self.t0 + is_before_tprev = alpha_val < self.tprev + at_most_t0 = jnp.where(alpha_val < self.t0, alpha_val, self.t0) + t0_to_tprev = jnp.clip(alpha_val, self.t0, self.tprev) + at_least_tprev = jnp.maximum(self.tprev, alpha_val) + step_interpolation = self.interpolation_cls( + t0=self.tprev, t1=self.tnext, **self.dense_info + ) + switch = jnp.where(is_before_t0, 0, jnp.where(is_before_tprev, 1, 2)) + history_val = lax.switch( + switch, + [ + lambda: self.y0_history(at_most_t0), + # this is where the ImplicitAdjoint breaks for some reason + # with fixedpoint unless with change jacobian rule to + # jax.jacrev in Lineax's _misc.py + lambda: self.dense_interp.evaluate(t0_to_tprev), # type: ignore + lambda: step_interpolation.evaluate(at_least_tprev), + ], + ) + history_vals.append(history_val) + + history_vals = jtu.tree_unflatten(treedef, history_vals) + history_vals = tuple(history_vals) + return self.vector_field(t, y, args, history=history_vals) + + +def bind_history( + terms, + delays, + dense_info, + dense_interp, + solver, + direction, + t0, + tprev, + tnext, + y0_history, +): + delays_fn = jtu.tree_map( + lambda x: (lambda t, y, args: x(t, y, args) * direction), delays.delays + ) + + is_vf_wrapper = lambda x: isinstance(x, VectorFieldWrapper) + + def _apply_history( + x, + ): + if is_vf_wrapper(x): + vector_field = HistoryVectorField( + x.vector_field, + t0, + tprev, + tnext, + dense_info, + dense_interp, + solver.interpolation_cls, + y0_history, + delays_fn, + ) + return VectorFieldWrapper(vector_field) + else: + return x + + terms_ = jtu.tree_map(_apply_history, terms, is_leaf=is_vf_wrapper) + return terms_ + + +def history_extrapolation_implicit( + implicit_step, + terms, + dense_interp, + init_guess, + solver, + delays, + t0, + y0_history, + state, + args, +): + def fn(dense_info, args): + ( + terms, + _, + dense_interp, + solver, + delays, + t0, + y0_history, + state, + vf_args, + ) = args + terms_ = bind_history( + terms, + delays, + dense_info, + dense_interp, + solver, + 1, + t0, + state.tprev, + state.tnext, + y0_history, + ) + (y, y_error, new_dense_info, solver_state, solver_result) = solver.step( + terms_, + state.tprev, + state.tnext, + state.y, + vf_args, + state.solver_state, + state.made_jump, + ) + + return new_dense_info, (y, y_error, solver_state, solver_result) + + solv = BestSoFarFixedPoint(FixedPointIteration(rtol=delays.rtol, atol=delays.atol)) + + nonlinear_args = ( + terms, + implicit_step, + dense_interp, + solver, + delays, + t0, + y0_history, + state, + args, + ) + + sol = fixed_point( + fn, + solv, + init_guess, + nonlinear_args, + has_aux=True, + ) + dense_info, (y, y_error, solver_state, solver_result) = sol.value, sol.aux + + return y, y_error, dense_info, solver_state, solver_result + + +def maybe_find_discontinuity( + tprev, + tnext, + dense_info, + state, + delays, + solver, + args, + keep_step, + sub_tprev, + sub_tnext, +): + dense_discont = solver.interpolation_cls(t0=tprev, t1=tnext, **dense_info) + flat_delays = jtu.tree_leaves(delays.delays) + _gs = [] + + def make_g(delay): + # Creating the artifical event functions g that is used to + # detect future breaking points. + # http://www.cs.toronto.edu/pub/reports/na/hzpEnrightNA09Preprint.pdf + # page 7 + def g(t): + return ( + t + - delay(t, dense_discont.evaluate(t), args) + - state.discontinuities[...] + ) + + return g + + for delay in flat_delays: + _gs.append(make_g(delay)) + + def _find_discontinuity(): + # Start by doing a cheap bisection search to reduce + # over the stored-discontinuity dimension. + + def _cond_fun(_val): + _, _, _pred, _ = _val + return _pred + + def _body_fun(_val): + _ta, _tb, _, _step = _val + _step = _step + 1 + _tmid = _ta + 0.5 * (_tb - _ta) + _gas = jnp.stack([jnp.sign(g(_ta)) for g in _gs]) + _gmids = jnp.stack([jnp.sign(g(_tmid)) for g in _gs]) + _gbs = jnp.stack([jnp.sign(g(_tb)) for g in _gs]) + _any_left = jnp.any(_gas != _gmids) + _next_ta = jnp.where(_any_left, _ta, _tmid) + _next_tb = jnp.where(_any_left, _tmid, _tb) + _pred = ( + jnp.any(jnp.sum(_gas != _gbs, axis=1) > 1) | _step > delays.max_steps + ) + return _next_ta, _next_tb, _pred, _step + + _init_val = (sub_tprev, sub_tnext, True, 0) + _final_val = lax.while_loop(_cond_fun, _body_fun, _init_val) + _ta, _tb, _, _ = _final_val + + # Then do a more expensive Newton search + # to find the first discontinuity. + # _discont_solver = NewtonNonlinearSolver(rtol=delays.rtol, atol=delays.atol) + _discont_solver = Newton(rtol=delays.rtol, atol=delays.atol) + _disconts = [] + for g, delay in zip(_gs, flat_delays): + changed_sign = jnp.sign(g(_ta)) != jnp.sign(g(_tb)) + _i = jnp.argmax(changed_sign) + _d = state.discontinuities[_i] + _h = ( + lambda t, args, delay=delay, _d=_d: t + - delay(t, dense_discont.evaluate(t), args) + - _d + ) + _discont = root_find(_h, _discont_solver, _tb, args) # type: ignore + _discont = _discont_solver(_h, _tb, args).root # type: ignore + _disconts.append(_discont.value) + _disconts = jnp.stack(_disconts) + + best_candidate = jnp.where( + (_disconts > sub_tprev) & (_disconts < sub_tnext), + _disconts, + jnp.inf, + ) + best_candidate = jnp.min(best_candidate) + discont_update = jnp.where( + jnp.isinf(best_candidate), + False, + True, + ) + return best_candidate, discont_update + + def _find_discontinuity_wrapper(): + return lax.cond( + jnp.any(init_discont & jnp.invert(keep_step)), + _find_discontinuity, + lambda: (sub_tnext, False), + ) + + init_discont = jnp.stack( + [jnp.sign(g(sub_tprev)) != jnp.sign(g(sub_tnext)) for g in _gs] + ) + # We might have rejected the step for normal reasons; + # skip looking for a discontinuity if so. + return lax.cond( + unvmap_any((init_discont & jnp.invert(keep_step))), + _find_discontinuity_wrapper, + lambda: (sub_tnext, False), + ) + + +Delays.__init__.__doc__ = """ +**Arguments:** + +- `delays`: A `PyTree` where the leaves are the DDE's different scalar + deviated arguments. +- `initial_discontinuities`: Discontinuities given by the initial point time +and history function. +- `max_discontinuities`: Array length that tracks the discontinuity jumps +during integration (only relevant when `recurrent_checking` is True). If +`recurrent checking` is set to `True`, the computation quits unconditionally +when the total number of discontinuities detected is larger +than `max_discontinuities`. +- `recurrent_checking` : If `True`, there will be a systematic check at +integration step for potential discontinuities (this involves nonlinear solves +hence expensive). If `False`, discontinuities will only be checked when a step +is rejected. This allows to integrate faster but can also impact +the accuracy of the DDE solution. +- `sub_intervals` : Number of subintervals of the integration step where +discontinuity tracking is done. +- `rtol` : Relative tolerance for the nonlinear solver for the DDE's +implicit stepping and dichotomy for detecting breaking points. +- `atol` : Absolute tolerance for the nonlinear solver for the DDE's +implicit stepping and dichotomy for detecting breaking points. +- `max_steps` : Max iteration of the dichotomy algorithm to +find a discontinuity. + +!!! example + To integrate `y'(t) = - y(t-1)`, we need to define the vector + field and the `Delays` object. + ```py + y0 = lambda t: 1.2 + def vector_field(t, y, args, history): + return - history[0] + + delays = Delays( + delays=[lambda t, y, args: 1.0], + initial_discontinuities=jnp.array([0.0]) + ) + t0, t1 = 0.0, 50.0 + ts = jnp.linspace(t0, t1, 500) + sol = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Tsit5(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0 = y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays + ) + ``` +""" diff --git a/diffrax/_integrate.py b/diffrax/_integrate.py index 3d973aeb..e8d56bf3 100644 --- a/diffrax/_integrate.py +++ b/diffrax/_integrate.py @@ -1,8 +1,16 @@ import functools as ft import typing import warnings -from collections.abc import Callable -from typing import Any, cast, get_args, get_origin, Optional, Tuple, TYPE_CHECKING +from typing import ( + Any, + Callable, + cast, + get_args, + get_origin, + Optional, + Tuple, + TYPE_CHECKING, +) import equinox as eqx import equinox.internal as eqxi @@ -21,6 +29,7 @@ Real, RealScalarLike, ) +from ._delays import bind_history, Delays, history_extrapolation_implicit from ._event import AbstractDiscreteTerminatingEvent from ._global_interpolation import DenseInterpolation from ._heuristics import is_sde, is_unsafe_sde @@ -71,6 +80,11 @@ class State(eqx.Module): dense_ts: Optional[eqxi.MaybeBuffer[Float[Array, " times_plus_1"]]] dense_infos: Optional[BufferDenseInfos] dense_save_index: Optional[IntScalarLike] + num_dde_implicit_step: IntScalarLike + num_dde_explicit_step: IntScalarLike + discontinuities: Optional[eqxi.MaybeBuffer[Float[Array, " times_plus_1"]]] # noqa: F821 + discontinuities_save_index: Optional[IntScalarLike] + # Output that is .at[].set() updated during the solve (and their indices) def _is_none(x): @@ -121,6 +135,7 @@ def _outer_buffers(state): [s.ts for s in save_states] + [s.ys for s in save_states] + [state.dense_ts, state.dense_infos] + + [state.discontinuities] ) @@ -176,6 +191,7 @@ def loop( solver, stepsize_controller, discrete_terminating_event, + delays, saveat, t0, t1, @@ -186,6 +202,7 @@ def loop( init_state, inner_while_loop, outer_while_loop, + y0_history, ): if saveat.dense: dense_ts = init_state.dense_ts @@ -233,16 +250,66 @@ def body_fun_aux(state): # Actually do some differential equation solving! Make numerical steps, adapt # step sizes, all that jazz. # - - (y, y_error, dense_info, solver_state, solver_result) = solver.step( - terms, - state.tprev, - state.tnext, - state.y, - args, - state.solver_state, - state.made_jump, - ) + if delays is None: + (y, y_error, dense_info, solver_state, solver_result) = solver.step( + terms, + state.tprev, + state.tnext, + state.y, + args, + state.solver_state, + state.made_jump, + ) + num_dde_explicit_step = num_dde_implicit_step = 0 + else: + min_delay = [] + flat_delays = jtu.tree_leaves(delays.delays) + for delay in flat_delays: + min_delay.append(delay(state.tprev, state.y, args)) + min_delay = jnp.stack(min_delay).min() + implicit_step = min_delay < (state.tnext - state.tprev) + + def get_struct_dense_info(init_state): + return jtu.tree_map(lambda x: x[0], init_state.dense_infos) + + try: + struct_dense_info = eqx.filter_eval_shape( + get_struct_dense_info, init_state + ) + infos = jtu.tree_map( + lambda _, x: x[...], struct_dense_info, state.dense_infos + ) + except: # noqa: E722 + infos = state.dense_infos + + init_guess = jtu.tree_map(lambda x: x[state.dense_save_index - 1], infos) + dense_interp = DenseInterpolation( + ts=state.dense_ts[...], + ts_size=state.dense_save_index + 1, + interpolation_cls=solver.interpolation_cls, + infos=infos, + direction=1, + y0_if_trivial=y0_history(t0), + t0_if_trivial=t0, + ) + ( + y, + y_error, + dense_info, + solver_state, + solver_result, + ) = history_extrapolation_implicit( + implicit_step, + terms, + dense_interp, + init_guess, + solver, + delays, + t0, + y0_history, + state, + args, + ) # e.g. if someone has a sqrt(y) in the vector field, and dt0 is so large that # we get a negative value for y, and then get a NaN vector field. (And then @@ -267,12 +334,66 @@ def body_fun_aux(state): error_order, state.controller_state, ) - assert jnp.result_type(keep_step) is jnp.dtype(bool) + + # Finding all of the potential discontinuity roots + # if delays is not None: + # _part_maybe_find_discontinuity = ft.partial( + # maybe_find_discontinuity, + # tprev, + # tnext, + # dense_info, + # state, + # delays, + # solver, + # args, + # ) + + # tsearch = jnp.linspace(tprev, tnext, delays.sub_intervals) + # batch_tprev, batch_tnext = tsearch[:-1], tsearch[1:] + # vmap_maybe_find_discontinuity_wrapper = jax.vmap( + # _part_maybe_find_discontinuity, (None, 0, 0) + # ) + # if delays.recurrent_checking: + # ( + # tnext_candidate, + # batch_discont_update, + # ) = vmap_maybe_find_discontinuity_wrapper( + # False, batch_tprev, batch_tnext + # ) + # else: + # ( + # tnext_candidate, + # batch_discont_update, + # ) = vmap_maybe_find_discontinuity_wrapper( + # keep_step, batch_tprev, batch_tnext + # ) + + # proxy_tnext = jnp.where(batch_discont_update, tnext_candidate, jnp.inf) + # proxy_tnext = jnp.min(proxy_tnext) + + # tnext, discont_update = jax.lax.cond( + # jnp.isinf(proxy_tnext), + # lambda: (tnext, False), + # lambda: (proxy_tnext, True), + # ) + + # # Count the number of steps in DDEs, just for statistical purposes + # num_dde_implicit_step = state.num_dde_implicit_step + ( + # keep_step & implicit_step + # ) + # num_dde_explicit_step = state.num_dde_explicit_step + ( + # keep_step & jnp.invert(implicit_step) + # ) + + # assert jnp.result_type(discont_update) is jnp.dtype(bool) + + # assert jnp.result_type(keep_step) is jnp.dtype(bool) # # Do some book-keeping. # - + discont_update = False + num_dde_explicit_step = num_dde_implicit_step = 0 tprev = jnp.minimum(tprev, t1) tnext = _clip_to_end(tprev, tnext, t1, keep_step) @@ -313,6 +434,8 @@ def body_fun_aux(state): dense_ts = state.dense_ts dense_infos = state.dense_infos dense_save_index = state.dense_save_index + discontinuities = state.discontinuities + discontinuities_save_index = state.discontinuities_save_index def save_ts(subsaveat: SubSaveAt, save_state: SaveState) -> SaveState: if subsaveat.ts is not None: @@ -359,6 +482,9 @@ def _body_fun(_save_state): def maybe_inplace(i, u, x): return eqxi.buffer_at_set(x, i, u, pred=keep_step) + def maybe_inplace_delay(i, u, x): + return eqxi.buffer_at_set(x, i, u, pred=discont_update) + def save_steps(subsaveat: SubSaveAt, save_state: SaveState) -> SaveState: if subsaveat.steps: ts = maybe_inplace(save_state.save_index, tprev, save_state.ts) @@ -388,6 +514,21 @@ def save_steps(subsaveat: SubSaveAt, save_state: SaveState) -> SaveState: ) dense_save_index = dense_save_index + keep_step + # Updating discontinuity + if delays is not None: + if delays.recurrent_checking: + eqxi.error_if( + discontinuities_save_index, + discontinuities_save_index >= delays.max_discontinuities, + "the number of discontinuities detected reached the number of" + " `max_discontinuities`, please raise its value.", + ) + + discontinuities = maybe_inplace_delay( + discontinuities_save_index + 1, tnext, discontinuities + ) + discontinuities_save_index = discontinuities_save_index + discont_update + new_state = State( y=y, tprev=tprev, @@ -400,9 +541,13 @@ def save_steps(subsaveat: SubSaveAt, save_state: SaveState) -> SaveState: num_accepted_steps=num_accepted_steps, num_rejected_steps=num_rejected_steps, save_state=save_state, - dense_ts=dense_ts, # pyright: ignore - dense_infos=dense_infos, + num_dde_explicit_step=num_dde_explicit_step, + num_dde_implicit_step=num_dde_implicit_step, + dense_ts=dense_ts, # type: ignore + dense_infos=dense_infos, # type: ignore dense_save_index=dense_save_index, + discontinuities=discontinuities, # type: ignore + discontinuities_save_index=discontinuities_save_index, ) if discrete_terminating_event is not None: @@ -505,6 +650,7 @@ def diffeqsolve( discrete_terminating_event: Optional[AbstractDiscreteTerminatingEvent] = None, max_steps: Optional[int] = 4096, throw: bool = True, + delays: Optional[Delays] = None, solver_state: Optional[PyTree[ArrayLike]] = None, controller_state: Optional[PyTree[ArrayLike]] = None, made_jump: Optional[BoolScalarLike] = None, @@ -555,6 +701,10 @@ def diffeqsolve( - `discrete_terminating_event`: A discrete event at which to terminate the solve early. See the page on [Events](./events.md) for more information. + - `delays`: A tuple of functions, which describe the delays used in a delay + differential equation. See the page on [Delays](./delays.md) for more + information. + - `max_steps`: The maximum number of steps to take before quitting the computation unconditionally. @@ -613,6 +763,9 @@ def diffeqsolve( # Initial set-up # + if delays is not None and not saveat.dense: + raise ValueError("Delay differential equations require saving dense output") + # Error checking if dt0 is not None: msg = ( @@ -707,6 +860,18 @@ def _promote(yi): _dtype = jnp.result_type(yi, dtype) # noqa: F821 return jnp.asarray(yi, dtype=_dtype) + if delays is None: + if callable(y0): + raise ValueError("`y0` is passed as a callable and should be an array.") + new_discontinuities = None + discontinuities_save_index = None + y0_history = None + else: + if not callable(y0): + raise ValueError("`y0` should be a callable.") + y0_history = y0 + y0 = y0_history(t0) + y0 = jtu.tree_map(_promote, y0) del timelikes, dtype @@ -788,9 +953,27 @@ def _check_subsaveat_ts(ts): else: tnext = t0 + dt0 tnext = jnp.minimum(tnext, t1) + + if delays is not None: + terms_ = bind_history( + terms, + delays, + None, + None, + solver, + direction, + t0, + tprev, + tnext, + y0_history, + ) + else: + terms_ = terms + + # Got to init the solver if solver_state is None: passed_solver_state = False - solver_state = solver.init(terms, t0, tnext, y0, args) + solver_state = solver.init(terms_, t0, tnext, y0, args) else: passed_solver_state = True @@ -827,6 +1010,8 @@ def _allocate_output(subsaveat: SubSaveAt) -> SaveState: num_steps = 0 num_accepted_steps = 0 num_rejected_steps = 0 + num_dde_explicit_step = 0 + num_dde_implicit_step = 0 made_jump = False if made_jump is None else made_jump result = RESULTS.successful if saveat.dense: @@ -841,8 +1026,22 @@ def _allocate_output(subsaveat: SubSaveAt) -> SaveState: _, _, ) = eqx.filter_eval_shape( - solver.step, terms, tprev, tnext, y0, args, solver_state, made_jump + solver.step, terms_, tprev, tnext, y0, args, solver_state, made_jump ) + if delays is not None: + if delays.initial_discontinuities is not None: + buffer = jnp.full( + delays.max_discontinuities - len(delays.initial_discontinuities), + jnp.inf, + ) + new_discontinuities = jnp.concatenate( + [delays.initial_discontinuities, buffer] + ) + discontinuities_save_index = len(delays.initial_discontinuities) - 1 + else: + new_discontinuities = jnp.full(delays.max_discontinuities, jnp.inf) + discontinuities_save_index = 0 + dense_ts = jnp.full(max_steps + 1, jnp.inf) _make_full = lambda x: jnp.full( (max_steps,) + jnp.shape(x), jnp.inf, dtype=x.dtype @@ -870,6 +1069,11 @@ def _allocate_output(subsaveat: SubSaveAt) -> SaveState: dense_ts=dense_ts, dense_infos=dense_infos, dense_save_index=dense_save_index, + # dde specific State arguments + num_dde_explicit_step=num_dde_explicit_step, + num_dde_implicit_step=num_dde_implicit_step, + discontinuities=new_discontinuities, # type: ignore + discontinuities_save_index=discontinuities_save_index, # type: ignore ) # @@ -882,6 +1086,7 @@ def _allocate_output(subsaveat: SubSaveAt) -> SaveState: solver=solver, stepsize_controller=stepsize_controller, discrete_terminating_event=discrete_terminating_event, + delays=delays, saveat=saveat, t0=t0, t1=t1, @@ -891,6 +1096,7 @@ def _allocate_output(subsaveat: SubSaveAt) -> SaveState: throw=throw, passed_solver_state=passed_solver_state, passed_controller_state=passed_controller_state, + y0_history=y0_history, ) # @@ -940,6 +1146,8 @@ def _allocate_output(subsaveat: SubSaveAt) -> SaveState: "num_accepted_steps": final_state.num_accepted_steps, "num_rejected_steps": final_state.num_rejected_steps, "max_steps": max_steps, + "num_dde_implicit_step": final_state.num_dde_implicit_step, + "num_dde_explicit_step": final_state.num_dde_explicit_step, } result = final_state.result sol = Solution( diff --git a/diffrax/_term.py b/diffrax/_term.py index 9bea8cf8..6dcb8668 100644 --- a/diffrax/_term.py +++ b/diffrax/_term.py @@ -1,7 +1,7 @@ import abc import operator from collections.abc import Callable -from typing import cast, Generic, Optional, TypeVar, Union +from typing import Generic, Optional, TypeVar, Union, cast import equinox as eqx import jax @@ -11,7 +11,7 @@ from equinox.internal import ω from jaxtyping import Array, ArrayLike, PyTree, PyTreeDef -from ._custom_types import Args, Control, IntScalarLike, RealScalarLike, VF, Y +from ._custom_types import VF, Args, Control, IntScalarLike, RealScalarLike, Y from ._path import AbstractPath @@ -154,6 +154,13 @@ def is_vf_expensive( return False +class VectorFieldWrapper(eqx.Module): + vector_field: Callable[[RealScalarLike, PyTree, PyTree], PyTree] + + def __call__(self, t, y, args): + return self.vector_field(t, y, args) + + class ODETerm(AbstractTerm): r"""A term representing $f(t, y(t), args) \mathrm{d}t$. That is to say, the term appearing on the right hand side of an ODE, in which the control is time. @@ -172,6 +179,9 @@ class ODETerm(AbstractTerm): vector_field: Callable[[RealScalarLike, Y, Args], VF] + def __init__(self, vector_field): + self.vector_field = VectorFieldWrapper(vector_field) + def vf(self, t: RealScalarLike, y: Y, args: Args) -> VF: out = self.vector_field(t, y, args) if jtu.tree_structure(out) != jtu.tree_structure(y): @@ -232,6 +242,10 @@ class _ControlTerm(AbstractTerm): vector_field: Callable[[RealScalarLike, Y, Args], VF] control: Union[AbstractPath, Callable] = eqx.field(converter=_callable_to_path) + def __init__(self, vector_field, control): + self.vector_field = VectorFieldWrapper(vector_field) + self.control = control + def vf(self, t: RealScalarLike, y: Y, args: Args) -> VF: return self.vector_field(t, y, args) diff --git a/docs/api/delays.md b/docs/api/delays.md new file mode 100644 index 00000000..694d2afa --- /dev/null +++ b/docs/api/delays.md @@ -0,0 +1,42 @@ +# Delays + +Delays allow to model a broader class of differential equations, Delay Differential Equations (DDEs). +Compared to ODEs, DDEs vector fields need a new argument `history` that integrate delayed states. + +At the moment only DDEs with known delays is supported. + +!!! example + The equation's RHS $y'(t) = y(t) + y(t-1) - y(t-2)$ is modelled by + ``` + def vf(t,y,args,history): + return y + history[0] - history[1] + ``` + +The first element of a `PyTree` of delayed states in a vector field's definition would be `history[0]`. If the state is multidimensional, then `history[0][i]` refers to the $i$th dimension of the first delayed state. + + + +::: diffrax.Delays + selection: + members: + - __init__ + +!!! example + Pytree of three `Delays.delays` : + ``` + delays=[lambda t, y, args: 1.0, (lambda t, y ,args: min(t,2), lambda t, y, args : 1/2 * jnp.cos(y))] + ``` + +!!! info + If `recurrent_checking=True`, then at integration step, a so-called artificial event function $g$ checks for any new discontinuity jumps unconditionally (which are $g_i$'s new odd multiplicity roots). Let $\lambda_i$ be the combined intial discontinuity jumps and the ones found up to the current integration step. + + $\begin{align} + g_i(t,y(t)) = t - \tau(t,y(t)) - \lambda_i, \quad i = \dots, -2,-1,-,1,2,\dots \\ + \end{align}$ + + This can be prohibitely expensive but in some cases can speed up the integration and its accuracy. + We refer to this [paper](http://www.cs.toronto.edu/pub/reports/na/hzpEnrightNA09Preprint.pdf) for more information on how to detect new discontinuity jumps in a DDE. + +!!! note + If the history function is continuous and the initial time point induces a discontinuity `max_discontinuities = jnp.array([t0])`. + diff --git a/examples/dde.ipynb b/examples/dde.ipynb new file mode 100644 index 00000000..5546d4d6 --- /dev/null +++ b/examples/dde.ipynb @@ -0,0 +1,261 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Delay Differential Equations : DDEs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This example demonstrates the use of DDE solvers to handle delayed system of equations. In this case, we model the dimensionless [delay-logistic equation](https://www.math.fsu.edu/~bertram/lectures/delay.pdf). \n", + "\n", + "$$ \\frac{dy}{dt} = \\alpha y \\left(1 - y(t-\\tau) \\right) $$\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This example is available as a Jupyter notebook [here](https://github.com/patrick-kidger/diffrax/blob/main/examples/dde.ipynb)." + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "import time\n", + "\n", + "import diffrax\n", + "import jax\n", + "import jax.numpy as jnp\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using 64-bit precision is important when solving problems with tolerances of 1e-8 (or smaller)." + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [], + "source": [ + "jax.config.update(\"jax_enable_x64\", True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to model a delayed system we need to instantiate its vector field and its history function $\\phi(t) = y(t<0)$ (i.e. initial condition)." + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "def delay_logistic_vf(t, y, args, *, history):\n", + " alpha = args\n", + " return alpha * y * (1 - history[0])\n", + "\n", + "\n", + "def history_function(t):\n", + " return 2.0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A DDE's vector field holds an additional argument `history` compared to an ODE's. The `history` variable refers to the delayed terms of your equation (here $y(t-\\tau)$). " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We need to instantiate the `Delays` object that encompasses all of the information needed to integrate properly our DDE. The arguments `initial_discontinuities` also need to be given. It accounts for the discontinuities found in the history function. \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In our case we only have 0 since $y\\prime(t=0^{-}) \\neq y\\prime(t=0^{+})$ because $y\\prime(t=0^{+}) = - 2 \\alpha$ and $y\\prime(t=0^{-}) = 0$. \n", + "We choose $\\tau=1$." + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "delays = diffrax.Delays(\n", + " delays=[lambda t, y, args: 1], initial_discontinuities=jnp.array([0.0])\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since DDEs require dense solutions we need to set `diffrax.SaveAt`'s argument `dense=True` in `diffrax.diffeqsolve`. " + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "@jax.jit\n", + "def main(alpha):\n", + " terms = diffrax.ODETerm(delay_logistic_vf)\n", + " t0 = 0.0\n", + " t1 = 20.0\n", + " ts = jnp.linspace(0, 20, 200)\n", + " solver = diffrax.Bosh3()\n", + " stepsize_controller = diffrax.PIDController(rtol=1e-3, atol=1e-6)\n", + " sol = diffrax.diffeqsolve(\n", + " terms,\n", + " solver,\n", + " t0,\n", + " t1,\n", + " ts[1] - ts[0],\n", + " y0=history_function,\n", + " saveat=diffrax.SaveAt(ts=ts, dense=True),\n", + " stepsize_controller=stepsize_controller,\n", + " delays=delays,\n", + " args=alpha,\n", + " )\n", + " return sol" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Do one iteration to JIT compile everything. Then time the second iteration." + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Integration took in 0.0004687309265136719 seconds.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGeCAYAAABGlgGHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2aUlEQVR4nO29eZhcZZn3/z219lZdvaW3pLNANkL2CCFBDWIkZFCJCyI6BhxgXIID4owOvirz6vubOMMgzigCLhAVWZXFAQRDMARIWLJBErJv3Unva1VXd9f6/P449Zyq7nRV16k6+7k/19XXBZ3q7tP91DnP97nv733fAmOMgSAIgiAIQiccel8AQRAEQRD2hsQIQRAEQRC6QmKEIAiCIAhdITFCEARBEISukBghCIIgCEJXSIwQBEEQBKErJEYIgiAIgtAVEiMEQRAEQegKiRGCIAiCIHTFpfcF5EIikUBrayt8Ph8EQdD7cgiCIAiCyAHGGILBIBobG+FwZIl/MBn84he/YAsWLGA+n4/5fD52ySWXsBdeeCHr1zzxxBNszpw5zOv1svnz57Pnn39ezo9kjDHW0tLCANAHfdAHfdAHfdCHCT9aWlqy7vOyIiNTpkzBj3/8Y8yaNQuMMfz2t7/F1VdfjT179uDCCy885/Xbt2/Hddddh40bN+LjH/84HnnkEaxbtw67d+/G/Pnzc/65Pp8PANDS0oLy8nI5l0wQBEEQhE4EAgE0NTVJ+3gmBMYKG5RXVVWFu+66CzfeeOM5/3bttdciFArhueeekz53ySWXYPHixbj//vtz/hmBQAB+vx8DAwMkRgiCIAjCJOS6f+dtYI3H43jssccQCoWwYsWKcV+zY8cOrF69etTn1qxZgx07dmT93uFwGIFAYNQHQRAEQRDWRLYY2bdvH8rKyuD1evHVr34VTz/9NObNmzfua9vb21FXVzfqc3V1dWhvb8/6MzZu3Ai/3y99NDU1yb1MgiAIgiBMgmwxMmfOHOzduxdvvfUWvva1r+H666/H+++/r+hF3XHHHRgYGJA+WlpaFP3+BEEQBEEYB9mlvR6PBzNnzgQALFu2DO+88w7++7//Gw888MA5r62vr0dHR8eoz3V0dKC+vj7rz/B6vfB6vXIvjSAIgiAIE1Jw07NEIoFwODzuv61YsQJbtmwZ9bnNmzdn9JgQBEEQBGE/ZEVG7rjjDqxduxZTp05FMBjEI488gq1bt+Kll14CAKxfvx6TJ0/Gxo0bAQC33norVq1ahbvvvhtXXXUVHnvsMezcuRO//OUvlf9NCIIgCIIwJbLESGdnJ9avX4+2tjb4/X4sXLgQL730Ej72sY8BAJqbm0d1WFu5ciUeeeQRfO9738N3v/tdzJo1C88884ysHiMEQRAEQVibgvuMaAH1GSEIgiAI86F6nxGCIAiCIAglIDFCEARBEISukBghCIIgCEJXSIwQBEEQBKErJEYIgiAU5s/vtmLLwY6JX0ioTiyewNbDnegLRfS+FCILJEYIgiAUZMvBDvzTo3vwld/vwsBQVO/LsTX9QxF8edM7uOGhd/C9Z/frfTlEFkiMEARBKERgJIr/87S46cUSDNuPd+t8RfblVHcIn/z5G3jtqLgGO473wASdLGwLiRGCsAD7zw7gl9uOIxJL6H0ptmbjCwfRHhiR/n/bURIjenHPy0fQ3DuEpqpieFwO9IYiONUzpPdlERkgMUIQJocxhn96dA/+/YVD2LT9pN6XY1veO9OPR98WJ4x/ZdV5AIDXj3XpeUm2Zt+ZAQDA/7duAeY3is229jT36XlJRBZIjBCEydl/NoAT3SEAwK9eO4mRaFznK7Inb57oAQCsvqAO/3T5LLidAlp6h3G6J6TzldmPUDiGk8m/+7zGciydWgkA2E1ixLCQGCEIk/Ps3rPSf3cFw3hiZ4uOV2NfjnQMAgDmTy5HqdclbYCUqtGeQ+1BMAbU+ryoKfNi6bSkGDndr++FERkhMUIQJiaeYPjf91oBAKtmTwIAPPDqCfKO6MDRjiAAYHadDwDwoVk1AIDXj1KqRmvebwsAEKMiACRheKg9gFA4ptt1EZkhMUIQJubtk73oCIRRXuTCz76wBDVlXpztHx4VLSHUJ5FgONopRkZm15UBAD44SxSH24/3IBYncagl77cmxUiDKEbq/UVo8BchwYD3kl4SwliQGCEIE/Pnd8WoyNr5DSgvcuMLy6cCEDdAQjvO9g9jKBKH2ylgWnUpAGDBZD/8xW4ER2LYd5Y2QC0ZGxkBQL4Rg0NihCBMSjzB8Jf9bQCATy5uBJA6lTf3UgmjlhztFFM059WUwe0UH6tOhyCdzE9TSalmxOIJHGobHRkBgCVTKwBQRY1RITFCECaltX8Y/UNReFwOLJ9RBQCYViWeymnz0xZuXp2VFIOchooiAEDbwMg5X0Oow6meEMKxBEo8TilKBQBLkpGRPc39Ol0ZkQ0SIwRhUng577SqEriSp/Gp1SUAgO7BMBn1NORI+2jzKqfBL4qR9oFhza/JrrzfJq7F3HofnA5B+vycenFtekIRujcMCIkRgjApp5JiZHpN6vTnL3bDX+wGALT0UXREK450ji9G6v3FACgyoiWSeTXNLwIAZV4XSj1OAEBnMKz5dRHZITFCECblZFKMzEgTIwAwLRkdoVSNNiQSDMfGVNJwGsopTaM13Lx6QUP5Of9Wm1yPjgCth9EgMUIQJuVUssPk9OrRYqSpShQjLWRi1YSWviGMRBPwuByjPAqAWFIKkBjRkkPZxIjPC4AiI0aExAhBmJRUmqZk1OenVVFkREu4efX8SWWjPApAyjPSPRimRnQaEIklJKHB74N06pKRkU6KjBgOEiMEYUKi8QRa+kRT5Ng0zdTkQ5jKe7XhiNR5teycf6sq9cCTNBdTakB9+N/Y43KgqtRzzr/XlXtHvY4wDiRGCMKEnOkbRjzBUOR2oM5XNOrfeEUNiRFtONElRqhmTjpXjAiCIKVq2mkDVJ3WflGgN/iLIAjCOf9eJ3lGKE1jNEiMEIQJkVI01aVwjEkN8MjImb4hxBNM82uzG+0BcQNsrCge99/JN6Id/G/M02NjIQOrcSExQhAmJFMlDQA0+IvhdgqIxhnaqL+F6rRPsAE2Uq8RzWhN/o0b/eMLwzoysBoWEiMEYUKkSppxxIjTIaCpMpmqIROr6nAxUp9BjFCvEe1o608Kw4rskREysBoPEiMEYUKkyEj1uWIESJX3km9EXYIjUYQicQCZxUiqCyttgGrDI4ENGSIjvLQ3FIljkLqwGgoSIwRhQrJFRoC0xmckRlSFC4zyIhdKPK5xX0OeEe3gf+PGDJGRUq8LPq+4TuQbMRYkRgjCZERiCZxNlvWO7THCkcp7KU2jKm0TpGgAioxoScrAOn5kBABqqbzXkJAYIQiT0dw7hAQDSj1OTCrzjvsa6jWiDbxctz7L5seFSmdwBLE4NT5Ti5FoHL2hCIDMBlYgvfEZmViNBIkRgjAZp5MpmmnVpeP2UgBSJ8POIJ3+1ESqpCnPHBmpKfXC5RCQYFTFoSY8KlLicaK8ePyUGZAmRujeMBQkRoiC2XW6F++29IMx6mmhBfw0nqmvBQBUloqTe/tCUVoXFeFrUZclTeNwCNIGSL4R9WiboOEZh5tYqfGZscgsHwkiBw62BfDZ+3eAMWBuvQ83f+g8fGbZFL0vy9LwhyhvbT0e1aXiv0XiCQyGY/AVuTW5NrsxUY8RToO/CGf7h8k3oiKtOfhFAGp8ZlQoMkIUxCuHOsEP3ofag/jWk+9K3UEJdeA9EuqypAaKPU4UucXbuy8U1eS67EguBlYAaKjgvUao8ZlapEdGssFFPHlGjAWJEaIgth3pAgD8y5o50sjuvS39Ol6R9emQxEjmyAiQio70hOihqxZ8LeqzCEPx36mCQ23aArzhWfbIiDSfhjwjhoLECJE3g+EYdjf3AQA+vrABy2dUAQDeOzOg52VZHp6mqZ1gA5R8I0MR1a/JjqRXb0x0Gq8oESfI9g9RlEoteGSkcaLIiC9VTUN+KuNAYoTIm7dO9CAaZ5hWXYJp1aVYOMUPANh3tl/fC7M4vCJj7LTesVTxyMggiRE14GF+r8sBf3F2T04lFyPDJEbUQuoxMkFkhPcZGY7GEaQurIaBxAiRNzxF86FZNQAgiZH9ZwM0LVYlovGElHaZKE1TVUKRETVJtR7PXr0BABXJtRigyIhqtOYYGSlyO1FeJNZu0Iwa40BihMib1452AwA+NGsSAGBGTRlKPU4MR+M43jWo56VZlu7BMBgD3E5BOm1nQoqMhEiMqEGq4Vn2zQ8AKopJGKpJKBxDYESMckwUGQGASTS913CQGCHyoqV3CCe6Q3A6BKw4vxqAOC32wkYxOkK+EXWQ/CK+Ijgc2U/jVVKvEdoA1UCa1juBdwcA/MnICKVp1IGnaHxeF8q8E3es4EI+QOthGEiMEHnxxjExKrJ0agXK03pYLJBSNSRG1IBXY9ROkKIBUpGRXhIjqpAq6534JM4NrAND1IRODbqSEY5JOdwXACSPDxmKjQOJESIvDrUHAQBLplaO+jz3jbx3pl/rS7IFPMfNu0hmo6pU3ABJjKhDrg3PgFSaJhJPYDgaV/W67Ej3oChGajLMahoLFyMDFBkxDCRGiLzgI+xnjBlhv2CyKEYOtAZoKJgKpLqvTrwBkhhRl/Ycms9xSjxOeJzi45ZO48rDxUimwZFjobSZ8SAxQuTFyWSX1enVo8XI9OpS+LwuhGMJHO0kE6vSdMjYAEmMqEuuzecAQBAEaQMkE6vypCIj2U3dHIqMGA8SI4RsovEEzvSJZXRjIyMOh4ALJ4udWMk3ojwdQW5gzT1NExiJIUpRKkVhjEn9WyblsBZAKlVD5b3K0x0U14LSNOaFxAghm5beIcQTDMVu57inQi5QzvbTHA6lyWUuDcdf7AYvuKHTuLIEwzFEkgIv1w2wglIDqsF771TLXAsShsaBxAghG+4XmVZdMm6zJ75R0oRS5ZGTpnE6BKmKg1I1ytKdjFCVeV0ocjtz+hp/MbWEV4uuQR4ZoTSNWSExQsjmZPcQgHNTNBzed6GduhsqSjgWR19yI8vFpwCQb0QteCO56hw3PyA9MkJroTRcHNbkmDIjMWI8ZImRjRs34qKLLoLP50NtbS3WrVuHw4cPZ/2aTZs2QRCEUR9FRROf6gjjcoqbVzOIkTo/RUbUgM9C8eQwC4VTRZERVZA2vxzTAkDKM0KREWVhjMmvppGiVHRfGAVZYuTVV1/Fhg0b8Oabb2Lz5s2IRqO44oorEAqFsn5deXk52trapI/Tp08XdNGEvmQq6+Xwvgs0Ll1ZOoOp6o2JZqFweGSEurAqSzePjJTmHhmpLKUNUA0GwzGEY/L8O1zMB8MxmqNlECbum5vGiy++OOr/N23ahNraWuzatQsf/vCHM36dIAior6/P7woJw8HLeidK0/QNRTESjeecUyeyI/UYmWBabzp8A6T5NMrSMyjPMAlQ10+16E76RUo9ThR7cvXviGvBGBAciUreKkI/CvKMDAyIpZtVVVVZXzc4OIhp06ahqakJV199NQ4cOJD19eFwGIFAYNQHYQzCsbg0HXNsjxGOv9gNr0t8a/HUAlE4csyrnGqKjKhCKi2Qj2eExIiSdOchDD0uB0qSwoV8I8YgbzGSSCRw22234dJLL8X8+fMzvm7OnDl48MEH8eyzz+Lhhx9GIpHAypUrcebMmYxfs3HjRvj9fumjqakp38skFKaldwgJJlYRZHKuC4IgTTIlE6tySEPycjSvAhQZUQveY0TOBlhRnJpPQyhHj8yGZxwysRqLvMXIhg0bsH//fjz22GNZX7dixQqsX78eixcvxqpVq/DUU09h0qRJeOCBBzJ+zR133IGBgQHpo6WlJd/LJBSGV9JMrxm/rJdTRxU1iiN3/gaQFhkhn4KipMQIVdPoTaqsN/f7AqC0mdGQ5Rnh3HLLLXjuueewbds2TJkyRdbXut1uLFmyBMeOHcv4Gq/XC69X3huL0IaT3WKL90wpGg73jXRQRY1i9MisGADSIiODtAEqST7CkG9+fcnJvbmakInsyC3r5VBkxFjIiowwxnDLLbfg6aefxiuvvIIZM2bI/oHxeBz79u1DQ0OD7K8l9GeiHiMcnqZpIzGiGPn0tqDIiDrInYUCpIRhJJbASJTa8ytFPsIQIDFiNGRFRjZs2IBHHnkEzz77LHw+H9rb2wEAfr8fxcXFAID169dj8uTJ2LhxIwDghz/8IS655BLMnDkT/f39uOuuu3D69GncdNNNCv8qhBY09/Luq9nFCE/TUHmvcuTjU6hMa3pGp3FlCMfiCIzEAMjbAEs9TrgcAmIJhv7hCIo9xWpdoq3IRxgCaS3hSYwYAlli5L777gMAXHbZZaM+/9BDD+GGG24AADQ3N8PhSAVc+vr6cPPNN6O9vR2VlZVYtmwZtm/fjnnz5hV25YQu8EjH5IrsD1Lqwqos6Y2d5PS24E3PonGGwXAMvqLcmqURmeEN5FwOAeUy/p6CIKCixI3uwQj6h6Jo8JMYUYLuAj0jJEaMgSwxwtjEzWG2bt066v/vuece3HPPPbIuijAmjDGpqypvbJaJer/4YKAurMoQisSlxk5y0jTFHieK3A6MRBPoH4qSGFEAHqGqKvXA4ZAXafIXp8QIoQyFpmmoCZ0xoNk0RM4ERmIYisQBpDwhmeBpms7gCBLU4bBguHm12O1EiUee75yf3gMjtAEqQVeemx8AqbkWbYDK0SNzSB7Hn1wLiowYAxIjRM7wKEdFiXvCrqq1yS6h0ThDLz14CyYf8yrHVySKl8BwTNFrsiv5lPVypPk0tAEqwkg0jsFw0r9D1TSmhsQIkTPc/1GfQwdQj8shnVQoVVM4+ZhXOeV8DgdFRhQh37QAkB4ZobVQgq5ganikzysvYkh9RowFiREiZ9oHxDbwE6VoOPU0ME8xpC6TMsyrHJ+UpqHIiBLk2/EToMZnStOddl/IrRTjUaoARUYMAYkRImfacjSvcqiiRjkKSdOUJ9M0FBlRhkKiVHwDpJbwyiBV0shM0QCUpjEaJEaInOmQ0jS5lSRKLeEpTVMw+QwD40iREfKMKEJhBlbehZUiI0pQSMqMi5FQJI5onJrQ6Q2JESJneGSEl+1ORD2JEcWQTuN5pGnKiykyoiSFGFj95BlRFN7zpSqv+yJV5k7REf0hMULkTLskRnKLjPDpsvz0QuRPTyj/EyCV9ipLyqdAqQG94WIkH5HudAhSpRmJQ/0hMULkjFzPCK8c6KMbvWDSG23JxSd5RihNUyiJBJM2wBofrYXe9BUQGQFIHBoJEiNETgxH4tINm2s1TWUJDWlTisIMrBQZUYrASBSxZBO/vFIDSTHCe2MQhcHvi8o8xQj38FBFjf6QGCFyglfElHicOdfzV3KzXojESCGMOo3nZWCl07hS8OoNX5ELXlf2xn/jUeYV74nBcCyn8RpEdvhBh89gkovUa4RKrXWHxAiRE21pPUZyrefnp5XASAwxcqvnzcBwFPHkabwyj4duOfVTUAy++eXjUQBSwjCeYBiOxhW7LrvSW2BkxE+l1oaBxAiRE7kOyEungtzqisDNq/5iNzwu+bcsRUaUo9DNr8TjBNfyg7QeBVO4ZyRZ3UTPJ90hMULkBE/T1OXQCp7jcjqkjZBMrPnTXUApKZDyjARHKDVQKFIpaZ5pAUEQUJZMc1JH3MIYicYRSg7uzFeMSB4eWgvdITFC5EQ+kREglVagKaX5I00lzaOUFEhFRiLxBMIxSpcVQqGRESAlDsnEWhg8ZeZ0CJKokAsXhrQW+kNihMiJNpk9RjjcxNpLJta84WmafCMjpR4XHMnUAFXUFEahaQEgtQFSE7rCkIRhify5NJwynsIkMaI7JEaInOiQMbE3HX6CpKZC+VNomsbhSEsNUEv4gugdKlyM+Cg1oAh9IfGZUlXqnuCVmZEiI7QWukNihMgJuQ3PONRrpHB6eWQkzzQNkKqoodN4YRTqGQHoNK4UXBjmU2HG8VHfF8NAYoSYkGg8IbXAlmNgBdIHg9EmmC+FzELhSMPy6ARYEH0KeEZSaRpai0LoK6ARIEfq+0JroTskRogJ6Q1FwJhoFJMbniYDa+GkhuQVEBkpIp+CEqTSNPmnBrgwpA2wMHpChUdGyigyYhhIjBAT0hXkaQIPnA55RrFKGpleMN3JNE1hPgXe+IweuoXAfQpKpAZIGBaGEmZiWgvjQGKEmBAuRib55J/MeTibP8QJ+SgRji4vpoduoYRjcekEXUiUykflpIqgiGckbS2oB4++kBghJqQgMUIG1oKIJ5jUHbKQEyANyyscLqjTR8/nAxlYlUGRMuvkWiQYqD2/zpAYISakK2lerc1DjJCBtTD6h0S/DjC6vb5cyqklfMGk+lq44ZCZrkzHl9YRl8ifXgXESLHbKfXgIQ+PvpAYISZEiciIuKlSGFQu/IFbUeKGy5n/7UobYOH0KZAWANJ7W5BALwQlxAi15zcOJEaICekMij1GJuUxvp4/uGMJRjnyPFCirwWQMurR5N78UWLzA2hwoRIwxlLisOD1oPb8RoDECDEhqciIvB4jAFDscaLILb7NqAurfJR64KaantEDN1+UFiO0+eXPYDiGaFyMtBYq1KkLqzEgMUJMSCFpGiAVHaH5NPLpUXgDJANr/igxJA+gzU8JuJm4yO1AscdZ0PdK9Rqhe0NPSIwQE1KoGKmgipq86VMoTVNOnpGC4e/fwlNmybRAJIZEgnxU+cDLegspseZQR1xjQGKEyEooHEMoIpa85R8ZER++lKaRT49Cp3HyjBSOUpERvhaMAaEIbYD5wOc1VRbQCZdDXViNAYkRIit8Jk2x24nSPMOh1Gskf6SGZwp5Rug0nj99Q8qshdflgCtZT0qn8fzoVaATLsdHaTNDQGKEyEp6ikYQ8uutwE8v1GtEPr3Jv5mSp3FqtpUffEZQoWshCAKZWAtEiYZnnDLqiGsISIwQWSnULwLQsLxC4OHowk/jTnhd4u1OLeHzQynPCJDWhZVO43mhRCt4DnXENQYkRois8O6r+fQY4VRQNU3eSIPZFDgB0rC8/GGMpa1F4T4Fn5cbikkY5oNS6UuAqpuMAokRIivKREbIwJovPXxirwInQBqWlz+hSByReAKAQhUclKYpCKWM3QD1fTEKJEaIrCiZpiEDqzyGI3GMRMUNsKqAib0cKTJCJ0DZ8JO4En0tgJRpktI0+aGsZyRp7qa10BUSI0RWFBEjpdwzQidyOfC8uMfpyLuSKZ3UsDxaB7n0KNTvhSOdxmkDzAslPSM+8owYAhIjRFaU8IxUSpN7KTIih16pesOddyVTOhSOzp8+BdMCAJkmC0XRyAh1YDUEJEaIrCgRGeHdP4ciccSSeXdiYvjpr0oBjwIAlHpIjOSLUnNpOKkpyrQByiWeYOhPNu9TYj2oz4gxIDFCZCSRYFLTs0LECD+RA5QjlwMv661SoHoDSDsB0hrIRirrVSoyQhtg3vQPRcCSffsqSpTtwMoYNQTUCxIjREYGhqPSZMzqAgyUrjTPAw1qyx3eZVKpyIiPmjvljVS9obBnhMS5fLgwLC9ywe0sfAvjwjAaZwjHKHKrFyRGiIxwv0hFiRteV2EGSt6OnHpc5E5qSJ4ykZFSEiN5o6RHASD/TiGkRLoya8HTlwCJQz0hMUJkhPtFagowr3LKpbJSiozkipK9FABK0xSCUkPyOLyclAys8lF6LRwOgVrCGwASI0RGuhWopOHwhls0NTZ3lOwyCaTC0TQpVj5KtoIH0tM0dD/IRamBhemQh0d/SIwQGZEiIwWYVzk+iozIRvnTOD1w80Xpahpai/zpVdi/A6SXWtPzSS9IjBAZ6VHwZM4bbpFnJHd6FT6N8w2QUgPyUb60l9IC+aL0WgAkDo0AiREiI90K9BjhSAZWiozkjPTQVaAVPJAysIZoA5RFel8LJYbkAalIIfXekY/SDegAEodGgMQIkRHuGalRYDMsl5o80c2eC/EEQ79KPgU6/cljYDgq9bVQKjXAT+IAbYByUTpiCIAMrAaAxAiRkVSahgysWhMYjiIhNXZS2sAaRyJBzZ1yhUeolOprAQAelwOe5PeiDVAeSpdZA2kpTBLquiHrztq4cSMuuugi+Hw+1NbWYt26dTh8+PCEX/fkk09i7ty5KCoqwoIFC/DCCy/kfcGEdnQraGCl0l55cCHoK3LB41JmAyxNO41TRU3uKN19lVPqFXv3hMJxRb+v1VG65B0Y3YWV0AdZT7lXX30VGzZswJtvvonNmzcjGo3iiiuuQCgUyvg127dvx3XXXYcbb7wRe/bswbp167Bu3Trs37+/4Isn1IMxhu7koDZF0jTU9EwWvQqX9QKA1+WA2ykO3KOHbu70DCq/+QG0AeaLGpERmk+jP66JX5LixRdfHPX/mzZtQm1tLXbt2oUPf/jD437Nf//3f+PKK6/Ev/zLvwAAfvSjH2Hz5s34+c9/jvvvvz/Py1aG91sD6AmFMa+hHNUK9NKwEsFwDJGksY6anmmP0mW9ACAIAkq9LvQPRcnEKgOle4xweOdPWovcGYnGEYqIkSRFPSMkDHWnoPjvwMAAAKCqqirja3bs2IHVq1eP+tyaNWuwY8eOjF8TDocRCARGfajBvz71Hr70m7ext6Vfle9vZniKpszrQpG7sFbwAHlG5KJGZASg3Hg+qCEMgTQPD22AOdM/JD4/nA5h1ADOQvGRwV538hYjiUQCt912Gy699FLMnz8/4+va29tRV1c36nN1dXVob2/P+DUbN26E3++XPpqamvK9zKzQSPXMKJmiAdIjI/S3zgU+sVfJxk4AVQ3kg9KdcDk0K0g+6Q3PHA5Bse+bEul0WNKLvMXIhg0bsH//fjz22GNKXg8A4I477sDAwID00dLSovjPANL7LpCBbCypsl5l0lfcMzIYjlFfhRyQhoEpJAY5dBqXD0VGjEOq4Zky/V44NCpBf/KKc91yyy147rnnsG3bNkyZMiXra+vr69HR0THqcx0dHaivr8/4NV6vF16v+h6OVKMbUsNj6UmKkWqFNsP0kOpgOKZYuapV4ZERxdM0NLpeNmr0tQDSqmkidBjKFb4WSkcM6WCqP7IiI4wx3HLLLXj66afxyiuvYMaMGRN+zYoVK7Bly5ZRn9u8eTNWrFgh70pVgD8MBukNeA5dUppGGVHodjpQnPSeUEXNxPQmc+PqPXRpDXJFjY6fQGotSBjmjhqVNED6XkBroReyIiMbNmzAI488gmeffRY+n0/yffj9fhQXFwMA1q9fj8mTJ2Pjxo0AgFtvvRWrVq3C3XffjauuugqPPfYYdu7ciV/+8pcK/yryKaVyrowonaYBRBPrcDROFTU5IEVGFE7T+MinIJtelfqMUJpGPmrMpQFoNo0RkBUZue+++zAwMIDLLrsMDQ0N0sfjjz8uvaa5uRltbW3S/69cuRKPPPIIfvnLX2LRokX44x//iGeeeSar6VUrfPQwyEiPgq3gOZKJlSpqJqR3kD90lU1X0rA8+fRx/45KkRF6/uSOeg3oxLUYjsYRp+7EuiArMsLYxIu0devWcz53zTXX4JprrpHzozRBioyQaekcuhVO0wDpw/Lo7z0R6vkUaAOUQzgWl6JIaq0FRalypyekjmekbEx3Yn5wIrTD1rNpKDSXGSlNo0AreE550jxJaZrsDEViGImKFUdKV9PQsDx58KiI0n0tgLTILB2GckYtz4jX5YAzWSpMQl0fSIyA3nzjwVtgK1nNkWoJT2IkG/xv73E5UOopvOFcOqnTOJm2cyHV18KtaF8LgNYiH9QqsxYEgfYDnbG1GKEw6fiMRFOhaWUjI5SmyYX09uOCoOwGmGp6RoIwF9TyKADpg/LofsgVvh5Kl7wD6fcGiUM9sLUYoXkE49OVbAXvcTmkULISUEv43OhRKRQN0HteLmp5FACKzMqFMSalzZSOjAAkDvXG3mKEHgbjwh/ANaXKnsxpWF5uqJUXB9Lf83T6ywU114Iis/IYTBveqbSZGKD10BsSI6A331j4kDwlUzRAumeE/t7ZUKuXAkCD8uSilkcBGH0YyqVS0e7wqEiR24Fihb1UAB1O9cbWYoQr4WicIRyjkyJHjYZnAEVGckXVNA09cGXRp1KJNZB6/iQYpOopIjNqlbtz+OBUujf0wd5iJE1dU9g6hZSmUbislDwjuaFFmmY4GqeBhTmgZpSqxJ16/gTJUDwh0n2h8HOJU0oNAXXF1mLElTYvhfoupOAG1mqFIyO+ZGSEUgTZUTMyUpre3IkE+ISoKUYcDkE6ENFaTEyvimZiACgjA6uu2FqMAGRaGo8u1dI0FBnJBf7QVaN80eNywOMSb3vqPDwxanpGAOqIKwc1hSFAk3v1xvZixEeljufADayTVDKwDkZiSND8h4yoNSWW46POwzmjpmcEIBO9HLhnRLXICO0FumJ7MUK15efSrcKQPCAl/BijvGw2elSMjAAUDcyV9L4WavkU+AZIz5+JUdNLBZC5W29IjHjowTwWPiRvksJpGq/LiSK3+JajVM34ROMJDAyr19gJoNN4roQicVX7WgD0/JGD6mkaWgtdsb0YoTTNaMKxuLQZKu0ZAVLlvQMkRsalf0j8uwiCBuFoStNkpTcpytXqawGQT0EOarbmB8i/oze2FyP0BhwNH9LmcgjwFys/RpuLP6qoGR9++qsodktTRJWGwtG5oXZfC4AqOOSgZmt+gLoT6w2JEepIOYr0hmdKTykF0st7KTIyHmpXbwBpXVhpA8yK2kZigPw7clDbM8L9g7QW+mB7MeKjU+IoJDHiU6mSgyIjWVGzrJdD0cDcUNujAFCUKlfiCYZ+yUulfMQWIC+V3thejEgPZuq5AADoDvLuq8r7RYCUZ4QiI+PTGxLFoJobIPmkckMLMULPn9wYGI6Cj+9RK01TSrOCdMX2YoQGh41GrYZnHIqMZKeXl5JqkaahNciK2n0tAEoT5woXhuVFLrid6mxbfC1iCYZwjEYlaA2JEQqTjkKtIXkcSYzQ33tctIiMUJomN9T2KABkYM0VLVNmAK2HHthejJCBbDR8Lo3SDc84ZGDNjtoVA0BaB1Z6z2dF0zQNVXBkRQtjt9MhSLPKaD20x/ZiJNUCmN58QCoyonQreA6PjAQoLD0uvJdCtUpiEEgT4LQGWVG7rwVAh6FcUbstP4fWQz9IjFCYdBRqdV/l0OTe7PA+L1Wl6vz9AZrBkStaRqnIwJodLaJUQNp+QOuhOSRGvMnhbfRgBpBe2qu2gZXSNOOhxQmQShhzQwvPCPl3ckOLtQAoMqInthcj1OgmRSSWkNqRUzWN9jDGUidAFdM0ZNqeGC36WgAkDHNFC88IQOJQT2wvRvjDIBJLIGLzcq6eZCWH0yGgQoVW8AD1GclGMBxDNC72N1A1MkIVTROiRV8LILX5jUQTiMXt/fzJhhat+YE0cUiHJc2xvRgppXIuiVTDM48qreABioxkg4eii91O1QazASTAc0GLvhZAKjILiFOCifHRojU/QGkaPbG9GHE7HfC6xD+D3d+AavcYAVKRkaFInE6CY+jRKi+eJnTsLsAzoZVh0utywu0UhT+tRWZ6NahsAtILGkgYao3txQhA7bE5andfBVIpAoD+3mPpHdTmgetyOqR+CrQG46OVRwEgn0Iu9GnQmRgASj1U3aQXJEZADwOOFpERd9pGGBi29997LFqd/gAKR0+EVn0tgNQGSB6e8QnH4tL7VHXPCB1MdYPECOhhwJE8IypN7OWkGp+RiTUdLSb2cigamB2t0jQAVTdNBI+KOB2C9L5VC1oL/SAxgpQatvsbkKdp1Gp4xiET6/homRqgqoHsaClGSqnxYlak+6LErZqxnkNRcv0gMQJSw5zuoLqt4Dk0n2Z89NgAKTIyPlpVbwDpKTMyTY5HrwadcDmUvtQPEiOgMd4cLTwjAEVGMqFlmoY6D2dHq74WQOp+sPthKBO8/5Ga85o4VE2jHyRGkB4ZsfcbUCsxQo3PxkfbNA2lBrKhVftxIOVZI2E4PnxeU7XKzyUgrZqG1kJzSIyAhiMBQDSeQJ/UCl4bAytFRkajaWSE1iArPDJCpb36wyMjNRquhd2LGfSAxAhSHobAsH1P6vz04XQIqudmfdSOfFy0jYxQmiYbWvV8AcizNhEpL5X6kRFaC/0gMQKx5TNg71MiT9FUl6rXCp5DBtZzSe+loI1nhNI0mRiOxKXW7Fr4FMjAmp1uKU2j3VoMReJIJJjqP49IQWIEQHlyKNyAjSMjWnRf5aT6jNBGyEnvpcA9NWpSRuHojPC0gMfpgM+rbl8LgIThROjRfwewd9peD0iMAPAnxYidm3Dxst4alct6gfTICN3sHL4BatFLASCfQjakza/MA0HQbi0oZTY+PTxqq8FByetywOngs4IoUqUlJEaQiozY2TPCQ6Fqm1eBdAOrff/eY9Fq9gZH6sBKgvAcejRMCwAkRiaiJ6TdegiCIA2SpPXQFhIjSEVGbJ2mCWrTfRWgaprx4JERrcQIGVgzw/1TWhgmATJNZiMci0vPCS3SNACth16QGEGq70VgJAbG7Gla0qrHCEB9RsZDy+6rAHVgzQY/iWtRSgpQyiwb/L5waeSlAmg99ILECIDyYvHNF08wyUVvN7gYUbsVPECRkfHQsskWQIPyspHyKGh7Eqe1OBeeMqvUoMqPQ2kzfSAxAqDY7YTbKb7R7eob0TIywg2sQ5E4YvGE6j/PDPRo2EsBGH36s2s0MBNadvwE0tICkTitxRh6NKyk4ZA41AcSIxBNS6lUjV3FSDI07dO2fI5ueBEpTVOiTSiaP3CjcYZwjARhOlpvgDxlFk/QWoylN6TdIYlDU5T1gcRIEqnXyJD9xIjYCp5X06h/07udDhS5xbcepWpEpMiUBmkyIDWDAyBBOJYejTdAWovM9GjYCZdDTej0gcRIEqm814abY28oAsYAh6DNmG4grQW/TSNRY0mVVmuzATocqRJGOgGORuvSXodDQAmtxbhoWdbLoWoafZAtRrZt24ZPfOITaGxshCAIeOaZZ7K+fuvWrRAE4ZyP9vb2fK9ZFXhLeDt6RnhZb3WZV2r4ozZkYh2Nlp4dDg3LOxfGmM6ncVqLdHrSxlRoBXlG9EG2GAmFQli0aBHuvfdeWV93+PBhtLW1SR+1tbVyf7Sq2LklvB4bIXVhTTESTfVS0KLpHIdKGM8lGI4hkjRVV2tkJgbST+OUGkhHazMxQPeFXsgevLB27VqsXbtW9g+qra1FRUWF7K/TCju3hNey+yqnnLqwSvBQtNspSO9DLfDRCfAc+OZX6nGiOJk60YJU3xe6H9LRs5qGZtNoi2aekcWLF6OhoQEf+9jH8MYbb2R9bTgcRiAQGPWhNlI1zbD93oBSjxENTx/lFBmRSIWivZrMQuGUUa+Rc+DVG1qexIGUiZVMk6PpCWnb8wUgA6teqC5GGhoacP/99+NPf/oT/vSnP6GpqQmXXXYZdu/enfFrNm7cCL/fL300NTWpfZm2bgnfpeGQPA7Np0nRrXGTLU5qAyQxwtFyXH06ZJocn16+HpqmzMhMrAeqz8eeM2cO5syZI/3/ypUrcfz4cdxzzz34/e9/P+7X3HHHHbj99tul/w8EAqoLEt6F1Z5pGu4Z0e4BzMWIHauXxqJ1JQ2njIblnUOPDpsfQD6F8RiOxKWO2FV6REbovtAU1cXIeFx88cV4/fXXM/671+uF16vtwyCVprGvGNGiFTzHR/NpJPQwEANUNTAePToIc4BSZuPBUzQep0PyN2kBVTbpgy59Rvbu3YuGhgY9fnRG7Jym6Q5qfzKnyEiK1N9fn9QAPXRT9Gg8I4hDaZpz6U3rMaKpl4oMrLogW24ODg7i2LFj0v+fPHkSe/fuRVVVFaZOnYo77rgDZ8+exe9+9zsAwE9/+lPMmDEDF154IUZGRvDrX/8ar7zyCv76178q91soAC/ttaOhkkp79UXrjp8cStOcS8q/QwZWvdGj3wtAKTO9kC1Gdu7ciY985CPS/3Nvx/XXX49Nmzahra0Nzc3N0r9HIhF861vfwtmzZ1FSUoKFCxfi5ZdfHvU9jIBdm57F4gn0atgKnkMG1hSpVvA6ncbpBCjBT+NaR6loHsq5pLqv6pO+FOc2xeF1aVfibWdki5HLLrss62TJTZs2jfr/b3/72/j2t78t+8K0hqdpguEY4gmmWSdSvUlvBa/lCYQ6sKbgaRqtTZP8oUtrkEIvAyulac5Fj+6rAKQxCYDYhI7EiDbQbJokPG0A2Ou03hFImVe1FGDlZGCV0CtNQ0a9c9GjrwVAazEeejQ8AwBX2iBPEofaQWIkicflQLFbVMB2anzWERgBANT6ijT9uRQZEYknWCo1oHGaxken8VGkr4VufUYoZSbB+x9pWeXHIXO39pAYScOOFTWdyRu+rlzbG55HooYiccSSs0DsSN9QBAkGCAJQpdHEZA4ZWEfTn1wLQPu1oN4W56JHywEOmVi1h8RIGnZsfMYjI5N0iowA9j598AduZYkHLqe2tyOlBkbD0wIVJW4d1oLPpqFqGo7UGVrj9CVA3Yn1gMRIGtKwPIqMqI47LS9r51SNXj1GgNGD8rKZ0u1Cd1AfwyRABtbxoDSNvSAxkgY3VdoqTaOTZwRIpWrsFIkai2SY1Lh6A0ilaRIMGI7SibwrGaXS417gUarhaBzxBAlDvVoOcKjUWntIjKTBG5/ZaXPUKzICkIkV0GdIIafY7QQvoKIToDFO4gCZWAH9Wg5waHKv9pAYSSOVprHPw0CvahqAurAC6UPytH/gCoJAxsk0unQ0THpdDriSypBO46m1qCrVtuUAhx+UaC20g8RIGrwLq13SNPEEkwyUekRGyqkLa9pgNu3//kC6V4FOgHpGRtKFIW2A+q4FkDKw0lpoB4mRNOyWpukZDCORDIVq3XIZoDQNkD4XSPvICJDWhTVsj/d8NqQNUGdhSKkBfSOGAFWa6QGJkTTKbdZnhHdfrSnTKRTqpS6sqYeuThsg9RqR0NO/A5BpMh29IyNU3aQ9JEbS4NU0dint7QyKfpG6cu39IgBFRoC0+Rt6p2nINJlqsqXTWtBpPIVx1oKiVFpBYiQN3vTMbpGRWp1OH6nSXns+fBljupomgbTUgE3XgBOLJ6SmZ3qvBZ3G9Y+MUJRKe0iMpMFLyPqH7CFGeGSkVvfIiD3+3mPpG4oiGhd7StAJUF/0LiUFqOtnOt0GMXbTWmgHiZE0+DyKvqEIEjZoPKR/ZMTeaRouBitL3PC49LkVUw9dewpCDu+3U62TfwqgNE06+kdGKEqlNSRG0qhIipEEs0dFDe++qp9nxN4G1s6Afh0/OT4ysAJI6zGi00kcAMooNSBBkRH7QWIkDY/LIc3r4KPErQw/DeoVGSm3fWQk+ffXoccLh9I0It06n8SBVGWT3Xu+ROMJ9CVT5RQZsQ8kRsZQWZpK1VidDp0jI7yU2r5ihE9M1vM0TmkaQN/uqxy+Adr1fuD0JMvdnQ4BFclnhNakqszitkjZGwESI2PgYqQ3ZO2Hc3r3Vb1O5jxFYIeU2Hh0BfVP01AHVhE9x9VzeNrS9sIwmGoE6NDJv5M+K2iIhkhqAomRMVSViA+EPounaUZ1X9WpeoA/fIciccTiCV2uQU/0TpMB6R1Y7X0a19swCUBKEdvdp6C3XwQAitwOaYgkpWq0gcTIGKTIiMXTNJ1pJ0GXU5+3AY+MAPZ8AHcF9PeMpDqw0mkc0FmM2NxDxTHCWowaImnDZ5MekBgZg1Tea/HIiDStV8eN0O10oMgtvgXt+ACW+rxQmkZ3jFFNQ2IESK2FnpERgJrQaQ2JkTGkPCPWFiPt3Lyq40YIpHdhtd/J3EhpGruf/oxwGk+VutNaAPquBZBWaWbz9dAKEiNjqLJJNU37gChGGir0FiP2PA0OhmMYiojRCCOU9oYiMdtWDYxE49L7zxhpGvsJ83SMFhmxu1DXChIjY6gssUdkpLU/KUb8xbpeh11Pg7zhXJnXhRKPa4JXqwffABmzb9UAP4l7XA6p940e8LUIxxKIxOxn6OZ0p1XT6IldD0p6QWJkDKnIiLVPJ+2BYQBAg1/fyEi5TU+DnQYJRXtdDriSZQN2DUen+0UEQZ9SUmB0OamdT+P83tCr/xGHIlXaQmJkDFWl4knd6pGRtmSapl5nMWLX04dRxAhVDaSdxHVeC5fTgRKP2BLerhsgY0z3Zowcn5f3fbHnfaE1JEbGwNM0A8NRy/a+YIylPCN6p2m89pxPw9M0eppXOXbPjRuhkoZj94qadC9VnY5eKsC+ByW9IDEyBn+xGzxS2z9szQ0yMJK64ev1Pn3Y9IY3QvdVjt1LGPn0ar2jVIB97wcOj4r4ivT1UonXwCv97LkWWkNiZAwupwP+Ymt3YeVRkYoSN4qTYWG9sOsNb4QheZwym2+APEqltzAHgLIie6cGuDDUO0UDkGdEa0iMjEOVxStq2gZE86oRHr52veFTDc8MIEZsnqbhPXfq/fqvhV0N3ZyUX0T/tbB7lEprSIyMg9Un96b8IkYSI/a64SlNYxz4/WCs07g918JYkRF7+tn0gsTIOHATq1XLe1ulhmf6mlcBoLzYnh1YDZWmsXlkxCjVGwCthZHWotzmwlBrSIyMg9XLe9uTaZoGA9zw3J8zYFGz8HiEY3H0J4WuEdI0pTau4AjH4tKhwxhpS3uKc44kRgxwX9jdS6U1JEbGQUrTWFSMGKXHCJASIwEbiZH0jp/899cT/tC1Y5qmM5Bai4oSA6yFzeehGCkyQmkabSExMg6SgdXynhH90zTpkRHG7DEbpSOtx4ieHT85PhunBtrTKmkMsRY2P41LnhEDHJT4WoQiccRtOrdJS0iMjIPVIyPtBoyMROMMwzaZjcIjU40GEIMAbN2BVboXDHASB4ByG5/GEwkmVZkZIzKS1p7fpuJQS0iMjEMqMmK9B0JwJIpgctMxghgp8Til2Sj9Fvx7j4eRxCCQStPY8YErRakMYCQG0tbChsKwbyiCaFyMQBihG67X5YTHJW6RdvXwaAmJkXGwcmQkvcNh+mAuvRAEwXYm1jYDlVYDQJlXbHxnxw2ww0ANzwB7p2l4iqa61COJAL2hihrtMMaKG4wqC4uR1n5jpQgA+1XUGC4ykpwPZEcDa3tyAzTKWqRMk/ZbCyOZVzk+m3fE1RISI+PA0zTBcAyRmLWG5RltIwRSvUbsIkZ4B1zjREaSpz8bPnA7DNTwDEgflGePeyEdI3Vf5di1Q7QekBgZB1+RC86kj8FqXViNliIA7BwZMUZ0ys4dWNsNdhovT/OM2KW6jGOk7qscO6fNtIbEyDg4HAKqk6ka3hPCKvBTuZFueDv1GoknGDqS7ymjCEJumhyyWQkjY8xwnhG+FgkGabK2Xejg85oMshYA4PPat7pJa0iMZICPE7eaGDnbL4qRKZXGOJUD9oqMdA+GEU8wOB0CagxQMQAApd7U5GY75cYHhqMIJ9OwRqmmKXY7pais3U7jHQYrswZSkRG7TRXXAxIjGeBtunndu1U40yeKkckkRnSBp8nqfF5p09Ebr8sJj1N8FNgpVcNTNJUlbhS5nRO8WhsEQZA2wMGw9e+HdDqCRvSM2NdQrDUkRjJgxchIIsGkyEhTZYnOV5OCt+G2gxjhc4GMZCAG7DmHw0jTetPhHh67ncaN7Rmx/rNJb0iMZICPdu+0kBjpHgwjEkvAIRhrM7RTNU2bgVrxp1Nuw4dupwE3P8Cep/FoPIHuQeNMsuaQgVU7SIxkwIqRkTPJqEh9eRHcTuMsvZ3SNEYsrQbsJQg57QYzr3J8NhyW1xEYAWOA2ymgptQ4YsTO7fm1xjg7ksGotaIY6ePmVeOkaAB7iREjllYD9loDjlTWa7C1sGNqID1i6DCIlwqgyIiWyBYj27Ztwyc+8Qk0NjZCEAQ888wzE37N1q1bsXTpUni9XsycORObNm3K41K1ZZJkYLWOGDlrQPMqYK/SXoqMGAcjVm8ASDOw2mcDbE1GbRsrjLUWdvRS6YVsMRIKhbBo0SLce++9Ob3+5MmTuOqqq/CRj3wEe/fuxW233YabbroJL730kuyL1RLuGekKhi3TfOhM3xAAY5X1AqNP5Vb5W2eiLWCs7qscHo4ODNvnodtq0ChVmQ3LSbmx3khjKoB0/459RLpeyJ6UtnbtWqxduzbn199///2YMWMG7r77bgDABRdcgNdffx333HMP1qxZI/fHa0aNT2x6NhyNYzAck96UZobf8JMrjHXDczESjTMMR+Mo8eg/wE8NEgmGjgE+C8WYa2CnyMjZpDg3WqRQmodiIzGSiowYbS3sOypBa1T3jOzYsQOrV68e9bk1a9Zgx44dGb8mHA4jEAiM+tCaEk9qqq1VfCNG9YyUeJxwJfPEVt4Me4ciiMQTEISUJ8ko2E2MBEeiUuTBaBugHefTSAM8DbYW6SmzhI26E+uB6mKkvb0ddXV1oz5XV1eHQCCA4eHhcb9m48aN8Pv90kdTU5PalzkutRbyjTDGDOsZEQTBFpsh94tMKvMaqpoJAMqLeWrAun//dPjm5y92S5u/UbDj2HqjekZ4+pIxIBSxz3rogbGeiEnuuOMODAwMSB8tLS26XEeNhSpqekMRDEfFWRdGu+GBtJP5kHU3Q6NW0gD2i4y0GjRlCdhzbL1RU8helwNupz3b82uN6keC+vp6dHR0jPpcR0cHysvLUVw8/hvP6/XC69U/jG2lyAi/2Wt9Xnhdxmh9nY4dqjmMOKSQY6eKJiDVc8doaQHAfmma4EhU2ugbDLYeYnt+N3pDERIjKqN6ZGTFihXYsmXLqM9t3rwZK1asUPtHF4yVGp+l/CLGutk5djiZGzVNBtjj759OqwEHRnLs1tuCRwyNmDID7Nn3RQ9ki5HBwUHs3bsXe/fuBSCW7u7duxfNzc0AxBTL+vXrpdd/9atfxYkTJ/Dtb38bhw4dwi9+8Qs88cQT+OY3v6nMb6Ai6eW9Zie1ERrLvMqxw2ZoVAMxkF7aa92/fzr8fjBiypJHCe3i3zlr4CgVYD9xqBeyxcjOnTuxZMkSLFmyBABw++23Y8mSJfjBD34AAGhra5OECQDMmDEDzz//PDZv3oxFixbh7rvvxq9//WtDl/VyJllocq9Re4xw7JAm4GvQZMA14H//UCSOaDyh89WoT8ozYjxhmD440up9d4D0tTCeMAQAn9de4lAvZMfELrvssqw3yHjdVS+77DLs2bNH7o/SHSu1hDeqQYxDkRF94ac/QBSE1WX6e7bU5KxBqzeA0X13hiJxlBowdaEkRu0xwqHIiDYYsprGKJBnRDv4A7jfomJkKBJDTygCwJieEZfTYZvR9dF4Ah3JuTRGXItitxOeZOm3Ve+HdIzaY4RjxynKekBiJAtcjPQORUwdumaM4XRPMkVQZbxTOWD9yAj3KJQXuaTf1WhYfQ047QMjSDDA43QYakIsRxAE+EusX+rOMY9nxPproSckRrJQVeKB0yGAMaBnMKL35eRNVzCM4WgcDgFoMmCKALB+aa+RUzQcq68BJz1FY6QJsemkIoXmfe7kCi95bzRg/x0g1YSOPCPqQmIkCw6HgJoycUaNmVM1p3pSMzg8LmMuudVP5S0GNxADaQ9di64Bx+geBQCosEETQACIJ5jUmdio6+EvEfeAARsNkdQDY+5MBkIq7x00b0XNqZ4QAGB6danOV5IZq1fTmCEyYnVByJHK3A26+QGjK2qsTPdgGNE4g9MhGG5eE6cyuRb9Q9aPUukJiZEJ4DdI+4B5IyOnk2JkWrWBN0KLlzMavbQasI8YaR0wbvM5TrnFDd0cnjKrLy+Cy2DzmjgVkhix9lrojTFX30A0JEv/eF7TjPA0jZEjI/z0EY0zhCJxna9GeYxezQRYPzrFOdNnhjSNmBqw+gZ4xsDN5zh+vhY28O/oCYmRCeAPLK7gzUgqMmJcMVLsdsKb9LP0hax305shTWOXzp9SK3gDixG7RKlaesWD0tQq4z6bKDKiDSRGJoDnlVtNKkYYYzjdzSMjxt0IBUFAdal4AumxmBgJhWPoTf5OU6poA9QTxpjh+1oA6Z4Ra90LY2nu4WLEuM+myqSBNTgSQ8zELR6MDomRCWiUxIg5Day9oQiC4RgEwbg9RjhVycolq0VGeFTNX+yWZsAYETuIka7BVJl7g4FTA3Y5jZ/uNb6frTytO7GV7w29ITEyAVyMtA0MI5Ewn7GS+0UayotQ5HbqfDXZ4ScQq0VGzGBeBYDyYl7aa90SRn4Sb/AXw+sy7v1gl54vLb2iUDfyQcnldEiNz6xuKNYTEiMTUOfzwiGIxsruQfNV1JzqNr5fhMPTNL0h8/2ds2EG8ypgj8gI70Rs5JM4kOozYuXISDgWlyqbDL8eNolU6QmJkQlwOR2oLxfDuWY0sXLz6vQaY9/sAFApiRFr3fBmMK8CNhEjvSYRI1KjLeuuxdm+YTAGlHic0kHEqFRK62GtqK2RIDGSA6lUjfl8I6ekkyBFRvSCVwwYuckWAMnPEhiJmjIlmQtmqCwDUsJwMBwz9VysbDT3psyrgmDMtvwcvh59FjsoGQkSIznQYOKKmtMm6L7KqUoOLbNaZETq82Lw6BT3KTAGDEas6RuR0jQG9igAo02TVu37ki5GjA6PVJFnRD1IjOQAb8hjxjSNWTZCAKgqFTdDK0VGxInJ5hCERWm9Xqw6E0XaAA2eprGDadIMZb2c1KwgStOoBYmRHDBrr5H+oYiUczbDDZ+KjFjnhu8MhjEUicPpEAxdMcCxchVHcCQqvbeMnqYBrO/hMYt/B0ibT2PRtTACJEZyoNFvzl4jx7sGAYhzH0o8rglerT+pyIh1xMjJZDXTlMpiuA06eyMdv4W7sPIUTXWpB2Ve498PUuMzi0apuJfKDCKdT+7ts+haGAHjPx0NQKNJIyPHOkUxMquuTOcryQ0eGQmMWMe0x0urjZ6i4Vh5Pk2ziU7iQNp8GgtWcDDGzOUZkUqtrbcWRoHESA7wNE1PKIKRqHmGuB3tEMXIzFpziBF/sRuOpKm+zyI3/cmkX2RGjbnEiBVTA6dMUknDkdbCgqfx7sEIhiJxCILxS96B9Pb81lsLADjYFsDZfn0be5IYyYHyYhdKPWK3RjNFR451mUuMOB2C5Fq3SqrmZBePjBj/gQukNkArNncyk2ESAPwW9inwqEijvxgel/G3IamaxoL3BQB88/G9uPTHr+DVI126XYPx3wUGQBAEU86o4ZGRWbU+na8kd6pKrSVGTklN58xxGrfa3z8ds3Rf5VhZGLaYKEUDpCIjVonYphNPMMnbdt4k/Z5TJEZyxGy+kVA4JpUimyUyAgBVFoqMJBJM2gDNkqapsujkZCDdM2KOtaiwsH/ntMmiVHwtrDi5t7V/GOFYAh6nQ9eUGYmRHDFbr5ETyfRAdalH2mDMgJVO5m2BEYRjCbgcguG7r3KqLfT3T8dMc1A4FRZO0/CIodH7vXB4lAoQDfZWglddTq8pgdOhXydcEiM5wst7zSJGjnYGAQDnmygqAgBVZdbZDHklzdSqErhMUNYLANVlYkVTjwmHQmbjTHIOSqkJ5qBw/Bau4DhuMj/bqCZ0FlsPfnA9r0bftTDHE9IAcAXPTXBGRyrrNcnNzrFSmobnYc2SogGsm6aRhGF1qeHnoHD8xdYclscYw/Hk8+n8SeZ5PqV8I9ZajxPd4lro6RcBSIzkDO8TwcOLRudop7lOHhwrpWmkHiMmEiNWTdMcM+H9YNVy0vbACEKROFwOwTQpMyDV98Vqk3uPd3LzKkVGTAEXI53BMEJh4+cMj3ear5IGsJYYOWlCMcLTZEOROIYj5umpMxGSODfRSTy9moYx60xR5pvf1OoSU3Ql5kgeHotGRs6nyIg58Je4pfkEpw2eqgnH4lIExyzdVzmWEiO84ZlJqjcAwOd1wZPcIHosNLDQzJGRWIJhyELCUPKLmEgYAtbsNTIYjqEjIN7nFBkxEfyEa/RUzanuISSYuLHU+rx6X44srCJGovGE1EvBDBOTOYIgWGYNOOkeBTOJkWK3UxKGVupvwcWI2cz1VmwJz5sy1pR5RlUM6QGJERmYxTfCK2lm1pWZxqzH4Rth31DE1KHpU90hROMMpR6nVIllFqxmYu0MhhEMx+AQzCcMKy04PPKYCc2rgDVLrSXzqs6VNACJEVlIYqTb2GLkYFsAADDbZH4RILURRuMMQRN4czJxhM8FqvPBoWPtfj5UJ30jPYPW2AD55je9uhRel1Pnq5FHTbLUuttCpdZSZERnj4JcrJimkaqaavVfCxIjMuCnqlMG94y83yqKkQsnl+t8JfIpcjtRkpwD1GvizfBIhxidmmMyzw6QXlFjjQ1QOombLC0ApImRoHnvhXSCI1HDeBTkIqVpLBQZOd5tjB4jAIkRWZglMvJ+MjJyYaP5xAhgjTQBFyOz68wYnUo2PjPx3z8dM5pXOVyMdFkkMsIbbE3yeXX3KMglVU1jjfsCSGt4ZoAoFYkRGaSX9w5FjJlC6B4MoyMQhiAAc+vNKUaqLRCa5mJklgnFCE/TmDkylc4xE5b1cmp84lqY+V5Ix6wpGgCoLLVW+jKRYDgpNTzT/94gMSKD9PLeU93GTNXwFM2M6lKUel06X01+1JeLYqQzYJ4JyemIpdXi+2OOGcWIBSJT6Zi1ASAATJKEuTXWIiVGzLwWYVOb6zmtA8MYiSbgdgpoqtTfZE9iRCa8vPe0QStqDiTFyAUmTdEAQF25OJSw3aRi5ERXCPEEg6/Ihbpyc5VWA9ZIk3EGhqJSVMGMnpFJPu4ZsUZkxMwpM74W4VjCEsPyDrcn55dNKjPE7Cz9r8Bk8FTNSYOKEbP7RYCUGOFGN7ORMq/6TFdaDaSlaSxgYD3WJa5Fg78IZSaMFFqtmoaLESOkBeRS5HZKw/K6LCAODyXFyAUNxtgrSIzIxOgm1gOtAwCAeQZ5g+VDSoyYMzJiZr8IkGZgtUBqwMwnccBaYmQkGpdGJFxQb857gzeRtIIY4QfXuQZZCxIjMjFyee9QJCbd7Bc2+nW+mvypN70YETfA2SYs6wVSkZGhSBwjUXO3IT/aYV6PAiB2xgTESbHReELnqymMw+1BJJjoSZpkss7QHH7dVqhuOsTFiEEOriRGZCKlaQwYGTnYFgRj4g1j1psdgOSzaB8wqxhJpWnMiM/rgtspppfM7hvhHqp5Jk1bVpZ44Ew2zTN7F1bejPGChnJTpi8BYJJPPCiZPTJixCgViRGZcBNcVzCMPoM9HKzgFwGAOr94wwdGYqabHDsciaM5OZPGrGmaUfNpTJyqYYxJ94RZ05YOR2otzL4BpsSIOe8LIFVRY/a1ONoxiAQTzepGObiSGJFJmdeFpiqxDIobgIzC+0m/iNnFiM/rkrqwmi1Vc6xzEIwBlSVuKcRuRqqTvpFuE5tYWwdGMDAchcshmG56dTpW8Y0cbDOWYTIf+MbdGTTXc2ksB9tTfhGjRKlIjOTBnDrxZjqcXFCjsKe5HwCwYLJ5/SKAeDI3a3nvfm4gbjRvKBqwRuOzA2fFtZhV5zPdTJp0uKg1c68RxtioNI1ZmWQRA+uhpDA0UmNMEiN5wN3HhzuMExkZDMckr8LSqZU6X03hcN+I2SIj+5Ib4HyTC0IpTWOwVKQczJ6i4VghNXCmbxjBcAxup2BaMzFgITHCIyMGSpmRGMmD2VyMGChN825LPxIMmFxRjNpkVMHMmLW8d39SjJg9OmWFxmfvm9y8yqnxmT9Nw4XhzFofPC7zbju1FliLUVEqioyYGx4ZOdIxaJi2wLtO9wEAlk0zf1QESC/vNc9NH4klpPDnwskV+l5MgXCfQo+JH7q8ksbsHqpUmsa8a3HQKlEqX2qIZMykpdZdwTD6hqJwCDCUl4rESB7MqCmF2ylgMBzDmb5hvS8HALC7WRQjS6dW6HshCmFGz8iRjiAi8QT8xW7J5GxWzB4ZGRiK4my/eG+a2aMAWMPAaoVKGiBVas2YeVOYB5MR/Rk1pShyG8dLlZcYuffeezF9+nQUFRVh+fLlePvttzO+dtOmTRAEYdRHUZG50whup0PKexohVZNIMMm8utQikREpTWOiXiMpv4i5zatAKjLVZqK/fzoH2sS1mFJZbLpR9WNJzacx5+YHpCppzB4ZcToEaZBkp0l9IzyVbJRmZxzZYuTxxx/H7bffjjvvvBO7d+/GokWLsGbNGnR2dmb8mvLycrS1tUkfp0+fLuiijcAcA5lYT3SHMDAcRZHbYfpTIKfenzSwmqiEzirmVQBoqEhGpgaMEfmTi+QXscD9YPbISHAkKvXescLzyewm1r0t/QCAxVMqdL2OscgWIz/5yU9w880348tf/jLmzZuH+++/HyUlJXjwwQczfo0gCKivr5c+6urqCrpoI8DFiBF6jfAUzcLJFXAbYPqiEtT6Up4Ro/hyJsIq5lUAaPCLaaa+oajpGs8B6Q0Azb8WXIz0DpnTp7DvjHhfTK4oRmWpeXvvcMwsRhhjKTFisJS+rJ0rEolg165dWL16deobOBxYvXo1duzYkfHrBgcHMW3aNDQ1NeHqq6/GgQMHsv6ccDiMQCAw6sNoSCZWI4iRpHl1ybQKfS9EQWqTpb2RWAL9Q1Gdr2ZirGReBYDyolTjuTYTRke4MDR7JQ0g+nccAkSfwpD5UjV7kpvfEoNtfvkilVqbMFLVNjCCrmAYToeA+QYT6rLESHd3N+Lx+DmRjbq6OrS3t4/7NXPmzMGDDz6IZ599Fg8//DASiQRWrlyJM2fOZPw5GzduhN/vlz6amprkXKYmzEmWRB3vGkQkpu9phUdGllmgvwjH63JKJkozmFitZF4FxGhmg9+cvpGB4SiOJqf1Lm6q0PdiFMCZ1hLejL6RPcnn0xKLPJ/MHBnhUZE5dT4Ue4xjXgU0qKZZsWIF1q9fj8WLF2PVqlV46qmnMGnSJDzwwAMZv+aOO+7AwMCA9NHS0qL2Zcqm0V8En9eFWIJJY8r1oHswLE2JtUpZL8dMvUasZF7lNFaIoqq131yRkb0t/WAMmFpVYpi5G4ViVt8IYylzvVUiI7UmFiPvGjRFA8gUIzU1NXA6nejo6Bj1+Y6ODtTX1+f0PdxuN5YsWYJjx45lfI3X60V5efmoD6MhCAIWTBHDXO+e6dftOrYf7wEgGsOqy6zx4OXUm6gLKz/9LTSYKawQeGTEbNOTd1us5w5gXjHS0juMnlAEHqfD9P1eOGae3LvHoOZVQKYY8Xg8WLZsGbZs2SJ9LpFIYMuWLVixYkVO3yMej2Pfvn1oaGiQd6UGZFEyBLw3qfz14I2j3QCAD86s1u0a1ELqNTJg/Jv+nVPiBnjRdOtsgNzE2mo2MWKxnjtA6l4wW8psT4u4Fhc0lpt6PlA6Zh2WF4snJDOxESMjLrlfcPvtt+P666/HBz7wAVx88cX46U9/ilAohC9/+csAgPXr12Py5MnYuHEjAOCHP/whLrnkEsycORP9/f246667cPr0adx0003K/iY6wPPRekVGGGN4/ZgoRi6dWaPLNajJ5GSa4EzfkM5Xkp3O4AhOdocgCMCyaVV6X45iNFbwDdA8aZpEgkmHA6v03AHEfikADNNkMVekFI0FvDscs3pGjnYOYjgaR6nHacj5QLLFyLXXXouuri784Ac/QHt7OxYvXowXX3xRMrU2NzfD4UgFXPr6+nDzzTejvb0dlZWVWLZsGbZv34558+Yp91voBL/BjnQEEQrHUOqV/ecsiNM9QzjbPwy3U8DFM6yzCXKm1ZQCEH9PI7MzGRWZU+czfYOtdOqTkZG2fvOcAI92DiIYjqHE48ScOnN3+0wnJUaMfS+MxWqVNEBKjIQicV2e+/nC/SILp1TA6TCery2vv+Itt9yCW265Zdx/27p166j/v+eee3DPPffk82MMT215ERr9RWgdGMF7Zwaw4nxtUyU8KrJ0aiVKPOa4IeQwvboEAHCqJ6TzlWTn7ZO9AGA5QdiY9Iy0migywmc0LW6qgMsiPXcAYEqleC+cNVFkZCQax/utYlrACpPEOaUeJ0o9ToQicbQNjGBmrfGiDOPBK2kWGTRKZZ27VSck30hyobXkjWPcL2K9FA0ATKsSIyOdwTCGIjGdryYzO0+LYuSi6dYSIw3JNFlwJIbBsHH//umk/CLW2fyAtMhI/zASCXM0ATzQGkA0zlBT5pGu3woIgoCmKlEctpgoUvVW8tBkVGM3iZECkXwjGouReIJJlTSXzrKmGPGXuFFZIqY9jJqqCY5EpdbjVhMjZV4XfEVixM0sbeF5Jc1SCzUABIB6fxEcgthczywVNTxiuLip0jLl7pypXIz0GvO5NJb2AdHX5hCMG8ElMVIgi3WKjOxt6cfAcBQ+rwsLLdB+PBPTqrlvxJipmt3N/UgwoKmqGPV+cw+AHI9GXlFjAt9I92AYJ7rF98mSJmOe/vLF7XRI1U0tJknVbD8uRm5Xapy+1gIuRpoNekgay44T4lpc2Og3rK+NxEiBLJjih0MQu4Rq2Y/hrwfEjreXza21VG58LNw3crLbmDf9OyetmaLhNJiooia9544VZqCMZbKJTKzhWBzvnBLvDStW+k1NPpeaTRIZ2ZG8N7T2NcrBuruYRpR4XJiddO3vTdbUqw1jDH/ZL4qRtfNzazZnVqbXGDsy8tZJ8Sa/2KpihJtYTRAZef1oFwBr9twBzFXeu7e5HyPRBGrKPJhdZw6DpxxSnhHjrwUA7DiRFCPnGffeIDGiALyfwdsntREjB9uCaO4dgtflwKrZkzT5mXoxPZmmMWJFzcBwFLuTfRSsePoDUo3PjN6FlTGG13kDwFnWvCd4RY0ZxMgb0km8xnJ+EQBoqkx5Row+VfxM3xBaeofhdAi4yKB+EYDEiCLwnCjPkarNi/vbAACrZk8yTY17vkxLhkONaGDdfqwb8QTD+ZNKpZOS1WgwSXnvqZ4htA6MwON0WKoLbjpm6jWynTdjNHBaoBD4WgyGY+gz+FRxnqJZMNmPMgPvFyRGFICHvg61BzVxur+Y9ItcafEUDZCKjLQNjGAkGtf5akaz9bCYFlg1u1bnK1EPPizP6G3IeYpm6bQKS/bcAVIboNF7jYTCMcnQv/J8a0YMi9xO1Cdb9BvdNyKlaAwuDEmMKEB1mRcXNIhDoLiJTi2Odw3iSMcgXA4BH72gTtWfZQQqStwoT5aXGummZ4zh1SPiBnjZHGumBYB0z8iwocPRvAHghyyaogFSqQGj9xp5+1QvYgmGKZXFktHTikgVNQZ6Lo2FMYY3jxvfLwKQGFEMHo7k4Um1eO5dMUWzcmaNYUu0lEQQBMnEeqrbOL6RQ+1BtAdGUOx2GrZuXwmmVJbA6RAwFImjI2DM/haxeCLVc8ei3h3APL1GUika664FkGZiNbAYOdQeROvACIrcDsNX/JEYUQj+EHxDRd9IPMHwxM4WAMCnl0xW7ecYDSOaWHmKZsX51ShyW2Ma6Xh4XA6pvPpIR1Dnqxmf984OIDgSQ3mRCwss3HPHDL1GGGN4+WAnAOBDs60tRszQa+Tl9zsAAB+cOQnFHmM/p0iMKMTFM6rgcgho6R1W7c257WgXzvYPw1/stoVfhJOaUWOcm/7VI+ID1+rVTACk0vWjnYM6X8n4SA/cWTWGHACmJEbvNXK8axAnu0PwOK1f6Te1mgtDY64FALx8ULw3Vl9gfF8biRGFKPW6pG6sakVHHn2rGQDwmaVTLH0aHwvvwmqUNM3AUFSa1GtlvwhnVnIQ2LFO40VGGGN4MdlzZ82F1hfoUyqM3Wvkr0lhuHJmNXxF1k4jcw+PUT0jHYERvHtGHFR4OYkRe7Eymarh/Q6UpCMwgi2HxNP4dRc3Kf79jQyfinmoPWgIE+VLB9oRSzDMrfdJQsnKzExGRo50GC8ycqxzECeSJ/HL5xr/gVsoRi/v/esBUYxcMc/6wpCnaVr7hxGNJ3S+mnPZkkyXLW6qQK3P+KMqSIwoCH8Ybj3cqXgZ6hPvtCCeYLhoeiVmJTcHuzC3wQe3U0BvKGKIE+H/vtcKAPjEokadr0QbeGTkaIcxxGA6PCrywVk1lj+JA6ko4fEuY0QJ0+kIjGBvSz8EAVg9z/rCcJLPC6/LgQQTBYnR4Cmaj80zR9UliREFWTTFj0Z/EUKROLYlyz6VYDgSx293nAIAXHfxVMW+r1nwupyYWy+WTu87O6DrtXQPhqXKjY8vbND1WrRiRk0pHAIQGImhK2isKg6p544NUjQApBYCB1sDhhOGm5MpmiUmOYkXiiAIhi3vHYrE8Eayqmm1SVpAkBhREEEQcOV8cYPiJzYlePjN0+gejKCpqtg2p/GxLJgiVkm8e6Zf1+v4y/52xBMMC6f4bZGiAcQGT7yiyUgm1pbeIRxoDcAhAKtNcvorlJm1ZfA4HQiGY4aIEqbD/SJX2EQYAqlI1TED3RcA8PLBToRjCTRVFZtmNhCJEYX5uwXijbj5YAfCscJTNUORGB7YdhwA8I2PzILbwhN6s7EoKUbea9E3MvLcu8kUzUJ7iULu2zFSeS8X/MtnVKPKglN6x8PjcmBWcnM50BrQ+WpSdAXD0kn8CpsIQwC4sFGMVO0/a5y1AICndp8BAKxbPNk0s4HsubOpyNKplaj1eREciWH7scK7sfKoyNSqEnxqqX16i4xl4ZQKAMD+swO6dZ/sCIzg7eRY9KtskqLh8A3QKJERxhj+lHzg8gOAXZiXTNW832acDfDZvWcRTzAsmVqB8yaZ4ySuBLyvzb6z/fpeSBqdwRG8liyi+JSJ+lGRGFEYh0PA2mQPkBf2tRX0vfpCEdz/6gkAwC2Xz7RtVAQQTZRFbjE8fUKnEt8/7joDxoAPTKuUZrbYhVm1omn6mEEqavadHcCh9iA8Lgc+ucg8D1wlmJc8jb9vkMgIYwxP7hSF4WeXTdH5arSFp4+PdQ5iKBLT+WpE/ry31ZTC0L67m4qsXSCeml860I7BcP5v0B89/z56QxHMqi0zlcJVA5fTgQsb9TuFxBMMf3jzNADgi5fYz0QspWk6jVFR8/g7YifiKy+sh7/E+lU06fDIyEGDREYOtAZwuEMUhh+3WfqyrrwItT4vEsw46/HU7rMAgE8vNZcwJDGiAhdNr8KMmlIERmJ4OLmByWXr4U48tfssBAH4j88utHVUhLOQm1h18I28cqgTrQMjqCxxY+18e6VoAFGMCALQPxRF92BE12sZjsTx572id+fai+zVcwcALkhGRs72D6N/SN+1AMSIISA2nbPDvKyx8FTNe2f09bMBwKH2AN5vC8DtFPDxBeZ6TtEOpwJOh4ANH5kJAPjVthMYjsgzsgZGovg/T+8HANywcjqWTq1U/BrNyKKkb+Q9HSpqfp8UlZ+7qMlW3W85RW4npiXLGPX2KvxlfxuC4RiaqooNP4lUDcqL3GiqEtOEeqdqwrE4ntkrnsTtlqLhzJd8I/qLEd6l+yNzalFpMlM3iRGVuHpxI5qqitETiuAPb+UeHYnGE/j6w7txtn8YUyqL8c9XzFHxKs0Fz88eaA1o2vHwVHcI2450QRCAL148TbOfazSWTROnfr55onBjdiE8lkzRXLOsCQ6Lz6LJhFFMrH/e24r+oSjqy4vwQQtPTM4Gj4zs11mMDAxH8WQySrV+xXRdryUfSIyohNvpwIbLxOjIA9tOIJSDd4Qxhjue2ofXj3WjxOPE/X+/DKVel9qXahpmVJeiutSDcCyBt0/2avZzN20/BQC4bPYkTE0O7bMjl5ynvxjZ09yHt0/2wuUQcM0H7HkSByD5p/SMjDDG8KvXRIP9DZdOt/yQwkwYxcT62NvNGIrEMbfeh0tnmi9iSGJERT69dAomVxSjKxjG1/6wG5FY5tN8OBbHd5/ehz/uOgOnQ8C9X1gqhf8IEYdDwEeTA594t0e1aR8YwSNvi6HPmz50niY/06hckkyJvHdmoCBjdiHc/6rYc+fqxZPR4LdXRVM6PDKiZ6+RrUe6cKRjEGVeF76w3H6mbk5deREmJU2seonDaDwhHZr+4dIZpuktkg6JERXxuBz4n+uWoNjtxLYjXbj9ib2Ij9Mjo6V3CJ974E08+nYLBAH4f+vm4yM2GPqVDx9LDuDa/H6HJlUdv9h6DJFYAhdPr8LK88132lCSpqoSTKksRjzBsPOUdpEpzrHOIF5KDmL76ip7C0N+Gj/SGURvSB8T66+2iVGRz1/UhHIbzAXKxkKdfSN/2d+OtoER1JR58MnF5qxoIjGiMsumVeL+Ly2D2ynguffacNl//Q2/3HYcWw524Nm9Z/G1h3dh1V1/w7st/fAXu/HQDRfZcv5MrnxwZg2K3A6c7R9WPV/e2j+Mx94W/Qm3fWyWKU8bSsMNozt0SNU8kOy5c8W8OtsNixxLXXkR5tb7wBgUnYOVK/vODGD78R64HAL+4YMzNP/5RoNHsXc392v+sxMJhvu2ihHDLy6fZlqDPYkRDVg1exJ+dt0S+IvdaOkdxr+/cAg3/nYnbn1sL/6yvx0JJm6yz33jg7hsDkVEslHsceLDsyYBSI0rV4t7/3YMkXgCl5xXhZXn29OcNxaeqnnzhLaRkeaeIalq46uXna/pzzYqPHr6t8Odmv/s/3zpEABxcrXdGgCOx4dmic+HrYc7NTXXA8Cf323FwbYAfF4Xblg5XdOfrSTkjtSIK+c3YNXsWjy79yye2nMW4WgcxR4nZtaW4UuXTMecenuf9OTwsXl1+Ov7Hdj8fge++bHZqvyM/WcH8GjSK/LN1er8DDOyIpmq2n92AMGRKHwahec3/uUgonGGD82qoVL3JB+ZU4v7th7Hq0e6EE8wzQykrx7pwmtHu+F2CnRvJFkytRI1ZR50D0bw1olefHCWNoeXcCyO//rrYQCiSDdbOW86JEY0pNjjxOcvnorPUxqmID56QR0cgljWeKZvCFMqla1wiScYvvv0PiSYePJbbsNeFplorCjGtOoSnO4Zws5TfZp4m9480YO/7G+HQwC+d9U81X+eWVg6tQLlRS70D0Wxt6VPKr1Wk3iCYeMLBwGI5aN2ri5Lx+kQ8NG5dXh8Zwv++n67ZmLkD28240zfMGp9Xnz50uma/Ey1oDQNYTqqSj24aLr44OWeDiX5/Y5TeO/MAHxFLnz/4xco/v3NDveNbD6ofkVTPMHwo+feBwB8YflUiiCm4XI68OHZYsrylUPapGr+uKsFh9qDKC9y4RuXz9TkZ5qFKy4UpxVrZa7vGQzjZ68cBQDctno2Sjzmji2QGCFMCT8F/HbHKQRGoop935PdIdz1khj2/M6Vc1HrK1Lse1sF7tb/897WnPrnFMLDb57GgdYAfEUuSgmMw+XcN3JIfRNrZ2AE//6C6BX5xuWzUFFi3pSAGlw6swYlHifaBkaw/6z6Jb53/vkA+oaimFvvw+cs0HOHxAhhSq6YV4+ZtWUIjsTw+x35zf8Zy1Akhq/+fhdCkTgunl6FL1A6bVxWnFeN6dUlGAzH8Nx7rar9nGOdQfx7MiXwL2vmoLrMq9rPMiurZk+CkExZnu0fVu3n8IaMA8NRzJ9cjhtMnhJQgyJ3yly/+f12VX/Wi/vb8dx7bXA6BNz12UVwWWB2mfl/A8KWOBwCvp6sqvjN6ycL7nzIGMN3n9qHwx1B1JR58fMvLLFtq/GJEARB8j09qkKaDAAisQRue3wvwrEEPjx7Er50iX3b8GejusyL5TPElOVvk02v1OCPu85gy6FOeJwO3H3NYhrcmQGeqnl+XxsS4/SUUoLeUATff1acXfaPHz5P6jljdugdRZiWTy4S5//0hiJS98F8YIzhJ5uP4Jm9rcnut0tQW07pmWx8dtkUuJ0C9rb0q9J18sd/OYT9ZwOoLHHjrs8upB4vWbg52Rn4kbeaMTCsXMqSc7AtgH/78wEAwDc/Npt8O1n46AV1KPO6cLwrhL+q0CU6Gk/g63/Yha5gGOdPKsWtH52l+M/QCxIjhGlxOR34xuXizfiTvx7BrtPye18wxnDP5iP42SvHAAB3fmIeVc/kQE2ZF1cku+HKGQSZC7/bcQoPvnESALDx0wtRR8IwKx+ZU4vZdWUYDMfw8JvKrkVXMIybfrsToUgcK8+vxj9+2N6dbyfCX+yW/Gw/ffmI4tGR//fc+3jzRC9KPU7c9/fLTNvgbDxIjBCm5pplU3DVwgbEEgxf/8NudAXDOX9tOBbHnX8+gP9JCpHvXXWBKadd6sUXLxFTNY+906LYxNLN73dIp/B/WTMHV86vV+T7WhmHQ8BXPiymLB964xRGonFFvu9QJIav/H4nzvYPY0ZNKX7xxaW2HYYnhxs/OANlXhcOtQfxVwW9Iw++fhK/Tfrj7rl2MWZbrAsxiRHC1AiCgP/4zELMrC1DRyCMGx56G809QxN+3fGuQXz6F9vxu+TN/b2rLrD9IDy5rDy/BlctaEA8wfCdP72HWIGdJ59/rw0b/rAbCSbOO/k6dVrNmU8ubkSjvwjdg2H85vWTBX+/wEgU63/zNnY3i2MqfnP9B6h6JkcqSjxp0ZGj484jk8uvXzuBHyZL3L/1sdm44kLriXQSI4TpKfO6cP/fL4O/2I0DrQH83f+8hsffacZwZPQJkTGGox1BfOuJd3HFPdtwoDWAqlIPHvryRSRE8uTfPnmh9Hf/1Wv5bYKMMfx2+ync8uhuROIJ/N2Cevxo3XzyicjA7XTgtmTp8082H8FbBcwO6gqG8YVfvYmdp/tQXuTCQ1++COdNKlPqUm3BTR88D75kdIS3zs+HREJMI/+/58Wqsm9cPhO3WLS/i8C06M5SIIFAAH6/HwMDAygvL9f7cgiDcrZ/GLc9tgfvnOoDABS5HVhxXjV8RW7EEgnsae5H28CI9PrL59bi3z+1APV+8iQUwh93ncE/P/kuXA4B//nZhfj00tx7HvSFIvg/z+zDC/vEcPaXLpmGf/vkhZQOyAPGGL75+F48s7cVk3xePP+ND8o2Yr92tAvffPxddA+GUV3qwe9vXI55jfTMzYdn957FrY/tBQD81zWL8Nll8nqB9IUi+OYTe7H1sNhD5rbVsyTBaSZy3b9JjBCWIhZP4FevncQf3jqNM33n9l1wOwWsml2Lb1w+E4uaKrS/QAvCGMO3nnwXT+0WB9ndsXYubv7QeVlLo8OxOP646wx++vJRdAXDcDkEfOuKOfjqqvMoIlIAQ5EY1t37Bo50DOK8SaW49wtLcUHDxM/MzuAI/mfLUTz8pjiPaU6dD/f9/VKKiBTI3X89jJ+9cgwepwM//swCfGrJ5Anf3/EEw592n8F/vXQYncEwvC4HfnT1fHzuoiaNrlpZSIwQtoYxhgOtAexu7kM0Lr7F59b7sHRqJYo91nGgG4VEguH/e+Gg5FeYXVeGr3z4fHxwVg1qfV4IgoBILIH3zvTjb4c78cddZ9AREM3GM2vLcM/nFlumX4LenOgaxBd+9RbaAyPwuBz45urZuOYDU1AzpmkcYwz7zwbw7N6z+MNbzRhOGl///pKp+N5V8yxVqaEXiQTDLY/uliJ/H5tXh+9cOQcza881n/YPRfC/77XhD2+exqH2IADgvJpS/PwLS00dnSIxQhCE5jz0xknc/dcjGExrE+/zijMzgmNax9eXF+Erq87DdRdPpY1PYXpDEfzzk+9KM2ucDgHLplai3l+EUq8TZ/tHcKwjiNa0tOXipgp8+8o5WHm+NkPe7EIsnsAD207gpy8fkQ5G59WUYsEUP0o8TgxH4jjSMYijnUHp331FLvzT5bOwfuU0eF3mvjdIjBAEoQsDw1H84a3T+OOuMzjVHUJ6MYG/2I1VsyfhoxfU4sr59aZ/0BoZxhie2NmCR95uwbst/eO+psjtwEfn1uHTSyfj8rm1lCJTkYNtAfzni4fwxrEeRDJUnl3QUI7PLJ2MzyydgspSa1QvkRghCEJ3wrE4TvcMwekQUFXigb/YTW32deBkdwh7mvvQG4pgMBxDo78YU6tLsGCyH6Vec097NRvBkSheO9qN1v5hDEXicDoEzKotwwUN5WiqKtH78hSHxAhBEARBELqS6/5NfUYIgiAIgtAVEiMEQRAEQehKXmLk3nvvxfTp01FUVITly5fj7bffzvr6J598EnPnzkVRUREWLFiAF154Ia+LJQiCIAjCesgWI48//jhuv/123Hnnndi9ezcWLVqENWvWoLOzc9zXb9++Hddddx1uvPFG7NmzB+vWrcO6deuwf//+gi+eIAiCIAjzI9vAunz5clx00UX4+c9/DgBIJBJoamrCN77xDfzrv/7rOa+/9tprEQqF8Nxzz0mfu+SSS7B48WLcf//9Of1MMrASBEEQhPlQxcAaiUSwa9curF69OvUNHA6sXr0aO3bsGPdrduzYMer1ALBmzZqMrweAcDiMQCAw6oMgCIIgCGsiS4x0d3cjHo+jrq5u1Ofr6urQ3t4+7te0t7fLej0AbNy4EX6/X/poajJnT36CIAiCICbGkNU0d9xxBwYGBqSPlpYWvS+JIAiCIAiVkNV6r6amBk6nEx0dHaM+39HRgfr6+nG/pr6+XtbrAcDr9cLr9Wb8d4IgCIIgrIOsyIjH48GyZcuwZcsW6XOJRAJbtmzBihUrxv2aFStWjHo9AGzevDnj6wmCIAiCsBeyhxLcfvvtuP766/GBD3wAF198MX76058iFArhy1/+MgBg/fr1mDx5MjZu3AgAuPXWW7Fq1SrcfffduOqqq/DYY49h586d+OUvf6nsb0IQBEEQhCmRLUauvfZadHV14Qc/+AHa29uxePFivPjii5JJtbm5GQ5HKuCycuVKPPLII/je976H7373u5g1axaeeeYZzJ8/X7nfgiAIgiAI00KD8giCIAiCUIVc929TzI7meon6jRAEQRCEeeD79kRxD1OIkWAwCADUb4QgCIIgTEgwGITf78/476ZI0yQSCbS2tsLn80EQBMW+byAQQFNTE1paWiyb/rH670i/n/mx+u9Iv5/5sfrvqObvxxhDMBhEY2PjKD/pWEwRGXE4HJgyZYpq37+8vNySb7B0rP470u9nfqz+O9LvZ36s/juq9ftli4hwDNmBlSAIgiAI+0BihCAIgiAIXbG1GPF6vbjzzjst3Xre6r8j/X7mx+q/I/1+5sfqv6MRfj9TGFgJgiAIgrAuto6MEARBEAShPyRGCIIgCILQFRIjBEEQBEHoCokRgiAIgiB0hcQIQRAEQRC6Ynkxcu+992L69OkoKirC8uXL8fbbb2d9/ZNPPom5c+eiqKgICxYswAsvvKDRlcpn48aNuOiii+Dz+VBbW4t169bh8OHDWb9m06ZNEARh1EdRUZFGVyyPf/u3fzvnWufOnZv1a8y0fgAwffr0c35HQRCwYcOGcV9v9PXbtm0bPvGJT6CxsRGCIOCZZ54Z9e+MMfzgBz9AQ0MDiouLsXr1ahw9enTC7yv3PlaLbL9fNBrFd77zHSxYsAClpaVobGzE+vXr0dramvV75vM+V5OJ1vCGG24453qvvPLKCb+vGdYQwLj3oyAIuOuuuzJ+TyOtYS77wsjICDZs2IDq6mqUlZXhM5/5DDo6OrJ+33zv3VyxtBh5/PHHcfvtt+POO+/E7t27sWjRIqxZswadnZ3jvn779u247rrrcOONN2LPnj1Yt24d1q1bh/3792t85bnx6quvYsOGDXjzzTexefNmRKNRXHHFFQiFQlm/rry8HG1tbdLH6dOnNbpi+Vx44YWjrvX111/P+FqzrR8AvPPOO6N+v82bNwMArrnmmoxfY+T1C4VCWLRoEe69995x//0///M/8T//8z+4//778dZbb6G0tBRr1qzByMhIxu8p9z5Wk2y/39DQEHbv3o3vf//72L17N5566ikcPnwYn/zkJyf8vnLe52oz0RoCwJVXXjnqeh999NGs39Msawhg1O/V1taGBx98EIIg4DOf+UzW72uUNcxlX/jmN7+J//3f/8WTTz6JV199Fa2trfj0pz+d9fvmc+/KglmYiy++mG3YsEH6/3g8zhobG9nGjRvHff3nPvc5dtVVV4363PLly9lXvvIVVa9TKTo7OxkA9uqrr2Z8zUMPPcT8fr92F1UAd955J1u0aFHOrzf7+jHG2K233srOP/98lkgkxv13M60fAPb0009L/59IJFh9fT276667pM/19/czr9fLHn300YzfR+59rBVjf7/xePvttxkAdvr06Yyvkfs+15Lxfsfrr7+eXX311bK+j5nX8Oqrr2aXX3551tcYeQ3H7gv9/f3M7XazJ598UnrNwYMHGQC2Y8eOcb9HvveuHCwbGYlEIti1axdWr14tfc7hcGD16tXYsWPHuF+zY8eOUa8HgDVr1mR8vdEYGBgAAFRVVWV93eDgIKZNm4ampiZcffXVOHDggBaXlxdHjx5FY2MjzjvvPHzxi19Ec3Nzxteaff0ikQgefvhh/MM//EPW6dRmWr90Tp48ifb29lFr5Pf7sXz58oxrlM99bCQGBgYgCAIqKiqyvk7O+9wIbN26FbW1tZgzZw6+9rWvoaenJ+NrzbyGHR0deP7553HjjTdO+FqjruHYfWHXrl2IRqOj1mPu3LmYOnVqxvXI596Vi2XFSHd3N+LxOOrq6kZ9vq6uDu3t7eN+TXt7u6zXG4lEIoHbbrsNl156KebPn5/xdXPmzMGDDz6IZ599Fg8//DASiQRWrlyJM2fOaHi1ubF8+XJs2rQJL774Iu677z6cPHkSH/rQhxAMBsd9vZnXDwCeeeYZ9Pf344Ybbsj4GjOt31j4OshZo3zuY6MwMjKC73znO7juuuuyTkKV+z7XmyuvvBK/+93vsGXLFvzHf/wHXn31VaxduxbxeHzc15t5DX/729/C5/NNmMIw6hqOty+0t7fD4/GcI5An2hv5a3L9Grm4FPkuhO5s2LAB+/fvnzBPuWLFCqxYsUL6/5UrV+KCCy7AAw88gB/96EdqX6Ys1q5dK/33woULsXz5ckybNg1PPPFETicVs/Gb3/wGa9euRWNjY8bXmGn97Ew0GsXnPvc5MMZw3333ZX2t2d7nn//856X/XrBgARYuXIjzzz8fW7duxUc/+lEdr0x5HnzwQXzxi1+c0CRu1DXMdV8wApaNjNTU1MDpdJ7jEO7o6EB9ff24X1NfXy/r9UbhlltuwXPPPYe//e1vmDJliqyvdbvdWLJkCY4dO6bS1SlHRUUFZs+enfFazbp+AHD69Gm8/PLLuOmmm2R9nZnWj6+DnDXK5z7WGy5ETp8+jc2bN2eNiozHRO9zo3HeeeehpqYm4/WacQ0B4LXXXsPhw4dl35OAMdYw075QX1+PSCSC/v7+Ua+faG/kr8n1a+RiWTHi8XiwbNkybNmyRfpcIpHAli1bRp0s01mxYsWo1wPA5s2bM75ebxhjuOWWW/D000/jlVdewYwZM2R/j3g8jn379qGhoUGFK1SWwcFBHD9+POO1mm390nnooYdQW1uLq666StbXmWn9ZsyYgfr6+lFrFAgE8NZbb2Vco3zuYz3hQuTo0aN4+eWXUV1dLft7TPQ+NxpnzpxBT09Pxus12xpyfvOb32DZsmVYtGiR7K/Vcw0n2heWLVsGt9s9aj0OHz6M5ubmjOuRz72bz4Vblscee4x5vV62adMm9v7777N//Md/ZBUVFay9vZ0xxtiXvvQl9q//+q/S69944w3mcrnYf/3Xf7GDBw+yO++8k7ndbrZv3z69foWsfO1rX2N+v59t3bqVtbW1SR9DQ0PSa8b+jv/3//5f9tJLL7Hjx4+zXbt2sc9//vOsqKiIHThwQI9fISvf+ta32NatW9nJkyfZG2+8wVavXs1qampYZ2cnY8z868eJx+Ns6tSp7Dvf+c45/2a29QsGg2zPnj1sz549DAD7yU9+wvbs2SNVk/z4xz9mFRUV7Nlnn2Xvvfceu/rqq9mMGTPY8PCw9D0uv/xy9rOf/Uz6/4nuY6P8fpFIhH3yk59kU6ZMYXv37h11T4bD4Yy/30Tvc63J9jsGg0H2z//8z2zHjh3s5MmT7OWXX2ZLly5ls2bNYiMjI9L3MOsacgYGBlhJSQm77777xv0eRl7DXPaFr371q2zq1KnslVdeYTt37mQrVqxgK1asGPV95syZw5566inp/3O5dwvB0mKEMcZ+9rOfsalTpzKPx8Muvvhi9uabb0r/tmrVKnb99dePev0TTzzBZs+ezTweD7vwwgvZ888/r/EV5w6AcT8eeugh6TVjf8fbbrtN+nvU1dWxv/u7v2O7d+/W/uJz4Nprr2UNDQ3M4/GwyZMns2uvvZYdO3ZM+nezrx/npZdeYgDY4cOHz/k3s63f3/72t3Hfk/x3SCQS7Pvf/z6rq6tjXq+XffSjHz3n9542bRq78847R30u232sJdl+v5MnT2a8J//2t79J32Ps7zfR+1xrsv2OQ0ND7IorrmCTJk1ibrebTZs2jd18883niAqzriHngQceYMXFxay/v3/c72HkNcxlXxgeHmZf//rXWWVlJSspKWGf+tSnWFtb2znfJ/1rcrl3C0FI/lCCIAiCIAhdsKxnhCAIgiAIc0BihCAIgiAIXSExQhAEQRCErpAYIQiCIAhCV0iMEARBEAShKyRGCIIgCILQFRIjBEEQBEHoCokRgiAIgiB0hcQIQRAEQRC6QmKEIAiCIAhdITFCEARBEISu/P+oGOKQF6FigQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "alpha = 2.0\n", + "main(alpha)\n", + "\n", + "start = time.time()\n", + "sol = main(alpha)\n", + "end = time.time()\n", + "print(f\"Integration took in {end - start} seconds.\")\n", + "\n", + "plt.plot(sol.ts, sol.ys)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also change the `alpha` term and see its influence on the dynamics." + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Integration took in 0.000225067138671875 seconds.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHoklEQVR4nO3deXxU1d0G8OfOnnVC9hUS9j0gSgy4ACIQaJTaV3FpQVHrEi1K66tUhdq+NW2t1toiVCuiVRS1gAtUi6yyyxJlh5BAAtkTMpNMkpnJzH3/mIVEsk2YO3cmeb6fz3zCTO6de643cZ6c8zvnCqIoiiAiIiKSiULuBhAREVHvxjBCREREsmIYISIiIlkxjBAREZGsGEaIiIhIVgwjREREJCuGESIiIpIVwwgRERHJSiV3A7rCbrejpKQEYWFhEARB7uYQERFRF4iiiLq6OiQmJkKhaL//IyDCSElJCVJSUuRuBhEREXVDcXExkpOT2/1+QISRsLAwAI6TCQ8Pl7k1RERE1BVGoxEpKSnuz/H2BEQYcQ3NhIeHM4wQEREFmM5KLFjASkRERLJiGCEiIiJZMYwQERGRrBhGiIiISFYMI0RERCQrhhEiIiKSFcMIERERyYphhIiIiGTFMEJERESy8iiM5Obm4pprrkFYWBhiY2Mxe/ZsnDx5stP9Pv74YwwdOhQ6nQ6jRo3Chg0but1gIiIi6lk8CiPbtm1DTk4O9uzZg40bN8JqtWLatGkwmUzt7rNr1y7cdddduP/++3Ho0CHMnj0bs2fPxpEjR6648URERBT4BFEUxe7uXFlZidjYWGzbtg033HBDm9vMmTMHJpMJX3zxhfu1a6+9FmPGjMHy5cu7dByj0Qi9Xg+DwcB70xAREQWIrn5+X1HNiMFgAABERka2u83u3bsxderUVq9Nnz4du3fvbncfs9kMo9HY6iGFNQfPY8mnR7C3oFqS9yciIqLOdTuM2O12PPHEE5g4cSJGjhzZ7nZlZWWIi4tr9VpcXBzKysra3Sc3Nxd6vd79SElJ6W4zO7TlZCXe2X0OR0qkCTtERETUuW6HkZycHBw5cgQffvihN9sDAFi0aBEMBoP7UVxc7PVjAECoVgkAMJmbJXl/IiIi6pyqOzs99thj+OKLL7B9+3YkJyd3uG18fDzKy8tbvVZeXo74+Ph299FqtdBqtd1pmkdCtY7TZxghIiKSj0c9I6Io4rHHHsPatWuxefNmpKWldbpPZmYmNm3a1Oq1jRs3IjMz07OWSiDEGUbqGUaIiIhk41HPSE5ODlatWoVPP/0UYWFh7roPvV6PoKAgAMDcuXORlJSE3NxcAMCCBQtw44034uWXX8asWbPw4YcfYv/+/XjjjTe8fCqeY88IERGR/DzqGVm2bBkMBgMmTZqEhIQE92P16tXubYqKilBaWup+PmHCBKxatQpvvPEG0tPT8cknn2DdunUdFr36CntGiIiI5OdRz0hXliTZunXrZa/dfvvtuP322z05lE8wjBAREcmvV9+b5tJsGpvMLSEiIuq9enkYUQNgzQgREZGcenUYCXH2jHCYhoiISD69OoxwNg0REZH8enUYcRWwmiw22O3dvl8gERERXYFeHUZcPSMAYLKwd4SIiEgOvTqMaFUKKBUCAM6oISIikkuvDiOCILh7R1jESkREJI9eHUYAFrESERHJrdeHEU7vJSIikhfDCIdpiIiIZNXrwwiHaYiIiOTV68NIiIZhhIiISE4MI+5hGk7tJSIikkOvDyNhOvaMEBERyanXhxHOpiEiIpIXwwhn0xAREcmq14cRzqYhIiKSV68PI67ZNOwZISIikgfDCHtGiIiIZNXrw4hrNg17RoiIiOTR68PIpZ4RrjNCREQkh14fRkI5tZeIiEhWvT6MtKwZEUVR5tYQERH1PgwjzjDSbBdhbrbL3BoiIqLeh2HEObUX4IwaIiIiOfT6MKJUCAjWsG6EiIhILr0+jABcEp6IiEhODCNouSQ8p/cSERH5GsMILt25lzUjREREvscwAt6fhoiISE4MI+Cde4mIiOTEMAIWsBIREcmJYQRAKG+WR0REJBuGEXCYhoiISE4eh5Ht27cjOzsbiYmJEAQB69at63Sf999/H+np6QgODkZCQgLmz5+P6urq7rRXEpcKWDm1l4iIyNc8DiMmkwnp6elYunRpl7bfuXMn5s6di/vvvx9Hjx7Fxx9/jH379uHBBx/0uLFS4dReIiIi+ag636S1rKwsZGVldXn73bt3IzU1Fb/4xS8AAGlpaXjooYfwxz/+0dNDSyaMNSNERESykbxmJDMzE8XFxdiwYQNEUUR5eTk++eQTzJw5U+pDd1moVg0AqG9iGCEiIvI1ycPIxIkT8f7772POnDnQaDSIj4+HXq/vcJjHbDbDaDS2ekjJNZvG2GSV9DhERER0OcnDyLFjx7BgwQIsXrwYBw4cwJdffomzZ8/i4Ycfbnef3Nxc6PV69yMlJUXSNnKYhoiISD6Sh5Hc3FxMnDgRTz31FEaPHo3p06fj9ddfx4oVK1BaWtrmPosWLYLBYHA/iouLJW1jmHNqbx2HaYiIiHzO4wJWTzU0NEClan0YpdIxe0UUxTb30Wq10Gq1UjfNLUznrBkxN0MURQiC4LNjExER9XYe94zU19cjLy8PeXl5AIDCwkLk5eWhqKgIgKNXY+7cue7ts7OzsWbNGixbtgwFBQXYuXMnfvGLX2D8+PFITEz0zllcIdcwjc0uotHKtUaIiIh8yeOekf3792Py5Mnu5wsXLgQAzJs3DytXrkRpaak7mADAvffei7q6Ovz973/HL3/5S0RERGDKlCl+NbU3WKOEQgDsomNGTbBG8g4jIiIichLE9sZK/IjRaIRer4fBYEB4eLgkxxj9m69gbGrG1wtvxMDYUEmOQURE1Jt09fOb96Zxalk3QkRERL7DMOLkqhup41ojREREPsUw4hTK6b1ERESyYBhxci98xjBCRETkUwwjTqHOmhEuCU9ERORbDCNOXBKeiIhIHgwjTlwSnoiISB4MI06sGSEiIpIHw4iTa52ROjNrRoiIiHyJYcSJU3uJiIjkwTDidGnRM4YRIiIiX2IYcQrlbBoiIiJZMIw4hbtqRrjOCBERkU8xjDixZoSIiEgeDCNOrpqRBosNNrsoc2uIiIh6D4YRJ1fNCMC1RoiIiHyJYcRJq1JCo3L85+BaI0RERL7DMNICl4QnIiLyPYaRFnizPCIiIt9jGGkhjNN7iYiIfI5hpAVO7yUiIvI9hpEWuCQ8ERGR7zGMtBDKMEJERORzDCMtuJaEr+fUXiIiIp9hGGmBNSNERES+xzDSgntqL8MIERGRzzCMtOCqGTEyjBAREfkMw0gLYawZISIi8jmGkRa4HDwREZHvMYy0wOXgiYiIfI9hpIVLy8EzjBAREfkKw0gLlxY9s0IURZlbQ0RE1DswjLQQ7gwjVpuIJqtd5tYQERH1DgwjLYRqVVAIjn8beedeIiIin2AYaUEQBIQHOepGjI0MI0RERL7gcRjZvn07srOzkZiYCEEQsG7duk73MZvNePbZZ9GvXz9otVqkpqZixYoV3Wmv5Fz3p2HPCBERkW+oPN3BZDIhPT0d8+fPx2233dalfe644w6Ul5fjrbfewsCBA1FaWgq73T9rMsKDnKuwNnJGDRERkS94HEaysrKQlZXV5e2//PJLbNu2DQUFBYiMjAQApKamenpYn2HPCBERkW9JXjPy2Wef4eqrr8af/vQnJCUlYfDgwfjVr36FxsZGqQ/dLe4wwpoRIiIin/C4Z8RTBQUF2LFjB3Q6HdauXYuqqio8+uijqK6uxttvv93mPmazGWaz2f3caDRK3Uw39zANFz4jIiLyCcl7Rux2OwRBwPvvv4/x48dj5syZeOWVV/DOO++02zuSm5sLvV7vfqSkpEjdTDf2jBAREfmW5GEkISEBSUlJ0Ov17teGDRsGURRx/vz5NvdZtGgRDAaD+1FcXCx1M93cU3tZM0JEROQTkoeRiRMnoqSkBPX19e7XTp06BYVCgeTk5Db30Wq1CA8Pb/XwFdcqrJxNQ0RE5Bseh5H6+nrk5eUhLy8PAFBYWIi8vDwUFRUBcPRqzJ0717393XffjaioKNx33304duwYtm/fjqeeegrz589HUFCQd87Ci9gzQkRE5Fseh5H9+/dj7NixGDt2LABg4cKFGDt2LBYvXgwAKC0tdQcTAAgNDcXGjRtRW1uLq6++Gvfccw+ys7Px2muveekUvEvPFViJiIh8yuPZNJMmTerwjrYrV6687LWhQ4di48aNnh5KFpd6RjhMQ0RE5Au8N80PcDYNERGRbzGM/IBrnRFDo7XDHiAiIiLyDoaRH3D1jDTbRTRabTK3hoiIqOdjGPmBYI0SSoUAgNN7iYiIfIFh5AcEQbi01gin9xIREUmOYaQN4ZzeS0RE5DMMI21wz6hhzwgREZHkGEba4L5zL2tGiIiIJMcw0gb2jBAREfkOw0gbuPAZERGR7zCMtEEfzCXhiYiIfIVhpA3uqb3sGSEiIpIcw0gbLt0sj2GEiIhIagwjbbhUM8JhGiIiIqkxjLTBPbWXPSNERESSYxhpA2fTEBER+Q7DSBtcNSMGhhEiIiLJMYy04dKiZ80QRVHm1hAREfVsDCNtcNWM2OwiGiw2mVtDRETUszGMtCFIrYRKIQBgESsREZHUGEbaIAjCpbVGOL2XiIhIUgwj7dCziJWIiMgnGEbawRk1REREvsEw0o4IZxipbbDI3BIiIqKejWGkHRHB7BkhIiLyBYaRdrBmhIiIyDcYRtpxaZiGYYSIiEhKDCPt0AdrAAC17BkhIiKSFMNIO1jASkRE5BsMI+1wFbDyzr1ERETSYhhph6uAlcM0RERE0mIYaYerZ4QFrERERNJiGGmHPshRwGpsssJuF2VuDRERUc/FMNIO1zCNKAJ1TbxZHhERkVQYRtqhUSkQrFECAGobOaOGiIhIKh6Hke3btyM7OxuJiYkQBAHr1q3r8r47d+6ESqXCmDFjPD2sLLjwGRERkfQ8DiMmkwnp6elYunSpR/vV1tZi7ty5uOmmmzw9pGy48BkREZH0VJ7ukJWVhaysLI8P9PDDD+Puu++GUqn0qDdFTlz4jIiISHo+qRl5++23UVBQgCVLlvjicF7Dhc+IiIik53HPiKdOnz6NZ555Bt988w1Uqq4dzmw2w2w2u58bjUapmtchPWtGiIiIJCdpz4jNZsPdd9+NF154AYMHD+7yfrm5udDr9e5HSkqKhK1snz6Yq7ASERFJTdIwUldXh/379+Oxxx6DSqWCSqXCb3/7W3z33XdQqVTYvHlzm/stWrQIBoPB/SguLpayme2KcC58xp4RIiIi6Ug6TBMeHo7Dhw+3eu3111/H5s2b8cknnyAtLa3N/bRaLbRarZRN6xJXzYiBPSNERESS8TiM1NfXIz8/3/28sLAQeXl5iIyMRN++fbFo0SJcuHAB7777LhQKBUaOHNlq/9jYWOh0uste90eumhEDFz0jIiKSjMdhZP/+/Zg8ebL7+cKFCwEA8+bNw8qVK1FaWoqioiLvtVBGXPSMiIhIeoIoin5/Fzij0Qi9Xg+DwYDw8HCfHfdoiQGzXtuBmDAtvn12qs+OS0RE1BN09fOb96bpQIRzBVZDgxUBkNmIiIgCEsNIB1zDNBabHU1Wu8ytISIi6pkYRjoQrFFCpRAA8M69REREUmEY6YAgCO7pvSxiJSIikgbDSCe4JDwREZG0GEY64S5i5TANERGRJBhGOnFp4TP2jBAREUmBYaQTXPiMiIhIWgwjnXDdubemgcM0REREUmAY6USks2ak1sSeESIiIikwjHSiT4gjjFxkzwgREZEkGEY6EckwQkREJCmGkU64Fj2rMTGMEBERSYFhpBOunhHOpiEiIpIGw0gnXAWsFxsssNt5514iIiJvYxjphGsFVrsIGJvYO0JERORtDCOd0KgUCNWqAAAXOVRDRETkdQwjXdAnhEWsREREUmEY6YI+rroRhhEiIiKvYxjpgj7BXGuEiIhIKgwjXcCFz4iIiKTDMNIFlxY+YwErERGRtzGMdEEka0aIiIgkwzDSBbxZHhERkXQYRrqABaxERETSYRjpAq4zQkREJB2GkS7gzfKIiIikwzDSBX14szwiIiLJMIx0gWtqL2+WR0RE5H0MI12gVSl5szwiIiKJMIx00aWFz1jESkRE5E0MI13kXhKeYYSIiMirGEa6iGuNEBERSYNhpIt4szwiIiJpMIx0EW+WR0REJA2Pw8j27duRnZ2NxMRECIKAdevWdbj9mjVrcPPNNyMmJgbh4eHIzMzEV1991d32yoY3yyMiIpKGx2HEZDIhPT0dS5cu7dL227dvx80334wNGzbgwIEDmDx5MrKzs3Ho0CGPGysn3iyPiIhIGipPd8jKykJWVlaXt3/11VdbPX/xxRfx6aef4vPPP8fYsWM9PbxsXAWsnNpLRETkXT6vGbHb7airq0NkZKSvD31FokIZRoiIiKTgcc/Ilfrzn/+M+vp63HHHHe1uYzabYTab3c+NRqMvmtahKOcwTTXDiFcdKzHizW8KUFhlgrHRivAgNWaNSkB2eiLi9Tq5m0dERD7g0zCyatUqvPDCC/j0008RGxvb7na5ubl44YUXfNiyzkWFagEAhkYrLM12aFSciHQlKuqa8MLnx7D++9LLvpdXXIs/fHkCj08ZiMenDIJSIcjQQiIi8hWfhZEPP/wQDzzwAD7++GNMnTq1w20XLVqEhQsXup8bjUakpKRI3cQORQSpoRAcN8u72GBBXDj/au+uktpG3PPPvSisMgEAstMTMWtUAiKC1civqMe6Qxew/9xFvPr1aewpqMZrd45FLP97ExH1WD4JIx988AHmz5+PDz/8ELNmzep0e61WC61W64OWdZ1CISAyRIuqejOq6s0MI91UXNOAu97cg/MXG5EUEYQ35o7DiES9+/vX9o/CT6/thzUHz+O5dUewp6AGd725Bx8/PMG98BwREfUsHo811NfXIy8vD3l5eQCAwsJC5OXloaioCICjV2Pu3Lnu7VetWoW5c+fi5ZdfRkZGBsrKylBWVgaDweCdM/AhV90Ii1i7p8lqw/yV3+L8xUakRgXjo4czWwWRlm67KhmfP34dEvQ6nKk04b6V38JkbvZxi4mIyBc8DiP79+/H2LFj3dNyFy5ciLFjx2Lx4sUAgNLSUncwAYA33ngDzc3NyMnJQUJCgvuxYMECL52C77hm1FTXM4x0x+/XH8fpinrEhGmx+qFMJEUEdbj9gJhQ/Ov+8egTrMZ3xbV49P2DsNtFH7WWiIh8xeNhmkmTJkEU2/9AWLlyZavnW7du9fQQfstVxFpVb+5kS/qhr4+V4197zgEAXr49vcvDXANjw/D2feNx1xt7sO1UJd7aUYgHb+gvZVOJiMjHOCXEAxym6R5jkxVP//t7AMAD16XhhsExHu0/JiUCi7OHAwD+9NUJHC0JvCE+IiJqH8OIB9xrjXCYxiPLtp5BtcmC/jEheGrGkG69x53XpGDa8DhYbSJ+8cEhNFltXm4lERHJhWHEA65hmmoTh2m6qqS2ESt2FAIAFmUNg1al7Nb7CIKAP/xkNGLDtDhTacLybWe82UwiIpIRw4gHXFNLq9gz0mUv//cUzM12jE+LxNRh7S901xWRIRosyR4BAHh96xkUVTd4o4lERCQzhhEPRPP+NB45WVaHNYfOAwB+PXMYBOHKV1KdOSoeEwdGwdJsxwufH73i9yMiIvkxjHjAPUzD2TRd8sb2AogiMGNEPMakRHjlPQVBwAu3jIRaKWDTiQpsPlHulfclIiL5MIx4wLXOiMliYwFlJ8qNTfjsuwsAgIdu9O5U3IGxoZg/MQ0A8If/nICNa48QEQU0hhEPhGlVUCsdQw28e2/H3tl1FlabiKv79cHYvn28/v6PTh4IfZAap8rrsfbQBa+/PxER+Q7DiAcEQUBUCIdqOtNgacb7ex2r8Eq1QJk+SI1HJw0AAPxl4yn2VBERBTCGEQ9xSfjO/fvAeRgarUiNCsbUYXGSHWfehFQk6HW4UNuI95yruxIRUeBhGPHQpem97BlpiyiKWLWvGABw74RUKBVXPoOmPTq1Ek9MHQQAWL7tDHtHiIgCFMOIh6KdM2o4vbdtRy4YcbzUCI1KgR+PTZb8eLddlYzkPkGoqrfgw31Fne9ARER+h2HEQ+4l4RlG2rR6vyMQzBgRD32wWvLjqZUKPOKsHfnH9gKYm9k7QkQUaBhGPMQ797avyWrDp3klAIA7rk7x2XH/Z1wy4sK1KDU0Yc1BzqwhIgo0DCMe4s3y2vflkTLUNTUjKSIIEwZE+ey4WpUSD93g6B15fWs+rDa7z45NRERXjmHEQ1FcEr5dH+13FK7efnUyFBIWrrblrvF9ERWiQXFNIz5z9s4QEVFgYBjxEJeEb1uFsQm7C6oBAD+5SvrC1R8K0ijxwPWONU2Wbs3nqqxERAGEYcRDrmGaKpMFosgPPJf1h0shisDYvhFIiQyWpQ0/vbYv9EFqFFSa8J8jpbK0gYiIPMcw4iHXMI2l2Y46c7PMrfEfX3zv+PDPHp0oWxvCdGrcNzEVAPD3zfmws3eEiCggMIx4KFijQqhWBQCoquNQDQCcv9iAA+cuQhCAWaMTZG3LvRNSEapV4URZHTadqJC1LURE1DUMI90QE+aoG6lkGAEArHf2imSkRSIuXCdrWyKCNfjptf0AOGbWcCiNiMj/MYx0Q4yziLWSRawAgM+/d8xe+ZGMQzQtzb8uFRqVAoeKarGnoEbu5hARUScYRrqBPSOXFFU34MgFI5QKAVkj4+VuDgAgNkyHO652zOh5fWu+zK0hIqLOMIx0A8PIJf89VgbAMUTjmvbsDx66YQCUCgHfnK7C4fMGuZtDREQdYBjpBoaRS/57tBwAMG14nMwtaS0lMhjZzmLaZdvYO0JE5M8YRrqBNSMOVfVm7D/nqMm4eYR/DNG09MikgQCA/xwpw5nKeplbQ0RE7WEY6Qb2jDhsOl4OuwiMStIjKSJI7uZcZkh8GKYOi4UoAsu3npG7OURE1A6GkW5gGHHw1yGally9I2sPXUBJbaPMrSEiorao5G5AIHKFkWqTBTa7CKWPbwrnD0zmZnyTXwUAmOaHQzQu4/r1QUZaJPYW1uDNbwqwJHuE3E0KGKIoosZkwdlqEyqMZtSZm2G22qBRKaBTKxEXrkNSRBAS9DqolPy7hoi6j2GkGyJDNBAEwGYXcbHBgmg/mkXiK9+croSl2Y5+UcEYHBcqd3M69OjkgdhbuA8f7ivG41MGIdJ5fyG6XH5FPTYdL8e3Z2tw4NxFXGywdrqPTq3A0PhwpCfrkTkgGtf2j0REMP8bE1HXMYx0g1qpQGSwBtUmCyrrzL0yjGw5UQkAmDI0FoLg3z1DNwyKxojEcBwtMWLlzkIsnDZE7ib5lYsmC1bvL8aag+dxqvzyQt+kiCDE63UI06mgUylhsdlhMjejos6MC7WNaLLakVdci7ziWryz+xwUAjBhQDR+NDoBM0bGM5gQUacYRropJkzrDiPD5L0di8+JoohtpxxhZNKQWJlb0zlBEPDopIHIWXUQK3edxc9vHOC+v1BvVlzTgKVb8rH20AWYm+0AALVSwIQB0bhuYDTGpfbB8IRw6NTKdt/DbhdxttqEIyVG7D9bg535VThTacKO/CrsyK/Cc+uO4LpB0fjx2CTMGBkPrar99yKi3ov/R+6mmDAtTpTV9coi1hNldSgzNkGnViAjLVLu5nTJjJHx6B8dgoIqE1btPYef3zBA7ibJ5qLJgr98fQof7CuC1ea4d8+IxHDMzeyHGSMSoA9Wd/m9FAoB/WNC0T8mFLekO24HcK7ahC++L8UX35fieKkRW09WYuvJSkSFaHDHNSm4e3xfpEQGS3JuRBSYGEa6qTevNbL1pKNXJLN/VId/NfsTpULAQzf2x9P/Pox/flOIuZmpAdN2b7HbRXy0vxh//PKEuxZk4sAoPDF1MK7u18drw239okKQM3kgciYPxJnKenyWV4KP9hej1NCEZVvPYPm2M5gyJBb3TkzFdQOj/X6Yj4ikxzDSTb15eu+2UxUAAmOIpqUfj03GX78+jRJDEz7YV4T7JqbJ3SSfKa5pwFOffOe+ceDQ+DAszh6OCQOiJT3ugJhQPHnzYDw+ZSA2najAe3vO4ZvTVdh0ogKbTlRgcFwo5k9Mw+yxSb0uHBLRJZyP1029NYzUNVmx/+xFAMCkITEyt8YzGpUCOVMc6468vvUMmqw2mVvkG2sOnkfWX7/BnoIaBKmVeG7WMHzx+HWSB5GWVEoFpo+Ix7/uz8CWX03CvRNSEaJR4lR5PZ5ZcxgT/rAZL//3JCqMTT5rExH5D497RrZv346XXnoJBw4cQGlpKdauXYvZs2d3uM/WrVuxcOFCHD16FCkpKXjuuedw7733drPJ/qG3hpGd+dVototIiw5Bv6gQuZvjsdvHpeD1LWdwobYR7+05hweu7y93kyRjbrbht58fw/t7iwA41lx5+fZ0pEbLe93SokPwm1tGYOG0wfjo22K8vfMsLtQ24m+b87F82xlkpydi/sQ0jEzSy9rOnqrB0gxDoxV1Tc2oa7LC2NgMk6UZlma742FzfAUcw5tKhQBBEKBRCgjWqBCqVSFYo0SIVuV8KBGuU7Nni66Ix2HEZDIhPT0d8+fPx2233dbp9oWFhZg1axYefvhhvP/++9i0aRMeeOABJCQkYPr06d1qtD/orTUjriGaGwcHVq+Ii0alwONTBuKZNYexfFsB7snohyBNz/ufaKmhEY+8dxB5xbUQBGDBTYPw+JRBfrVAX7hOjQeu7497J6Tiv8fKsWJHIfafu4g1By9gzcELyEiLxP3XpeGmYXF+1W5/12BpRkGlCWcq65FfUY/zFxtRbmxyPsyoNzdLctwgtRJ9gtWICNagT4jja2SwptVrfYI17kdEiBphWhVrhghAN8JIVlYWsrKyurz98uXLkZaWhpdffhkAMGzYMOzYsQN/+ctfAjuM9MKeEVEU3cWrgTZE09JPxiVj6dZ8FNc04u1dhXjUuWR8T7ErvwqPf3AI1SYL9EFqvHrnGEz24/oelVKBmaMSMHNUAvKKa7FiRyE2HC7F3sIa7C2sQb+oYPw0ox9+fFVSr1zTpz3mZhvyK+pxqrwOJ8rqcKqsDqfK63GhC7c9UCoEhOtUCNOpER6kQrBGBa1KAY1SAY1KAbVzRV2bKEIURdjsIizNdjRYbDBZmtFgdnw1Ob+KItBotaHRYEOJoetDbSqF4AgqwY6gEhGsRmSIpsPXIoI1DKceEEURJosNhkYrahssMDRaYWiwOp43Or82WGFstOLBG/pjTEqELO2UvIB19+7dmDp1aqvXpk+fjieeeKLdfcxmM8zmSx/yRqNRquZ1myuMGBqtMDfbesX6CafK61FqaIJWpcC1/aPkbk63qZUKLLx5MJ5c/R2WbT2Du67piz49ZFXW9/eew/PrjsAuAsMTwrH8p+PQNypwptGOSYnAa3eNxaKZQ/Hu7nNYtbcI56ob8PsNx/HHL0/gpmGxuOPqFNw4OKbXLEHfZLWhqKYBBZUmnCqvw8myOpwsr0NhlQk2u9jmPpEhGgyMCcWAWMdwany4DrHhWsSF6xAbpkWoF3skRFFEnbkZtSYrLjZYLj1Mjg+/iw1W1DRYHP92vlbTYEGT1Y5mu4iqejOqPOxhDtepWoeWEA2iQjSIDNE6v2rcr4XqHENLWpUioHthLM12R5BotLgDRMuvBnewsLiDhtH5/eZ2fk5+aNqIuJ4bRsrKyhAX1/pGanFxcTAajWhsbERQ0OV3e83NzcULL7wgddOuiD5IDY1SAYvNjup6CxL98K613rb1pGOI5toAmtLbnlvTk/Dm9kIcKzXi71vy8fyPhsvdpCsiiiJe/fo0/rrpNADgtrFJePG2UQF7nRL0QXh6xlA8PmUg1h0qwer9xfiuuBZfHS3HV0fLEROmxbThcbh5eBwyB0QF/B8D5mYbimsacLaqAWerTSisMuFstQlnqxpQYmiE2M5nSbhOhaHx4RgcH4oh8eEYEheGgbGhPr3lgSAICNepEa5TexR8m6y2VqGlxhlcak2Or5eCjfP7JgvqmhxDTMamZhibmoHqhi4fT6kQEKJRIkynRohWiWCNChqVAlpnT5CrV8j9ULb+qlIKUAqOGhqVQoBSqXB8dT1v9e/W3xMEAVabHWZ3XY4NZqujPqfJakN9UzPqzM2ob2pGvbnZUc9jbkZ9k9X9vMFyZQX3GqUC+mA19EFqRAQ5vl56roE+SCVrnZZfTu1dtGgRFi5c6H5uNBqRkpIiY4suJwgCYsK0uFDbiMo6c68II5dWXQ3cIRoXhULAM1lDMXfFPry7+yzunZAasAtx2ewinlt3BB/scxSq/mLKQDx58+CA/ivQJVijwt0ZfXF3Rl+cLKvDR/uLsfbQBVTWmfH+3iK8v7cIoVoVbhwSgxsHxeCqfhHoHx0KhR9149udf/2XGJpQWtuIEkMTSmobUWpoREltE0oNjaioM7cbOAAgTKtCanQIBsWFYmh8GAbHhWFofDjiwrUBe511aiUS9EFI0Hf9/53NNjtqG13hxBlYTI4gU1Pv/GpyPKrrHWHG9SFus4uXQkyAEgRHrZU+SI0IZ5BwPSJaBovgy1/Tqf27Z0jyMBIfH4/y8vJWr5WXlyM8PLzNXhEA0Gq10Gr9f2w42hlGynvBdMR6czO+PetYoyLQ1hdpzw2DY3DdwGjsyK/CH/5zAkvvuUruJnmsyWrDLz44hP8eK4cgAL+9dSR+dm0/uZsliSHxYXj+R8Px9Iyh2HWmChuPlWPjsXJU1Jmx/vtSrP++FICj13Js3wiMTemD/jEh6BcVjH5RIdAHdX1l2fZYmh335ak3O2ag1DU1o7re9QFoRnWLD8Jq52s1Jot7pduOhGiUSI0OcTyigpEaFYI05/OoEI1ff5D4ikqpQHSo1qPaIZtddNa3NDuvnQ0ms6OnwdVL4fgqXppR5Hzd6nzN3GyHze4YVrK1eDS3+mq//HWbc1tRhFrp6IVx9cZc+rcSYc6hpFCdCmHur2r3EFOYToWIIA3CdCq/CtreJHkYyczMxIYNG1q9tnHjRmRmZkp9aMnFOetGyntBEeuu/CpYbSL6RQUjTeapod7065nD8KO/fYP1h0txT34VJgz03dobV8rQYMUD736Lb89ehEalwGt3jsGMkT3/RkkalQKThsRi0pBY/O7Wkfj+ggFfHyvHvrM1+P58LQyNVvcS9C1FBKvd9RKhOjVCtUoEqVWwiyIsNjuabXY020RY7SKanV3q7uBhdhRrWmz2brVZIQBx4Tok6HVIiAhCol6HBH0QEiNcX4MQHcrAIQVHsa5jGIn8l8dhpL6+Hvn5+e7nhYWFyMvLQ2RkJPr27YtFixbhwoULePfddwEADz/8MP7+97/jf//3fzF//nxs3rwZH330EdavX++9s5BJXLgOAHrFQk1bXUM0ATqltz3DE8Px02v74d3d57Dks6PYsOB690wCf1ZqaMS8FftwqrweYToV3px7dUAXFXeXQiFgTEqEu+jOarPjeKkRB89dxOELRhTVmHC2ugGVdWbUNjiK+bxBq1K4/5KNdBdPXiqgjArVOF/XIipUg9gwba8puCXqDo/DyP79+zF58mT3c1dtx7x587By5UqUlpaiqKjI/f20tDSsX78eTz75JP76178iOTkZ//znPwN6Wq9LvN4RRso8mMoWiERRxLaTgXOXXk/98uYh+OL7UpyuqMc7u876/UJop8vrMG/FPpQYmhAbpsW794/H0PhwuZvlF9RKBUYnR2B0ckSr103mZhTVNOCiydKqULDBYoNKIUClFKBSKqBRClApHMWKWpXCvbBXqOurRoVgrTIgAitRIPE4jEyaNAliB5VWK1eubHOfQ4cOeXoov+fqGSnr4T0j56obcKG2EWqlgIz+gXGXXk/og9V4esYQPP3vw3hl4ylMHxHvt8WsB87VYP7K/TA0WtE/JgTvzh+P5D7+2VZ/EqJVYVgCAxuRv2K8vwJx4Y6akQpjz64Z2ZFfBQC4qm8fBGv8cgLWFbt9XArGp0WiwWLDM2u+7zBwy2XjsXLc/eZeGBqtGJMSgU8ensAgQkQ9AsPIFYjvJT0jO51h5PpBgVPc6SmFQsCffjIaOrUCO/Or8cG+Yrmb1MqH+4rw0L/2w9xsx+QhMVj1YIZP15IgIpISw8gViHWGEUOjtcfeAdZmF7HrTDUAYGIAzTTpjtToEDw1fSgA4Pfrj6GwyiRzixz1On/9+jSeWXMYdhH4n3HJeGPu1T22h4qIeieGkSsQrlMhyLnCZU9da+RoiQGGRivCdCqM6gV3Ub13QirGp0XCZLEh5/2DsoZMS7Mdv/z4O/zl61MAgEcmDcBL/zOaxZNE1OPw/2pXQBAEd91IT51R46oXyewf1SumJioVAl67cywiQzQ4VmrEb784Jks7ahssmLtiL9YcvAClQsD/zR6Jp2cM5ToURNQj9fxPF4m5ZtT01IXPXPUi1/XgepEfitfr8OqcMRAEYNXeIvcy675yrtqE25btwp6CGoRqVXhr3tX4aQ9dVZWICGAYuWKutUbKe2DPSJPVhm/PXgTQ8+tFfuiGwTFYcNMgAMCzaw9j47HyTvbwjp35Vfjx67tQUGlCol6HTx7J7JFruxARtcQwcoV68loj356tgaXZjgS9Dv170BLwXbXgpkG4fVwy7CLw2KqD7nvzSMFuF7F0Sz5+9tZe1JgsGJkUjrU5E7mYGRH1CgwjV8g9TNMDw4irXmTiwOheWasgCAJevG0UJg+JgbnZjp+9tRebT3i/h6TU0Ii5K/bhpa9Owi4Ct49LxicPT3D/bBER9XQMI1fIVcDaE8OIu16klw3RtKRWKrD0nqswaUgMmqx2PPjuAXy4r8gri6KJooh/HziP6X/Zjh35VdCpFfjDbaPw0u3p0DlnaRER9QYMI1co3t0z0rMKWGtMFhwtMQIAJgzsfTdgaylY47gR3Y/HJsFmF/HMmsN4/INDMFzBTdeOXDDg9uW78cuPv4OxqRnpyXqs/8X1uHN8Xy+2nIgoMHDlpCvUsmZEFMUeM5yx+0w1RBEYEheG2DAOF6iVCrx8ezoGxITg1a9P44vvS7GvsAaPTRmIOdekQKvqvCdDFEV8d96ApVvy3QWxQWolHr9pIB68vj/XDyGiXoth5ArFOodpLM121DZY0aeHLNHdsl6EHBQKAY9NGYTrB8XgydV5KKgyYfGnR/H6ljO4ZUwipg2Pw8gkfashliarDUdLjNhTUI1P8y7gVHk9AEAQgOzRiXgmaygSI4LkOiUiIr/AMHKFtColIkM0qDFZUF7X1GPCyKX1RXr3EE1b0lMi8J8nrsdH3xZj6ZYzKDM24Y3tBXhjewEARx1RkFqJBosNNSYLmu2X6ks0SgV+lJ6ARycNxMDYULlOgYjIrzCMeEFsmBY1JgvKDE09YipmUXUDimoaoFIIyEhjGGmLVqXEzzJTcfvVKdh8ogL/PVqGLScrYWi0XlY/FB2qQXpyBKaPiMf0kfHQB6llajURkX9iGPGCeL0OJ8rqesyMmp1nHL0iY/tGIETLH5GO6NRKzByVgJmjEiCKIi42WFFU04Bmmx1BGkevWXy4rsfUEhERSYGfNF7Q02bUsF6kewRBQGSIBpE9ZKiOiMhXWL7vBa4ZNaU9YEl4u13ELq4vQkREPsQw4gWJEa4w0ihzS67csVIjLjZYEaJRIj0lQu7mEBFRL8Aw4gWuqZkltYEfRnY560Wu7R/FdS+IiMgn+GnjBQl6RxgprQ38YZod+dUAgAkcoiEiIh9hGPEC1zBNnbkZxqbuLxEuN3OzDfsKHWGE9SJEROQrDCNeEKxRISLYsXZEIPeOHDxXiyarHdGhWgyO44JcRETkGwwjXuIaqgnkuhFXvch1A6O4LgYREfkMw4iXJDmHakoCeEaNa30R1osQEZEvMYx4SaD3jBibrPiuuBYAFzsjIiLfYhjxEtf03kCtGdlzphp2EegfHYIk3kWWiIh8iGHES1wzai4EaM/ITi4BT0REMmEY8RJ3z0iALgm/84xjSu/EgbxLLxER+RbDiJck6C8tCW+3izK3xjNlhibkV9RDEIDM/uwZISIi32IY8ZK4cB0UAmC1iagyBdbde11DNKOT9NA710shIiLyFYYRL1ErFYgNc07vDbAi1p2c0ktERDJiGPEi9917A6iIVRRF7HQvdsYwQkREvscw4kUJziLWQJpRc6ayHuVGM7QqBcb16yN3c4iIqBdiGPGipACcUbPjtKNX5JrUSOjUSplbQ0REvVG3wsjSpUuRmpoKnU6HjIwM7Nu3r8PtX331VQwZMgRBQUFISUnBk08+iaamwPnA7irXjJpAWoV1R75jSu8ETuklIiKZeBxGVq9ejYULF2LJkiU4ePAg0tPTMX36dFRUVLS5/apVq/DMM89gyZIlOH78ON566y2sXr0av/71r6+48f4m0JaEb7bZsbfAEUZYL0JERHLxOIy88sorePDBB3Hfffdh+PDhWL58OYKDg7FixYo2t9+1axcmTpyIu+++G6mpqZg2bRruuuuuTntTAlFyn8CqGfn+ggF15mbog9QYkaiXuzlERNRLeRRGLBYLDhw4gKlTp156A4UCU6dOxe7du9vcZ8KECThw4IA7fBQUFGDDhg2YOXNmu8cxm80wGo2tHoEgpU8wAKCq3oIGS7PMrencTme9yIQBUVAqBJlbQ0REvZVHYaSqqgo2mw1xcXGtXo+Li0NZWVmb+9x999347W9/i+uuuw5qtRoDBgzApEmTOhymyc3NhV6vdz9SUlI8aaZs9MFqhOlUAIALF/2/d2QH1xchIiI/IPlsmq1bt+LFF1/E66+/joMHD2LNmjVYv349fve737W7z6JFi2AwGNyP4uJiqZvpNcnO3pHiiw0yt6RjDZZmHCy6CID1IkREJC+VJxtHR0dDqVSivLy81evl5eWIj49vc5/nn38eP/vZz/DAAw8AAEaNGgWTyYSf//znePbZZ6FQXJ6HtFottFqtJ03zGyl9gnC81Ijzft4zsregBlabiKSIIKRGBcvdHCIi6sU86hnRaDQYN24cNm3a5H7Nbrdj06ZNyMzMbHOfhoaGywKHUulYz0IUA+uGcl2REunsGanx756RbacqAQA3DI6BILBehIiI5ONRzwgALFy4EPPmzcPVV1+N8ePH49VXX4XJZMJ9990HAJg7dy6SkpKQm5sLAMjOzsYrr7yCsWPHIiMjA/n5+Xj++eeRnZ3tDiU9iWtGTXGNf/eMbD3pmIp94+AYmVtCRES9ncdhZM6cOaisrMTixYtRVlaGMWPG4Msvv3QXtRYVFbXqCXnuuecgCAKee+45XLhwATExMcjOzsbvf/97752FH3HNqDlf6789I2erTDhb3QCVQsBELnZGREQyE8QAGCsxGo3Q6/UwGAwIDw+XuzkdOlFmxIxXv4E+SI3vlkyTuzltemfXWSz57Cgy0iKx+qG2h9eIiIiuVFc/v3lvGi9z9YwYGq0wNlllbk3bXPUik4bEytwSIiIihhGvC9GqEBmiAQCc98O6kSarDbvOONYXmTSE9SJERCQ/hhEJuItY/XCtkX2FNWiy2hEXrsXQ+DC5m0NERMQwIgV3EasfrjXiGqK5kVN6iYjITzCMSCA50jW91/96Ri5N6WW9CBER+QeGEQkk+2nPSHFNA85UmqBUCLhuEJeAJyIi/8AwIoEUZ83IeT+rGXEN0YxNiYA+SC1za4iIiBwYRiTgvlleTYNfLXm/9aRrSi9n0RARkf9gGJGAazaNyWJDjckic2scLM32FlN6WS9CRET+g2FEAjq1EkkRjkBSWGWSuTUO+8/WoMFiQ3SoBsMT/HsVWyIi6l0YRiTSPyYEAHCmsl7mlji0vEuvQsEpvURE5D8YRiQyICYUAHCm0j96Rjaf4F16iYjIPzGMSGRArDOMVMjfM3K2yoTTFfVQKQTWixARkd9hGJHIAD8apvn6eDkAIKN/JKf0EhGR32EYkchA5zBNUU0DzM02Wduy8ZgjjEwdFidrO4iIiNrCMCKRmDAtwrQq2EXgbJV8i59dNFnw7dkaAAwjRETknxhGJCIIwqW6ERmHaracrIBdBIbGhyElMli2dhAREbWHYURC7hk1MhaxuoZopg1nrwgREfknhhEJDYiVt4i1yWrDduf6IlMZRoiIyE8xjEhI7rVGvjldBZPFhgS9DqOS9LK0gYiIqDMMIxK6FEbqZblh3n8OlwIAskYmQBC46ioREfknhhEJ9YsKhkohoMFiQ5mxyafHNjfb3PUiM0fF+/TYREREnmAYkZBaqUDfKMcMlnwfF7HuzK9CnbkZceFaXNW3j0+PTURE5AmGEYkNjg0DABwvNfr0uBsOlwFwDNHwxnhEROTPGEYklp4SAQDIK6712TEtzXb896grjHCIhoiI/BvDiMTSUxyzWPKKan12zJ1nqmBsakZ0qBZXp0b67LhERETdwTAisdHJERAEoMTQhAofFbF+eugCAOBHoxOg5BANERH5OYYRiYVqVe66EV8M1ZjMzfjqqGMWzeyxSZIfj4iI6EoxjPiAa6jmu/O1kh/rv8fK0Gi1IS06BOnJXOiMiIj8H8OID4xJcUyt9UXPyNpDJQCAW8ckcqEzIiIKCAwjPjDGOaPm+2ID7HbpVmKtrDNjx2nHvWhmj+EQDRERBQaGER8YHBeKILUSdeZmFFRJt/jZZ9+VwC4CY/tGIDU6RLLjEBEReRPDiA+olAr3jeoOSTTFVxRFrP62CABw21XJkhyDiIhICgwjPjKmbwQA4KBEYeTAuYs4VV6PILUSt45JlOQYREREUmAY8ZFr+zsWH9t2skKSO/iu2ufoFclOT0C4Tu319yciIpJKt8LI0qVLkZqaCp1Oh4yMDOzbt6/D7Wtra5GTk4OEhARotVoMHjwYGzZs6FaDA9WEAdHQqRUoMTThZHmdV9/b0GDF+u9LAQB3je/r1fcmIiKSmsdhZPXq1Vi4cCGWLFmCgwcPIj09HdOnT0dFRUWb21ssFtx88804e/YsPvnkE5w8eRJvvvkmkpJ612wPnVqJCQOiAQCbjrf936q71hw6D3OzHUPjw9wzd4iIiAKFx2HklVdewYMPPoj77rsPw4cPx/LlyxEcHIwVK1a0uf2KFStQU1ODdevWYeLEiUhNTcWNN96I9PT0K258oJkyNBYAsOWE98KI3S7ivT3nAAD3ZPTl2iJERBRwPAojFosFBw4cwNSpUy+9gUKBqVOnYvfu3W3u89lnnyEzMxM5OTmIi4vDyJEj8eKLL8Jms7V7HLPZDKPR2OrRE0x2hpGDRRdx0WTxyntuOlGBM5UmhOlUXP6diIgCkkdhpKqqCjabDXFxca1ej4uLQ1lZWZv7FBQU4JNPPoHNZsOGDRvw/PPP4+WXX8b//d//tXuc3Nxc6PV69yMlJcWTZvqtpIggDI0Pg10Etp2q9Mp7/mPbGQDAPRn9EMbCVSIiCkCSz6ax2+2IjY3FG2+8gXHjxmHOnDl49tlnsXz58nb3WbRoEQwGg/tRXFwsdTN95qZhjt6RTV4Yqjlwrgb7z12ERqnAfRNTr/j9iIiI5OBRGImOjoZSqUR5eXmr18vLyxEfH9/mPgkJCRg8eDCUSqX7tWHDhqGsrAwWS9tDFVqtFuHh4a0ePcWUoY5epc3Hy1HXZL2i9/rHtgIAwOyxiYgL111x24iIiOTgURjRaDQYN24cNm3a5H7Nbrdj06ZNyMzMbHOfiRMnIj8/H3a73f3aqVOnkJCQAI1G081mB66r+kZgQEwITBYb1hy80O33OXLBgI3HHaHw5zf091bziIiIfM7jYZqFCxfizTffxDvvvIPjx4/jkUcegclkwn333QcAmDt3LhYtWuTe/pFHHkFNTQ0WLFiAU6dOYf369XjxxReRk5PjvbMIIIIgYN6EVADAO7vPduvGeaIo4vfrj0MUgVvSEzEwNszLrSQiIvIdlac7zJkzB5WVlVi8eDHKysowZswYfPnll+6i1qKiIigUlzJOSkoKvvrqKzz55JMYPXo0kpKSsGDBAjz99NPeO4sAc9tVyfjTlydRUGnCjvwq3DA4xqP9Nx2vwO6CamhUCjw1fYhErSQiIvINQZRibXIvMxqN0Ov1MBgMPaZ+5DefHcXKXWdx09BYvHXvNV3ez2qzY/qr21FQacJDN/bHoqxhEraSiIio+7r6+c1708hkbmY/AMDmkxU4csHQ5f1e33IGBZUmRIZokDN5oFTNIyIi8hmGEZn0jwlFdnoiRBF46pPvYWm2d7rPnoJq/HXTKQDA4h8N5w3xiIioR2AYkdGS7OGIDNHgeKkRy7ae6XDbGpMFT3yYB7sI/M+4ZK62SkREPQbDiIyiQ7X4zS0jAAB/33Iaewqq29yu1NCIe/65F2XGJgyICcFvbx3hy2YSERFJimFEZtmjEzB9RBysNhE//ede/Gv3WbhqikVRxLdna/DjpbtwvNSI6FAtlv10HII1Hk+CIiIi8lucTeMHGi02/O+/v8fn35UAAPpGBmNEYjhOldfhTKUJADAoNhRv33cNkvsEy9lUIiKiLuvq5zf/xPYDQRolXrtzDEYlheNPX55EUU0DimoaAABalQKzRidgSfYI6INYsEpERD0Pw4ifEAQBP79hAO64OgVHLhhxvNSIqFANbh4ex7vxEhFRj8Yw4mcigjW4blA0rhsULXdTiIiIfIIFrERERCQrhhEiIiKSFcMIERERyYphhIiIiGTFMEJERESyYhghIiIiWTGMEBERkawYRoiIiEhWDCNEREQkK4YRIiIikhXDCBEREcmKYYSIiIhkxTBCREREsgqIu/aKoggAMBqNMreEiIiIusr1ue36HG9PQISRuro6AEBKSorMLSEiIiJP1dXVQa/Xt/t9QewsrvgBu92OkpIShIWFQRAEr72v0WhESkoKiouLER4e7rX39Sc9/Rx5foGvp59jTz8/oOefI8+v+0RRRF1dHRITE6FQtF8ZEhA9IwqFAsnJyZK9f3h4eI/8AWupp58jzy/w9fRz7OnnB/T8c+T5dU9HPSIuLGAlIiIiWTGMEBERkax6dRjRarVYsmQJtFqt3E2RTE8/R55f4Ovp59jTzw/o+efI85NeQBSwEhERUc/Vq3tGiIiISH4MI0RERCQrhhEiIiKSFcMIERERyarHh5GlS5ciNTUVOp0OGRkZ2LdvX4fbf/zxxxg6dCh0Oh1GjRqFDRs2+KilnsvNzcU111yDsLAwxMbGYvbs2Th58mSH+6xcuRKCILR66HQ6H7XYM7/5zW8ua+vQoUM73CeQrh8ApKamXnaOgiAgJyenze39/fpt374d2dnZSExMhCAIWLduXavvi6KIxYsXIyEhAUFBQZg6dSpOnz7d6ft6+nsslY7Oz2q14umnn8aoUaMQEhKCxMREzJ07FyUlJR2+Z3d+zqXU2TW89957L2vvjBkzOn3fQLiGANr8fRQEAS+99FK77+lP17ArnwtNTU3IyclBVFQUQkND8ZOf/ATl5eUdvm93f3e7qkeHkdWrV2PhwoVYsmQJDh48iPT0dEyfPh0VFRVtbr9r1y7cdddduP/++3Ho0CHMnj0bs2fPxpEjR3zc8q7Ztm0bcnJysGfPHmzcuBFWqxXTpk2DyWTqcL/w8HCUlpa6H+fOnfNRiz03YsSIVm3dsWNHu9sG2vUDgG+//bbV+W3cuBEAcPvtt7e7jz9fP5PJhPT0dCxdurTN7//pT3/Ca6+9huXLl2Pv3r0ICQnB9OnT0dTU1O57evp7LKWOzq+hoQEHDx7E888/j4MHD2LNmjU4efIkbrnllk7f15Ofc6l1dg0BYMaMGa3a+8EHH3T4noFyDQG0Oq/S0lKsWLECgiDgJz/5SYfv6y/XsCufC08++SQ+//xzfPzxx9i2bRtKSkpw2223dfi+3fnd9YjYg40fP17MyclxP7fZbGJiYqKYm5vb5vZ33HGHOGvWrFavZWRkiA899JCk7fSWiooKEYC4bdu2drd5++23Rb1e77tGXYElS5aI6enpXd4+0K+fKIriggULxAEDBoh2u73N7wfS9QMgrl271v3cbreL8fHx4ksvveR+rba2VtRqteIHH3zQ7vt4+nvsKz88v7bs27dPBCCeO3eu3W08/Tn3pbbOcd68eeKtt97q0fsE8jW89dZbxSlTpnS4jT9fwx9+LtTW1opqtVr8+OOP3dscP35cBCDu3r27zffo7u+uJ3psz4jFYsGBAwcwdepU92sKhQJTp07F7t2729xn9+7drbYHgOnTp7e7vb8xGAwAgMjIyA63q6+vR79+/ZCSkoJbb70VR48e9UXzuuX06dNITExE//79cc8996CoqKjdbQP9+lksFrz33nuYP39+hzeEDKTr11JhYSHKyspaXSO9Xo+MjIx2r1F3fo/9icFggCAIiIiI6HA7T37O/cHWrVsRGxuLIUOG4JFHHkF1dXW72wbyNSwvL8f69etx//33d7qtv17DH34uHDhwAFartdX1GDp0KPr27dvu9ejO766nemwYqaqqgs1mQ1xcXKvX4+LiUFZW1uY+ZWVlHm3vT+x2O5544glMnDgRI0eObHe7IUOGYMWKFfj000/x3nvvwW63Y8KECTh//rwPW9s1GRkZWLlyJb788kssW7YMhYWFuP7661FXV9fm9oF8/QBg3bp1qK2txb333tvuNoF0/X7IdR08uUbd+T32F01NTXj66adx1113dXjzMU9/zuU2Y8YMvPvuu9i0aRP++Mc/Ytu2bcjKyoLNZmtz+0C+hu+88w7CwsI6HcLw12vY1udCWVkZNBrNZQG5s89G1zZd3cdTAXHXXupcTk4Ojhw50uk4ZWZmJjIzM93PJ0yYgGHDhuEf//gHfve730ndTI9kZWW5/z169GhkZGSgX79++Oijj7r0l0qgeeutt5CVlYXExMR2twmk69ebWa1W3HHHHRBFEcuWLetw20D7Ob/zzjvd/x41ahRGjx6NAQMGYOvWrbjppptkbJn3rVixAvfcc0+nReL+eg27+rngD3psz0h0dDSUSuVlFcLl5eWIj49vc5/4+HiPtvcXjz32GL744gts2bIFycnJHu2rVqsxduxY5OfnS9Q674mIiMDgwYPbbWugXj8AOHfuHL7++ms88MADHu0XSNfPdR08uUbd+T2WmyuInDt3Dhs3bvT4luyd/Zz7m/79+yM6Orrd9gbiNQSAb775BidPnvT4dxLwj2vY3udCfHw8LBYLamtrW23f2Weja5uu7uOpHhtGNBoNxo0bh02bNrlfs9vt2LRpU6u/LFvKzMxstT0AbNy4sd3t5SaKIh577DGsXbsWmzdvRlpamsfvYbPZcPjwYSQkJEjQQu+qr6/HmTNn2m1roF2/lt5++23ExsZi1qxZHu0XSNcvLS0N8fHxra6R0WjE3r17271G3fk9lpMriJw+fRpff/01oqKiPH6Pzn7O/c358+dRXV3dbnsD7Rq6vPXWWxg3bhzS09M93lfOa9jZ58K4ceOgVqtbXY+TJ0+iqKio3evRnd/d7jS8x/rwww9FrVYrrly5Ujx27Jj485//XIyIiBDLyspEURTFn/3sZ+Izzzzj3n7nzp2iSqUS//znP4vHjx8XlyxZIqrVavHw4cNynUKHHnnkEVGv14tbt24VS0tL3Y+Ghgb3Nj88xxdeeEH86quvxDNnzogHDhwQ77zzTlGn04lHjx6V4xQ69Mtf/lLcunWrWFhYKO7cuVOcOnWqGB0dLVZUVIiiGPjXz8Vms4l9+/YVn3766cu+F2jXr66uTjx06JB46NAhEYD4yiuviIcOHXLPJvnDH/4gRkREiJ9++qn4/fffi7feequYlpYmNjY2ut9jypQp4t/+9jf3885+j/3l/CwWi3jLLbeIycnJYl5eXqvfSbPZ3O75dfZz7msdnWNdXZ34q1/9Sty9e7dYWFgofv311+JVV10lDho0SGxqanK/R6BeQxeDwSAGBweLy5Yta/M9/PkaduVz4eGHHxb79u0rbt68Wdy/f7+YmZkpZmZmtnqfIUOGiGvWrHE/78rv7pXo0WFEFEXxb3/7m9i3b19Ro9GI48ePF/fs2eP+3o033ijOmzev1fYfffSROHjwYFGj0YgjRowQ169f7+MWdx2ANh9vv/22e5sfnuMTTzzh/u8RFxcnzpw5Uzx48KDvG98Fc+bMERMSEkSNRiMmJSWJc+bMEfPz893fD/Tr5/LVV1+JAMSTJ09e9r1Au35btmxp82fSdQ52u118/vnnxbi4OFGr1Yo33XTTZefdr18/ccmSJa1e6+j32Jc6Or/CwsJ2fye3bNnifo8fnl9nP+e+1tE5NjQ0iNOmTRNjYmJEtVot9uvXT3zwwQcvCxWBeg1d/vGPf4hBQUFibW1tm+/hz9ewK58LjY2N4qOPPir26dNHDA4OFn/84x+LpaWll71Py3268rt7JQTnQYmIiIhk0WNrRoiIiCgwMIwQERGRrBhGiIiISFYMI0RERCQrhhEiIiKSFcMIERERyYphhIiIiGTFMEJERESyYhghIiIiWTGMEBERkawYRoiIiEhWDCNEREQkq/8HpMEAHqUKbNQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "main(1)\n", + "\n", + "start = time.time()\n", + "sol = main(1)\n", + "end = time.time()\n", + "print(f\"Integration took in {end - start} seconds.\")\n", + "\n", + "plt.plot(sol.ts, sol.ys)\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.9.16 ('documentation_diffrax')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.16" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "d644d6de157dae45f4c41ea729963c4364743d9466df2c5e80d490cf71a3f866" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/neural_dde.ipynb b/examples/neural_dde.ipynb new file mode 100644 index 00000000..990c5e1b --- /dev/null +++ b/examples/neural_dde.ipynb @@ -0,0 +1,319 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Neural DDE" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This example demonstrates how to use Diffrax in order to solve a Delay Differential Equation (DDE) with known delays. \n", + "Unlike ODEs that are identified by their vector field $f(t, y(t))$ and initial condition $y(0)=y_0$, DDEs are specified by their vector field $f$, deviated arguments $y(t-\\tau)$ and history function $\\phi(t)=y(t<0)$.\n", + "\n", + "We will model the [Lotka Volterra](https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations) (LK) equations with one constant time delay defined as \n", + "\n", + "$$\n", + "\\begin{align}\n", + "& y_1'(t) = \\frac{1}{2} y_1(t) ( 1 - y_2(t-0.2)) \\\\\n", + "& y_2'(t) = -\\frac{1}{2} y_2(t)( 1 - y_1(t-0.2)) \\\\\n", + "& \\phi(t) = y(t<0) = (y_1, y_2) \n", + "\\end{align}\n", + "$$\n", + "\n", + "where $x_0, y_0$ are uniformly sampled in $[0.1,2]$." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This example is available as a Jupyter notebook [here](url)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import time\n", + "\n", + "import diffrax\n", + "import equinox as eqx # https://github.com/patrick-kidger/equinox\n", + "import jax\n", + "import jax.nn as jnn\n", + "import jax.numpy as jnp\n", + "import jax.random as jrandom\n", + "import matplotlib.pyplot as plt\n", + "import optax # https://github.com/deepmind/optax" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to model our problem as a DDE $y'(t) = f_{\\theta}(t, y(t), y(t-\\tau_1), \\dots, y(t-\\tau_d))$, we first need to define a `Delays` object that incorporates deviated arguments in our vector field $f$. \n", + "\n", + "LK's initial time point $t=0$ has a derivative jump because $\\phi^{\\prime}(t=0^{-}) \\neq y^{\\prime}(t=0^{+})$ and the history function $\\phi(t)$ has `None`. \n", + "The DDE model only has one time delay so $d=1$ and our vector field will be $y'(t) = f_{\\theta}(t, y(t), y(t-\\tau))$" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "delays = diffrax.Delays(\n", + " delays=[lambda t, y, args: 0.2], initial_discontinuities=jnp.array([0.0])\n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below is defined the vector field $f_{\\theta}$. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class Func(eqx.Module):\n", + " mlp: eqx.nn.MLP\n", + "\n", + " def __init__(self, data_size, width_size, depth, *, key, **kwargs):\n", + " super().__init__(**kwargs)\n", + " self.mlp = eqx.nn.MLP(\n", + " in_size=data_size,\n", + " out_size=data_size,\n", + " width_size=width_size,\n", + " depth=depth,\n", + " activation=jnn.relu,\n", + " key=key,\n", + " )\n", + "\n", + " def __call__(self, t, y, args, history):\n", + " return self.mlp(y, history[0])" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `history` variable inside the network's `__call__` is a tuple of deviated arguments. For example, if we possess a `Delays` object with 2 delays then the first element of tuple would be the first deviated argument $y(t-\\tau_1)$ and the second one $y(t-\\tau_1)$. \n", + "In our case, `history[0]` corresponds to $y(t-0.2)$ and by extension `history[0][0]` is $y_1(t-0.2)$." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we wrap up the entire DDE solve into a model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class NeuralDDE(eqx.Module):\n", + " func: Func\n", + "\n", + " def __init__(self, data_size, width_size, depth, *, key, **kwargs):\n", + " super().__init__(**kwargs)\n", + " self.func = Func(data_size, width_size, depth, key=key)\n", + "\n", + " def __call__(self, ts, y0):\n", + " solution = diffrax.diffeqsolve(\n", + " diffrax.ODETerm(self.func),\n", + " diffrax.Tsit5(),\n", + " t0=ts[0],\n", + " t1=ts[-1],\n", + " dt0=ts[1] - ts[0],\n", + " y0=y0,\n", + " delays=delays,\n", + " stepsize_controller=diffrax.PIDController(rtol=1e-3, atol=1e-6),\n", + " saveat=diffrax.SaveAt(ts=ts, dense=True),\n", + " )\n", + " return solution.ys" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We generate the LK dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def _get_data(ts, *, key):\n", + " y0 = jrandom.uniform(key, (2,), minval=0.1, maxval=2.0)\n", + "\n", + " def vector_field(t, y, args, history):\n", + " return jnp.array(\n", + " [\n", + " 1 / 2 * y[0] * (1 - history[0][1]),\n", + " -1 / 2 * y[1] * (1 - history[0][0]),\n", + " ]\n", + " )\n", + "\n", + " sol = diffrax.diffeqsolve(\n", + " diffrax.ODETerm(vector_field),\n", + " diffrax.Dopri5(),\n", + " t0=ts[0],\n", + " t1=ts[-1],\n", + " dt0=ts[1] - ts[0],\n", + " y0=lambda t: y0,\n", + " adjoint=diffrax.NoAdjoint(),\n", + " stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9),\n", + " saveat=diffrax.SaveAt(ts=ts, dense=True),\n", + " delays=delays,\n", + " )\n", + "\n", + " return sol.ys\n", + "\n", + "\n", + "def get_data(dataset_size, *, key):\n", + " ts = jnp.linspace(0, 15, 200)\n", + " key = jrandom.split(key, dataset_size)\n", + " ys = jax.vmap(lambda key: _get_data(ts, key=key))(key)\n", + " return ts, ys\n", + "\n", + "\n", + "def dataloader(arrays, batch_size, *, key):\n", + " dataset_size = arrays[0].shape[0]\n", + " assert all(array.shape[0] == dataset_size for array in arrays)\n", + " indices = jnp.arange(dataset_size)\n", + " while True:\n", + " perm = jrandom.permutation(key, indices)\n", + " (key,) = jrandom.split(key, 1)\n", + " start = 0\n", + " end = batch_size\n", + " while end < dataset_size:\n", + " batch_perm = perm[start:end]\n", + " yield tuple(array[batch_perm] for array in arrays)\n", + " start = end\n", + " end = start + batch_size" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Main entry point. Try runnning `main()`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def main(\n", + " dataset_size=256,\n", + " batch_size=32,\n", + " width_size=32,\n", + " depth=2,\n", + " tot_steps=500,\n", + " lr=10e-3,\n", + " seed=5678,\n", + " plot=True,\n", + " print_every=100,\n", + "):\n", + " key = jrandom.PRNGKey(seed)\n", + " data_key, model_key, loader_key = jrandom.split(key, 3)\n", + "\n", + " ts, ys = get_data(dataset_size, key=data_key)\n", + " _, _, data_size = ys.shape\n", + "\n", + " model = NeuralDDE(data_size, width_size, depth, key=model_key)\n", + "\n", + " @eqx.filter_value_and_grad\n", + " def grad_loss(model, ti, yi):\n", + " y_pred = jax.vmap(model, in_axes=(None, 0))(ti, yi[:, 0])\n", + " return jnp.mean((yi - y_pred) ** 2)\n", + "\n", + " @eqx.filter_jit\n", + " def make_step(ti, yi, model, opt_state):\n", + " loss, grads = grad_loss(model, ti, yi)\n", + " updates, opt_state = optim.update(grads, opt_state)\n", + " model = eqx.apply_updates(model, updates)\n", + " return loss, model, opt_state\n", + "\n", + " optim = optax.adabelief(lr)\n", + " opt_state = optim.init(eqx.filter(model, eqx.is_inexact_array))\n", + " for step, (yi,) in zip(\n", + " range(tot_steps), dataloader((ys,), batch_size, key=loader_key)\n", + " ):\n", + " start = time.time()\n", + " loss, model, opt_state = make_step(ts, yi, model, opt_state)\n", + " end = time.time()\n", + " if (step % print_every) == 0 or step == tot_steps - 1:\n", + " print(f\"Step: {step}, Loss: {loss}, Computation time: {end - start}\")\n", + "\n", + " if plot:\n", + " plt.plot(ts, ys[0, :, 0], c=\"dodgerblue\", label=\"Real\")\n", + " plt.plot(ts, ys[0, :, 1], c=\"dodgerblue\")\n", + " model_y = model(ts, ys[0, 0])\n", + " plt.plot(ts, model_y[:, 0], c=\"crimson\", label=\"Model\")\n", + " plt.plot(ts, model_y[:, 1], c=\"crimson\")\n", + " plt.legend()\n", + " plt.tight_layout()\n", + " plt.savefig(\"neural_ode.png\")\n", + " plt.show()\n", + "\n", + " return ts, ys, model" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.9.13 ('dde')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "85a82c4ca03817695851f28a9a8c882825d82c078a665316024297a0baa050af" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/mkdocs.yml b/mkdocs.yml index 414a146d..a257b291 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -98,6 +98,7 @@ nav: - 'usage/extending.md' - Examples: - Basic ODE/SDE/CDE examples: 'other_examples/basic-examples.md' + # - DDE : 'examples/dde.ipynb' to add in Basic examples - Coupled ODEs: 'examples/coupled_odes.ipynb' - Stiff ODE: 'examples/stiff_ode.ipynb' - Forcing terms: 'examples/forcing.ipynb' @@ -106,6 +107,7 @@ nav: - Neural CDE: 'examples/neural_cde.ipynb' - Neural SDE: 'examples/neural_sde.ipynb' - Latent ODE: 'examples/latent_ode.ipynb' + # - Neural DDE: 'examples/neural_dde.ipynb' - Continuous normalising flow: 'examples/continuous_normalising_flow.ipynb' - Symbolic regression: 'examples/symbolic_regression.ipynb' - Steady state: 'examples/steady_state.ipynb' @@ -130,6 +132,7 @@ nav: - 'api/interpolation.md' - 'api/brownian.md' - 'api/nonlinear_solver.md' + # - 'api/delays.md' - Further details: - 'further_details/faq.md' - 'further_details/acknowledgements.md' diff --git a/test/julia_dde/dde.jl b/test/julia_dde/dde.jl new file mode 100644 index 00000000..acf20d7c --- /dev/null +++ b/test/julia_dde/dde.jl @@ -0,0 +1,315 @@ +# File that generates DDE dynamics of several systems + +using DifferentialEquations +using DelimitedFiles +using PyPlot + +# Basic check 1 ========================================= +function basic_check_1(du, u, h, p, t) + tau = p + hist1 = h(p, t-tau)[1] + du[1] = u[1] * (1 - hist1) +end + +h(p,t) = 1.2 * ones(1) +u0 = [1.2] +tau = 1.0 +lags = [tau] +p = (tau) +tspan = (0.0, 50.0) + + +prob = DDEProblem(basic_check_1, u0, h, tspan, p; constant_lags=lags) +alg = MethodOfSteps(Tsit5()) # doesn't work with DP5 DP8 but works with Tsit5 and Bosh3 +sol = solve(prob,alg, saveat=0.05) +usol = transpose(hcat(sol.u...)) +time = sol.t + +plot(sol.t, usol) +plt.xlabel("Time") +plt.show() + +writedlm("test_basic_check_1.txt", [sol.t usol]) + +# Basic check 2 ========================================= +function basic_check_2(du, u, h, p, t) + tau = p + hist1 = h(p, t-tau)[1] + du[1] = u[1] * (1 - hist1) +end + +h(p,t) = 1.2 * ones(1) +u0 = [1.2] +tau = 2.0 +lags = [tau] +p = (tau) +tspan = (0.0, 50.0) + + +prob = DDEProblem(basic_check_2, u0, h, tspan, p; constant_lags=lags) +alg = MethodOfSteps(BS3()) # doesn't work with DP5 DP8 but works with Tsit5 and Bosh3 +sol = solve(prob,alg, saveat=0.05) +usol = transpose(hcat(sol.u...)) +time = sol.t + +plot(sol.t, usol) +plt.xlabel("Time") +plt.show() + +writedlm("test_basic_check_2.txt", [sol.t usol]) + + +# Basic check 3 & 4 ========================================= +function basic_check_3(du, u, h, p, t) + tau = p + hist1 = h(p, t-tau)[1] + du[1] = u[1] * (1 - hist1) +end + +h(p,t) = 1.2 * ones(1) +u0 = [1.2] +tau = 3.0 +lags = [tau] +p = (tau) +tspan = (0.0, 50.0) + + +prob = DDEProblem(basic_check_3, u0, h, tspan, p; constant_lags=lags) +alg = MethodOfSteps(BS3()) # doesn't work with DP5 DP8 but works with Tsit5 and Bosh3 +sol = solve(prob,alg, saveat=0.05) +usol = transpose(hcat(sol.u...)) + +alg = MethodOfSteps(Tsit5()) # doesn't work with DP5 DP8 but works with Tsit5 and Bosh3 +sol2 = solve(prob,alg, saveat=0.05) +usol2 = transpose(hcat(sol2.u...)) +time = sol.t + +plot(sol.t, usol2) +plot(sol.t, usol) +plt.xlabel("Time") +plt.show() + +writedlm("test_basic_check_3.txt", [sol.t usol]) +writedlm("test_basic_check_4.txt", [sol.t usol2]) + +# Basic check 5 & 6 ========================================= +function basic_check_5(du, u, h, p, t) + tau = p + hist1 = h(p, t-tau)[1] + du[1] = u[1] * (1 - hist1) +end + +h(p,t) = 1.2 * ones(1) +u0 = [1.2] +tau = 4.0 +lags = [tau] +p = (tau) +tspan = (0.0, 50.0) + + +prob = DDEProblem(basic_check_5, u0, h, tspan, p; constant_lags=lags) +alg = MethodOfSteps(BS3()) # doesn't work with DP5 DP8 but works with Tsit5 and Bosh3 +sol = solve(prob,alg, saveat=0.05) +usol = transpose(hcat(sol.u...)) + +alg = MethodOfSteps(Tsit5()) # doesn't work with DP5 DP8 but works with Tsit5 and Bosh3 +sol2 = solve(prob,alg, saveat=0.05) +usol2 = transpose(hcat(sol2.u...)) +time = sol.t + +plot(sol.t, usol2) +plot(sol.t, usol) +plt.xlabel("Time") +plt.show() + +writedlm("test_basic_check_5.txt", [sol.t usol]) +writedlm("test_basic_check_6.txt", [sol.t usol2]) + +# Basic check 7 ========================================= +function basic_check_7(du, u, h, p, t) + tau = p + hist1 = h(p, t-tau)[1] + du[1] = u[1] * (1 - hist1) +end + +h(p,t) = 1.2 * ones(1) +u0 = [1.2] +tau = 4.0 +lags = [tau] +p = (tau) +tspan = (0.0, 50.0) + + +prob = DDEProblem(basic_check_7, u0, h, tspan, p; constant_lags=lags) +alg = MethodOfSteps(Kvaerno5()) # doesn't work with DP5 DP8 but works with Tsit5 and Bosh3 +sol = solve(prob,alg, saveat=0.05) +usol = transpose(hcat(sol.u...)) +time = sol.t + +plot(sol.t, usol) +plt.xlabel("Time") +plt.show() + +writedlm("test_basic_check_7.txt", [sol.t usol]) + +# Basic check 8 ========================================= +function basic_check_8(du, u, h, p, t) + tau1, tau2 = p + hist1 = h(p, t-tau1)[1] + hist2 = h(p, t-tau2)[1] + du[1] = - hist1 - hist2 +end + +h(p,t) = 1.2 * ones(1) +lags = [1.0/3 1.0/5] +p = (1.0/3, 1.0/5) +tspan = (0.0, 10.0) +u0 = [1.2] + +prob = DDEProblem(basic_check_8, u0, h, tspan, p; constant_lags=lags) +alg = MethodOfSteps(Tsit5()) +sol = solve(prob,alg, saveat=0.1) +usol = transpose(hcat(sol.u...)) +time = sol.t + +plot(sol.t, usol) +plt.xlabel("Time") +plt.show() + +writedlm("test_basic_check_8.txt", [sol.t usol]) + +# Basic check 9 ========================================= +function basic_check_9(du, u, h, p, t) + tau = p + hist1 = h(p, t-tau)[1] + du[1] = 0.2 * hist1 / (1+ hist1^10) - 0.1 * u[1] +end + + +h(p,t) = 1.2 * ones(1) +u0 = [1.2] +tau = 6.0 +lags = [tau] +p = (tau) +tspan = (0.0, 50.0) + +prob = DDEProblem(basic_check_9, u0, h, tspan, p; constant_lags=lags) +alg = MethodOfSteps(Tsit5()) +sol = solve(prob,alg, saveat=0.1) +usol = transpose(hcat(sol.u...)) +time = sol.t + +plot(sol.t, usol) +plt.xlabel("Time") +plt.show() + +writedlm("test_basic_check_9.txt", [sol.t usol]) + +# Basic check 10 ========================================= +function basic_check_10(du, u, h, p, t) + hist1 = h(p, t- 2 -sin(t))[1] + du[1] = u[1] * (1 - hist1) +end + +function h_basic_check_10(p, t) + 1.2 * ones(1) +end + +prob = DDEProblem(basic_check_10, h_basic_check_10, (0.0, 40.0) ; dependent_lags = ((u, p, t) -> 2 + sin(t),)) +alg = MethodOfSteps(BS3()) +sol = solve(prob,alg, saveat=0.1) +usol = transpose(hcat(sol.u...)) +time = sol.t + +plot(sol.t, usol) +plt.xlabel("Time") +plt.show() + +writedlm("test_basic_check_10.txt", [sol.t usol]) + +Basic check 11 ========================================= +function basic_check_11(du, u, h, p, t) + hist1 = h(p, t- 1/2*(exp(-u[1]^2) + 1))[1] + du[1] = -10* hist1 +end + +function h_basic_check_11(p, t) + 1.0 * ones(1) +end + +prob = DDEProblem(basic_check_11, h_basic_check_11, (0.0, 5.0) ; dependent_lags = ((u, p, t) -> 1/2*(exp(-u[1]^2) + 1),)) +alg = MethodOfSteps(Kvaerno5()) +sol = solve(prob,alg, saveat=0.01) +usol = transpose(hcat(sol.u...)) + +alg = MethodOfSteps(Kvaerno4()) +sol = solve(prob,alg, saveat=0.01) +usol2 = transpose(hcat(sol.u...)) + +time = sol.t + +plot(sol.t, usol2, label="Kv4") +plot(sol.t, usol, label="Kv5") +plt.xlabel("Time") +plt.legend() +plt.show() + +writedlm("test_basic_check_11.txt", [sol.t usol]) + + +# Numerical check 1 ========================================= +function numerical_check_1(du, u, h, p, t) + hist1 = h(p, u[1])[1] + du[1] = hist1 +end + +function h_numerical_check_1(p, t) + if t < 2.0 + 1/2 * ones(1) + else + 1 * ones(1) + end +end + +prob = DDEProblem(numerical_check_1, h_numerical_check_1, u0=[1.0 * ones(1)], (2.0, 5.5) ; dependent_lags = ((u, p, t) -> u[1],)) +alg = MethodOfSteps(BS3()) +sol = solve(prob,alg, saveat=0.01) +usol = transpose(hcat(sol.u...)) + +alg = MethodOfSteps(Tsit5()) +sol = solve(prob,alg, saveat=0.01) +usol2 = transpose(hcat(sol.u...)) + +time = sol.t + +plot(sol.t, usol2, label="Kv4") +plot(sol.t, usol, label="Kv5") +plt.xlabel("Time") +plt.legend() +plt.show() + +writedlm("test_basic_numerical_check_1.txt", [sol.t usol]) + +# Numerical check 2 ========================================= +function numerical_check_2(du, u, h, p, t) + hist1 = h(p, log(u[1]))[1] + du[1] = hist1 * u[1] / t +end + +function h_numerical_check_2(p, t) + 1 * ones(1) +end + +prob = DDEProblem(numerical_check_2, h_numerical_check_2, (1.0, 10.0) ; dependent_lags = ((u, p, t) -> log(u[1]),)) +alg = MethodOfSteps(BS3()) +sol = solve(prob,alg, saveat=0.01) +usol = transpose(hcat(sol.u...)) +time = sol.t + +plot(sol.t, usol2, label="Kv4") +plot(sol.t, usol, label="Kv5") +plt.xlabel("Time") +plt.legend() +plt.show() + +writedlm("test_basic_numerical_check_2.txt", [sol.t usol]) diff --git a/test/julia_dde/test_basic_check_1.txt b/test/julia_dde/test_basic_check_1.txt new file mode 100644 index 00000000..ea119434 --- /dev/null +++ b/test/julia_dde/test_basic_check_1.txt @@ -0,0 +1,1001 @@ +0.0 1.2 +0.05 1.1880598004963274 +0.1 1.1762384079684047 +0.15 1.1645346400763932 +0.2 1.1529473230412208 +0.25 1.141475299112477 +0.3 1.1301174233925737 +0.35 1.1188725616239938 +0.4 1.1077395901892904 +0.45 1.0967173961110868 +0.5 1.0858048770520767 +0.55 1.075000941315024 +0.6 1.064304507842764 +0.65 1.0537145062182005 +0.7 1.043229876664309 +0.75 1.0328495700441358 +0.8 1.0225725478607945 +0.85 1.012397782257473 +0.9 1.0023242560174284 +0.95 0.9923509625639848 +1.0 0.9824769054640597 +1.05 0.9729919100045454 +1.1 0.9641710833105949 +1.15 0.9559924042823509 +1.2 0.9484352472028569 +1.25 0.9414803817380578 +1.3 0.9351099729367993 +1.35 0.9293075812308284 +1.4 0.9240579895194752 +1.45 0.9193469718969539 +1.5 0.9151617604103639 +1.55 0.9114905049979656 +1.6 0.908322242295648 +1.65 0.9056468956369282 +1.7 0.9034552750529523 +1.75 0.9017390772724944 +1.8 0.9004908857219571 +1.85 0.8997041705253715 +1.9 0.8993732885043974 +1.95 0.8994933756505719 +2.0 0.9000599782649152 +2.05 0.9010645757958058 +2.1 0.9024828681252601 +2.15 0.9042879518774135 +2.2 0.9064536858175863 +2.25 0.9089546908522841 +2.3 0.9117663500291971 +2.35 0.9148648085372008 +2.4 0.9182269737063555 +2.45 0.9218305150079066 +2.5 0.9256538640542846 +2.55 0.9296759042659053 +2.6 0.933874940282238 +2.65 0.9382300491809107 +2.7 0.9427203181020574 +2.75 0.947324743221118 +2.8 0.9520222297488384 +2.85 0.9567915919312706 +2.9 0.9616115530497718 +2.95 0.966460745421006 +3.0 0.9713177103969424 +3.05 0.9761609834122871 +3.1 0.9809690973066327 +3.15 0.9857212903649177 +3.2 0.9903978262709598 +3.25 0.994979994107456 +3.3 0.9994501083559825 +3.35 1.0037915088969953 +3.4 1.0079885610098294 +3.45 1.012026655372699 +3.5 1.0158922080626982 +3.55 1.0195726605557998 +3.6 1.0230564797268564 +3.65 1.0263331578495996 +3.7 1.0293932125966407 +3.75 1.0322281870394703 +3.8 1.0348306496484578 +3.85 1.0371941942928529 +3.9 1.0393134402407835 +3.95 1.0411842638198525 +4.0 1.0428051134855039 +4.05 1.0441745684936956 +4.1 1.0452929807393159 +4.15 1.0461626207646408 +4.2 1.0467866844066491 +4.25 1.0471692927970233 +4.3 1.0473154923621484 +4.35 1.0472312548231126 +4.4 1.046923477195708 +4.45 1.046399981790429 +4.5 1.045669516212473 +4.55 1.0447417533617414 +4.6 1.0436272914328375 +4.65 1.042337653915069 +4.7 1.0408852368203725 +4.75 1.0392819068558548 +4.8 1.0375400168437656 +4.85 1.035672502303835 +4.9 1.0336924804820984 +4.95 1.0316132503508986 +5.0 1.0294482926088842 +5.05 1.0272106941313845 +5.1 1.0249138335503054 +5.15 1.022571403740183 +5.2 1.0201966152372772 +5.25 1.0178021962395725 +5.3 1.0154003926067763 +5.35 1.0130029678603216 +5.4 1.0106212031833641 +5.45 1.0082658974207848 +5.5 1.0059473670791879 +5.55 1.0036754463269015 +5.6 1.001459486993979 +5.65 0.9993083585721964 +5.7 0.9972304482150548 +5.75 0.9952332208235575 +5.8 0.9933231149285477 +5.85 0.9915061922710027 +5.9 0.9897878493607076 +5.95 0.9881728170111881 +6.0 0.98666516033971 +6.05 0.9852690478823175 +6.1 0.9839874271383723 +6.15 0.982821719353966 +6.2 0.9817729283832497 +6.25 0.9808416406884336 +6.3 0.9800280253397873 +6.35 0.9793318340156394 +6.4 0.9787524010023783 +6.45 0.9782886431944512 +6.5 0.9779390600943649 +6.55 0.9777017338126854 +6.6 0.977574329068038 +6.65 0.9775540931871072 +6.7 0.9776378561046368 +6.75 0.9778220303634302 +6.8 0.9781026111143497 +6.85 0.9784751761163168 +6.9 0.9789348857363132 +6.95 0.9794764829493784 +7.0 0.9800942933386124 +7.05 0.9807830491124823 +7.1 0.9815387397262052 +7.15 0.9823554024900034 +7.2 0.9832270447806774 +7.25 0.9841477660896762 +7.3 0.9851117580230986 +7.35 0.9861133043016919 +7.4 0.9871467807608523 +7.45 0.9882066553506255 +7.5 0.9892874881357057 +7.55 0.9903839312954362 +7.6 0.9914907291238099 +7.65 0.9926027180294678 +7.7 0.9937148265357003 +7.75 0.9948220752804471 +7.8 0.9959195770162965 +7.85 0.9970025366104858 +7.9 0.9980662510449018 +7.95 0.9991061094160795 +8.0 1.0001175929352037 +8.05 1.0010964714906228 +8.1 1.002039554761376 +8.15 1.0029438160382957 +8.2 1.0038064492120649 +8.25 1.0046248990358608 +8.3 1.0053968611253554 +8.35 1.0061202819587138 +8.4 1.0067933588765958 +8.45 1.007414540082155 +8.5 1.007982524641039 +8.55 1.0084962624813893 +8.6 1.008954954393842 +8.65 1.0093580520315268 +8.7 1.0097052579100678 +8.75 1.0099965254075827 +8.8 1.0102320587646836 +8.85 1.0104123130844762 +8.9 1.0105379943325612 +8.95 1.0106100593370324 +9.0 1.010629715788478 +9.05 1.0105984222399802 +9.1 1.0105178881071157 +9.15 1.0103900736679543 +9.2 1.010217190063061 +9.25 1.0100016992954937 +9.3 1.0097463142308054 +9.35 1.0094539985970423 +9.4 1.0091273664549263 +9.45 1.0087662220550175 +9.5 1.008373565013879 +9.55 1.0079529315784397 +9.6 1.007507748750831 +9.65 1.0070413342883853 +9.7 1.0065568967036356 +9.75 1.0060575352643175 +9.8 1.005546239993367 +9.85 1.005025891668922 +9.9 1.0044992618243216 +9.95 1.003969012748106 +10.0 1.0034376974840173 +10.05 1.0029077598309983 +10.1 1.0023815343431939 +10.15 1.0018612463299494 +10.2 1.0013490118558124 +10.25 1.0008468377405315 +10.3 1.0003566215590562 +10.35 0.9998801516415383 +10.4 0.9994191070733301 +10.45 0.9989750576949857 +10.5 0.9985494641022605 +10.55 0.9981436776461111 +10.6 0.9977589404326955 +10.65 0.9973963853233733 +10.7 0.9970570359347051 +10.75 0.9967418066384531 +10.8 0.9964515025615808 +10.85 0.996186819586253 +10.9 0.9959483443498359 +10.95 0.9957365542448972 +11.0 0.9955518174192055 +11.05 0.995396301931505 +11.1 0.9952711486235987 +11.15 0.9951750094554872 +11.2 0.9951065518609477 +11.25 0.9950644588892086 +11.3 0.9950474292049508 +11.35 0.9950541770883066 +11.4 0.9950834324348602 +11.45 0.9951339407556477 +11.5 0.9952044631771567 +11.55 0.9952937764413271 +11.6 0.9954006729055503 +11.65 0.9955239605426696 +11.7 0.9956624629409799 +11.75 0.9958150193042283 +11.8 0.9959804844516134 +11.85 0.9961577288177856 +11.9 0.9963456384528475 +11.95 0.9965431150223529 +12.0 0.9967490758073081 +12.05 0.9969624537041705 +12.1 0.9971821972248498 +12.15 0.9974072704967074 +12.2 0.9976366532625566 +12.25 0.997869340880662 +12.3 0.9981043443247409 +12.35 0.9983406901839615 +12.4 0.9985774206629445 +12.45 0.998813593581762 +12.5 0.999048282375938 +12.55 0.9992805760964485 +12.6 0.9995095794097211 +12.65 0.9997344125976353 +12.7 0.9999542115575222 +12.75 1.000168127802165 +12.8 1.000375328459799 +12.85 1.0005749962741102 +12.9 1.0007663296042377 +12.95 1.0009485424247715 +13.0 1.001120864325754 +13.05 1.001282540512679 +13.1 1.0014328318064922 +13.15 1.0015710146435914 +13.2 1.001696381075826 +13.25 1.0018080953978006 +13.3 1.0019058056111938 +13.35 1.0019899586093672 +13.4 1.0020610167310116 +13.45 1.0021194420712354 +13.5 1.0021656964815653 +13.55 1.002200241569946 +13.6 1.0022235387007397 +13.65 1.0022360489947266 +13.7 1.002238233329105 +13.75 1.0022305523374908 +13.8 1.0022134664099176 +13.85 1.0021874356928375 +13.9 1.00215292008912 +13.95 1.0021103792580526 +14.0 1.0020602726153405 +14.05 1.002003059333107 +14.1 1.0019391983398935 +14.15 1.001869148320659 +14.2 1.0017933677167798 +14.25 1.0017123147260512 +14.3 1.0016264473026857 +14.35 1.0015362231573137 +14.4 1.0014420997569835 +14.45 1.0013445343251617 +14.5 1.0012439838417322 +14.55 1.0011409050429971 +14.6 1.0010357544216761 +14.65 1.0009289882269072 +14.7 1.000821062464246 +14.75 1.0007124328956658 +14.8 1.0006035550395582 +14.85 1.0004948841707324 +14.9 1.0003868753204155 +14.95 1.0002799832762528 +15.0 1.0001746625823067 +15.05 1.0000713675390585 +15.1 0.9999705522034064 +15.15 0.9998726703886672 +15.2 0.9997781756645753 +15.25 0.9996875213572829 +15.3 0.9996011605493601 +15.35 0.9995195460797951 +15.4 0.9994431305439937 +15.45 0.9993723662937797 +15.5 0.9993078801202896 +15.55 0.9992505744009643 +15.6 0.9992002709754936 +15.65 0.9991566855771745 +15.7 0.9991195378792506 +15.75 0.9990885514949103 +15.8 0.9990634539772882 +15.85 0.999043976819465 +15.9 0.9990298554544664 +15.95 0.9990208292552645 +16.0 0.9990166415347769 +16.05 0.9990170395458667 +16.1 0.9990217744813433 +16.15 0.9990306014739615 +16.2 0.9990432795964218 +16.25 0.9990595718613707 +16.3 0.9990792452214002 +16.35 0.9991020705690484 +16.4 0.9991278227367987 +16.45 0.9991562804970805 +16.5 0.9991872265622691 +16.55 0.9992204475846853 +16.6 0.9992557341565957 +16.65 0.9992928808102128 +16.7 0.9993316860176947 +16.75 0.9993719521911454 +16.8 0.9994134856826143 +16.85 0.9994560967840972 +16.9 0.999499599727535 +16.95 0.9995438126848146 +17.0 0.9995885577677688 +17.05 0.999633661028176 +17.1 0.9996789524577604 +17.15 0.9997242659881919 +17.2 0.9997694394910861 +17.25 0.9998143147780046 +17.3 0.9998587376004546 +17.35 0.999902557649889 +17.4 0.9999456285577065 +17.45 0.9999878078952515 +17.5 1.0000289571738143 +17.55 1.000068941844631 +17.6 1.0001076312988828 +17.65 1.0001448988676978 +17.7 1.000180621822149 +17.75 1.000214681373255 +17.8 1.0002469626719812 +17.85 1.0002773548092376 +17.9 1.0003057508158808 +17.95 1.0003320476627124 +18.0 1.0003561462604804 +18.05 1.0003779514598783 +18.1 1.000397372051545 +18.15 1.0004143207660663 +18.2 1.0004287142739723 +18.25 1.0004404731857395 +18.3 1.0004495220517904 +18.35 1.0004556403120812 +18.4 1.0004586682601238 +18.45 1.0004587976048693 +18.5 1.0004562199748748 +18.55 1.0004511224400474 +18.6 1.0004436875116447 +18.65 1.0004340931422746 +18.7 1.0004225127258954 +18.75 1.000409115097816 +18.8 1.0003940645346958 +18.85 1.0003775207545444 +18.9 1.0003596389167222 +18.95 1.0003405696219398 +19.0 1.0003204589122578 +19.05 1.0002994482710883 +19.1 1.000277674623193 +19.15 1.000255270334684 +19.2 1.0002323632130246 +19.25 1.0002090765070275 +19.3 1.0001855289068569 +19.35 1.0001618345440266 +19.4 1.0001381029914014 +19.45 1.0001144392631962 +19.5 1.0000909438149763 +19.55 1.0000677125436577 +19.6 1.0000448367875068 +19.65 1.0000224033261402 +19.7 1.0000004943805254 +19.75 0.9999791876129798 +19.8 0.9999585561271713 +19.85 0.9999386684681189 +19.9 0.9999195886221911 +19.95 0.9999013760171075 +20.0 0.999884085521938 +20.05 0.9998677674471027 +20.1 0.9998524675443724 +20.15 0.9998382270068683 +20.2 0.999825082469062 +20.25 0.9998130660067754 +20.3 0.9998022051371811 +20.35 0.9997925228188019 +20.4 0.9997840374515113 +20.45 0.9997767628765329 +20.5 0.9997707083764411 +20.55 0.9997658786751604 +20.6 0.999762273937966 +20.65 0.9997598897714833 +20.7 0.9997587172236886 +20.75 0.999758742783908 +20.8 0.9997599483828186 +20.85 0.9997623113924474 +20.9 0.9997658046261724 +20.95 0.9997703963387217 +21.0 0.9997760502261739 +21.05 0.999782725425958 +21.1 0.9997903765168537 +21.15 0.9997989535189906 +21.2 0.9998084018938495 +21.25 0.9998186625442608 +21.3 0.9998296718144059 +21.35 0.9998413614898165 +21.4 0.9998536587973748 +21.45 0.9998664864053133 +21.5 0.9998797624232149 +21.55 0.9998934004020132 +21.6 0.9999073093339921 +21.65 0.9999213936527858 +21.7 0.999935553233379 +21.75 0.9999496833921071 +21.8 0.9999636748866557 +21.85 0.9999774139160608 +21.9 0.9999907821207089 +21.95 1.0000036565823371 +22.0 1.0000159098240327 +22.05 1.0000273831324133 +22.1 1.0000378192552613 +22.15 1.0000472193179122 +22.2 1.000055628495489 +22.25 1.000063091144495 +22.3 1.0000696508028153 +22.35 1.0000753501897153 +22.4 1.0000802312058417 +22.45 1.0000843349332225 +22.5 1.0000877016352665 +22.55 1.0000903707567637 +22.6 1.0000923809238846 +22.65 1.0000937699441819 +22.7 1.0000945748065881 +22.75 1.0000948316814176 +22.8 1.0000945759203652 +22.85 1.0000938420565073 +22.9 1.0000926638043013 +22.95 1.000091074059585 +23.0 1.000089104899578 +23.05 1.0000867875828805 +23.1 1.000084152549474 +23.15 1.0000812294207209 +23.2 1.0000780469993646 +23.25 1.0000746332695298 +23.3 1.000071015396722 +23.35 1.000067219727828 +23.4 1.000063271791115 +23.45 1.0000591962962322 +23.5 1.000055017134209 +23.55 1.0000507573774566 +23.6 1.0000464392797663 +23.65 1.0000420842763114 +23.7 1.0000377129836457 +23.75 1.000033345199704 +23.8 1.0000289999038028 +23.85 1.0000246952566387 +23.9 1.0000204486002902 +23.95 1.0000162764582161 +24.0 1.0000121945352567 +24.05 1.0000082177176333 +24.1 1.0000043600729482 +24.15 1.0000006348501846 +24.2 0.9999970544797072 +24.25 0.9999936305732612 +24.3 0.999990373923973 +24.35 0.9999872945063504 +24.4 0.9999844014762815 +24.45 0.9999817031710364 +24.5 0.9999792071092655 +24.55 0.9999769199910005 +24.6 0.9999748476976542 +24.65 0.9999729952920203 +24.7 0.9999713670182737 +24.75 0.9999699663019703 +24.8 0.999968795750047 +24.85 0.9999678571508217 +24.9 0.9999671514739935 +24.95 0.9999666788706424 +25.0 0.9999664386732294 +25.05 0.9999664293955969 +25.1 0.9999666487329679 +25.15 0.9999670935619466 +25.2 0.9999677599405185 +25.25 0.9999686431080497 +25.3 0.9999697374852876 +25.35 0.9999710366743607 +25.4 0.9999725334587785 +25.45 0.9999742198034313 +25.5 0.9999760868545908 +25.55 0.9999781249399096 +25.6 0.9999803235684213 +25.65 0.9999826714305405 +25.7 0.9999851563980632 +25.75 0.9999877655241658 +25.8 0.9999904850434064 +25.85 0.9999933003717237 +25.9 0.9999961961064378 +25.95 0.9999991560262493 +26.0 1.0000021630912406 +26.05 1.0000051994428745 +26.1 1.0000082464039952 +26.15 1.0000112844788278 +26.2 1.0000142814570883 +26.25 1.000017051088491 +26.3 1.0000195436035837 +26.35 1.0000217692482254 +26.4 1.000023738117155 +26.45 1.0000254601539926 +26.5 1.0000269451512378 +26.55 1.0000282027502714 +26.6 1.0000292424413542 +26.65 1.0000300735636278 +26.7 1.0000307053051143 +26.75 1.0000311467027156 +26.8 1.0000314066422147 +26.85 1.0000314938582748 +26.9 1.0000314169344398 +26.95 1.0000311843031333 +27.0 1.0000308042456605 +27.05 1.000030284892206 +27.1 1.0000296342218356 +27.15 1.0000288600624951 +27.2 1.0000279700910109 +27.25 1.0000269718330896 +27.3 1.0000258726633189 +27.35 1.0000246798051662 +27.4 1.0000234003309798 +27.45 1.0000220411619882 +27.5 1.0000206090683008 +27.55 1.0000191106689067 +27.6 1.0000175524316763 +27.65 1.0000159406733597 +27.7 1.0000142815595883 +27.75 1.0000125811048726 +27.8 1.0000108451726049 +27.85 1.0000090794750573 +27.9 1.0000072895733827 +27.95 1.000005480877614 +28.0 1.0000036586466647 +28.05 1.000001827988329 +28.1 0.9999999938592812 +28.15 0.9999981610650764 +28.2 0.9999963342601499 +28.25 0.9999945179478175 +28.3 0.9999927164802754 +28.35 0.9999909340586004 +28.4 0.9999891747327497 +28.45 0.9999874424015609 +28.5 0.999985740812752 +28.55 0.9999840735629216 +28.6 0.9999824440975487 +28.65 0.9999808557109925 +28.7 0.9999793115464931 +28.75 0.9999778145961706 +28.8 0.9999763677010259 +28.85 0.9999749735509403 +28.9 0.9999736346846753 +28.95 0.999972353489873 +29.0 0.9999711322030561 +29.05 0.9999699729096274 +29.1 0.9999688775438706 +29.15 0.9999678478889495 +29.2 0.9999668855769084 +29.25 0.9999659920886722 +29.3 0.9999651687540461 +29.35 0.9999644167517158 +29.4 0.9999637371092475 +29.45 0.9999631307030877 +29.5 0.9999625982585636 +29.55 0.9999621403498825 +29.6 0.9999617574001326 +29.65 0.9999614496812822 +29.7 0.9999612173141801 +29.75 0.9999610602685557 +29.8 0.9999609783630186 +29.85 0.9999609712650591 +29.9 0.9999610384910479 +29.95 0.999961179406236 +30.0 0.9999613932247549 +30.05 0.9999616790096166 +30.1 0.9999620356727138 +30.15 0.9999624619748192 +30.2 0.999962956525586 +30.25 0.9999635177835483 +30.3 0.9999641440561201 +30.35 0.9999648334995962 +30.4 0.9999655841191517 +30.45 0.9999663937688423 +30.5 0.9999672601516039 +30.55 0.9999681808192531 +30.6 0.9999691531724867 +30.65 0.9999701744608822 +30.7 0.9999712417828974 +30.75 0.9999723520858707 +30.8 0.9999735021660205 +30.85 0.9999746886684464 +30.9 0.9999759080871279 +30.95 0.9999771567649249 +31.0 0.9999784308935782 +31.05 0.9999797265137086 +31.1 0.9999810395148175 +31.15 0.999982365635287 +31.2 0.9999837004623792 +31.25 0.999985039432237 +31.3 0.9999863778298836 +31.35 0.9999877107892228 +31.4 0.9999890332930386 +31.45 0.9999903401729955 +31.5 0.9999916261096387 +31.55 0.9999928856323935 +31.6 0.999994113119566 +31.65 0.9999953027983425 +31.7 0.9999964487447898 +31.75 0.9999975448838552 +31.8 0.9999985849893664 +31.85 0.9999995626840317 +31.9 1.0000004714394395 +31.95 1.0000013045760592 +32.0 1.0000020552632398 +32.05 1.0000027165192118 +32.1 1.0000032812110853 +32.15 1.0000037420548513 +32.2 1.0000040916153812 +32.25 1.0000043223064266 +32.3 1.0000044263906196 +32.35 1.000004399006739 +32.4 1.0000043128626332 +32.45 1.000004203336026 +32.5 1.0000040723902253 +32.55 1.0000039219328472 +32.6 1.0000037538158149 +32.65 1.0000035698353584 +32.7 1.0000033717320158 +32.75 1.000003161190632 +32.8 1.000002939840359 +32.85 1.0000027092546566 +32.9 1.0000024709512918 +32.95 1.0000022263923385 +33.0 1.0000019769841784 +33.05 1.0000017240775 +33.1 1.0000014689672998 +33.15 1.000001212892881 +33.2 1.0000009570378545 +33.25 1.0000007025301378 +33.3 1.0000004504419566 +33.35 1.0000002017898435 +33.4 0.9999999575346381 +33.45 0.9999997185814878 +33.5 0.9999994857798472 +33.55 0.9999992599234779 +33.6 0.9999990417504491 +33.65 0.9999988319431372 +33.7 0.999998631128226 +33.75 0.9999984398767062 +33.8 0.9999982587038765 +33.85 0.9999980880693422 +33.9 0.9999979283770163 +33.95 0.9999977799751192 +34.0 0.9999976431561781 +34.05 0.9999975181570281 +34.1 0.9999974051588111 +34.15 0.9999973042869765 +34.2 0.9999972156112813 +34.25 0.9999971391457892 +34.3 0.9999970748488717 +34.35 0.9999970226232074 +34.4 0.9999969823157822 +34.45 0.9999969537178893 +34.5 0.9999969365651292 +34.55 0.9999969305374098 +34.6 0.9999969352589462 +34.65 0.9999969502982609 +34.7 0.9999969751681834 +34.75 0.9999970093258509 +34.8 0.9999970521727077 +34.85 0.9999971030545055 +34.9 0.9999971612613032 +34.95 0.999997226027467 +35.0 0.9999972965316705 +35.05 0.9999973718968944 +35.1 0.9999974511904269 +35.15 0.9999975334238635 +35.2 0.9999976175531069 +35.25 0.9999977024783672 +35.3 0.9999977870441616 +35.35 0.999997870039315 +35.4 0.999997950196959 +35.45 0.999998026194533 +35.5 0.9999980966537837 +35.55 0.9999981601407648 +35.6 0.9999982151658375 +35.65 0.9999982601836702 +35.7 0.9999982935932387 +35.75 0.9999983137378259 +35.8 0.9999983189050224 +35.85 0.9999983073267258 +35.9 0.9999982771791409 +35.95 0.99999822658278 +36.0 0.9999981536024628 +36.05 0.9999980562473161 +36.1 0.9999979324707741 +36.15 0.9999977993487448 +36.2 0.9999976838090294 +36.25 0.9999975853411772 +36.3 0.9999975031965993 +36.35 0.9999974366391983 +36.4 0.9999973849453675 +36.45 0.9999973474039922 +36.5 0.999997323316448 +36.55 0.9999973119966025 +36.6 0.999997312770814 +36.65 0.9999973249779324 +36.7 0.9999973479692984 +36.75 0.9999973811087441 +36.8 0.9999974237725932 +36.85 0.9999974753496597 +36.9 0.9999975352412496 +36.95 0.9999976028611599 +37.0 0.9999976776356788 +37.05 0.9999977590035856 +37.1 0.9999978464161507 +37.15 0.9999979393371363 +37.2 0.9999980372427951 +37.25 0.9999981396218716 +37.3 0.9999982459756009 +37.35 0.99999835581771 +37.4 0.9999984686744164 +37.45 0.9999985840844295 +37.5 0.9999987015989494 +37.55 0.9999988207816676 +37.6 0.9999989412087669 +37.65 0.999999062468921 +37.7 0.9999991841632953 +37.75 0.9999993059055459 +37.8 0.9999994273218205 +37.85 0.9999995480507576 +37.9 0.9999996677434876 +37.95 0.9999997860636314 +38.0 0.9999999026873014 +38.05 1.0000000173031014 +38.1 1.000000129612126 +38.15 1.000000239327961 +38.2 1.0000003461766842 +38.25 1.0000004498968635 +38.3 1.000000550239559 +38.35 1.0000006469683214 +38.4 1.0000007398591928 +38.45 1.0000008287007063 +38.5 1.0000009132938865 +38.55 1.0000009934522494 +38.6 1.0000010690018015 +38.65 1.000001139781041 +38.7 1.0000012056409577 +38.75 1.0000012664450315 +38.8 1.0000013220692348 +38.85 1.00000137240203 +38.9 1.0000014173443716 +38.95 1.0000014568097049 +39.0 1.0000014907239667 +39.05 1.0000015190255847 +39.1 1.0000015416654777 +39.15 1.0000015586070563 +39.2 1.0000015698262217 +39.25 1.0000015753113667 +39.3 1.0000015750633753 +39.35 1.0000015690956223 +39.4 1.0000015574339742 +39.45 1.0000015401167883 +39.5 1.0000015171949137 +39.55 1.00000148873169 +39.6 1.0000014548029486 +39.65 1.0000014154970114 +39.7 1.0000013709146924 +39.75 1.0000013211692962 +39.8 1.000001266386619 +39.85 1.0000012067049475 +39.9 1.0000011422750608 +39.95 1.0000010732602278 +40.0 1.0000009998362098 +40.05 1.000000922191259 +40.1 1.000000840526118 +40.15 1.0000007550540218 +40.2 1.000000666000696 +40.25 1.0000005736043571 +40.3 1.000000478115714 +40.35 1.000000379797965 +40.4 1.0000002789268014 +40.45 1.0000001757904047 +40.5 1.0000000706894476 +40.55 0.9999999639370944 +40.6 0.9999998558590008 +40.65 0.9999997467933128 +40.7 0.9999996370906686 +40.75 0.9999995271141972 +40.8 0.9999994172395185 +40.85 0.9999993078547441 +40.9 0.9999991993604767 +40.95 0.99999909216981 +41.0 0.9999989867083292 +41.05 0.9999988834141104 +41.1 0.9999987827377211 +41.15 0.9999986851422201 +41.2 0.9999985911031573 +41.25 0.9999985011085736 +41.3 0.9999984156590015 +41.35 0.9999983352674645 +41.4 0.9999982604594773 +41.45 0.9999981917730458 +41.5 0.9999981297586673 +41.55 0.9999980749793301 +41.6 0.9999980280105139 +41.65 0.9999979894401892 +41.7 0.9999979598688182 +41.75 0.9999979399093543 +41.8 0.9999979301872416 +41.85 0.9999979313404158 +41.9 0.9999979440193039 +41.95 0.9999979688868238 +42.0 0.999998006618385 +42.05 0.9999980574639027 +42.1 0.9999981166370969 +42.15 0.9999981821903582 +42.2 0.9999982535581772 +42.25 0.999998330189797 +42.3 0.9999984115492135 +42.35 0.9999984971151756 +42.4 0.9999985863811847 +42.45 0.9999986788554951 +42.5 0.9999987740611138 +42.55 0.9999988715358007 +42.6 0.9999989708320682 +42.65 0.9999990715171818 +42.7 0.9999991731731596 +42.75 0.9999992753967724 +42.8 0.9999993777995437 +42.85 0.9999994800077502 +42.9 0.9999995816624208 +42.95 0.9999996824193376 +43.0 0.9999997819490352 +43.05 0.999999879936801 +43.1 0.9999999760826754 +43.15 1.0000000701014513 +43.2 1.0000001617226746 +43.25 1.0000002506906436 +43.3 1.0000003367644097 +43.35 1.000000419717777 +43.4 1.0000004993393021 +43.45 1.000000575432295 +43.5 1.0000006478148178 +43.55 1.0000007163196856 +43.6 1.0000007807944662 +43.65 1.0000008411014807 +43.7 1.000000897117802 +43.75 1.0000009487352566 +43.8 1.0000009958604232 +43.85 1.000001038414634 +43.9 1.000001076333973 +43.95 1.0000011095692776 +44.0 1.0000011380861378 +44.05 1.0000011618648965 +44.1 1.0000011809006493 +44.15 1.0000011952032442 +44.2 1.0000012047972826 +44.25 1.000001209722118 +44.3 1.0000012100318574 +44.35 1.00000120579536 +44.4 1.0000011970962381 +44.45 1.0000011840328562 +44.5 1.0000011667183324 +44.55 1.000001145280537 +44.6 1.0000011198620933 +44.65 1.0000010906203771 +44.7 1.0000010577275171 +44.75 1.0000010213703951 +44.8 1.0000009817506452 +44.85 1.0000009390846543 +44.9 1.0000008936035625 +44.95 1.0000008455532623 +45.0 1.0000007951943988 +45.05 1.0000007428023703 +45.1 1.0000006886673278 +45.15 1.0000006330941746 +45.2 1.0000005764025675 +45.25 1.0000005189269152 +45.3 1.00000046101638 +45.35 1.0000004030348766 +45.4 1.0000003453610722 +45.45 1.0000002883883872 +45.5 1.0000002325249948 +45.55 1.0000001781938204 +45.6 1.0000001258325426 +45.65 1.000000075893593 +45.7 1.0000000288441553 +45.75 0.9999999851661665 +45.8 0.9999999453563162 +45.85 0.9999999099260467 +45.9 0.9999998794015532 +45.95 0.9999998543237836 +46.0 0.9999998352484385 +46.05 0.9999998216916034 +46.1 0.9999998105971786 +46.15 0.9999998016152832 +46.2 0.9999997946264213 +46.25 0.9999997895139021 +46.3 0.9999997861638408 +46.35 0.9999997844651585 +46.4 0.9999997843095817 +46.45 0.9999997855916432 +46.5 0.999999788208681 +46.55 0.9999997920608393 +46.6 0.999999797051068 +46.65 0.9999998030851226 +46.7 0.9999998100715645 +46.75 0.9999998179217608 +46.8 0.9999998265498845 +46.85 0.9999998358729142 +46.9 0.9999998458106344 +46.95 0.9999998562856354 +47.0 0.999999867223313 +47.05 0.9999998785518691 +47.1 0.9999998902023113 +47.15 0.9999999021084529 +47.2 0.9999999142069128 +47.25 0.9999999264371161 +47.3 0.9999999387412932 +47.35 0.9999999510644807 +47.4 0.9999999633545207 +47.45 0.9999999755620611 +47.5 0.9999999876405556 +47.55 0.9999999995462638 +47.6 1.000000011238251 +47.65 1.0000000226783878 +47.7 1.0000000338313517 +47.75 1.0000000446646247 +47.8 1.0000000551484953 +47.85 1.0000000652560577 +47.9 1.0000000749632119 +47.95 1.0000000842486632 +48.0 1.0000000930939232 +48.05 1.0000001014833093 +48.1 1.0000001094039441 +48.15 1.0000001168457566 +48.2 1.0000001238014815 +48.25 1.0000001302666586 +48.3 1.0000001362396342 +48.35 1.0000001417215603 +48.4 1.0000001467163944 +48.45 1.0000001512308996 +48.5 1.0000001552746454 +48.55 1.0000001588600065 +48.6 1.0000001620021635 +48.65 1.0000001647191032 +48.7 1.0000001670316176 +48.75 1.000000168963305 +48.8 1.0000001705405686 +48.85 1.0000001717926184 +48.9 1.0000001727514696 +48.95 1.0000001734519433 +49.0 1.0000001739316662 +49.05 1.0000001742310711 +49.1 1.0000001743933966 +49.15 1.0000001744646865 +49.2 1.0000001744937907 +49.25 1.0000001745323654 +49.3 1.0000001746348717 +49.35 1.000000174858577 +49.4 1.0000001752635541 +49.45 1.0000001759126822 +49.5 1.0000001768716456 +49.55 1.0000001782089347 +49.6 1.0000001799958456 +49.65 1.0000001823064804 +49.7 1.0000001852177465 +49.75 1.0000001888093573 +49.8 1.000000193163832 +49.85 1.0000001983664961 +49.9 1.0000002045054797 +49.95 1.0000002116717195 +50.0 1.000000219958958 diff --git a/test/julia_dde/test_basic_check_10.txt b/test/julia_dde/test_basic_check_10.txt new file mode 100644 index 00000000..0e15e27c --- /dev/null +++ b/test/julia_dde/test_basic_check_10.txt @@ -0,0 +1,401 @@ +0.0 1.2 +0.1 1.1762383903532672 +0.2 1.1529472850205345 +0.3 1.1301172850650132 +0.4 1.1077393734477934 +0.5 1.0858044886142186 +0.6 1.0643037416988483 +0.7 1.0432288615243335 +0.8 1.022571356528724 +0.9 1.0023223752836392 +1.0 0.9824742404177691 +1.1 0.963019381199433 +1.2 0.9439501263044995 +1.3 0.9252577408761488 +1.4 0.9069349374873376 +1.5 0.8889749354496113 +1.6 0.8713709540745148 +1.7 0.8541162126735939 +1.8 0.8372028671950351 +1.9 0.8206232664837655 +2.0 0.8043714637653621 +2.1 0.7884415190806816 +2.2 0.7728274924705816 +2.3 0.757523443975919 +2.4 0.7425233077800755 +2.5 0.7278203057112125 +2.6 0.7137323858717671 +2.7 0.7025150957051455 +2.8 0.694484707545044 +2.9 0.6894972844620731 +3.0 0.6874088895268431 +3.1 0.6880755858099645 +3.2 0.6913925755975374 +3.3 0.6973222618621986 +3.4 0.7058067257179844 +3.5 0.7168115471678291 +3.6 0.7303370069135824 +3.7 0.7463846145141237 +3.8 0.7649558795283328 +3.9 0.7860623562038731 +4.0 0.8095410256788728 +4.1 0.8348171340036061 +4.2 0.8612982116589256 +4.3 0.8884619443461924 +4.4 0.9158450419219439 +4.5 0.9430276803629207 +4.6 0.9696472893588215 +4.7 0.9954055016902975 +4.8 1.02006858215819 +4.9 1.0434549257284909 +5.0 1.0654985042705631 +5.1 1.0861544105253624 +5.2 1.1054892732450592 +5.3 1.1236480400185191 +5.4 1.1407769852205385 +5.5 1.1570306028256245 +5.6 1.1725947516443396 +5.7 1.1876404586150953 +5.8 1.2023387498561318 +5.9 1.2168526222926397 +6.0 1.2312873402797389 +6.1 1.2457399798526765 +6.2 1.260310280205678 +6.3 1.2750676414654825 +6.4 1.2899834074452599 +6.5 1.3050178098521605 +6.6 1.3201310803933353 +6.7 1.3352945550759119 +6.8 1.350350773348611 +6.9 1.3650579417149595 +7.0 1.3791742173697994 +7.1 1.392457757507972 +7.2 1.4046657660937962 +7.3 1.4154832030220348 +7.4 1.4245446545864353 +7.5 1.4314992491448382 +7.6 1.4359911635746783 +7.7 1.4376417983266423 +7.8 1.43625424520483 +7.9 1.4316782724704902 +8.0 1.4237636483848721 +8.1 1.4124176896707952 +8.2 1.3977578549156462 +8.3 1.3799340478096036 +8.4 1.3590957461794575 +8.5 1.3353924278519964 +8.6 1.3089802658668372 +8.7 1.2799746596859716 +8.8 1.2484500523482862 +8.9 1.2144805927509215 +9.0 1.1781404107123883 +9.1 1.1394589183846158 +9.2 1.0988328136288612 +9.3 1.0568777052684357 +9.4 1.014209202126653 +9.5 0.9715695193343649 +9.6 0.930032296455194 +9.7 0.8906351599134852 +9.8 0.854409165123903 +9.9 0.8220512297459162 +10.0 0.794002306444414 +10.1 0.770649736832742 +10.2 0.7521142528390301 +10.3 0.738432692185377 +10.4 0.7296563251431871 +10.5 0.7257749973000727 +10.6 0.7264364129282308 +10.7 0.731245671383987 +10.8 0.7398036635388009 +10.9 0.7516141391602215 +11.0 0.7661804613272529 +11.1 0.7830273114885461 +11.2 0.8017662055697486 +11.3 0.8221064904542812 +11.4 0.8437618854277524 +11.5 0.8665189094969064 +11.6 0.890256414798055 +11.7 0.9148586032887032 +11.8 0.940235001645523 +11.9 0.9663699334619459 +12.0 0.993260294587582 +12.1 1.0209029808720407 +12.2 1.0493020447199954 +12.3 1.0784799284506588 +12.4 1.1084608906984939 +12.5 1.1392691895837797 +12.6 1.170929083226794 +12.7 1.2034648297478152 +12.8 1.2369006872671222 +12.9 1.2712609139049917 +13.0 1.306569767781703 +13.1 1.3428558472689696 +13.2 1.3801674068749505 +13.3 1.418434768431265 +13.4 1.457559911388622 +13.5 1.4974448151977326 +13.6 1.5379914593093074 +13.7 1.5791068886029291 +13.8 1.620441928950408 +13.9 1.661439393998374 +14.0 1.701539941267787 +14.1 1.7401842282796052 +14.2 1.7767153880380508 +14.3 1.8102339971667682 +14.4 1.8398266864159183 +14.5 1.8645794114950862 +14.6 1.8835528394067071 +14.7 1.89585305747116 +14.8 1.9006113130381221 +14.9 1.8969562831461415 +15.0 1.8841144991168566 +15.1 1.8615707087722606 +15.2 1.8288415838383896 +15.3 1.7854422595678603 +15.4 1.7313654916031211 +15.5 1.6671129005732073 +15.6 1.5932016378115792 +15.7 1.5102209083685956 +15.8 1.4197593505303363 +15.9 1.3241170196184957 +16.0 1.2256975472498846 +16.1 1.12751003048568 +16.2 1.0326262210874273 +16.3 0.9439184319210752 +16.4 0.8634363752312201 +16.5 0.792881976065694 +16.6 0.7329295576461717 +16.7 0.6837732515298223 +16.8 0.6452103507276176 +16.9 0.616424326376609 +17.0 0.5965433416856748 +17.1 0.5845934321642667 +17.2 0.5794777718697854 +17.3 0.5801388198005561 +17.4 0.5856713201165599 +17.5 0.5952318062141689 +17.6 0.6081861042382376 +17.7 0.6239883435268924 +17.8 0.6422245660405075 +17.9 0.6625875134112515 +18.0 0.6847998907124471 +18.1 0.7086945321200175 +18.2 0.7341302256701652 +18.3 0.7609816885603836 +18.4 0.7891865076296669 +18.5 0.8186944899168314 +18.6 0.84944806970619 +18.7 0.881418302111781 +18.8 0.9146354592666212 +18.9 0.9491319288165144 +19.0 0.9849388298458869 +19.1 1.0220756401808062 +19.2 1.060697143076142 +19.3 1.101004243000086 +19.4 1.1431978444208233 +19.5 1.1874788518065464 +19.6 1.2340892473253846 +19.7 1.283306461498362 +19.8 1.3353667307271526 +19.9 1.390506963677426 +20.0 1.4490221304592847 +20.1 1.5108272412683106 +20.2 1.5756498889935524 +20.3 1.6432176665240672 +20.4 1.7132416554555883 +20.5 1.7850171819600342 +20.6 1.8574028668512483 +20.7 1.9292366271068422 +20.8 1.9993208745275475 +20.9 2.0660940346468717 +21.0 2.1277942682708333 +21.1 2.18265314305678 +21.2 2.2288070409036846 +21.3 2.264357181243495 +21.4 2.2874131605429233 +21.5 2.296180291918321 +21.6 2.289083976539992 +21.7 2.264579750279618 +21.8 2.221242053015983 +21.9 2.1581384971851687 +22.0 2.07444797128032 +22.1 1.9696986400326784 +22.2 1.8459166858706375 +22.3 1.7060336169944468 +22.4 1.5545508647268924 +22.5 1.3981481091710037 +22.6 1.243669657943292 +22.7 1.0974201713894012 +22.8 0.964549182681927 +22.9 0.8480951425988938 +23.0 0.7495259504671893 +23.1 0.6687072156759692 +23.2 0.6047275358053016 +23.3 0.5557981694927575 +23.4 0.520032785124636 +23.5 0.4953215039502459 +23.6 0.4796601630143706 +23.7 0.47130329126658715 +23.8 0.4687770419922361 +23.9 0.47091064222701956 +24.0 0.4768103187855602 +24.1 0.48575861705853646 +24.2 0.4972403844167946 +24.3 0.5108326949708443 +24.4 0.5262293106651805 +24.5 0.543175416289768 +24.6 0.5614679838095132 +24.7 0.5809580899799074 +24.8 0.6015015508328674 +24.9 0.623007587183179 +25.0 0.6454124949179368 +25.1 0.6686432982995325 +25.2 0.6927052230934189 +25.3 0.7176774326690653 +25.4 0.7436396766404005 +25.5 0.7706835033848395 +25.6 0.7990581815613631 +25.7 0.8290855970006543 +25.8 0.861087863650821 +25.9 0.8954400914658145 +26.0 0.9326041690150388 +26.1 0.9730441645817506 +26.2 1.0172399395188414 +26.3 1.065569839590821 +26.4 1.1183161295913722 +26.5 1.1757632224307901 +26.6 1.2379911151210596 +26.7 1.3047453154097126 +26.8 1.3757479168945408 +26.9 1.4506832758146886 +27.0 1.5288462263691007 +27.1 1.6093018750635322 +27.2 1.691112364236993 +27.3 1.773266150378219 +27.4 1.85440674901966 +27.5 1.9330975695504788 +27.6 2.007902903975058 +27.7 2.0772538147725146 +27.8 2.1394285584834822 +27.9 2.1927291079959237 +28.0 2.2352747709368015 +28.1 2.2643775373143513 +28.2 2.2772046606659635 +28.3 2.270371666387715 +28.4 2.240382229032466 +28.5 2.183817013271277 +28.6 2.0996186194131172 +28.7 1.9889581713834459 +28.8 1.8548677487477967 +28.9 1.703957917620767 +29.0 1.5435292751040297 +29.1 1.3815972010655604 +29.2 1.2254114531926712 +29.3 1.0805567268892087 +29.4 0.9511333493643609 +29.5 0.8394367089280085 +29.6 0.7461691629316033 +29.7 0.6706201995489124 +29.8 0.6110545713997341 +29.9 0.5651135619273114 +30.0 0.5304043138475901 +30.1 0.5046901164257204 +30.2 0.4860516734132419 +30.3 0.4729451664825794 +30.4 0.4641226497085326 +30.5 0.45860609382817763 +30.6 0.45562999174204727 +30.7 0.4545785378505115 +30.8 0.4549700104034184 +30.9 0.4564136674254572 +31.0 0.45859190947887885 +31.1 0.4612647227777334 +31.2 0.4642195168290886 +31.3 0.46733578319192937 +31.4 0.47051085348953503 +31.5 0.47369653104529064 +31.6 0.47694780188259134 +31.7 0.48032737920880336 +31.8 0.48393406020116203 +31.9 0.4879958270293249 +32.0 0.4927648310304586 +32.1 0.49850016915329765 +32.2 0.5055299771348553 +32.3 0.514212751113701 +32.4 0.5249162352984859 +32.5 0.5380007457734904 +32.6 0.5537808708532589 +32.7 0.5725699252989864 +32.8 0.5945802471045728 +32.9 0.6199204504554963 +33.0 0.6486843005529993 +33.1 0.6808362961459824 +33.2 0.7162623863958516 +33.3 0.754847425572777 +33.4 0.7964517347646926 +33.5 0.8408642326447557 +33.6 0.8879545098743513 +33.7 0.9376010447031385 +33.8 0.9896758291024246 +33.9 1.0441143467687217 +34.0 1.100934501377058 +34.1 1.1601563039320102 +34.2 1.2218364273501483 +34.3 1.2860192060615765 +34.4 1.3518544837209678 +34.5 1.4183399818551776 +34.6 1.484367994942448 +34.7 1.5477486535655423 +34.8 1.6057626950609103 +34.9 1.6555401367937403 +35.0 1.6943490739387572 +35.1 1.7196126570359898 +35.2 1.7296043493154853 +35.3 1.7230350377951533 +35.4 1.6994149752243763 +35.5 1.6592004165101453 +35.6 1.6031180156382323 +35.7 1.5336010639481854 +35.8 1.453880224829799 +35.9 1.3677145954776975 +36.0 1.2791702291355362 +36.1 1.1918999909843286 +36.2 1.1084209775689737 +36.3 1.0306049336493708 +36.4 0.9591511775580596 +36.5 0.894362286039932 +36.6 0.8358741307917384 +36.7 0.7831805232808203 +36.8 0.7356600549113779 +36.9 0.692610171844157 +37.0 0.6533777163294723 +37.1 0.6173497423372787 +37.2 0.5840517122093792 +37.3 0.5530311659487448 +37.4 0.5239646180249706 +37.5 0.4966071041378533 +37.6 0.47073320198676105 +37.7 0.446230433501325 +37.8 0.4230170679039287 +37.9 0.40101471390406984 +38.0 0.38021124302352716 +38.1 0.36062021933329635 +38.2 0.3422537314080519 +38.3 0.3251123738494721 +38.4 0.3092450084104864 +38.5 0.2947145342214175 +38.6 0.2815838504125872 +38.7 0.26991585611431695 +38.8 0.2597754033409548 +38.9 0.2512283964460365 +39.0 0.24433732917493914 +39.1 0.23916679234203433 +39.2 0.23578638032699598 +39.3 0.23420246767962388 +39.4 0.2344077213818149 +39.5 0.23639464632285906 +39.6 0.24013070927175628 +39.7 0.24561478245105658 +39.8 0.25287467987631057 +39.9 0.2619382155630708 +40.0 0.272833203526888 diff --git a/test/julia_dde/test_basic_check_11.txt b/test/julia_dde/test_basic_check_11.txt new file mode 100644 index 00000000..c1948729 --- /dev/null +++ b/test/julia_dde/test_basic_check_11.txt @@ -0,0 +1,351 @@ +2.0 0.5 +2.01 0.5049999999999999 +2.02 0.51 +2.03 0.5149999999999999 +2.04 0.52 +2.05 0.5249999999999999 +2.06 0.53 +2.07 0.5349999999999999 +2.08 0.54 +2.09 0.5449999999999999 +2.1 0.55 +2.11 0.5549999999999999 +2.12 0.56 +2.13 0.565 +2.14 0.5700000000000001 +2.15 0.575 +2.16 0.5800000000000001 +2.17 0.585 +2.18 0.5900000000000001 +2.19 0.595 +2.2 0.6000000000000001 +2.21 0.605 +2.22 0.6100000000000001 +2.23 0.615 +2.24 0.6200000000000001 +2.25 0.625 +2.26 0.6299999999999999 +2.27 0.635 +2.28 0.6399999999999999 +2.29 0.645 +2.3 0.6499999999999999 +2.31 0.655 +2.32 0.6599999999999999 +2.33 0.665 +2.34 0.6699999999999999 +2.35 0.675 +2.36 0.6799999999999999 +2.37 0.685 +2.38 0.69 +2.39 0.6950000000000001 +2.4 0.7 +2.41 0.7050000000000001 +2.42 0.71 +2.43 0.7150000000000001 +2.44 0.72 +2.45 0.7250000000000001 +2.46 0.73 +2.47 0.7350000000000001 +2.48 0.74 +2.49 0.7450000000000001 +2.5 0.75 +2.51 0.7549999999999999 +2.52 0.76 +2.53 0.7649999999999999 +2.54 0.77 +2.55 0.7749999999999999 +2.56 0.78 +2.57 0.7849999999999999 +2.58 0.79 +2.59 0.7949999999999999 +2.6 0.8 +2.61 0.8049999999999999 +2.62 0.81 +2.63 0.815 +2.64 0.8200000000000001 +2.65 0.825 +2.66 0.8300000000000001 +2.67 0.835 +2.68 0.8400000000000001 +2.69 0.845 +2.7 0.8500000000000001 +2.71 0.855 +2.72 0.8600000000000001 +2.73 0.865 +2.74 0.8700000000000001 +2.75 0.875 +2.76 0.8799999999999999 +2.77 0.885 +2.78 0.8899999999999999 +2.79 0.895 +2.8 0.8999999999999999 +2.81 0.905 +2.82 0.9099999999999999 +2.83 0.915 +2.84 0.9199999999999999 +2.85 0.925 +2.86 0.9299999999999999 +2.87 0.935 +2.88 0.94 +2.89 0.9450000000000001 +2.9 0.95 +2.91 0.9550000000000001 +2.92 0.96 +2.93 0.9650000000000001 +2.94 0.97 +2.95 0.9750000000000001 +2.96 0.98 +2.97 0.9850000000000001 +2.98 0.99 +2.99 0.9950000000000001 +3.0 1.0 +3.01 1.005 +3.02 1.01 +3.03 1.015 +3.04 1.02 +3.05 1.025 +3.06 1.03 +3.07 1.035 +3.08 1.04 +3.09 1.045 +3.1 1.05 +3.11 1.055 +3.12 1.06 +3.13 1.065 +3.14 1.07 +3.15 1.075 +3.16 1.08 +3.17 1.085 +3.18 1.09 +3.19 1.095 +3.2 1.1 +3.21 1.105 +3.22 1.11 +3.23 1.115 +3.24 1.12 +3.25 1.125 +3.26 1.13 +3.27 1.135 +3.28 1.14 +3.29 1.145 +3.3 1.15 +3.31 1.155 +3.32 1.16 +3.33 1.165 +3.34 1.17 +3.35 1.175 +3.36 1.18 +3.37 1.185 +3.38 1.19 +3.39 1.195 +3.4 1.2 +3.41 1.205 +3.42 1.21 +3.43 1.215 +3.44 1.22 +3.45 1.225 +3.46 1.23 +3.47 1.235 +3.48 1.24 +3.49 1.245 +3.5 1.25 +3.51 1.255 +3.52 1.26 +3.53 1.265 +3.54 1.27 +3.55 1.275 +3.56 1.28 +3.57 1.285 +3.58 1.29 +3.59 1.2950000000000002 +3.6 1.3000000000000003 +3.61 1.3050000000000002 +3.62 1.3100000000000003 +3.63 1.3150000000000002 +3.64 1.3200000000000003 +3.65 1.3250000000000002 +3.66 1.3300000000000003 +3.67 1.3350000000000002 +3.68 1.3400000000000003 +3.69 1.3450000000000002 +3.7 1.3500000000000003 +3.71 1.3550000000000002 +3.72 1.3600000000000003 +3.73 1.3650000000000002 +3.74 1.3700000000000003 +3.75 1.3750000000000002 +3.76 1.3800000000000001 +3.77 1.3850000000000002 +3.78 1.3900000000000001 +3.79 1.3950000000000002 +3.8 1.4000000000000001 +3.81 1.4050000000000002 +3.82 1.4100000000000001 +3.83 1.4150000000000003 +3.84 1.4200000000000002 +3.85 1.4250000000000003 +3.86 1.4300000000000002 +3.87 1.4350000000000003 +3.88 1.4400000000000002 +3.89 1.4450000000000003 +3.9 1.4500000000000002 +3.91 1.4550000000000003 +3.92 1.4600000000000002 +3.93 1.4650000000000003 +3.94 1.4700000000000002 +3.95 1.4750000000000003 +3.96 1.4800000000000002 +3.97 1.4850000000000003 +3.98 1.4900000000000002 +3.99 1.4950000000000003 +4.0 1.5000000000000002 +4.01 1.5050000000000001 +4.02 1.51 +4.03 1.5150000000000003 +4.04 1.5199982174807718 +4.05 1.5249893583619993 +4.06 1.5299732881826311 +4.07 1.5349502477752208 +4.08 1.539920477972321 +4.09 1.5448842196064865 +4.1 1.5498417135102704 +4.11 1.5547932005162266 +4.12 1.5597389214569082 +4.13 1.5646791171648688 +4.14 1.5696140284726625 +4.15 1.574543896212843 +4.16 1.5794689612179629 +4.17 1.5843894643205765 +4.18 1.5893056463532376 +4.19 1.5942177481484996 +4.2 1.5991260105389156 +4.21 1.6040306743570396 +4.22 1.6089319804354254 +4.23 1.6138301696066268 +4.24 1.6187254827031965 +4.25 1.6236181605576885 +4.26 1.6285084440026567 +4.27 1.633396573870654 +4.28 1.6382827909942352 +4.29 1.643167336205953 +4.3 1.6480504503383608 +4.31 1.6529323742240127 +4.32 1.6578133486954625 +4.33 1.662693614585263 +4.34 1.6675734127259685 +4.35 1.6724529839501319 +4.36 1.6773325690903078 +4.37 1.682212408979049 +4.38 1.6870927444489094 +4.39 1.6919738163324425 +4.4 1.696855865462202 +4.41 1.7017391326707412 +4.42 1.706623858790614 +4.43 1.7115102846543737 +4.44 1.7163986510945748 +4.45 1.7212891989437695 +4.46 1.726182169034512 +4.47 1.7310778021993563 +4.48 1.735976339270856 +4.49 1.7408780210815642 +4.5 1.7457830884640342 +4.51 1.7506917822508201 +4.52 1.7556043432744757 +4.53 1.760521012367555 +4.54 1.7654420303626102 +4.55 1.7703676380921956 +4.56 1.775298076388865 +4.57 1.7802335860851721 +4.58 1.7851744080136702 +4.59 1.7901207830069126 +4.6 1.795072951897453 +4.61 1.8000311555178463 +4.62 1.8049956347006442 +4.63 1.8099666302784012 +4.64 1.8149443830836707 +4.65 1.8199291339490067 +4.66 1.8249211237069622 +4.67 1.8299205931900915 +4.68 1.8349277832309474 +4.69 1.8399429346620844 +4.7 1.8449662883160551 +4.71 1.8499980850254136 +4.72 1.8550385656227135 +4.73 1.8600879709405087 +4.74 1.8651465418113524 +4.75 1.870214519067798 +4.76 1.8752921435423993 +4.77 1.88037965606771 +4.78 1.8854772974762841 +4.79 1.8905853086006743 +4.8 1.8957039302734346 +4.81 1.9008334033271188 +4.82 1.9059739685942807 +4.83 1.911125866907473 +4.84 1.91628933909925 +4.85 1.9214646260021648 +4.86 1.926651968448772 +4.87 1.9318516072716239 +4.88 1.9370637833032749 +4.89 1.9422887373762783 +4.9 1.9475267103231884 +4.91 1.9527779429765575 +4.92 1.95804267616894 +4.93 1.9633211507328892 +4.94 1.9686136075009595 +4.95 1.9739202873057033 +4.96 1.9792414309796749 +4.97 1.9845772793554277 +4.98 1.989928073265516 +4.99 1.9952940535424921 +5.0 2.000675461018911 +5.01 2.0060725365273244 +5.02 2.0114855209002878 +5.03 2.016914654970354 +5.04 2.0223601795700765 +5.05 2.027822335532009 +5.06 2.0333013636887047 +5.07 2.0387975048727185 +5.08 2.0443109999166023 +5.09 2.049842089652911 +5.1 2.055391014914197 +5.11 2.0609580165330157 +5.12 2.0665433353419194 +5.13 2.0721472121734617 +5.14 2.0777698878601956 +5.15 2.083411603234677 +5.16 2.089072599129457 +5.17 2.09475311637709 +5.18 2.1004533958101304 +5.19 2.106173678261131 +5.2 2.111914204562645 +5.21 2.117675215547227 +5.22 2.1234569520474302 +5.23 2.1292596548958085 +5.24 2.1350835649249142 +5.25 2.1409289229673023 +5.26 2.146795969855526 +5.27 2.1526849464221387 +5.28 2.1585960934996953 +5.29 2.164529651920746 +5.3 2.1704858625178485 +5.31 2.176464966123554 +5.32 2.1824672035704165 +5.33 2.1884928156909895 +5.34 2.194542043317827 +5.35 2.200615127283482 +5.36 2.206712308420509 +5.37 2.212833827561461 +5.38 2.2189799255388913 +5.39 2.225150843185354 +5.4 2.2313468213334033 +5.41 2.2375681008155914 +5.42 2.2438149224644723 +5.43 2.2500875271126004 +5.44 2.256386155592529 +5.45 2.2627110487368114 +5.46 2.2690624473780003 +5.47 2.275440592348651 +5.48 2.2818457244813164 +5.49 2.28827808460855 +5.5 2.294737913562905 diff --git a/test/julia_dde/test_basic_check_2.txt b/test/julia_dde/test_basic_check_2.txt new file mode 100644 index 00000000..66a0924a --- /dev/null +++ b/test/julia_dde/test_basic_check_2.txt @@ -0,0 +1,1001 @@ +0.0 1.2 +0.05 1.1880597992376376 +0.1 1.1762383903532672 +0.15 1.1645346054176793 +0.2 1.1529472850205345 +0.25 1.1414752222367555 +0.3 1.1301172850650132 +0.35 1.1188723699778464 +0.4 1.1077393734477934 +0.45 1.0967171444550854 +0.5 1.0858044886142186 +0.55 1.0750003653428541 +0.6 1.0643037416988483 +0.65 1.0537135847400563 +0.7 1.0432288615243335 +0.75 1.0328485303971229 +0.8 1.022571356528724 +0.85 1.0123962869380496 +0.9 1.0023223752836392 +0.95 0.9923486752240321 +1.0 0.9824742404177691 +1.05 0.9726981245233894 +1.1 0.963019381199433 +1.15 0.9534370641044397 +1.2 0.9439501263044995 +1.25 0.9345573120423534 +1.3 0.9252577408761488 +1.35 0.9160505652198292 +1.4 0.9069349374873376 +1.45 0.8979100100926173 +1.5 0.8889749354496113 +1.55 0.8801288659722627 +1.6 0.8713709540745148 +1.65 0.8627003521703108 +1.7 0.8541162126735939 +1.75 0.8456175814341691 +1.8 0.8372034571683109 +1.85 0.8288730339155551 +1.9 0.8206255087352973 +1.95 0.8124600786869333 +2.0 0.8043759408298582 +2.05 0.7966049878719209 +2.1 0.7893708372331322 +2.15 0.7826602730411311 +2.2 0.7764600794235568 +2.25 0.7707570405080486 +2.3 0.7655379404222455 +2.35 0.7607895632937867 +2.4 0.7564986932503112 +2.45 0.7526521144194582 +2.5 0.7492366109288668 +2.55 0.7462389669061763 +2.6 0.7436465940570072 +2.65 0.741455112858613 +2.7 0.7396597834399526 +2.75 0.7382545843876566 +2.8 0.7372334942883548 +2.85 0.7365904917286781 +2.9 0.7363191175378985 +2.95 0.7364135450318054 +3.0 0.7368722358337684 +3.05 0.7376939906458355 +3.1 0.7388776101700548 +3.15 0.7404218951084749 +3.2 0.742325646163144 +3.25 0.7445876640361099 +3.3 0.7472067494294214 +3.35 0.7501817030451264 +3.4 0.7535113255852732 +3.45 0.7571944509563947 +3.5 0.7612334422829883 +3.55 0.7656327089678326 +3.6 0.7703966636321324 +3.65 0.7755297188970925 +3.7 0.7810362873839177 +3.75 0.7869207817138124 +3.8 0.7931876145079815 +3.85 0.7998411983876295 +3.9 0.8068859459739612 +3.95 0.8143262698881814 +4.0 0.8221665827514945 +4.05 0.8304103241453805 +4.1 0.8390503787717005 +4.15 0.8480753269322309 +4.2 0.8574737489287485 +4.25 0.8672342250630293 +4.3 0.8773453356368505 +4.35 0.8877956609519881 +4.4 0.8985737813102191 +4.45 0.9096682770133198 +4.5 0.9210677283630667 +4.55 0.9327613644666946 +4.6 0.9447382041491337 +4.65 0.9569838960216988 +4.7 0.9694839130856466 +4.75 0.9822237283422343 +4.8 0.9951888147927191 +4.85 1.008364645438358 +4.9 1.0217366932804082 +4.95 1.0352904313201265 +5.0 1.04901133255877 +5.05 1.0628853355824783 +5.1 1.0768949374628292 +5.15 1.0910168480680784 +5.2 1.1052275566412175 +5.25 1.1195035524252361 +5.3 1.1338213246631248 +5.35 1.1481573625978743 +5.4 1.1624881554724753 +5.45 1.1767901925299176 +5.5 1.191039963013192 +5.55 1.2052140962437965 +5.6 1.2192851717972115 +5.65 1.2332183443340552 +5.7 1.246978228490729 +5.75 1.2605294389036346 +5.8 1.2738365902091744 +5.85 1.286864297043751 +5.9 1.299577174043766 +5.95 1.3119398358456216 +6.0 1.3239168663975618 +6.05 1.3354681693230959 +6.1 1.3465516997729066 +6.15 1.3571276627017965 +6.2 1.3671568094140312 +6.25 1.376600463027355 +6.3 1.3854207406401668 +6.35 1.3935812044918732 +6.4 1.4010455467051504 +6.45 1.4077795499344365 +6.5 1.4137513166849074 +6.55 1.41892900858906 +6.6 1.4232812704960902 +6.65 1.4267827653222673 +6.7 1.429409968893713 +6.75 1.431139357036549 +6.8 1.4319472554482031 +6.85 1.4318171740583696 +6.9 1.4307390762174144 +6.95 1.428703024470033 +7.0 1.42569908136092 +7.05 1.4217165437466892 +7.1 1.4167471473666722 +7.15 1.410800513227501 +7.2 1.4038886531213686 +7.25 1.3960235788404673 +7.3 1.3872173021769896 +7.35 1.3774818349231273 +7.4 1.3668292087293314 +7.45 1.3552778263113545 +7.5 1.3428615353140843 +7.55 1.3296164771187597 +7.6 1.3155787931066185 +7.65 1.3007846246588997 +7.7 1.2852701131568416 +7.75 1.269071399981683 +7.8 1.252228812462711 +7.85 1.234795626158659 +7.9 1.216822773260856 +7.95 1.1983609437575724 +8.0 1.1794608276370777 +8.05 1.1601753466433684 +8.1 1.1405600662416302 +8.15 1.1206696420019118 +8.2 1.1005587294942656 +8.25 1.0802819842887406 +8.3 1.0598940619553883 +8.35 1.0394506878014353 +8.4 1.0190050205908718 +8.45 0.9986058410438103 +8.5 0.9783018719261123 +8.55 0.9581418360036411 +8.6 0.9381744916273773 +8.65 0.918447522241859 +8.7 0.8989988519527116 +8.75 0.8798636601114229 +8.8 0.8610771260694831 +8.85 0.8426744291783823 +8.9 0.8246907487896087 +8.95 0.8071595445403982 +9.0 0.790103625750701 +9.05 0.7735417306334335 +9.1 0.7574925892616298 +9.15 0.741974931708322 +9.2 0.7270074880465447 +9.25 0.71260890886523 +9.3 0.6987925775459839 +9.35 0.6855636953491089 +9.4 0.6729267876146086 +9.45 0.6608863796824879 +9.5 0.6494469968927505 +9.55 0.6386131645854012 +9.6 0.6283894081004446 +9.65 0.6187799376548058 +9.7 0.6097843760508866 +9.75 0.6013989615583346 +9.8 0.5936198578099892 +9.85 0.5864432284386905 +9.9 0.5798652370772771 +9.95 0.573882047358589 +10.0 0.5684898229154657 +10.05 0.5636847273807462 +10.1 0.5594629243872706 +10.15 0.5558207587612087 +10.2 0.5527556940533047 +10.25 0.5502643788856739 +10.3 0.5483432549029339 +10.35 0.5469887637497023 +10.4 0.5461973470705961 +10.45 0.5459654465102328 +10.5 0.5462895037132297 +10.55 0.5471659603242042 +10.6 0.5485912579877733 +10.65 0.550562243050093 +10.7 0.553079622010286 +10.75 0.5561444560988579 +10.8 0.559757507016326 +10.85 0.5639195364632071 +10.9 0.5686313061400197 +10.95 0.57389357774728 +11.0 0.5797071129855064 +11.05 0.5860726735552156 +11.1 0.5929910211569253 +11.15 0.6004629174911527 +11.2 0.6084891922610574 +11.25 0.6170718662445521 +11.3 0.6262137967331077 +11.35 0.6359178351663541 +11.4 0.6461868329839221 +11.45 0.6570236416254412 +11.5 0.6684311125305419 +11.55 0.6804120971388541 +11.6 0.6929694468900075 +11.65 0.7061060132236332 +11.7 0.7198246475793599 +11.75 0.7341282013968191 +11.8 0.7490195261156405 +11.85 0.7645014731754531 +11.9 0.7805768940158886 +11.95 0.7972486400765756 +12.0 0.8145195627971458 +12.05 0.8323908015688225 +12.1 0.8508545340275291 +12.15 0.8699000842401812 +12.2 0.8895167776464826 +12.25 0.9096939396861401 +12.3 0.9304208957988584 +12.35 0.9516869714243422 +12.4 0.9734814920022978 +12.45 0.9957937829724295 +12.5 1.0186131697744438 +12.55 1.0419289778480454 +12.6 1.0657305326329392 +12.65 1.0900066173006855 +12.7 1.1147321345325476 +12.75 1.1398673063212037 +12.8 1.1653716523320719 +12.85 1.1912046922305697 +12.9 1.2173259456821182 +12.95 1.2436949323521345 +13.0 1.2702711719060389 +13.05 1.2970141840092497 +13.1 1.3238834883271844 +13.15 1.3508386045252643 +13.2 1.3778325503119393 +13.25 1.4047954094509787 +13.3 1.4316525203717476 +13.35 1.4583292228383717 +13.4 1.4847508566149794 +13.45 1.5108427614656945 +13.5 1.5365302771546454 +13.55 1.561738743445957 +13.6 1.5863935001037555 +13.65 1.610414202912512 +13.7 1.6337068375202188 +13.75 1.6561767438550645 +13.8 1.6777292647126993 +13.85 1.6982697428887752 +13.9 1.7177035211789442 +13.95 1.7359359423788572 +14.0 1.7528723492841671 +14.05 1.7684149463881755 +14.1 1.7824618980487044 +14.15 1.7949338999216151 +14.2 1.8057539943026195 +14.25 1.814845223487432 +14.3 1.8221306297717643 +14.35 1.82753325545133 +14.4 1.8309761428218418 +14.45 1.8323794069570287 +14.5 1.8316821288780631 +14.55 1.8288675527016813 +14.6 1.823921596703502 +14.65 1.8168301791591426 +14.7 1.8075792183442216 +14.75 1.7961546325343571 +14.8 1.782542340005167 +14.85 1.766728773141058 +14.9 1.7487367633658564 +14.95 1.7286453731881093 +15.0 1.7065382792707242 +15.05 1.6824991582766124 +15.1 1.6566116868686838 +15.15 1.6289595417098466 +15.2 1.5996263994630127 +15.25 1.568695936791089 +15.3 1.536253349782111 +15.35 1.5024473904652802 +15.4 1.4674397105285182 +15.45 1.4313735875857403 +15.5 1.3943922992508566 +15.55 1.3566391231377808 +15.6 1.3182573368604271 +15.65 1.279400575486758 +15.7 1.2402295487275168 +15.75 1.200883163043972 +15.8 1.1614997797914177 +15.85 1.1222177603251473 +15.9 1.0831754660004496 +15.95 1.0445113833795212 +16.0 1.0063533457305782 +16.05 0.9688002204454318 +16.1 0.9319467464640154 +16.15 0.8958876627262662 +16.2 0.8607177081721128 +16.25 0.8265304313107716 +16.3 0.7933861546212205 +16.35 0.7613223598864833 +16.4 0.7303785371044332 +16.45 0.7005941762729371 +16.5 0.6720087673898681 +16.55 0.6446617413965466 +16.6 0.6185608877455635 +16.65 0.5936873817798612 +16.7 0.5700343087160399 +16.75 0.5475947537707044 +16.8 0.5263618021604588 +16.85 0.506328539101906 +16.9 0.4874878506593186 +16.95 0.4698031885394685 +17.0 0.4532304550269939 +17.05 0.4377398368134014 +17.1 0.42330152059019815 +17.15 0.4098856930488919 +17.2 0.3974625408809876 +17.25 0.38600225077799316 +17.3 0.3754750094314155 +17.35 0.3658472166938709 +17.4 0.3570792892826172 +17.45 0.3491421915672284 +17.5 0.34200751387452194 +17.55 0.3356468465313144 +17.6 0.3300317798644222 +17.65 0.32513517181013774 +17.7 0.320936382123747 +17.75 0.3174167617663639 +17.8 0.31455766170401606 +17.85 0.3123404329027309 +17.9 0.31074642632853605 +17.95 0.30975744733860155 +18.0 0.3093624455811279 +18.05 0.30955427514298167 +18.1 0.31032556501786496 +18.15 0.3116689441994796 +18.2 0.31357704168152767 +18.25 0.3160424864577112 +18.3 0.31905885102136716 +18.35 0.32262653815988585 +18.4 0.3267487371484904 +18.45 0.331428641219179 +18.5 0.33666944360394907 +18.55 0.3424743375347985 +18.6 0.34884651624372476 +18.65 0.35578917296272516 +18.7 0.3633037997046326 +18.75 0.37139594954858146 +18.8 0.38007859693560425 +18.85 0.38936483532409294 +18.9 0.3992677581724386 +18.95 0.40980045893903455 +19.0 0.4209760310822719 +19.05 0.43280756806054255 +19.1 0.4453081633322383 +19.15 0.4584905563115862 +19.2 0.4723626480734233 +19.25 0.48693998242042613 +19.3 0.5022411124923893 +19.35 0.5182845914291078 +19.4 0.5350889723703751 +19.45 0.5526728084559884 +19.5 0.5710546528257416 +19.55 0.5902460724801303 +19.6 0.6102565122900444 +19.65 0.6311048001124743 +19.7 0.6528098103792354 +19.75 0.6753904175221382 +19.8 0.6988654959729957 +19.85 0.7232539201636203 +19.9 0.7485745645258226 +19.95 0.7748416206442341 +20.0 0.8020539900156893 +20.05 0.8302186203948585 +20.1 0.8593433564222365 +20.15 0.8894360427383163 +20.2 0.9205045239835973 +20.25 0.952556644798572 +20.3 0.9856002498237355 +20.35 1.019643419454444 +20.4 1.054684371182126 +20.45 1.0906953470085856 +20.5 1.127645333405545 +20.55 1.1655033168447293 +20.6 1.204238283797864 +20.65 1.2438192207366707 +20.7 1.2842151141328804 +20.75 1.325394950458215 +20.8 1.3673277161843997 +20.85 1.40998239778316 +20.9 1.45332607021001 +20.95 1.4972802123053142 +21.0 1.5417363102303465 +21.05 1.5865881045653027 +21.1 1.6317293358903808 +21.15 1.6770537447857734 +21.2 1.7224550718316847 +21.25 1.7678270576083077 +21.3 1.813063391469394 +21.35 1.858038694147211 +21.4 1.9025805571632746 +21.45 1.946509478758231 +21.5 1.9896459571727148 +21.55 2.0318104906473637 +21.6 2.0728235774228154 +21.65 2.1125057157397067 +21.7 2.1506735060182325 +21.75 2.1871176192097326 +21.8 2.221622329637741 +21.85 2.253972346363065 +21.9 2.2839523784465077 +21.95 2.3113471349488814 +22.0 2.3359413249309893 +22.05 2.357514255440453 +22.1 2.3758638619860677 +22.15 2.390821392124329 +22.2 2.402218885405468 +22.25 2.4098883813797203 +22.3 2.4136619195973172 +22.35 2.413371104664108 +22.4 2.408848887946326 +22.45 2.400042852614458 +22.5 2.386940003070496 +22.55 2.369527343716431 +22.6 2.3477918789542556 +22.65 2.321720613185963 +22.7 2.291301001022439 +22.75 2.256588251369826 +22.8 2.2177738244483276 +22.85 2.1750653122035586 +22.9 2.1286703065811365 +22.95 2.078796399526671 +23.0 2.0256511829857793 +23.05 1.9694422489040764 +23.1 1.910392381274867 +23.15 1.8489014542521118 +23.2 1.7853456340537126 +23.25 1.720072739617695 +23.3 1.6534305898820802 +23.35 1.5857821505131908 +23.4 1.517512562204179 +23.45 1.4489708606272123 +23.5 1.3805043089562519 +23.55 1.3124601703652552 +23.6 1.2451837286755356 +23.65 1.178976848347684 +23.7 1.1140994754669653 +23.75 1.0508098710579707 +23.8 0.9893662961452859 +23.85 0.9299774904521412 +23.9 0.8727644229741919 +23.95 0.8178614884362746 +24.0 0.765403137830142 +24.05 0.7155214609248933 +24.1 0.6682234985113544 +24.15 0.6234852944314109 +24.2 0.5813223508384042 +24.25 0.5417501698856858 +24.3 0.5047809410656791 +24.35 0.4702490710053619 +24.4 0.43801699461677357 +24.45 0.4080314436584836 +24.5 0.3802391498890684 +24.55 0.3545868450671021 +24.6 0.33102126095115864 +24.65 0.3094891292998137 +24.7 0.2898915704868967 +24.75 0.27197102298581677 +24.8 0.25561759602685336 +24.85 0.2407409190854474 +24.9 0.22725062163704088 +24.95 0.21503913050897844 +25.0 0.20399995045085811 +25.05 0.1940584465447139 +25.1 0.18514026104802944 +25.15 0.17717065444092198 +25.2 0.1700719915589609 +25.25 0.16378471035329328 +25.3 0.1582546649027792 +25.35 0.15342770928627864 +25.4 0.1492516107167886 +25.45 0.14568659056752503 +25.5 0.14269758042836034 +25.55 0.14024951590303492 +25.6 0.1383082040963155 +25.65 0.13684863446175974 +25.7 0.1358509334570259 +25.75 0.13529525099259698 +25.8 0.13516176358430795 +25.85 0.13543452018721888 +25.9 0.13610459877564784 +25.95 0.13716371337688696 +26.0 0.13860357801822823 +26.05 0.1404159274138563 +26.1 0.14259542888441518 +26.15 0.1451422764500677 +26.2 0.1480572549370119 +26.25 0.15134114917144528 +26.3 0.15499474397956553 +26.35 0.15901776789984617 +26.4 0.16341001635660593 +26.45 0.16818063165382552 +26.5 0.1733396236123495 +26.55 0.17889700205302284 +26.6 0.18486277679669036 +26.65 0.19124695766419658 +26.7 0.1980595544763873 +26.75 0.20531057705410694 +26.8 0.2130091142070617 +26.85 0.22116534951706623 +26.9 0.229796060099537 +26.95 0.23891841604515068 +27.0 0.24854958744458225 +27.05 0.25870514396269567 +27.1 0.2693950295254785 +27.15 0.2806409279239909 +27.2 0.2924663956486647 +27.25 0.30489498918992936 +27.3 0.31795026503821516 +27.35 0.3316557796839525 +27.4 0.34602783572910606 +27.45 0.3610861632218346 +27.5 0.37685988559580935 +27.55 0.39337812689988166 +27.6 0.4106700111829034 +27.65 0.42876428338912337 +27.7 0.4476772357046438 +27.75 0.46743472263991304 +27.8 0.48806998680966823 +27.85 0.5096162708286465 +27.9 0.532106817311583 +27.95 0.5555748688732185 +28.0 0.580042180769571 +28.05 0.6055277327197993 +28.1 0.6320645363227207 +28.15 0.6596856403147902 +28.2 0.6884240934324688 +28.25 0.718312944412212 +28.3 0.7493783137861545 +28.35 0.7816277086807297 +28.4 0.8150838833899493 +28.45 0.84977094159701 +28.5 0.8857129869851015 +28.55 0.9229341232374154 +28.6 0.9614584540371438 +28.65 1.0012960084357674 +28.7 1.042434191698033 +28.75 1.084867942427294 +28.8 1.1285922642482498 +28.85 1.1736021607856004 +28.9 1.219892635664043 +28.95 1.2674586925082838 +29.0 1.3162955954614826 +29.05 1.366384218775142 +29.1 1.4176537098098794 +29.15 1.470024025055333 +29.2 1.5234151210011524 +29.25 1.5777469541369766 +29.3 1.6329394809524487 +29.35 1.6889126579372107 +29.4 1.745586441580901 +29.45 1.8028807883731701 +29.5 1.8606869422412853 +29.55 1.9188124651114538 +29.6 1.9770712864256343 +29.65 2.0352780490422004 +29.7 2.093247395819539 +29.75 2.150793986091502 +29.8 2.2077273965704394 +29.85 2.26379597002396 +29.9 2.318724822178128 +29.95 2.372239068759022 +30.0 2.424063825492708 +30.05 2.4739242081052555 +30.1 2.521541879078581 +30.15 2.5666087871829926 +30.2 2.608804939012352 +30.25 2.6478106447471013 +30.3 2.6833062145676867 +30.35 2.7149719586545533 +30.4 2.7424831828312306 +30.45 2.7655497943065854 +30.5 2.7839072180315863 +30.55 2.7972908995247177 +30.6 2.8054362843044625 +30.65 2.8080780063772517 +30.7 2.8049721156381238 +30.75 2.7960145621013934 +30.8 2.7811342928097287 +30.85 2.7602602548057984 +30.9 2.733321395132273 +30.95 2.7002425895698785 +31.0 2.661010897286886 +31.05 2.6158558522281976 +31.1 2.565042645827734 +31.15 2.508836469519418 +31.2 2.44750251473716 +31.25 2.3813059729148827 +31.3 2.3105120354865054 +31.35 2.2354381815525945 +31.4 2.156702857013973 +31.45 2.074847163363706 +31.5 1.9903873003802015 +31.55 1.9038394678418598 +31.6 1.8157266294671082 +31.65 1.726665652702312 +31.7 1.6372154898323137 +31.75 1.5479042121397886 +31.8 1.4592598909074068 +31.85 1.3718102277748077 +31.9 1.2860343923060953 +31.95 1.2023234419946591 +32.0 1.1210600894128138 +32.05 1.042627047132873 +32.1 0.9673711168885645 +32.15 0.8954221158018899 +32.2 0.8269441495689339 +32.25 0.7621168184912944 +32.3 0.7011197228705403 +32.35 0.6439504928080839 +32.4 0.5904545775039313 +32.45 0.5406363914651543 +32.5 0.4945008513328609 +32.55 0.45205138591710897 +32.6 0.41297136079719193 +32.65 0.3769634573831701 +32.7 0.3439481455494416 +32.75 0.3138458951704241 +32.8 0.28657717612052125 +32.85 0.2620624582741381 +32.9 0.2401151572629131 +32.95 0.22032450109746207 +33.0 0.20253057814315262 +33.05 0.18658620632366715 +33.1 0.17229779547947946 +33.15 0.15952363705820832 +33.2 0.14814102239923868 +33.25 0.13801915689759164 +33.3 0.12902471282767 +33.35 0.12106032996087016 +33.4 0.11402943747572661 +33.45 0.1078358333358692 +33.5 0.10240566310739144 +33.55 0.09766839349651717 +33.6 0.093556088974998 +33.65 0.09001594248840473 +33.7 0.08699908835325497 +33.75 0.08445851749320848 +33.8 0.08235822535567427 +33.85 0.08066622669548484 +33.9 0.07935103919208544 +33.95 0.07838826188643352 +34.0 0.07775859907300949 +34.05 0.07744285332490262 +34.1 0.07742388269245039 +34.15 0.07769081097631007 +34.2 0.0782339208570094 +34.25 0.0790434930171005 +34.3 0.08011146527505596 +34.35 0.0814344072701136 +34.4 0.08300965401547097 +34.45 0.08483454052432648 +34.5 0.08690572741142413 +34.55 0.0892224396700846 +34.6 0.09178819383204259 +34.65 0.09460660300308572 +34.7 0.09768128028900307 +34.75 0.10101583879558208 +34.8 0.1046126355346496 +34.85 0.10847468024545727 +34.9 0.11260988048505169 +34.95 0.11702630302400858 +35.0 0.12173201463290118 +35.05 0.1267350455054865 +35.1 0.13204083666707644 +35.15 0.13765937152111515 +35.2 0.14360371884981668 +35.25 0.14988694743539177 +35.3 0.15652212606005367 +35.35 0.16352111830607446 +35.4 0.17089283892258667 +35.45 0.1786542730445768 +35.5 0.18682343112728708 +35.55 0.19541832362596295 +35.6 0.20445695660360355 +35.65 0.21395201349236334 +35.7 0.22392028747010215 +35.75 0.2343850069281529 +35.8 0.24536940025785275 +35.85 0.2568966958505391 +35.9 0.26898848831843564 +35.95 0.28165915465934627 +36.0 0.2949350215362678 +36.05 0.3088446286795436 +36.1 0.3234165158195173 +36.15 0.33867922268652634 +36.2 0.35465440510621266 +36.25 0.37136276064704243 +36.3 0.38883754006782434 +36.35 0.40711212934018437 +36.4 0.4262199144357409 +36.45 0.4461938607580755 +36.5 0.4670529562513633 +36.55 0.4888258095760073 +36.6 0.5115489518842431 +36.65 0.5352589143282963 +36.7 0.5599922280604058 +36.75 0.5857837136601636 +36.8 0.6126493857030743 +36.85 0.6406189576299421 +36.9 0.6697279112125369 +36.95 0.7000117282226439 +37.0 0.7315058904320323 +37.05 0.7642448000840963 +37.1 0.7982397277487387 +37.15 0.8335082418617364 +37.2 0.8700752909894879 +37.25 0.9079658236983714 +37.3 0.9472047885547811 +37.35 0.9878171341251111 +37.4 1.0298190058868348 +37.45 1.0731970913876419 +37.5 1.1179436784343202 +37.55 1.164051763131001 +37.6 1.2115143415818161 +37.65 1.2603244098908775 +37.7 1.3104749641623246 +37.75 1.3619591457597686 +37.8 1.414754965797372 +37.85 1.4687851470571525 +37.9 1.5239616681850294 +37.95 1.580196507826953 +38.0 1.6374016446288429 +38.05 1.6954890572366415 +38.1 1.7543707242962916 +38.15 1.8139586244537123 +38.2 1.874164404596641 +38.25 1.9348440814597052 +38.3 1.9957894689132378 +38.35 2.0567989937263 +38.4 2.117671082667927 +38.45 2.178204162507187 +38.5 2.238197183286882 +38.55 2.2974316404495956 +38.6 2.3556212624114763 +38.65 2.4124679411940515 +38.7 2.4676735688188804 +38.75 2.520940037307493 +38.8 2.5719692386814406 +38.85 2.6204526770931507 +38.9 2.6660503670780007 +38.95 2.708418215847076 +39.0 2.7472121441010793 +39.05 2.7820880725407315 +39.1 2.812700506066235 +39.15 2.8387062536976684 +39.2 2.859815440291729 +39.25 2.8757485559026637 +39.3 2.8862260905847275 +39.35 2.8909685343921754 +39.4 2.8896933381033625 +39.45 2.88220596576251 +39.5 2.8684351383696116 +39.55 2.84831516462723 +39.6 2.8217803532379255 +39.65 2.7887650129042707 +39.7 2.749215555301837 +39.75 2.7032821300300465 +39.8 2.6512432260603562 +39.85 2.5933784331749163 +39.9 2.5299673411559005 +39.95 2.461289539785448 +40.0 2.387624618845738 +40.05 2.309382639251262 +40.1 2.2271973082832233 +40.15 2.1416137243817324 +40.2 2.0531755284644544 +40.25 1.9624263614491042 +40.3 1.8699734826454582 +40.35 1.776467194124794 +40.4 1.6824960181922362 +40.45 1.5886482887552287 +40.5 1.4955123562642696 +40.55 1.4036516983023986 +40.6 1.313545514019804 +40.65 1.2256556255962074 +40.7 1.1404438552112806 +40.75 1.0583176995673573 +40.8 0.9794957543860676 +40.85 0.9042278716201069 +40.9 0.8327684501847347 +40.95 0.7653463683969849 +41.0 0.7018998122276514 +41.05 0.6424328873878251 +41.1 0.5870019836690359 +41.15 0.5356634908628372 +41.2 0.48825021680397124 +41.25 0.4444176188995021 +41.3 0.4041012732938408 +41.35 0.36723954572406914 +41.4 0.33377080192728387 +41.45 0.30362243113711357 +41.5 0.2763600899345818 +41.55 0.2516837927967325 +41.6 0.22945591738713703 +41.65 0.209538841369376 +41.7 0.1917732786524751 +41.75 0.1758746023709538 +41.8 0.161679472765694 +41.85 0.14905252460195836 +41.9 0.13784632627830154 +41.95 0.1278934252693722 +42.0 0.11908368836717981 +42.05 0.1113120483830949 +42.1 0.10446591631136029 +42.15 0.09845121853294315 +42.2 0.09319158283219851 +42.25 0.08861028241281234 +42.3 0.08463916201098227 +42.35 0.08122521407234237 +42.4 0.07831643580787666 +42.45 0.0758654739235994 +42.5 0.0738369170869481 +42.55 0.07219721838365807 +42.6 0.07091436466961498 +42.65 0.06996518321232907 +42.7 0.06932951585690098 +42.75 0.06898728566784557 +42.8 0.0689224950991947 +42.85 0.06912436978630924 +42.9 0.06958240841323958 +42.95 0.07028628355396403 +43.0 0.07122916682911698 +43.05 0.07240743899420646 +43.1 0.07381759669134402 +43.15 0.07545611389150828 +43.2 0.07731999614336757 +43.25 0.07941037597110506 +43.3 0.08172942465086322 +43.35 0.08427931345878466 +43.4 0.08706221367101083 +43.45 0.09007942741927127 +43.5 0.0933320376795295 +43.55 0.0968267173438848 +43.6 0.10057056512561802 +43.65 0.10457067973800833 +43.7 0.1088341598943372 +43.75 0.11336779680339376 +43.8 0.11817639945891993 +43.85 0.12327021349330179 +43.9 0.12866087131634213 +43.95 0.13436000533784684 +44.0 0.1403792406614977 +44.05 0.14672649199817114 +44.1 0.15341347456049814 +44.15 0.16045650394823952 +44.2 0.16787189576115993 +44.25 0.1756759655990199 +44.3 0.18388423564914563 +44.35 0.19250714637235597 +44.4 0.20156381087418795 +44.45 0.21107548925462793 +44.5 0.22106344161365696 +44.55 0.23154892805126012 +44.6 0.2425478510679057 +44.65 0.25407777368999906 +44.7 0.26616515101800964 +44.75 0.2788364706814432 +44.8 0.2921182203098104 +44.85 0.30603590204296366 +44.9 0.32060522227450095 +44.95 0.335853692676233 +45.0 0.3518128834096593 +45.05 0.368514364636286 +45.1 0.38598970651761955 +45.15 0.40426508617347806 +45.2 0.42335962560974005 +45.25 0.4433081691013613 +45.3 0.4641464116639815 +45.35 0.48591004831324086 +45.4 0.5086347740647702 +45.45 0.5323444819374843 +45.5 0.5570619791610821 +45.55 0.5828243056176808 +45.6 0.6096685214828106 +45.65 0.6376316869319897 +45.7 0.6667508583257383 +45.75 0.6970469198564483 +45.8 0.7285382233719169 +45.85 0.7612566207404455 +45.9 0.7952339638303215 +45.95 0.8305021045098512 +46.0 0.8670928946473209 +46.05 0.9050288958409014 +46.1 0.9443084734854684 +46.15 0.9849427581970677 +46.2 1.0269438048874155 +46.25 1.0703236684682036 +46.3 1.1150944038511432 +46.35 1.1612680659479446 +46.4 1.2088513185420762 +46.45 1.2578138237029648 +46.5 1.3081097097408725 +46.55 1.3596930515954415 +46.6 1.412517924206315 +46.65 1.4665384025131136 +46.7 1.5217085614554886 +46.75 1.57798247597306 +46.8 1.635314221005471 +46.85 1.693648128720972 +46.9 1.7528516409084787 +46.95 1.8127693370016478 +47.0 1.8732473851598435 +47.05 1.9341319535424553 +47.1 1.9952692103088734 +47.15 2.056505323618462 +47.2 2.1176842349547416 +47.25 2.1785955657369658 +47.3 2.238974989903395 +47.35 2.2985559866122367 +47.4 2.357072035021676 +47.45 2.4142566142899287 +47.5 2.46984320357518 +47.55 2.523551093513213 +47.6 2.5750499388741495 +47.65 2.6239989599470066 +47.7 2.670057377545862 +47.75 2.7128844124847675 +47.8 2.7521392855777935 +47.85 2.7874730009690016 +47.9 2.818551126305275 +47.95 2.84505942377113 +48.0 2.8666837044996707 +48.05 2.883109779624009 +48.1 2.8940232674323916 +48.15 2.89911804042681 +48.2 2.8982129832124115 +48.25 2.8911703578744428 +48.3 2.8778524264981473 +48.35 2.858121451168768 +48.4 2.8318383387096255 +48.45 2.798910443156489 +48.5 2.7594878519329833 +48.55 2.7137733542889904 +48.6 2.6619697394743893 +48.65 2.604279796739081 +48.7 2.5409063153329368 +48.75 2.472062012396174 +48.8 2.3981945608017954 +48.85 2.3198469923931833 +48.9 2.237533411313962 +48.95 2.1517679217077106 +49.0 2.0630646277180564 +49.05 1.9719517906749484 +49.1 1.8791201824433603 +49.15 1.7851986868000143 +49.2 1.6907801653481012 +49.25 1.596457479690865 +49.3 1.502824893692576 +49.35 1.4104503139302969 +49.4 1.3198167142749073 +49.45 1.2313959565175732 +49.5 1.145659902449512 +49.55 1.0630293467942362 +49.6 0.9837145222214397 +49.65 0.9079623667441789 +49.7 0.8360276106751893 +49.75 0.768158735848344 +49.8 0.7043253633633086 +49.85 0.6444797188885385 +49.9 0.5886725346776338 +49.95 0.536954542984162 +50.0 0.4893316606737419 diff --git a/test/julia_dde/test_basic_check_3.txt b/test/julia_dde/test_basic_check_3.txt new file mode 100644 index 00000000..20ab7e04 --- /dev/null +++ b/test/julia_dde/test_basic_check_3.txt @@ -0,0 +1,1001 @@ +0.0 1.2 +0.05 1.1880597992376376 +0.1 1.1762383903532672 +0.15 1.1645346054176793 +0.2 1.1529472850205345 +0.25 1.1414752222367555 +0.3 1.1301172850650132 +0.35 1.1188723699778464 +0.4 1.1077393734477934 +0.45 1.0967171444550854 +0.5 1.0858044886142186 +0.55 1.0750003653428541 +0.6 1.0643037416988483 +0.65 1.0537135847400563 +0.7 1.0432288615243335 +0.75 1.0328485303971229 +0.8 1.022571356528724 +0.85 1.0123962869380496 +0.9 1.0023223752836392 +0.95 0.9923486752240321 +1.0 0.9824742404177691 +1.05 0.9726981245233894 +1.1 0.963019381199433 +1.15 0.9534370641044397 +1.2 0.9439501263044995 +1.25 0.9345573120423534 +1.3 0.9252577408761488 +1.35 0.9160505652198292 +1.4 0.9069349374873376 +1.45 0.8979100100926173 +1.5 0.8889749354496113 +1.55 0.8801288659722627 +1.6 0.8713709540745148 +1.65 0.8627003521703108 +1.7 0.8541162126735939 +1.75 0.8456174480352269 +1.8 0.8372028671950351 +1.85 0.8288717208428457 +1.9 0.8206232664837655 +1.95 0.8124567616229019 +2.0 0.8043714637653621 +2.05 0.7963666304162529 +2.1 0.7884415190806816 +2.15 0.7805953872637555 +2.2 0.7728274924705816 +2.25 0.7651370922062669 +2.3 0.757523443975919 +2.35 0.7499858052846445 +2.4 0.7425231592892392 +2.45 0.7351344369656738 +2.5 0.7278189831388171 +2.55 0.7205761452365398 +2.6 0.7134052706867127 +2.65 0.7063057069172068 +2.7 0.6992768013558928 +2.75 0.6923179014306418 +2.8 0.6854283545693244 +2.85 0.6786075081998116 +2.9 0.6718547097499745 +2.95 0.6651693066476835 +3.0 0.6585506463208098 +3.05 0.6521868090091297 +3.1 0.6462596541180435 +3.15 0.6407591978238596 +3.2 0.6356754563028846 +3.25 0.6309984457314268 +3.3 0.6267181822857937 +3.35 0.6228246821422926 +3.4 0.6193079614772313 +3.45 0.6161580364669172 +3.5 0.6133649232876582 +3.55 0.6109186381157617 +3.6 0.6088091971275353 +3.65 0.6070266164992867 +3.7 0.6055610062310477 +3.75 0.6044091849610194 +3.8 0.6035702667113718 +3.85 0.6030411400229324 +3.9 0.6028186934365286 +3.95 0.6028998154929878 +4.0 0.6032813947331372 +4.05 0.6039603196978046 +4.1 0.6049334789278171 +4.15 0.6061969408560554 +4.2 0.607747767703372 +4.25 0.6095875189135027 +4.3 0.61171794179823 +4.35 0.6141407836693366 +4.4 0.6168577918386053 +4.45 0.6198707136178186 +4.5 0.6231812963187596 +4.55 0.6267912872532108 +4.6 0.6307024337329545 +4.65 0.6349164830697739 +4.7 0.6394351825754515 +4.75 0.6442602795617699 +4.8 0.649393521340512 +4.85 0.6548363986236847 +4.9 0.6605923625204214 +4.95 0.6666687077262323 +5.0 0.6730729245090687 +5.05 0.6798125031368819 +5.1 0.6868949338776228 +5.15 0.694327706999243 +5.2 0.702118312769693 +5.25 0.7102742414569245 +5.3 0.7188029833288886 +5.35 0.7277120286535362 +5.4 0.7370088676988189 +5.45 0.7467009907326875 +5.5 0.7567958783893151 +5.55 0.7673009954492572 +5.6 0.7782282717605841 +5.65 0.7895913565176023 +5.7 0.8014038989146166 +5.75 0.813679548145934 +5.8 0.8264319534058602 +5.85 0.8396747638887014 +5.9 0.8534216287887638 +5.95 0.867686197300353 +6.0 0.8824821186177751 +6.05 0.8978210479139723 +6.1 0.9137051417826871 +6.15 0.930133801549427 +6.2 0.9471064285396992 +6.25 0.9646224240790109 +6.3 0.9826811894928694 +6.35 1.0012821261067824 +6.4 1.0204246352462572 +6.45 1.0401081182368006 +6.5 1.06033197640392 +6.55 1.0810959571500407 +6.6 1.1024051083860738 +6.65 1.1242536823420526 +6.7 1.146631632226644 +6.75 1.1695289112485163 +6.8 1.192935472616337 +6.85 1.2168412695387738 +6.9 1.2412362552244953 +6.95 1.2661103828821678 +7.0 1.2914536057204598 +7.05 1.3172558769480385 +7.1 1.3435071497735722 +7.15 1.3701973774057286 +7.2 1.3973165130531748 +7.25 1.4248545099245788 +7.3 1.4528013212286086 +7.35 1.4811469001739317 +7.4 1.509881199118115 +7.45 1.5389782800159062 +7.5 1.5683961525798626 +7.55 1.598100100657414 +7.6 1.628055408095991 +7.65 1.658227358743024 +7.7 1.688581236445943 +7.75 1.719082325052178 +7.8 1.7496959084091595 +7.85 1.780387270364318 +7.9 1.811122925033841 +7.95 1.8418669475319058 +8.0 1.8725597086609542 +8.05 1.90313851346047 +8.1 1.933540666969933 +8.15 1.9637034742288284 +8.2 1.9935642402766356 +8.25 2.0230602701528393 +8.3 2.052128868896921 +8.35 2.0807073415483615 +8.4 2.108732993146645 +8.45 2.1361393502296684 +8.5 2.16284287320635 +8.55 2.1887552138951114 +8.6 2.2137880239094327 +8.65 2.2378529548627957 +8.7 2.260861658368677 +8.75 2.2827257860405585 +8.8 2.3033569894919195 +8.85 2.3226668900090086 +8.9 2.3405616664134223 +8.95 2.3569434633821165 +9.0 2.371716076157124 +9.05 2.3847799002672945 +9.1 2.396042281634715 +9.15 2.4054174410912736 +9.2 2.412819599468856 +9.25 2.4181629775993505 +9.3 2.4213617963146428 +9.35 2.422333801532281 +9.4 2.421017966043976 +9.45 2.4173610505395455 +9.5 2.4113098248196683 +9.55 2.402811058685023 +9.6 2.3918073853741615 +9.65 2.3782692601247457 +9.7 2.3622002696856885 +9.75 2.3436045090838595 +9.8 2.3224860733461314 +9.85 2.2988490574993756 +9.9 2.2726975565704626 +9.95 2.244039548654731 +10.0 2.212937352669323 +10.05 2.179483711456287 +10.1 2.1437715190596918 +10.15 2.105893669523604 +10.2 2.065943056892092 +10.25 2.0240125752092206 +10.3 1.980195118519059 +10.35 1.9345835808656762 +10.4 1.8872723502754671 +10.45 1.8384294978875548 +10.5 1.7882366416651543 +10.55 1.7368513259590423 +10.6 1.6844310951199983 +10.65 1.6311335343071072 +10.7 1.5771337374081937 +10.75 1.5226097217672243 +10.8 1.4677278553411066 +10.85 1.41265450608675 +10.9 1.3575560419610566 +10.95 1.3025988309209373 +11.0 1.2479491282494664 +11.05 1.1937607528931462 +11.1 1.1401771120697988 +11.15 1.087341445996801 +11.2 1.0353969948915365 +11.25 0.984484065667813 +11.3 0.9347008324906576 +11.35 0.8861377047519156 +11.4 0.8388897689338305 +11.45 0.7930521115186531 +11.5 0.748719818988627 +11.55 0.705959243095179 +11.6 0.6647650478857721 +11.65 0.6251755908862296 +11.7 0.5872322722497952 +11.75 0.5509764921297068 +11.8 0.5164492863725721 +11.85 0.48361792647027246 +11.9 0.4524348830442019 +11.95 0.42289362720225393 +12.0 0.39498763005231813 +12.05 0.3686315661870969 +12.1 0.34373279718633004 +12.15 0.3202738246384638 +12.2 0.2982371501319477 +12.25 0.2776052752552281 +12.3 0.2583607015967536 +12.35 0.24048593074497288 +12.4 0.223950831846511 +12.45 0.20858331100426564 +12.5 0.19429923256729392 +12.55 0.18105445919832033 +12.6 0.16880485356006925 +12.65 0.15750114166684823 +12.7 0.1470540258920014 +12.75 0.13740996022300644 +12.8 0.12852624259140769 +12.85 0.12036017092874914 +12.9 0.1128609745101247 +12.95 0.10596741395436253 +13.0 0.09964203786227739 +13.05 0.09384868822581734 +13.1 0.08855032604103662 +13.15 0.08370226381849066 +13.2 0.07927243004574394 +13.25 0.07523257594725748 +13.3 0.07155441352980291 +13.35 0.06820745069454974 +13.4 0.0651675270046265 +13.45 0.06241399580003661 +13.5 0.05992621042078313 +13.55 0.05768323302303655 +13.6 0.055668129355264065 +13.65 0.053866461849464135 +13.7 0.05226379382060764 +13.75 0.05084595459195789 +13.8 0.04960182363429139 +13.85 0.04852201561788314 +13.9 0.047597159022623084 +13.95 0.046818043268843194 +14.0 0.046177674337955096 +14.05 0.0456706587399853 +14.1 0.04529163747434971 +14.15 0.045035254325706556 +14.2 0.04489705421988383 +14.25 0.04487463111043636 +14.3 0.044965848174891764 +14.35 0.045168568590777634 +14.4 0.04548065560180838 +14.45 0.04590066908055203 +14.5 0.046428999081977486 +14.55 0.047066322023146555 +14.6 0.047813314321121014 +14.65 0.048670652392962706 +14.7 0.04963895651796998 +14.75 0.050718620023989656 +14.8 0.05191253849246556 +14.85 0.05322426299196401 +14.9 0.054657344591051496 +14.95 0.05621533435829428 +15.0 0.057901783362258846 +15.05 0.059720242671511534 +15.1 0.06167423564461651 +15.15 0.06376812031817305 +15.2 0.06600782089469139 +15.25 0.06839938058178958 +15.3 0.07094884258708545 +15.35 0.07366224585439077 +15.4 0.07654376689032617 +15.45 0.07959974929474373 +15.5 0.08283893126579933 +15.55 0.0862700510016486 +15.6 0.08990184670044707 +15.65 0.09374305656035072 +15.7 0.09780070119392023 +15.75 0.10208288948700774 +15.8 0.10660157739539043 +15.85 0.1113687519719273 +15.9 0.11639640026947794 +15.95 0.12169626466104969 +16.0 0.12727628804408414 +16.05 0.13315014663393196 +16.1 0.139333946326771 +16.15 0.1458437930187787 +16.2 0.1526957926061338 +16.25 0.15990482372249143 +16.3 0.16748183360191107 +16.35 0.17544672115696183 +16.4 0.18382073593523884 +16.45 0.192625127484339 +16.5 0.2018811453518574 +16.55 0.21160507934505363 +16.6 0.22181536124463952 +16.65 0.23253963155802002 +16.7 0.24380557729343716 +16.75 0.2556408854591307 +16.8 0.26807233665258995 +16.85 0.2811177402975892 +16.9 0.2948082752268757 +16.95 0.3091795563883086 +17.0 0.32426719872974363 +17.05 0.3401068171990377 +17.1 0.35672771274342574 +17.15 0.37415694197152904 +17.2 0.39243917447317206 +17.25 0.41161962131703544 +17.3 0.43174349357180103 +17.35 0.45285515799569886 +17.4 0.4749833351492887 +17.45 0.49817534283248655 +17.5 0.5224876697127654 +17.55 0.5479768044575993 +17.6 0.574699235734463 +17.65 0.6027031591307277 +17.7 0.6320269190642993 +17.75 0.6627379423398659 +17.8 0.6949054091335899 +17.85 0.7285984996216338 +17.9 0.7638860935554969 +17.95 0.8008124933089992 +18.0 0.8394402408300372 +18.05 0.8798515650441616 +18.1 0.922128694876923 +18.15 0.9663538592538687 +18.2 1.0126032288425226 +18.25 1.0609217181003978 +18.3 1.1113944695913622 +18.35 1.1641149553854777 +18.4 1.219176647552802 +18.45 1.2766730181634047 +18.5 1.336680549796806 +18.55 1.3992478308498963 +18.6 1.464470198118454 +18.65 1.5324458195708326 +18.7 1.6032728631754014 +18.75 1.6770494969005143 +18.8 1.7538494409075045 +18.85 1.8337108248219487 +18.9 1.9167185876634334 +18.95 2.002959529098503 +19.0 2.092520448793682 +19.05 2.1854881464155036 +19.1 2.28193664578704 +19.15 2.3818692470976592 +19.2 2.485317656588622 +19.25 2.5923208770612622 +19.3 2.7029179113169235 +19.35 2.8171477621569476 +19.4 2.935049432382669 +19.45 3.0566494211038315 +19.5 3.1818830679881756 +19.55 3.3106478005311515 +19.6 3.4428410937337786 +19.65 3.578360422597069 +19.7 3.717103262122061 +19.75 3.8589670873097677 +19.8 4.003849373161208 +19.85 4.151647594677404 +19.9 4.302193278789322 +19.95 4.455127233993672 +20.0 4.610063803797267 +20.05 4.766617343784246 +20.1 4.924402209538742 +20.15 5.083032756644884 +20.2 5.242123340686828 +20.25 5.401272677380016 +20.3 5.559889523919631 +20.35 5.7172568196444855 +20.4 5.8726552958575144 +20.45 6.025365683861684 +20.5 6.174668714959923 +20.55 6.319844708945797 +20.6 6.460096425070274 +20.65 6.594460469514813 +20.7 6.721952145798012 +20.75 6.841586757438446 +20.8 6.952379607954696 +20.85 7.0533440911423195 +20.9 7.143446676186029 +20.95 7.2216660505591665 +21.0 7.2869970757373 +21.05 7.3384346131959965 +21.1 7.374973524410826 +21.15 7.395597049856846 +21.2 7.399417900209098 +21.25 7.385817836321792 +21.3 7.354196382550761 +21.35 7.303953063251845 +21.4 7.234487402780882 +21.45 7.145263304461381 +21.5 7.0363647566654155 +21.55 6.908128584835803 +21.6 6.760891630301893 +21.65 6.594990734393041 +21.7 6.410762738438569 +21.75 6.2088450726321724 +21.8 5.990732640705275 +21.85 5.75791155432729 +21.9 5.511864196359442 +21.95 5.2540729496629055 +22.0 4.986082433415764 +22.05 4.7101639066643335 +22.1 4.42856676538218 +22.15 4.143442902024981 +22.2 3.8569464178882313 +22.25 3.5713552672555364 +22.3 3.28889884770391 +22.35 3.0117352798858366 +22.4 2.7420203611280627 +22.45 2.481463293669825 +22.5 2.231572779218588 +22.55 1.9940537506509244 +22.6 1.7704738014123098 +22.65 1.5610608918512747 +22.7 1.3666090012348524 +22.75 1.188181307974745 +22.8 1.0257875495979925 +22.85 0.8783253325850336 +22.9 0.7462653264465491 +22.95 0.6298607329726912 +23.0 0.526689471408246 +23.05 0.4362126970096439 +23.1 0.3586789044286951 +23.15 0.2930769392946884 +23.2 0.23644639121785105 +23.25 0.1887843992470036 +23.3 0.15020916432014636 +23.35 0.11841625816064075 +23.4 0.09193646297837396 +23.45 0.07084691797318869 +23.5 0.0546440589583355 +23.55 0.04135889403855052 +23.6 0.030871343784575907 +23.65 0.023187432031184143 +23.7 0.01726905105966836 +23.75 0.01266949856717107 +23.8 0.009344910618525257 +23.85 0.006786482524138971 +23.9 0.004816778288678049 +23.95 0.0034500849725069157 +24.0 0.0025160101833220463 +24.05 0.0018312388039325286 +24.1 0.0013290771755335164 +24.15 0.0009639976527466686 +24.2 0.0006989804814600982 +24.25 0.0005067026621806486 +24.3 0.0003677309832842101 +24.35 0.00026755767682035294 +24.4 0.0001951844558401153 +24.45 0.00014284822334131387 +24.5 0.00010515507647664639 +24.55 7.778055265189298e-5 +24.6 5.793493283808354e-5 +24.65 4.3496595960544536e-5 +24.7 3.290011776746757e-5 +24.75 2.5142190984993185e-5 +24.8 1.940443720424485e-5 +24.85 1.5121385224876476e-5 +24.9 1.1965876035510612e-5 +24.95 9.54987103802627e-6 +25.0 7.73200127909234e-6 +25.05 6.365973014560343e-6 +25.1 5.2963544793087956e-6 +25.15 4.470689445671548e-6 +25.2 3.841277717496045e-6 +25.25 3.346995535139201e-6 +25.3 2.954501620571546e-6 +25.35 2.6471951701062873e-6 +25.4 2.4084753800566474e-6 +25.45 2.2215394495255226e-6 +25.5 2.073562751279236e-6 +25.55 1.9594262288370855e-6 +25.6 1.8745654488899708e-6 +25.65 1.8144159781287961e-6 +25.7 1.7744133832444533e-6 +25.75 1.7502211729269242e-6 +25.8 1.7400672049990554e-6 +25.85 1.743237785350034e-6 +25.9 1.758945971985891e-6 +25.95 1.786404822912663e-6 +26.0 1.8248273961363818e-6 +26.05 1.8734267496630814e-6 +26.1 1.9314159414987944e-6 +26.15 1.9980080296495497e-6 +26.2 2.0722150882898906e-6 +26.25 2.1536714723203395e-6 +26.3 2.2425495205690797e-6 +26.35 2.3390216235075385e-6 +26.4 2.4432601716071337e-6 +26.45 2.555437555339307e-6 +26.5 2.6757261651754785e-6 +26.55 2.804298391587074e-6 +26.6 2.941326625045521e-6 +26.65 3.086983256022234e-6 +26.7 3.2414406749886615e-6 +26.75 3.40487127241622e-6 +26.8 3.577447438776335e-6 +26.85 3.7587795135315416e-6 +26.9 3.947161901513964e-6 +26.95 4.143253394892425e-6 +27.0 4.347951835206379e-6 +27.05 4.56215506399529e-6 +27.1 4.786760922798623e-6 +27.15 5.0226672531558285e-6 +27.2 5.270771896606404e-6 +27.25 5.531972694689799e-6 +27.3 5.8071674889454775e-6 +27.35 6.097254120912909e-6 +27.4 6.403130432131533e-6 +27.45 6.72569426414086e-6 +27.5 7.065843458480336e-6 +27.55 7.424475856689423e-6 +27.6 7.802489300307588e-6 +27.65 8.20078163087427e-6 +27.7 8.620250689928989e-6 +27.75 9.061794319011182e-6 +27.8 9.526310359660316e-6 +27.85 1.0013348352028656e-5 +27.9 1.0521789101765655e-5 +27.95 1.1053647587290105e-5 +28.0 1.1611018389299699e-5 +28.05 1.2195996088492152e-5 +28.1 1.2810675265565194e-5 +28.15 1.3457150501216494e-5 +28.2 1.413751637614387e-5 +28.25 1.4853867471045e-5 +28.3 1.5608298366617607e-5 +28.35 1.640290364355941e-5 +28.4 1.7239777882568074e-5 +28.45 1.812101566434144e-5 +28.5 1.9048711569577178e-5 +28.55 2.0024960178973003e-5 +28.6 2.104681917801384e-5 +28.65 2.2112082089476636e-5 +28.7 2.3225295086541718e-5 +28.75 2.4391013570882673e-5 +28.8 2.5613792944173156e-5 +28.85 2.6898188608086833e-5 +28.9 2.8248755964297266e-5 +28.95 2.9670050414478296e-5 +29.0 3.116662736030351e-5 +29.05 3.274304220344654e-5 +29.1 3.4403850345581075e-5 +29.15 3.615360718838063e-5 +29.2 3.79968681335191e-5 +29.25 3.993818858267005e-5 +29.3 4.1982123937507134e-5 +29.35 4.4133229599704e-5 +29.4 4.639235532224559e-5 +29.45 4.875279781024011e-5 +29.5 5.122277540031674e-5 +29.55 5.3811850799978914e-5 +29.6 5.6529586716730105e-5 +29.65 5.938554585807354e-5 +29.7 6.238929093151308e-5 +29.75 6.555038464455198e-5 +29.8 6.887838970469367e-5 +29.85 7.238286881944164e-5 +29.9 7.607338469629903e-5 +29.95 7.995950004276982e-5 +30.0 8.40507775663572e-5 +30.05 8.835677997456466e-5 +30.1 9.288123963748541e-5 +30.15 9.761299340089545e-5 +30.2 0.0001025676957395089 +30.25 0.00010776399463869746 +30.3 0.00011322053808383316 +30.35 0.00011895597406028808 +30.4 0.0001249889505534338 +30.45 0.00013133811554864319 +30.5 0.00013802211703128791 +30.55 0.00014505960298673997 +30.6 0.00015246922140037142 +30.65 0.00016026962025755373 +30.7 0.00016847944754366006 +30.75 0.0001771109229141103 +30.8 0.00018615038032333557 +30.85 0.00019562494484115931 +30.9 0.0002055686493533325 +30.95 0.0002160155267456082 +31.0 0.00022699960990373743 +31.05 0.00023855493171347184 +31.1 0.0002507155250605632 +31.15 0.0002635154228307622 +31.2 0.0002769886579098222 +31.25 0.0002911692631834942 +31.3 0.0003060912715375298 +31.35 0.0003217548445953388 +31.4 0.00033817214436745693 +31.45 0.00035540139228868584 +31.5 0.00037350083780491173 +31.55 0.00039252873036202174 +31.6 0.0004125433194059033 +31.65 0.000433602854382442 +31.7 0.0004557655847375281 +31.75 0.0004790897599170474 +31.8 0.0005036336293668872 +31.85 0.0005294390884839935 +31.9 0.0005565016569481556 +31.95 0.0005849046396030645 +32.0 0.0006147424821662765 +32.05 0.0006461096303553476 +32.1 0.0006791005298878432 +32.15 0.0007138096264813124 +32.2 0.0007503313658533232 +32.25 0.0007887601937214239 +32.3 0.0008291876039328545 +32.35 0.0008716237833675735 +32.4 0.0009161628363820181 +32.45 0.0009629511909588468 +32.5 0.0010121352750806925 +32.55 0.001063861516730208 +32.6 0.0011182763438900472 +32.65 0.0011755261845428407 +32.7 0.0012357574666712514 +32.75 0.001299077958835768 +32.8 0.0013655343314847815 +32.85 0.0014353329672678646 +32.9 0.001508692841793293 +32.95 0.0015858329306693837 +33.0 0.0016669722095044113 +33.05 0.0017523296539066827 +33.1 0.001842124239484507 +33.15 0.0019365050661177198 +33.2 0.0020355859489668334 +33.25 0.0021396782998149874 +33.3 0.0022491003006402093 +33.35 0.0023641701334205286 +33.4 0.0024852059801339266 +33.45 0.002612526022758449 +33.5 0.002746419722344061 +33.55 0.0028870158376160682 +33.6 0.0030347071119279914 +33.65 0.0031899453963282207 +33.7 0.003353182541865236 +33.75 0.0035248703995874224 +33.8 0.003705460820543237 +33.85 0.0038953545607776047 +33.9 0.0040947707431942424 +33.95 0.004304283228705645 +34.0 0.004524522077522654 +34.05 0.004756117349856203 +34.1 0.004999699105917233 +34.15 0.0052558974059165806 +34.2 0.005525138328425961 +34.25 0.005807923134528589 +34.3 0.006105115939931086 +34.35 0.006417582537711775 +34.4 0.006746188720948853 +34.45 0.007091800282720693 +34.5 0.00745516258459202 +34.55 0.007836800333211071 +34.6 0.008237832852801386 +34.65 0.008659435913645637 +34.7 0.009102785286026734 +34.75 0.009569056740227337 +34.8 0.010059313773287167 +34.85 0.010574260646268591 +34.9 0.011115366044177084 +34.95 0.011684211579467325 +35.0 0.012282378864593673 +35.05 0.012911449512010727 +35.1 0.013572815103629234 +35.15 0.014267500540935528 +35.2 0.014997517875816616 +35.25 0.01576497806639549 +35.3 0.016571992070795443 +35.35 0.017420670847139805 +35.4 0.018312685173292334 +35.45 0.01924968415309058 +35.5 0.020234442905654234 +35.55 0.02126976089459592 +35.6 0.02235843758352828 +35.65 0.023503249379662153 +35.7 0.024706012728242802 +35.75 0.025969650272638308 +35.8 0.027297854679857802 +35.85 0.028694318616910446 +35.9 0.030162734750804814 +35.95 0.031706415455700944 +36.0 0.03332787329061813 +36.05 0.03503172850735315 +36.1 0.03682282936766161 +36.15 0.038706024133298336 +36.2 0.04068615069732654 +36.25 0.042766552443595805 +36.3 0.04495204172481472 +36.35 0.04724895832464577 +36.4 0.04966364202675038 +36.45 0.05220243261479136 +36.5 0.05487092642302335 +36.55 0.05767364436346181 +36.6 0.060618563381571004 +36.65 0.06371394333229173 +36.7 0.06696804407056656 +36.75 0.07038898289926133 +36.8 0.07398221637130845 +36.85 0.07775676609611071 +36.9 0.08172335523389757 +36.95 0.08589270694490071 +37.0 0.09027554438934955 +37.05 0.09488037833913766 +37.1 0.09971621831715513 +37.15 0.10479687889109346 +37.2 0.11013623039567051 +37.25 0.11574814316560113 +37.3 0.12164536652631897 +37.35 0.1278373938059498 +37.4 0.13434107976601245 +37.45 0.1411742954228076 +37.5 0.14835491179263216 +37.55 0.1559005710011262 +37.6 0.16382324101807627 +37.65 0.172141933997992 +37.7 0.18087957335219007 +37.75 0.19005908249198256 +37.8 0.1997033848286852 +37.85 0.20983053544200236 +37.9 0.2204598323038906 +37.95 0.2316204338146686 +38.0 0.24334158791252208 +38.05 0.25565254253564157 +38.1 0.26857984083615244 +38.15 0.2821435148894166 +38.2 0.2963788455731146 +38.25 0.31132290012334685 +38.3 0.3270127457762196 +38.35 0.34348480535160253 +38.4 0.3607633025216382 +38.45 0.37888741969303963 +38.5 0.39790372047370615 +38.55 0.417858768471545 +38.6 0.43879912729446385 +38.65 0.4607610734299169 +38.7 0.48378225644585704 +38.75 0.5079202865847827 +38.8 0.5332329579841185 +38.85 0.5597780647812899 +38.9 0.5876089915982601 +38.95 0.6167621673008777 +39.0 0.6473032833149648 +39.05 0.6793028656945395 +39.1 0.712831440493621 +39.15 0.7479594396605547 +39.2 0.7847342129135348 +39.25 0.823217622113749 +39.3 0.8634935941531566 +39.35 0.9056460559237182 +39.4 0.949758934317376 +39.45 0.9959079700090568 +39.5 1.0441410750223796 +39.55 1.09454823488251 +39.6 1.1472254344279125 +39.65 1.2022686584970301 +39.7 1.2597738919283366 +39.75 1.3198093040896974 +39.8 1.3824366531315018 +39.85 1.4477581076715695 +39.9 1.5158760735523693 +39.95 1.5868929566164067 +40.0 1.660910668944245 +40.05 1.7379829126208655 +40.1 1.8181742280585573 +40.15 1.9015790392263767 +40.2 1.9882917700934268 +40.25 2.078406844628762 +40.3 2.172018656805829 +40.35 2.2691717752327363 +40.4 2.369888098993709 +40.45 2.474221547636366 +40.5 2.582226040708271 +40.55 2.69395549775703 +40.6 2.809463838330252 +40.65 2.928799560415366 +40.7 3.0519314275712772 +40.75 3.1787907877067165 +40.8 3.309312404645847 +40.85 3.4434310422128362 +40.9 3.581081464231792 +40.95 3.722198434526901 +41.0 3.866716716922271 +41.05 4.014568827675874 +41.1 4.165580609355552 +41.15 4.3194294195811285 +41.2 4.475781793533374 +41.25 4.63430426639297 +41.3 4.794663373340665 +41.35 4.956525649557209 +41.4 5.119557630223281 +41.45 5.283420651179304 +41.5 5.447611150542289 +41.55 5.61144856088327 +41.6 5.774245796587521 +41.65 5.9353157720402505 +41.7 6.093971401626758 +41.75 6.249525678979698 +41.8 6.401248640407215 +41.85 6.5482069219410635 +41.9 6.689413242551435 +41.95 6.823880321208602 +42.0 6.950620876882759 +42.05 7.06864762854416 +42.1 7.176938262153528 +42.15 7.27440600752035 +42.2 7.359976359975245 +42.25 7.432574929134884 +42.3 7.491127324615977 +42.35 7.534553691114843 +42.4 7.5617939728915635 +42.45 7.572045793659248 +42.5 7.56455785483789 +42.55 7.538578857847491 +42.6 7.49335750410804 +42.65 7.428151725357762 +42.7 7.3426726058789225 +42.75 7.237025708571567 +42.8 7.111324833182236 +42.85 6.965683779457459 +42.9 6.800216347143829 +42.95 6.615284588450397 +43.0 6.412099000434837 +43.05 6.191997586548051 +43.1 5.956317372524124 +43.15 5.706395384097242 +43.2 5.443568647001452 +43.25 5.16954597937931 +43.3 4.88686121253996 +43.35 4.597719201100378 +43.4 4.304310549145162 +43.45 4.008958598265056 +43.5 3.7140880725611183 +43.55 3.4220094283648006 +43.6 3.1350328703342174 +43.65 2.8552853236801443 +43.7 2.584580943289718 +43.75 2.3248627259415255 +43.8 2.0780007719371825 +43.85 1.8447916139291527 +43.9 1.6263053444703741 +43.95 1.4238591429225103 +44.0 1.2378495508062841 +44.05 1.0676117660836748 +44.1 0.9137937748400329 +44.15 0.7766775562581366 +44.2 0.6541446509533947 +44.25 0.5460258275341494 +44.3 0.4526329589292429 +44.35 0.37208805481763735 +44.4 0.30225547898343 +44.45 0.24331791807279535 +44.5 0.19511542400617302 +44.55 0.15449031008368086 +44.6 0.12071355788444883 +44.65 0.0938826957051435 +44.7 0.07263525682076719 +44.75 0.05511310640146764 +44.8 0.0413911144043884 +44.85 0.031291435522553986 +44.9 0.023320331978155463 +44.95 0.017200308819630094 +45.0 0.012731689746122843 +45.05 0.009224318145506102 +45.1 0.006608549070533346 +45.15 0.004813506971795548 +45.2 0.0034975470646108546 +45.25 0.002538104683370468 +45.3 0.0018352837245791953 +45.35 0.0013238772501159243 +45.4 0.0009533027362415938 +45.45 0.0006857490475925572 +45.5 0.0004931924134454181 +45.55 0.0003549056604967315 +45.6 0.0002558520517525481 +45.65 0.00018496607420581378 +45.7 0.00013420141629981423 +45.75 9.773882246850954e-5 +45.8 7.162571556538256e-5 +45.85 5.283877574358323e-5 +45.9 3.921777643831624e-5 +45.95 2.9411155708976258e-5 +46.0 2.2204639441713795e-5 +46.05 1.6983161478800986e-5 +46.1 1.3102655516730324e-5 +46.15 1.0227383487653142e-5 +46.2 8.113981211825818e-6 +46.25 6.493126781687679e-6 +46.3 5.27542763847095e-6 +46.35 4.366588897499584e-6 +46.4 3.654188041375601e-6 +46.45 3.1018881618384487e-6 +46.5 2.679925024487994e-6 +46.55 2.3546173667701558e-6 +46.6 2.095266698315522e-6 +46.65 1.8914372455343665e-6 +46.7 1.7336011148483766e-6 +46.75 1.6122304126793446e-6 +46.8 1.5179976240508768e-6 +46.85 1.4453581337628131e-6 +46.9 1.3920033773926119e-6 +46.95 1.3557218835400264e-6 +47.0 1.3343021808048348e-6 +47.05 1.3255327977867997e-6 +47.1 1.327202263085691e-6 +47.15 1.3374259128759728e-6 +47.2 1.3558202866841001e-6 +47.25 1.3821522496182739e-6 +47.3 1.4161683210163368e-6 +47.35 1.4576150202161354e-6 +47.4 1.5062388665554982e-6 +47.45 1.5617863793722795e-6 +47.5 1.624004078004304e-6 +47.55 1.6926384817894189e-6 +47.6 1.767436110065476e-6 +47.65 1.8478936884213871e-6 +47.7 1.9329092003405298e-6 +47.75 2.0226895515575455e-6 +47.8 2.117589842249513e-6 +47.85 2.217965172593514e-6 +47.9 2.3241706427665866e-6 +47.95 2.436561352945827e-6 +48.0 2.5554924033082717e-6 +48.05 2.6813188940310033e-6 +48.1 2.814395925291107e-6 +48.15 2.955078597265612e-6 +48.2 3.1037220101316256e-6 +48.25 3.260681264066172e-6 +48.3 3.42631145924634e-6 +48.35 3.6009676958492197e-6 +48.4 3.78500507405183e-6 +48.45 3.978778694031291e-6 +48.5 4.182643654185989e-6 +48.55 4.3958396573664185e-6 +48.6 4.6180155849332155e-6 +48.65 4.850131498355723e-6 +48.7 5.093147459103417e-6 +48.75 5.348023528645634e-6 +48.8 5.615719768451817e-6 +48.85 5.897196239991412e-6 +48.9 6.193413004733749e-6 +48.95 6.5053301241483195e-6 +49.0 6.833907659704442e-6 +49.05 7.180105672871568e-6 +49.1 7.544884225119155e-6 +49.15 7.929203377916511e-6 +49.2 8.334023192733152e-6 +49.25 8.76030373103837e-6 +49.3 9.209005054301629e-6 +49.35 9.68098136958124e-6 +49.4 1.0174990535730868e-5 +49.45 1.0691885478597057e-5 +49.5 1.1233653340982156e-5 +49.55 1.1802281265688716e-5 +49.6 1.2399756395519322e-5 +49.65 1.3028065873276285e-5 +49.7 1.3689196841762275e-5 +49.75 1.4385136443779596e-5 +49.8 1.5117871822130826e-5 +49.85 1.588939011961856e-5 +49.9 1.6701678479045073e-5 +49.95 1.7556724043213083e-5 +50.0 1.845651395492484e-5 diff --git a/test/julia_dde/test_basic_check_4.txt b/test/julia_dde/test_basic_check_4.txt new file mode 100644 index 00000000..e61f2232 --- /dev/null +++ b/test/julia_dde/test_basic_check_4.txt @@ -0,0 +1,1001 @@ +0.0 1.2 +0.05 1.1880598004963274 +0.1 1.1762384079684047 +0.15 1.1645346400763932 +0.2 1.1529473230412208 +0.25 1.141475299112477 +0.3 1.1301174233925737 +0.35 1.1188725616239938 +0.4 1.1077395901892904 +0.45 1.0967173961110868 +0.5 1.0858048770520767 +0.55 1.075000941315024 +0.6 1.064304507842764 +0.65 1.0537145062182005 +0.7 1.043229876664309 +0.75 1.0328495700441358 +0.8 1.0225725478607945 +0.85 1.012397782257473 +0.9 1.0023242560174284 +0.95 0.9923509625639848 +1.0 0.9824768980307879 +1.05 0.9727010597135578 +1.1 0.9630224771641795 +1.15 0.9534401895136975 +1.2 0.9439532442848286 +1.25 0.9345606973919633 +1.3 0.9252616131411647 +1.35 0.916055064230169 +1.4 0.9069401317483856 +1.45 0.8979159051768966 +1.5 0.888981482388457 +1.55 0.8801359696474954 +1.6 0.8713784816101126 +1.65 0.8627081413240832 +1.7 0.8541240802288541 +1.75 0.8456254381555455 +1.8 0.837211363326951 +1.85 0.8288810123575361 +1.9 0.8206335502534408 +1.95 0.8124681504124766 +2.0 0.80438399462413 +2.05 0.7963802730695569 +2.1 0.7884561843215901 +2.15 0.7806109353447339 +2.2 0.7728437414951651 +2.25 0.765153826520734 +2.3 0.7575404225609632 +2.35 0.7500027701470497 +2.4 0.7425401175213142 +2.45 0.735151718621093 +2.5 0.7278368354138617 +2.55 0.7205947369425942 +2.6 0.7134246992198385 +2.65 0.7063260052277169 +2.7 0.6992979449179254 +2.75 0.6923398152117342 +2.8 0.6854509199999872 +2.85 0.6786305701431024 +2.9 0.6718780834710726 +2.95 0.6651927847834634 +3.0 0.6585740058494151 +3.05 0.6522129149573156 +3.1 0.6462924386898269 +3.15 0.6407999646879741 +3.2 0.6357234315305058 +3.25 0.6310513287338946 +3.3 0.626772696752336 +3.35 0.6228771269777498 +3.4 0.619354761739779 +3.45 0.6161962943057904 +3.5 0.6133929688808745 +3.55 0.6109365806078452 +3.6 0.60881947556724 +3.65 0.6070345507773204 +3.7 0.605575254194071 +3.75 0.6044355847112005 +3.8 0.6036100921601407 +3.85 0.6030938773100476 +3.9 0.6028825918678004 +3.95 0.6029724384780017 +4.0 0.6033601707229788 +4.05 0.604043093122781 +4.1 0.6050190611351829 +4.15 0.6062864811556813 +4.2 0.6078443105174975 +4.25 0.609692057491576 +4.3 0.6118297812865848 +4.35 0.6142580920489168 +4.4 0.6169781508626868 +4.45 0.619991669749734 +4.5 0.6233009116696199 +4.55 0.6269085710336688 +4.6 0.630815543628207 +4.65 0.6350235971587848 +4.7 0.6395355437952476 +4.75 0.6443546093224879 +4.8 0.6494844331404451 +4.85 0.6549290682641051 +4.9 0.6606929813235011 +4.95 0.666781052563712 +5.0 0.6731985758448654 +5.05 0.6799512586421336 +5.1 0.6870452220457377 +5.15 0.694487000760944 +5.2 0.7022835431080668 +5.25 0.7104422110224664 +5.3 0.7189707800545505 +5.35 0.7278774393697731 +5.4 0.7371707917486356 +5.45 0.746859958736378 +5.5 0.7569547677070346 +5.55 0.7674652488443671 +5.6 0.7784019827980168 +5.65 0.7897761339397672 +5.7 0.8015994503635439 +5.75 0.813884263885415 +5.8 0.8266434900435903 +5.85 0.8398906280984233 +5.9 0.8536397610324082 +5.95 0.8679055555501825 +6.0 0.8827032620785261 +6.05 0.8980442119576897 +6.1 0.9139302097477254 +6.15 0.9303622713080193 +6.2 0.9473409029130228 +6.25 0.9648661012522547 +6.3 0.9829373534303 +6.35 1.0015536369668097 +6.4 1.0207134197965013 +6.45 1.0404146602691589 +6.5 1.060654807149632 +6.55 1.0814307996178367 +6.6 1.1027390672687578 +6.65 1.1245755301124434 +6.7 1.1469355985740082 +6.75 1.1698141734936365 +6.8 1.1932056461265734 +6.85 1.2171038981431364 +6.9 1.2415023016287001 +6.95 1.266393719083723 +7.0 1.2917705034237088 +7.05 1.317622676238042 +7.1 1.3439344875291743 +7.15 1.3706943818076935 +7.2 1.397889317915369 +7.25 1.4255041476036272 +7.3 1.4535216155335473 +7.35 1.4819223592758635 +7.4 1.5106849093109642 +7.45 1.5397856890288912 +7.5 1.5691990147293418 +7.55 1.598897095621667 +7.6 1.6288500338248735 +7.65 1.65902582436762 +7.7 1.6893903551882197 +7.75 1.7199074071346396 +7.8 1.750538653964509 +7.85 1.7812436623450993 +7.9 1.811979891853345 +7.95 1.8427026949758254 +8.0 1.8733655204108828 +8.05 1.9039160239594701 +8.1 1.9342967182776467 +8.15 1.9644477008356354 +8.2 1.9943066682588895 +8.25 2.023808916328101 +8.3 2.052887339979193 +8.35 2.0814724333033228 +8.4 2.1094922895468846 +8.45 2.136872601111504 +8.5 2.163536659554045 +8.55 2.1894053555866013 +8.6 2.2143971790765016 +8.65 2.238428219046314 +8.7 2.261412163673834 +8.75 2.2832603002920964 +8.8 2.3038815153893686 +8.85 2.323182294609149 +8.9 2.341066722750178 +8.95 2.3574364837664246 +9.0 2.3721908607670934 +9.05 2.385243561217768 +9.1 2.3965045430152734 +9.15 2.4058713525386093 +9.2 2.4132491205087794 +9.25 2.418550561988795 +9.3 2.4216959763836727 +9.35 2.4226132474404354 +9.4 2.4212378432481154 +9.45 2.4175128162377466 +9.5 2.4113888031823736 +9.55 2.402824025197046 +9.6 2.391784287738818 +9.65 2.3782429806067538 +9.7 2.3621810779419197 +9.75 2.3435871382273943 +9.8 2.3224573042882537 +9.85 2.2987953032915898 +9.9 2.2726124467464954 +9.95 2.243936662874981 +10.0 2.212829407232541 +10.05 2.1793603051700225 +10.1 2.1436071549890467 +10.15 2.1056560286629353 +10.2 2.0656012718367216 +10.25 2.023545503827138 +10.3 1.979599617622623 +10.35 1.9338827798833258 +10.4 1.8865224309410902 +10.45 1.837654284799473 +10.5 1.787422329133732 +10.55 1.7359788252908328 +10.6 1.6834843082894428 +10.65 1.6301075868199335 +10.7 1.5760257432443914 +10.75 1.5214241335965866 +10.8 1.4664962694610577 +10.85 1.4114290106972407 +10.9 1.356387562738108 +10.95 1.3015295749133389 +11.0 1.2470056475865348 +11.05 1.192959332155231 +11.1 1.1395271310508905 +11.15 1.0868384977388998 +11.2 1.0350158367185822 +11.25 0.9841745035231799 +11.3 0.9344228047198724 +11.35 0.8858619979097635 +11.4 0.8385862917278817 +11.45 0.7926828458431956 +11.5 0.7482317709585881 +11.55 0.7053061288108814 +11.6 0.6639719321708164 +11.65 0.6242881448430789 +11.7 0.5863066816662622 +11.75 0.5500724085129048 +11.8 0.5156056263225116 +11.85 0.48282765766606284 +11.9 0.45171302639042277 +11.95 0.4222417601688053 +12.0 0.39438628899652595 +12.05 0.3681135967598563 +12.1 0.343382325689573 +12.15 0.3201451306927898 +12.2 0.2983525808812395 +12.25 0.2779531595712671 +12.3 0.25889326428383524 +12.35 0.24111720674452214 +12.4 0.22456721288351963 +12.45 0.2091834228356374 +12.5 0.19490389094029853 +12.55 0.18166458574154323 +12.6 0.16940455502062668 +12.65 0.15806942563057208 +12.7 0.14760164949795584 +12.75 0.1379459766189818 +12.8 0.12904954090635606 +12.85 0.1208618601892862 +12.9 0.11333483621347977 +12.95 0.1064227546411474 +13.0 0.10008352079000768 +13.05 0.09427729770589059 +13.1 0.0889638838519627 +13.15 0.08410564922735048 +13.2 0.07966758244263973 +13.25 0.07561729071987416 +13.3 0.07192499989255652 +13.35 0.0685635544056481 +13.4 0.06550841731556832 +13.45 0.06273767029019571 +13.5 0.060232013608867055 +13.55 0.057974766162377775 +13.6 0.05595154540390375 +13.65 0.054143728150752184 +13.7 0.05253542096143592 +13.75 0.05111376431213964 +13.8 0.049867039237643705 +13.85 0.04878466733132397 +13.9 0.04785721074515173 +13.95 0.04707637218969389 +14.0 0.0464349949341128 +14.05 0.04592701769836477 +14.1 0.045546624739730736 +14.15 0.04528931834969655 +14.2 0.0451514955794 +14.25 0.04513008817380427 +14.3 0.045222562571697905 +14.35 0.04542691990569489 +14.4 0.045741696002234565 +14.45 0.04616596138158169 +14.5 0.04669932125782645 +14.55 0.047341915538884324 +14.6 0.04809441882649631 +14.65 0.04895804028474974 +14.7 0.049934201531537686 +14.75 0.051024408893837934 +14.8 0.05223068084161456 +14.85 0.053555451081960144 +14.9 0.05500156855909605 +14.95 0.05657229745437189 +15.0 0.05827131718626629 +15.05 0.060102892037134606 +15.1 0.062071401418132756 +15.15 0.06418132740669906 +15.2 0.06643757679748863 +15.25 0.06884548110237429 +15.3 0.07141079655044563 +15.35 0.07413970408800942 +15.4 0.07703880937859015 +15.45 0.08011514280292893 +15.5 0.08337615945898437 +15.55 0.08682973916193217 +15.6 0.09048418644416534 +15.65 0.0943482305552937 +15.7 0.09843102546214476 +15.75 0.10274214984876331 +15.8 0.10729171804825564 +15.85 0.11209077099320668 +15.9 0.11715043463737092 +15.95 0.12248247023798853 +16.0 0.12809937089528062 +16.05 0.13401436155244756 +16.1 0.1402413989956704 +16.15 0.1467951718541095 +16.2 0.15369110059990698 +16.25 0.1609453375481831 +16.3 0.1685747668570395 +16.35 0.17659700452755775 +16.4 0.1850304633897114 +16.45 0.19389507162903813 +16.5 0.203211036660323 +16.55 0.2129994958726723 +16.6 0.22328282470582111 +16.65 0.23408463665013263 +16.7 0.24542978324660109 +16.75 0.25734435408684836 +16.8 0.26985567681312306 +16.85 0.2829923171183062 +16.9 0.296784078745904 +16.95 0.31126200349005567 +17.0 0.32645837119552795 +17.05 0.34240669975771165 +17.1 0.35914174512263297 +17.15 0.3766995493478325 +17.2 0.39511866943589197 +17.25 0.41443937956042687 +17.3 0.43470351596029744 +17.35 0.4559547854382354 +17.4 0.47823876536084137 +17.45 0.5016029036585927 +17.5 0.526096518825831 +17.55 0.5517707999207738 +17.6 0.5786788065655069 +17.65 0.6068754689459871 +17.7 0.636417587812045 +17.75 0.6673638344773806 +17.8 0.6997747508195656 +17.85 0.73371274928004 +17.9 0.769242112864117 +17.95 0.8064298972342026 +18.0 0.8453463489441032 +18.05 0.8860624040359305 +18.1 0.9286512860147209 +18.15 0.9731882620893852 +18.2 1.019750141598271 +18.25 1.0684152760091428 +18.3 1.1192635589191955 +18.35 1.1723764260550513 +18.4 1.2278368552727539 +18.45 1.2857284043169876 +18.5 1.3461360686558452 +18.55 1.4091461867043567 +18.6 1.4748444613953504 +18.65 1.5433159537011103 +18.7 1.6146450826333911 +18.75 1.6889156252433966 +18.8 1.7662107166217869 +18.85 1.84661082758134 +18.9 1.9301906122177452 +18.95 2.017031141511684 +19.0 2.107207032862616 +19.05 2.2007850152801156 +19.1 2.2978239293838714 +19.15 2.398374727403668 +19.2 2.5024804731794337 +19.25 2.6101763421611723 +19.3 2.721489621409019 +19.35 2.836439709593211 +19.4 2.955029423231612 +19.45 3.0772339327692704 +19.5 3.203040909069934 +19.55 3.3324137121670563 +19.6 3.465288240102433 +19.65 3.6015729289261924 +19.7 3.741148752696839 +19.75 3.8838692234811942 +19.8 4.029560391354422 +19.85 4.178020844400036 +19.9 4.32902170870988 +19.95 4.482306648384192 +20.0 4.63759182333648 +20.05 4.794549975980078 +20.1 4.952790701757586 +20.15 5.1118775686148 +20.2 5.271328344787154 +20.25 5.430614998799649 +20.3 5.589163699466898 +20.35 5.746354815893115 +20.4 5.901522917472108 +20.45 6.053956773887321 +20.5 6.202899355111759 +20.55 6.347547831408041 +20.6 6.4870535733283985 +20.65 6.620522151714647 +20.7 6.74701333769822 +20.75 6.86554110270015 +20.8 6.975097585988036 +20.85 7.074756987241683 +20.9 7.163345419608717 +20.95 7.23970926129966 +21.0 7.302777059566318 +21.05 7.351559530701824 +21.1 7.385149560040613 +21.15 7.402722201958439 +21.2 7.403534679872361 +21.25 7.38692638624075 +21.3 7.352318882563292 +21.35 7.299215899380968 +21.4 7.227203336276111 +21.45 7.135949261872304 +21.5 7.0252039138344955 +21.55 6.8947996988688915 +21.6 6.74465119272308 +21.65 6.575224674265068 +21.7 6.387733512213771 +21.75 6.183130324475875 +21.8 5.962536763414633 +21.85 5.727249092536215 +21.9 5.478738186489729 +21.95 5.218649531067155 +22.0 4.9488032232034325 +22.05 4.67119397097642 +22.1 4.387991093606868 +22.15 4.10153852145851 +22.2 3.814354796037904 +22.25 3.5290313268426377 +22.3 3.247680664717435 +22.35 2.972145181905108 +22.4 2.7041601490817597 +22.45 2.445353592778882 +22.5 2.197246295383466 +22.55 1.9612517951379447 +22.6 1.7386763861401908 +22.65 1.5307191183435263 +22.7 1.3384717975567046 +22.75 1.1626849204819312 +22.8 1.002545500134845 +22.85 0.8580447324446863 +22.9 0.7290660272529799 +22.95 0.6151088661398314 +23.0 0.5152888024239812 +23.05 0.42833746116276894 +23.1 0.3528700782886587 +23.15 0.2882686813177955 +23.2 0.23370795504952072 +23.25 0.18814604167223206 +23.3 0.1503427800968641 +23.35 0.11902811119375684 +23.4 0.0934657882479476 +23.45 0.07288677871920558 +23.5 0.056463495964596405 +23.55 0.04336624786792155 +23.6 0.033048393231938075 +23.65 0.025044693612199312 +23.7 0.018879588046535827 +23.75 0.014117205126969798 +23.8 0.010494168668146536 +23.85 0.007771952430576503 +23.9 0.00572659237794399 +23.95 0.004196649465176822 +24.0 0.0030682684605941022 +24.05 0.0022382433124819743 +24.1 0.0016268421273769097 +24.15 0.0011818193528510545 +24.2 0.0008587195343808228 +24.25 0.0006233612455862654 +24.3 0.0004533600206809531 +24.35 0.0003306483306907093 +24.4 0.00024162783734463168 +24.45 0.00017738064466219696 +24.5 0.0001309525689239069 +24.55 9.716850425920782e-5 +24.6 7.26240966192432e-5 +24.65 5.47478818928715e-5 +24.7 4.1621424946029056e-5 +24.75 3.1947149008192264e-5 +24.8 2.47950842119474e-5 +24.85 1.9461844891531977e-5 +24.9 1.545870390331348e-5 +24.95 1.2439828811011545e-5 +25.0 1.014770216875457e-5 +25.05 8.387099067448246e-6 +25.1 7.023043078151283e-6 +25.15 5.9697343991657785e-6 +25.2 5.149996286641158e-6 +25.25 4.511792414769304e-6 +25.3 4.012664558191549e-6 +25.35 3.6184372626452725e-6 +25.4 3.303217844963916e-6 +25.45 3.049396393076911e-6 +25.5 2.847645766009793e-6 +25.55 2.69587554230337e-6 +25.6 2.5835641587810274e-6 +25.65 2.5028908244649546e-6 +25.7 2.4494096105647085e-6 +25.75 2.419391019410189e-6 +25.8 2.4098219844516108e-6 +25.85 2.418405870259513e-6 +25.9 2.443562472524755e-6 +25.95 2.4839527078495604e-6 +26.0 2.5384142814260535e-6 +26.05 2.606273821426257e-6 +26.1 2.6869379843119175e-6 +26.15 2.7798933189022552e-6 +26.2 2.8847062663740076e-6 +26.25 3.001023160261364e-6 +26.3 3.128570226456017e-6 +26.35 3.2671535832071314e-6 +26.4 3.4166592411213753e-6 +26.45 3.57705310316289e-6 +26.5 3.7483809646533127e-6 +26.55 3.930768513271749e-6 +26.6 4.124421329054799e-6 +26.65 4.32960786038784e-6 +26.7 4.546517541656452e-6 +26.75 4.775505565572347e-6 +26.8 5.017017532787742e-6 +26.85 5.271549794558421e-6 +26.9 5.539649452743732e-6 +26.95 5.821914359806641e-6 +27.0 6.118993118813638e-6 +27.05 6.431585083434791e-6 +27.1 6.760440357943753e-6 +27.15 7.106359797217719e-6 +27.2 7.470195006737535e-6 +27.25 7.852848342587543e-6 +27.3 8.255272911455645e-6 +27.35 8.678472570633381e-6 +27.4 9.123501928015798e-6 +27.45 9.591466342101632e-6 +27.5 1.008352192199302e-5 +27.55 1.060087552739576e-5 +27.6 1.1144784768619385e-5 +27.65 1.1716558006576588e-5 +27.7 1.2317554352783923e-5 +27.75 1.2949184065999924e-5 +27.8 1.3613223077415422e-5 +27.85 1.4311399433303857e-5 +27.9 1.504526308691353e-5 +27.95 1.581650858713442e-5 +28.0 1.6626975078497833e-5 +28.05 1.7478646301176728e-5 +28.1 1.837365059098551e-5 +28.15 1.9314260879380068e-5 +28.2 2.0302894693457978e-5 +28.25 2.1342114155958202e-5 +28.3 2.243462598526123e-5 +28.35 2.358328149538912e-5 +28.4 2.4791076596005323e-5 +28.45 2.6061151792415053e-5 +28.5 2.739679218556477e-5 +28.55 2.880142747204276e-5 +28.6 3.0278631944078403e-5 +28.65 3.18321244895429e-5 +28.7 3.346576859194911e-5 +28.75 3.518357233045125e-5 +28.8 3.6989688379844895e-5 +28.85 3.8888414010567146e-5 +28.9 4.0884191088696255e-5 +28.95 4.298160607595395e-5 +29.0 4.518565941340856e-5 +29.05 4.750323389336468e-5 +29.1 4.993968133981481e-5 +29.15 5.2500387459309735e-5 +29.2 5.519125036977669e-5 +29.25 5.801868060051815e-5 +29.3 6.098960109221252e-5 +29.35 6.411144719691421e-5 +29.4 6.739216667805312e-5 +29.45 7.084021971043556e-5 +29.5 7.446457888024339e-5 +29.55 7.827472918503394e-5 +29.6 8.228066803374081e-5 +29.65 8.64929052466731e-5 +29.7 9.092246305551653e-5 +29.75 9.558087610333142e-5 +29.8 0.00010048019144455492 +29.85 0.00010563296854499985 +29.9 0.00011105227928185373 +29.95 0.00011675170794368223 +30.0 0.0001227453512304237 +30.05 0.00012904781825339625 +30.1 0.00013567423053529063 +30.15 0.0001426402220101734 +30.2 0.00014996193902348996 +30.25 0.00015765604033205773 +30.3 0.00016574058516240938 +30.35 0.00017424111370541984 +30.4 0.0001831776763267837 +30.45 0.00019257013950133904 +30.5 0.00020244023055680148 +30.55 0.00021281153767376562 +30.6 0.00022370950988570654 +30.65 0.0002351614570789764 +30.7 0.0002471965499928098 +30.75 0.00025984582021931773 +30.8 0.0002731421602034928 +30.85 0.000287120323243203 +30.9 0.00030181692348919944 +30.95 0.00031727043594511185 +31.0 0.00033352119646744673 +31.05 0.00035061140176559293 +31.1 0.00036858510940181437 +31.15 0.0003874882377912571 +31.2 0.0004073685662019494 +31.25 0.0004282757347547921 +31.3 0.0004502612444235679 +31.35 0.0004733784570349454 +31.4 0.0004976825952684588 +31.45 0.0005232307426565268 +31.5 0.0005500818435844629 +31.55 0.0005782967032904355 +31.6 0.0006079503852070661 +31.65 0.0006391300928337179 +31.7 0.0006719048829063695 +31.75 0.0007063497942577817 +31.8 0.0007425463982876225 +31.85 0.0007805827989624643 +31.9 0.0008205536328157828 +31.95 0.0008625600689479657 +32.0 0.0009067098090262956 +32.05 0.0009531170872849661 +32.1 0.0010019026705250823 +32.15 0.0010531938581146301 +32.2 0.0011071244819885395 +32.25 0.0011638349066485994 +32.3 0.001223472029163538 +32.35 0.0012861892791689834 +32.4 0.0013521466188674495 +32.45 0.001421510543028392 +32.5 0.0014944540789881082 +32.55 0.0015711567866498796 +32.6 0.0016518047584838263 +32.65 0.0017365906195270112 +32.7 0.0018257135273834148 +32.75 0.0019193791722238486 +32.8 0.002017800891978172 +32.85 0.0021212672343752857 +32.9 0.002230045548369633 +32.95 0.0023443806222218783 +33.0 0.0024645392476519467 +33.05 0.002590810219839141 +33.1 0.002723504337422094 +33.15 0.002862954402498706 +33.2 0.003009515220626284 +33.25 0.003163563600821381 +33.3 0.0033254983555599292 +33.35 0.003495740300777223 +33.4 0.003674732255867753 +33.45 0.0038629390436855106 +33.5 0.004060847490543645 +33.55 0.004268966426214731 +33.6 0.004487826683930703 +33.65 0.004717981100382675 +33.7 0.004960004515721289 +33.75 0.005214493773556361 +33.8 0.005482067720957016 +33.85 0.005763367208451878 +33.9 0.006059055090028736 +33.95 0.0063698162231347515 +34.0 0.006696362113585118 +34.05 0.00703964166167945 +34.1 0.007400529648686494 +34.15 0.007779842808177503 +34.2 0.008178469684576748 +34.25 0.008597370633161057 +34.3 0.009037577820060243 +34.35 0.009500195222256945 +34.4 0.009986398627586372 +34.45 0.010497435634736808 +34.5 0.011034625653249098 +34.55 0.01159935990351698 +34.6 0.012193101416787191 +34.65 0.012817385035158838 +34.7 0.013473817411584306 +34.75 0.01416407700986826 +34.8 0.014889914104668726 +34.85 0.015653150781496157 +34.9 0.016455680936713825 +34.95 0.017299470277538028 +35.0 0.01818655632203741 +35.05 0.019119048399133965 +35.1 0.020099127648602316 +35.15 0.021129047021069634 +35.2 0.02221127816980577 +35.25 0.02334899952533738 +35.3 0.0245448536781086 +35.35 0.025801588371398444 +35.4 0.027122178838323182 +35.45 0.028509827801837626 +35.5 0.029967965474733606 +35.55 0.0315002495596414 +35.6 0.03311056524902905 +35.65 0.03480302522520191 +35.7 0.03658196966030365 +35.75 0.038451966216315185 +35.8 0.040417810045055846 +35.85 0.042484523788182765 +35.9 0.04465735757719016 +35.95 0.04694178903341079 +36.0 0.049343523268014736 +36.05 0.05186849288201033 +36.1 0.05452285796624317 +36.15 0.057313006101397376 +36.2 0.06024555235799432 +36.25 0.06332733929639267 +36.3 0.06656543696679054 +36.35 0.06996714922746461 +36.4 0.07354161492253536 +36.45 0.07729797038358993 +36.5 0.0812447315842601 +36.55 0.08539109106659043 +36.6 0.08974691794103712 +36.65 0.09432275788646544 +36.7 0.09912983315015493 +36.75 0.1041800425477933 +36.8 0.10948596146348222 +36.85 0.11506084184973359 +36.9 0.12091861222746997 +36.95 0.12707387768602704 +37.0 0.13354191988314948 +37.05 0.14033869704499438 +37.1 0.14748084396613156 +37.15 0.1549856720095387 +37.2 0.1628711691066082 +37.25 0.1711559997571415 +37.3 0.179859505029352 +37.35 0.18900170255986756 +37.4 0.19860328655372045 +37.45 0.20868562778436117 +37.5 0.21927077359364575 +37.55 0.2303825623341242 +37.6 0.2420484518884242 +37.65 0.2542949883150577 +37.7 0.2671501517028943 +37.75 0.28064354236051037 +37.8 0.29480638081620114 +37.85 0.30967150781797603 +37.9 0.3252733843335506 +37.95 0.34164809155036563 +38.0 0.35883333087556424 +38.05 0.3768684239360106 +38.1 0.39579431257828335 +38.15 0.4156535588686653 +38.2 0.4364903450931678 +38.25 0.45835047375749827 +38.3 0.4812813675870958 +38.35 0.5053320695271012 +38.4 0.5305532427423685 +38.45 0.5569971706174758 +38.5 0.5847177567567053 +38.55 0.6137705249840516 +38.6 0.6442126193432424 +38.65 0.6761028040976818 +38.7 0.709499798733684 +38.75 0.7444528628440026 +38.8 0.7810352776827908 +38.85 0.8193266781646816 +38.9 0.859407153064521 +38.95 0.9013572450174041 +39.0 0.9452579505186354 +39.05 0.9911907199237645 +39.1 1.0392374574485708 +39.15 1.0894805211690428 +39.2 1.1420027230214302 +39.25 1.1968873288021742 +39.3 1.2542180581679718 +39.35 1.3140790846357546 +39.4 1.3765550355826464 +39.45 1.4417309922460484 +39.5 1.5096924897235524 +39.55 1.5805255169729964 +39.6 1.6543165168124576 +39.65 1.7311523859202103 +39.7 1.8111204748347953 +39.75 1.8943085879549524 +39.8 1.9808049835396564 +39.85 2.070698373708153 +39.9 2.163983109791232 +39.95 2.2606853338691906 +40.0 2.360938720294395 +40.05 2.4648534690798374 +40.1 2.5725162507935737 +40.15 2.683990206558674 +40.2 2.7993149480533326 +40.25 2.918506557510744 +40.3 3.0415575877192116 +40.35 3.1684370620220994 +40.4 3.299090474317784 +40.45 3.4334397890597734 +40.5 3.5713834412565633 +40.55 3.712796336471769 +40.6 3.8575298508240716 +40.65 4.0054118309871445 +40.7 4.156246594189814 +40.75 4.309814928215874 +40.8 4.465874091404255 +40.85 4.6241578126489316 +40.9 4.784376291398901 +40.95 4.946216197658313 +41.0 5.109340671986252 +41.05 5.273404182823946 +41.1 5.43813381246399 +41.15 5.602840033479278 +41.2 5.766713870720248 +41.25 5.928933535352453 +41.3 6.088664424856716 +41.35 6.245059123029065 +41.4 6.397257399980665 +41.45 6.544386212137977 +41.5 6.685559702242575 +41.55 6.8198791993513055 +41.6 6.946433218836213 +41.65 7.064297462384493 +41.7 7.172534817998619 +41.75 7.2701953599961975 +41.8 7.356316349010094 +41.85 7.429922231988369 +41.9 7.490024642194255 +41.95 7.5356223992062175 +42.0 7.565701508917923 +42.05 7.579235163538244 +42.1 7.575183741591243 +42.15 7.552494807916206 +42.2 7.5101031136676 +42.25 7.446960211990248 +42.3 7.362653511188749 +42.35 7.257378130597485 +42.4 7.131478200218654 +42.45 6.985446256627586 +42.5 6.819923242972875 +42.55 6.635698508976241 +42.6 6.433709810932609 +42.65 6.215043311710154 +42.7 5.98093358075015 +42.75 5.732763594067173 +42.8 5.472064734248904 +42.85 5.200516790456206 +42.9 4.919947958423249 +42.95 4.632334840457234 +43.0 4.339802445438737 +43.05 4.044624188821392 +43.1 3.749221892632005 +43.15 3.4561794196288083 +43.2 3.1684159295351932 +43.25 2.888051061812437 +43.3 2.616777437601601 +43.35 2.356145147941265 +43.4 2.107561753767621 +43.45 1.872292285914226 +43.5 1.6514592451122792 +43.55 1.446042601990393 +43.6 1.25687979707469 +43.65 1.084665740788878 +43.7 0.929626080669022 +43.75 0.7904892915534079 +43.8 0.6669630322147689 +43.85 0.5585713669155822 +43.9 0.46444522877890587 +43.95 0.3833224197882812 +44.0 0.31357782352246616 +44.05 0.2541601641675317 +44.1 0.20432561528432963 +44.15 0.1630559586008962 +44.2 0.12916402730886625 +44.25 0.10137107882488659 +44.3 0.07886507863046813 +44.35 0.06091603556284321 +44.4 0.04673787065327124 +44.45 0.03554801391736649 +44.5 0.02682478669927672 +44.55 0.0201299600180282 +44.6 0.015021743551476268 +44.65 0.011118602685664251 +44.7 0.008185699330205028 +44.75 0.006004595922205878 +44.8 0.004378886320825617 +44.85 0.003179006285911467 +44.9 0.0023036198045184044 +44.95 0.001663712986568561 +45.0 0.0011983802002857918 +45.05 0.0008633333324131829 +45.1 0.0006214365576144882 +45.15 0.0004473583556963225 +45.2 0.000322925952415157 +45.25 0.00023356670130283947 +45.3 0.00016948971525873436 +45.35 0.0001236970332192665 +45.4 9.075149291610927e-5 +45.45 6.700338161970473e-5 +45.5 4.989738095078384e-5 +45.55 3.748216280361419e-5 +45.6 2.8409702490601546e-5 +45.65 2.177101260041849e-5 +45.7 1.687692531558942e-5 +45.75 1.3236778688421806e-5 +45.8 1.0515831989377071e-5 +45.85 8.470422021611415e-6 +45.9 6.9156793082844705e-6 +45.95 5.720431452806873e-6 +46.0 4.799861531694991e-6 +46.05 4.071769606983338e-6 +46.1 3.499905323891162e-6 +46.15 3.0582739139824986e-6 +46.2 2.723401134855897e-6 +46.25 2.474333270144931e-6 +46.3 2.292637129517839e-6 +46.35 2.16240004867769e-6 +46.4 2.0702298893624183e-6 +46.45 2.0052550393446896e-6 +46.5 1.9591244124320165e-6 +46.55 1.9260074484667103e-6 +46.6 1.9025941133258457e-6 +46.65 1.8883429362876368e-6 +46.7 1.8877296320074688e-6 +46.75 1.9010805379502938e-6 +46.8 1.9271814081456527e-6 +46.85 1.965004977494437e-6 +46.9 2.0137109617688604e-6 +46.95 2.072646057612502e-6 +47.0 2.1413439425402585e-6 +47.05 2.2194306520794387e-6 +47.1 2.306425913502996e-6 +47.15 2.40217065928247e-6 +47.2 2.506573645865822e-6 +47.25 2.619586373274399e-6 +47.3 2.7412030851030265e-6 +47.35 2.8714607685199803e-6 +47.4 3.010439154266917e-6 +47.45 3.158260716659016e-6 +47.5 3.315090673584805e-6 +47.55 3.481136986506317e-6 +47.6 3.6566503604590372e-6 +47.65 3.841924244051815e-6 +47.7 4.037294829467039e-6 +47.75 4.243141052460408e-6 +47.8 4.459884592361183e-6 +47.85 4.687989872072064e-6 +47.9 4.927964058069078e-6 +47.95 5.180357060401818e-6 +48.0 5.4457615326931705e-6 +48.05 5.724812872139598e-6 +48.1 6.0181892195110635e-6 +48.15 6.326611459150686e-6 +48.2 6.650900668532434e-6 +48.25 6.991902988490036e-6 +48.3 7.350371648743385e-6 +48.35 7.727128171109574e-6 +48.4 8.12306528188901e-6 +48.45 8.539146911865828e-6 +48.5 8.976408196307391e-6 +48.55 9.43595547496474e-6 +48.6 9.918966292072427e-6 +48.65 1.0426689396348247e-5 +48.7 1.0960444740993775e-5 +48.75 1.1521623483693771e-5 +48.8 1.211168798661677e-5 +48.85 1.2732171816414726e-5 +48.9 1.3384679744222858e-5 +48.95 1.4070887745660146e-5 +49.0 1.4792543000828803e-5 +49.05 1.5551463894314893e-5 +49.1 1.6349540015187564e-5 +49.15 1.7188732156999628e-5 +49.2 1.8071072317787616e-5 +49.25 1.8998663700070797e-5 +49.3 1.9973680710852777e-5 +49.35 2.0998368961620643e-5 +49.4 2.2075105909974988e-5 +49.45 2.3206955462057086e-5 +49.5 2.4396816795292184e-5 +49.55 2.5647631879502024e-5 +49.6 2.6962524475982816e-5 +49.65 2.8344800137504537e-5 +49.7 2.9797946208312406e-5 +49.75 3.13256318241251e-5 +49.8 3.293170791213642e-5 +49.85 3.4620207191014525e-5 +49.9 3.639534417090125e-5 +49.95 3.826151515341381e-5 +50.0 4.022329823164275e-5 diff --git a/test/julia_dde/test_basic_check_5.txt b/test/julia_dde/test_basic_check_5.txt new file mode 100644 index 00000000..db42a42d --- /dev/null +++ b/test/julia_dde/test_basic_check_5.txt @@ -0,0 +1,1001 @@ +0.0 1.2 +0.05 1.1880597992376376 +0.1 1.1762383903532672 +0.15 1.1645346054176793 +0.2 1.1529472850205345 +0.25 1.1414752222367555 +0.3 1.1301172850650132 +0.35 1.1188723699778464 +0.4 1.1077393734477934 +0.45 1.0967171444550854 +0.5 1.0858044886142186 +0.55 1.0750003653428541 +0.6 1.0643037416988483 +0.65 1.0537135847400563 +0.7 1.0432288615243335 +0.75 1.0328485303971229 +0.8 1.022571356528724 +0.85 1.0123962869380496 +0.9 1.0023223752836392 +0.95 0.9923486752240321 +1.0 0.9824742404177691 +1.05 0.9726981245233894 +1.1 0.963019381199433 +1.15 0.9534370641044397 +1.2 0.9439501263044995 +1.25 0.9345573120423534 +1.3 0.9252577408761488 +1.35 0.9160505652198292 +1.4 0.9069349374873376 +1.45 0.8979100100926173 +1.5 0.8889749354496113 +1.55 0.8801288659722627 +1.6 0.8713709540745148 +1.65 0.8627003521703108 +1.7 0.8541162126735939 +1.75 0.8456174480352269 +1.8 0.8372028671950351 +1.85 0.8288717208428457 +1.9 0.8206232664837655 +1.95 0.8124567616229019 +2.0 0.8043714637653621 +2.05 0.7963666304162529 +2.1 0.7884415190806816 +2.15 0.7805953872637555 +2.2 0.7728274924705816 +2.25 0.7651370922062669 +2.3 0.757523443975919 +2.35 0.7499858052846445 +2.4 0.7425231000475476 +2.45 0.7351341865132892 +2.5 0.7278184247305727 +2.55 0.7205751779086018 +2.6 0.7134038092565801 +2.65 0.7063036819837109 +2.7 0.6992741592991979 +2.75 0.6923146044122449 +2.8 0.6854243805320552 +2.85 0.6786028508678325 +2.9 0.6718493786287804 +2.95 0.6651633270241023 +3.0 0.658544059263002 +3.05 0.6519909385546828 +3.1 0.6455033281083487 +3.15 0.6390802274436268 +3.2 0.6327205188637759 +3.25 0.6264236614309651 +3.3 0.620189119515113 +3.35 0.6140163574861381 +3.4 0.6079048397139594 +3.45 0.6018540305684947 +3.5 0.595863394419663 +3.55 0.589932395637383 +3.6 0.5840604985915729 +3.65 0.5782471676521516 +3.7 0.5724918671890373 +3.75 0.566794061572149 +3.8 0.5611532151714047 +3.85 0.5555687923567235 +3.9 0.5500402574980238 +3.95 0.5445670749652239 +4.0 0.5391485415659062 +4.05 0.533941825286989 +4.1 0.5290979030935984 +4.15 0.5246066587037986 +4.2 0.5204579758356546 +4.25 0.5166417382072302 +4.3 0.5131478295365905 +4.35 0.5099661335417995 +4.4 0.5070865425485469 +4.45 0.5045013413138684 +4.5 0.50220474475892 +4.55 0.5001901862647773 +4.6 0.4984507696525758 +4.65 0.4969812968856559 +4.7 0.4957776883424407 +4.75 0.49483586440135285 +4.8 0.4941517454408154 +4.85 0.49372125183925114 +4.9 0.4935403082579171 +4.95 0.4936057326752097 +5.0 0.4939159902049112 +5.05 0.49446967873339276 +5.1 0.495265396147025 +5.15 0.49630174033217894 +5.2 0.49757730917522547 +5.25 0.4990903623716535 +5.3 0.500840165913952 +5.35 0.5028281061034408 +5.4 0.5050556308997887 +5.45 0.5075241882626647 +5.5 0.5102352261517374 +5.55 0.513190192526676 +5.6 0.516390535347149 +5.65 0.5198377025728254 +5.7 0.5235331421633739 +5.75 0.5274782732641654 +5.8 0.5316753705349432 +5.85 0.5361289906293275 +5.9 0.540843962783196 +5.95 0.545825116232426 +6.0 0.5510772802128953 +6.05 0.5566052839604811 +6.1 0.5624139567110612 +6.15 0.5685081277005132 +6.2 0.5748926261647143 +6.25 0.5815722278711621 +6.3 0.5885516376851783 +6.35 0.5958386412284099 +6.4 0.6034418101727644 +6.45 0.6113697161901499 +6.5 0.6196309309524738 +6.55 0.6282340261316438 +6.6 0.6371875733995677 +6.65 0.6465001444281533 +6.7 0.656180310889308 +6.75 0.6662355248448237 +6.8 0.6766749685128675 +6.85 0.6875119127809535 +6.9 0.6987596953139646 +6.95 0.7104316537767829 +7.0 0.7225411258342908 +7.05 0.7351014491513711 +7.1 0.7481259613929059 +7.15 0.761628000223778 +7.2 0.7756206149741648 +7.25 0.7901141516640606 +7.3 0.8051262630768021 +7.35 0.820676871069783 +7.4 0.8367858975003976 +7.45 0.8534732642260386 +7.5 0.8707588931041004 +7.55 0.8886627059919765 +7.6 0.9072046247470607 +7.65 0.9264045642825595 +7.7 0.9462803312576148 +7.75 0.9668554155299864 +7.8 0.9881574048590489 +7.85 1.010213887004177 +7.9 1.0330524497247455 +7.95 1.0567006807801287 +8.0 1.0811861679297008 +8.05 1.1065310334843907 +8.1 1.1327491923150275 +8.15 1.1598559210208417 +8.2 1.1878664962010594 +8.25 1.2167961944549117 +8.3 1.2466602923816255 +8.35 1.2774740665804287 +8.4 1.309252793650552 +8.45 1.3420070425387494 +8.5 1.3757421114772663 +8.55 1.4104712624753173 +8.6 1.4462079661311253 +8.65 1.482965693042917 +8.7 1.520757913808914 +8.75 1.5595980990273437 +8.8 1.5994997192964286 +8.85 1.640476245214392 +8.9 1.6825399326817119 +8.95 1.7256890050713114 +9.0 1.769923239018476 +9.05 1.8152445536479256 +9.1 1.8616548680843785 +9.15 1.9091561014525582 +9.2 1.957750172877182 +9.25 2.0074390014829735 +9.3 2.0582245063946507 +9.35 2.110108606736934 +9.4 2.1630934961721984 +9.45 2.2171858103843394 +9.5 2.2723618450389838 +9.55 2.3285863608705677 +9.6 2.3858241186135283 +9.65 2.44403987900231 +9.7 2.5031984027713463 +9.75 2.563264450655082 +9.8 2.624202783387952 +9.85 2.685978161704395 +9.9 2.7485553463388537 +9.95 2.8118990980257634 +10.0 2.8759741774995664 +10.05 2.9407453454947006 +10.1 3.0061773627456025 +10.15 3.0722169760776383 +10.2 3.138751761019326 +10.25 3.205682404718919 +10.3 3.272911124072332 +10.35 3.340340135975479 +10.4 3.4078716573242818 +10.45 3.475407905014652 +10.5 3.54285109594251 +10.55 3.61010529461556 +10.6 3.677064458301878 +10.65 3.7435742366658236 +10.7 3.8094743727175246 +10.75 3.8746046094671227 +10.8 3.9388046899247495 +10.85 4.001914357100539 +10.9 4.0637733540046295 +10.95 4.124221423647152 +11.0 4.183098242224349 +11.05 4.240228435912087 +11.1 4.295404399767815 +11.15 4.348414550926566 +11.2 4.399047306523364 +11.25 4.447091083693243 +11.3 4.492334299571228 +11.35 4.534565371292346 +11.4 4.573572522527261 +11.45 4.609133847302006 +11.5 4.641028606338098 +11.55 4.669040645161524 +11.6 4.692953809298272 +11.65 4.7125519442743355 +11.7 4.727618895615703 +11.75 4.737938508848365 +11.8 4.743294935484707 +11.85 4.743497907544847 +11.9 4.738383718400927 +11.95 4.727786559379314 +12.0 4.711540621806375 +12.05 4.689464016482542 +12.1 4.661453493741227 +12.15 4.6274612042082595 +12.2 4.587439298509476 +12.25 4.541339927270708 +12.3 4.489115241117789 +12.35 4.4307172613748325 +12.4 4.366152947696486 +12.45 4.295579883345401 +12.5 4.219179589544553 +12.55 4.137133587516926 +12.6 4.049623398485506 +12.65 3.956830543673269 +12.7 3.8589365443032033 +12.75 3.756145319766686 +12.8 3.648869729310099 +12.85 3.5375251983771396 +12.9 3.4225079622443286 +12.95 3.3042142561882004 +13.0 3.1830403154852744 +13.05 3.0593960993312876 +13.1 2.933816013450895 +13.15 2.8068086805267716 +13.2 2.678865716643506 +13.25 2.55047873788567 +13.3 2.422139360337847 +13.35 2.294343383418942 +13.4 2.167580602916567 +13.45 2.042318269765592 +13.5 1.919022785288025 +13.55 1.7981605508058898 +13.6 1.6801719372487585 +13.65 1.565335718273593 +13.7 1.4539913178733794 +13.75 1.3464966609101616 +13.8 1.2432096722459953 +13.85 1.1444242451454565 +13.9 1.0500847213972058 +13.95 0.9603510880513052 +14.0 0.8754326000622558 +14.05 0.7955385123845679 +14.1 0.720696469775138 +14.15 0.6504975497817775 +14.2 0.5849952624191386 +14.25 0.5242811611033897 +14.3 0.4684467992507062 +14.35 0.41726535797670977 +14.4 0.3700374540598733 +14.45 0.3267654592649285 +14.5 0.2874842428742905 +14.55 0.252228674170379 +14.6 0.22084391633542563 +14.65 0.19231099117816666 +14.7 0.16650333730367056 +14.75 0.14345684638823014 +14.8 0.12320741010814093 +14.85 0.10579092013969796 +14.9 0.09078324196296068 +14.95 0.07743617399287633 +15.0 0.06572024904646447 +15.05 0.05561660389438912 +15.1 0.047103029194414746 +15.15 0.039766204265192555 +15.2 0.033325287757735945 +15.25 0.027773907099514918 +15.3 0.023105689718000144 +15.35 0.019305981367019328 +15.4 0.016073857939862792 +15.45 0.01326114603654852 +15.5 0.010868315626638229 +15.55 0.008895836679693946 +15.6 0.007343500058411132 +15.65 0.006096238394876711 +15.7 0.0050542978188134816 +15.75 0.0041923015533235535 +15.8 0.003476097092756846 +15.85 0.0028813782437393854 +15.9 0.0023888728728829003 +15.95 0.0019812266106934537 +16.0 0.0016446691307760468 +16.05 0.0013667252933375887 +16.1 0.001137223143648161 +16.15 0.0009476667665580653 +16.2 0.0007911660128428781 +16.25 0.0006619157697303199 +16.3 0.0005551482755670173 +16.35 0.00046686305999317653 +16.4 0.0003938118906203424 +16.45 0.00033333752281953003 +16.5 0.00028314314129438897 +16.55 0.0002414949526376132 +16.6 0.00020681097760988972 +16.65 0.00017793754480651896 +16.7 0.00015379407553580107 +16.75 0.00013362671622470384 +16.8 0.00011668323770843165 +16.85 0.00010247121104970752 +16.9 9.048881425541913e-5 +16.95 8.037068610024978e-5 +17.0 7.183231507164557e-5 +17.05 6.457846620963938e-5 +17.1 5.8423691774176164e-5 +17.15 5.320333154527555e-5 +17.2 4.8749047466969784e-5 +17.25 4.495521420840009e-5 +17.3 4.173221077606829e-5 +17.35 3.8989124277101314e-5 +17.4 3.665353887474203e-5 +17.45 3.467921548110942e-5 +17.5 3.302089298979895e-5 +17.55 3.1633462324064184e-5 +17.6 3.0481783106832075e-5 +17.65 2.9544896465280214e-5 +17.7 2.8802842987084214e-5 +17.75 2.823566325991989e-5 +17.8 2.782362227232167e-5 +17.85 2.7553331975005054e-5 +17.9 2.7418045539681683e-5 +17.95 2.741127837896782e-5 +18.0 2.7526545905479753e-5 +18.05 2.775736353183376e-5 +18.1 2.8097246619573764e-5 +18.15 2.8540884873025393e-5 +18.2 2.9087698313496896e-5 +18.25 2.9738289467161208e-5 +18.3 3.0493260860191267e-5 +18.35 3.135321501876001e-5 +18.4 3.2318754469040314e-5 +18.45 3.3390481737205245e-5 +18.5 3.45689993494277e-5 +18.55 3.585296333408846e-5 +18.6 3.723333571393522e-5 +18.65 3.871384458144151e-5 +18.7 4.030036358771365e-5 +18.75 4.1998766383857675e-5 +18.8 4.3814926620979705e-5 +18.85 4.575471795018588e-5 +18.9 4.782401402258214e-5 +18.95 5.0028688489274946e-5 +19.0 5.2374615001370255e-5 +19.05 5.4867667209974195e-5 +19.1 5.7513718766192896e-5 +19.15 6.031864332113228e-5 +19.2 6.328831452589888e-5 +19.25 6.64286060315986e-5 +19.3 6.974508877438047e-5 +19.35 7.323652707221297e-5 +19.4 7.69101582178799e-5 +19.45 8.077772518257386e-5 +19.5 8.485097093748668e-5 +19.55 8.914163845381041e-5 +19.6 9.366147070273715e-5 +19.65 9.842221065545859e-5 +19.7 0.00010343560128316748 +19.75 0.00010871122321593115 +19.8 0.00011424243465606984 +19.85 0.00012004376195416888 +19.9 0.00012613565222541643 +19.95 0.00013253855258500192 +20.0 0.00013927291014811352 +20.05 0.0001463591720299398 +20.1 0.0001538177853456694 +20.15 0.00016166919721049034 +20.2 0.00016993385473959227 +20.25 0.00017863220504816328 +20.3 0.00018778113899536105 +20.35 0.00019737873541757228 +20.4 0.0002074521753784754 +20.45 0.00021803485355739299 +20.5 0.0002291601646336456 +20.55 0.00024086150328655437 +20.6 0.00025317226419544056 +20.65 0.0002661258420396244 +20.7 0.00027975563149842904 +20.75 0.0002940922218916396 +20.8 0.00030913370525589325 +20.85 0.00032491782563353656 +20.9 0.0003414973154406396 +20.95 0.0003589249070932758 +21.0 0.00037725333300751525 +21.05 0.0003965353255994291 +21.1 0.00041682361728508847 +21.15 0.00043817094048056304 +21.2 0.0004606289870918508 +21.25 0.00048420720969698033 +21.3 0.0005089558956894124 +21.35 0.0005349558824716729 +21.4 0.0005622880074462859 +21.45 0.0005910331080157811 +21.5 0.0006212720215826827 +21.55 0.0006530855855495162 +21.6 0.000686554637318808 +21.65 0.0007217244440419502 +21.7 0.0007586369140928553 +21.75 0.0007974114970944676 +21.8 0.0008381688900945253 +21.85 0.0008810297901407669 +21.9 0.0009261148942809271 +21.95 0.0009735448995627507 +22.0 0.0010234405030339728 +22.05 0.0010758674103834008 +22.1 0.0011309082234625218 +22.15 0.001188738483430932 +22.2 0.0012495341070863388 +22.25 0.0013134710112264387 +22.3 0.0013807251126489322 +22.35 0.0014514723281515186 +22.4 0.0015258645492803558 +22.45 0.0016039735836754021 +22.5 0.0016860273377255132 +22.55 0.0017722770527852946 +22.6 0.0018629739702093525 +22.65 0.001958369331352286 +22.7 0.0020587143775687147 +22.75 0.0021642341928720787 +22.8 0.002275043297578281 +22.85 0.00239145778948531 +22.9 0.0025138302786009356 +22.95 0.0026425133749329545 +23.0 0.0027778596884891356 +23.05 0.0029202218292772577 +23.1 0.0030698672976881033 +23.15 0.0032270262551232975 +23.2 0.003392177892495248 +23.25 0.0035658100112012153 +23.3 0.0037484104126384687 +23.35 0.003940466898204278 +23.4 0.004142445044319549 +23.45 0.004354601692589874 +23.5 0.004577503910252191 +23.55 0.004811818459224796 +23.6 0.005058212101425987 +23.65 0.005317351598774041 +23.7 0.005589899287648707 +23.75 0.005876252279009922 +23.8 0.00617708605838838 +23.85 0.0064933030482079695 +23.9 0.0068258056708925575 +23.95 0.007175496348866081 +24.0 0.007543273442447884 +24.05 0.007929700826037223 +24.1 0.008335682764424885 +24.15 0.008762430679453235 +24.2 0.009211155992964739 +24.25 0.009683070126801762 +24.3 0.010179359311351058 +24.35 0.010700759853161369 +24.4 0.011248606748867872 +24.45 0.01182451534257886 +24.5 0.012430100978402499 +24.55 0.013066979000447005 +24.6 0.013736632347962078 +24.65 0.014440093184907035 +24.7 0.015179353711805838 +24.75 0.015956555916169984 +24.8 0.01677384178551103 +24.85 0.017633353307340515 +24.9 0.018536759268335617 +24.95 0.019485827543527734 +25.0 0.02048337239871802 +25.05 0.02153222107898219 +25.1 0.022635200829395945 +25.15 0.023795049919238722 +25.2 0.025013578259642445 +25.25 0.026294018030455907 +25.3 0.02764008669994533 +25.35 0.029055501736376957 +25.4 0.030543980608016903 +25.45 0.032108513400120824 +25.5 0.03375212946457666 +25.55 0.03547966677107697 +25.6 0.037295997416007365 +25.65 0.03920599349575325 +25.7 0.04121428515888784 +25.75 0.04332408455708571 +25.8 0.045541163334195785 +25.85 0.04787188927593277 +25.9 0.050322630168011216 +25.95 0.05289975223037868 +26.0 0.05560786074318585 +26.05 0.058453069323036504 +26.1 0.06144368075112385 +26.15 0.06458799780864083 +26.2 0.06789432327678108 +26.25 0.07136988227873912 +26.3 0.07502086916643964 +26.35 0.078857816259233 +26.4 0.08289152572268692 +26.45 0.08713279972237008 +26.5 0.09159200978152159 +26.55 0.09627637399515697 +26.6 0.10119846524538026 +26.65 0.1063723090652302 +26.7 0.11181193098774658 +26.75 0.11753132961245914 +26.8 0.12354047406374256 +26.85 0.12985336249326254 +26.9 0.13648817059730076 +26.95 0.14346307407214032 +27.0 0.15079624861406296 +27.05 0.1585027374101037 +27.1 0.16659727962320772 +27.15 0.17510316634668957 +27.2 0.18404390407275775 +27.25 0.19344299929361908 +27.3 0.20332202693815007 +27.35 0.21369744874628444 +27.4 0.22459800654555656 +27.45 0.2360540335811343 +27.5 0.2480958630981832 +27.55 0.2607530894413613 +27.6 0.2740460699238659 +27.65 0.288008693254334 +27.7 0.3026800019456106 +27.75 0.3180990385105376 +27.8 0.3343048274751558 +27.85 0.3513257561305068 +27.9 0.36919936291811095 +27.95 0.38797574684328856 +28.0 0.40770500691135625 +28.05 0.4284372421276319 +28.1 0.45021428222314047 +28.15 0.47307577260762895 +28.2 0.49708503969237244 +28.25 0.522306126774 +28.3 0.548803077149142 +28.35 0.5766349527857709 +28.4 0.6058456423288524 +28.45 0.6365119398467898 +28.5 0.6687153176492591 +28.55 0.702537248045939 +28.6 0.738057654914667 +28.65 0.7753305110693685 +28.7 0.8144434231982368 +28.75 0.8554993742873835 +28.8 0.8986013473229225 +28.85 0.9438523252909677 +28.9 0.9913297868875838 +28.95 1.041123710097386 +29.0 1.0933630948430608 +29.05 1.14817699015449 +29.1 1.2056944450615554 +29.15 1.2660294097558396 +29.2 1.3292704696127888 +29.25 1.3955718731975337 +29.3 1.4650933956963939 +29.35 1.5379948122956881 +29.4 1.6144322187413243 +29.45 1.6945059343288849 +29.5 1.7783813246656435 +29.55 1.8662528139459742 +29.6 1.9583148263642518 +29.65 2.0547617861148435 +29.7 2.1557460904638592 +29.75 2.261409543140288 +29.8 2.3719812068007204 +29.85 2.4876916053935085 +29.9 2.608771262866994 +29.95 2.7354418607787947 +30.0 2.867833268001007 +30.05 3.006172393970795 +30.1 3.150721427559324 +30.15 3.301742557637748 +30.2 3.4594979730772537 +30.25 3.6242036779718427 +30.3 3.796000312947196 +30.35 3.9751569991656543 +30.4 4.161950665497836 +30.45 4.3566582408144034 +30.5 4.559556653985974 +30.55 4.770833894645508 +30.6 4.9906199335286585 +30.65 5.219162942569686 +30.7 5.456712185271295 +30.75 5.703516925136135 +30.8 5.959826425666878 +30.85 6.225812985552521 +30.9 6.501494551293352 +30.95 6.786991830496306 +31.0 7.0824301646721395 +31.05 7.387934895331626 +31.1 7.703631363985543 +31.15 8.02964429581182 +31.2 8.365969601129745 +31.25 8.712378897019077 +31.3 9.068630145944798 +31.35 9.43448131037188 +31.4 9.809690352765271 +31.45 10.194015235590006 +31.5 10.58721392131103 +31.55 10.989044372393318 +31.6 11.399185932112827 +31.65 11.816814655568894 +31.7 12.240913599537175 +31.75 12.670465711290694 +31.8 13.104453938102514 +31.85 13.54186122724569 +31.9 13.981670525993247 +31.95 14.422860229961994 +32.0 14.864066241211134 +32.05 15.303350875437815 +32.1 15.738721891484401 +32.15 16.168187048193033 +32.2 16.589754104406108 +32.25 17.001430818965762 +32.3 17.40112875741172 +32.35 17.786206289383145 +32.4 18.153837422401434 +32.45 18.501196153278787 +32.5 18.825456478827164 +32.55 19.12379239379405 +32.6 19.39328018340708 +32.65 19.630858578672516 +32.7 19.83349310673894 +32.75 19.9981492947548 +32.8 20.12179266986864 +32.85 20.201367882770075 +32.9 20.234028960220357 +32.95 20.217639157306632 +33.0 20.150142310639445 +33.05 20.029482256829326 +33.1 19.85360283248679 +33.15 19.620653866292756 +33.2 19.330483574902434 +33.25 18.983603862670492 +33.3 18.580526687952972 +33.35 18.121764009105878 +33.4 17.607850902026595 +33.45 17.041004012197757 +33.5 16.425347738748968 +33.55 15.764958338679975 +33.6 15.06391206899048 +33.65 14.3262851866805 +33.7 13.556558450649579 +33.75 12.76200526834196 +33.8 11.949478426283411 +33.85 11.125590413384847 +33.9 10.297086836606853 +33.95 9.471288292197361 +34.0 8.655321266099904 +34.05 7.85627615438624 +34.1 7.0807582268509135 +34.15 6.33403337646641 +34.2 5.622072991058431 +34.25 4.950691141209821 +34.3 4.321840083274608 +34.35 3.7386615478986283 +34.4 3.2054279738738485 +34.45 2.7218318310108915 +34.5 2.2861233536241135 +34.55 1.9007836831588563 +34.6 1.5638096599568296 +34.65 1.2691004030964574 +34.7 1.0179631521778372 +34.75 0.8080319622887391 +34.8 0.6302047852419099 +34.85 0.4848581465843025 +34.9 0.3694811097467595 +34.95 0.2752330911034964 +35.0 0.2021828861211352 +35.05 0.14699573418067538 +35.1 0.10393108273236383 +35.15 0.07300848717904075 +35.2 0.05020999035277301 +35.25 0.0339934650647469 +35.3 0.02279095129967895 +35.35 0.015050341092619643 +35.4 0.009760658950261831 +35.45 0.006210064349417115 +35.5 0.003874772476991086 +35.55 0.002369912511200858 +35.6 0.0014203851182303866 +35.65 0.0008338273726116825 +35.7 0.00047894603427704654 +35.75 0.0002689999388510345 +35.8 0.00014760542925836503 +35.85 7.900586327484483e-5 +35.9 4.1131483924148396e-5 +35.95 2.0729000341789616e-5 +36.0 9.830979593492913e-6 +36.05 3.5098735344186295e-6 +36.1 9.189269223395096e-8 +36.15 -1.887279534205756e-8 +36.2 7.252943304034224e-9 +36.25 1.309220307737597e-7 +36.3 3.2908909610467193e-7 +36.35 5.558436852339584e-7 +36.4 7.652753440987047e-7 +36.45 9.11473618636111e-7 +36.5 9.485280547832864e-7 +36.55 8.305281984774123e-7 +36.6 5.115635956555821e-7 +36.65 -2.684841319306035e-8 +36.7 -4.2542990904938504e-7 +36.75 -1.8039786009714827e-7 +36.8 5.050825789153971e-7 +36.85 9.619825794053776e-7 +36.9 5.522756124634739e-7 +36.95 -5.213684458838995e-7 +37.0 -1.1544929381068978e-6 +37.05 -4.2904562784102766e-7 +37.1 7.240489451915882e-7 +37.15 1.0156385295113247e-6 +37.2 5.6764655700949686e-8 +37.25 -7.626496617237029e-7 +37.3 -5.457360385386776e-7 +37.35 1.9635653595418105e-7 +37.4 6.015566327139623e-7 +37.45 2.6082534887574583e-7 +37.5 -2.0843505408453615e-7 +37.55 -4.178403152306908e-7 +37.6 -1.8978099597290364e-7 +37.65 9.232247537872038e-8 +37.7 2.6057409141174634e-7 +37.75 1.9902803094234795e-7 +37.8 5.326044251702247e-8 +37.85 -6.912452446119937e-8 +37.9 -1.3466479341773114e-7 +37.95 -1.1304973175336538e-7 +38.0 -6.388287646301767e-8 +38.05 -2.3025689624820396e-8 +38.1 7.693319930149252e-9 +38.15 2.6445643370801556e-8 +38.2 3.140277186606055e-8 +38.25 2.5649430393586305e-8 +38.3 2.0702626884890685e-8 +38.35 1.699555299463395e-8 +38.4 1.436124797887245e-8 +38.45 1.2632751093660736e-8 +38.5 1.1643101595054601e-8 +38.55 1.1225338739109073e-8 +38.6 1.121250178187951e-8 +38.65 1.1437629979421218e-8 +38.7 1.1733762587789548e-8 +38.75 1.1934312844372769e-8 +38.8 1.2080665187396904e-8 +38.85 1.2294693397805885e-8 +38.9 1.2575534983202852e-8 +38.95 1.2922327451191093e-8 +39.0 1.3334208309373706e-8 +39.05 1.3810315065353941e-8 +39.1 1.4349785226735088e-8 +39.15 1.495175630112019e-8 +39.2 1.5615365796112624e-8 +39.25 1.63397512193154e-8 +39.3 1.7124050078331818e-8 +39.35 1.7967399880765203e-8 +39.4 1.8868938134218517e-8 +39.45 1.982780234629522e-8 +39.5 2.084313002459824e-8 +39.55 2.191405867673092e-8 +39.6 2.303972581029662e-8 +39.65 2.4188896662382705e-8 +39.7 2.5213032377264123e-8 +39.75 2.6103107130769886e-8 +39.8 2.6871752587985e-8 +39.85 2.7531600413994427e-8 +39.9 2.8095282273882808e-8 +39.95 2.8575429832735164e-8 +40.0 2.898467475563623e-8 +40.05 2.9335648707670923e-8 +40.1 2.964098335392413e-8 +40.15 2.991331035948064e-8 +40.2 3.0165261389425356e-8 +40.25 3.040946810884307e-8 +40.3 3.0658562182818704e-8 +40.35 3.092517527643709e-8 +40.4 3.1221939054783084e-8 +40.45 3.156148518294154e-8 +40.5 3.195644532599731e-8 +40.55 3.241945114903522e-8 +40.6 3.296313431714023e-8 +40.65 3.360012649539703e-8 +40.7 3.434305934889068e-8 +40.75 3.52045645427058e-8 +40.8 3.619727374192734e-8 +40.85 3.7333818611640384e-8 +40.9 3.862683081692937e-8 +40.95 4.008894202287959e-8 +41.0 4.173278389457546e-8 +41.05 4.357098809710202e-8 +41.1 4.561618629554443e-8 +41.15 4.788101015498703e-8 +41.2 5.037809134051519e-8 +41.25 5.312006151721311e-8 +41.3 5.6119552350166066e-8 +41.35 5.938919550445932e-8 +41.4 6.294162264517676e-8 +41.45 6.678946543740433e-8 +41.5 7.094535554622576e-8 +41.55 7.542192463672646e-8 +41.6 8.023180437399186e-8 +41.65 8.538762642310565e-8 +41.7 9.090202244915397e-8 +41.75 9.678762411722021e-8 +41.8 1.0305706309238992e-7 +41.85 1.0972297103974902e-7 +41.9 1.1679797962438039e-7 +41.95 1.2429472051137097e-7 +42.0 1.322258253658033e-7 +42.05 1.406039258527635e-7 +42.1 1.4944165363733767e-7 +42.15 1.5875164038460794e-7 +42.2 1.6854651775966214e-7 +42.25 1.7883891742758207e-7 +42.3 1.8964147105345398e-7 +42.35 2.0096681030236458e-7 +42.4 2.1282756683939527e-7 +42.45 2.252363723296344e-7 +42.5 2.3820585843816323e-7 +42.55 2.517486568300685e-7 +42.6 2.658773991704367e-7 +42.65 2.806047171243493e-7 +42.7 2.959432423568947e-7 +42.75 3.119056065331539e-7 +42.8 3.285044413182136e-7 +42.85 3.457523783771612e-7 +42.9 3.6366204937507665e-7 +42.95 3.821067535802948e-7 +43.0 4.008052150485976e-7 +43.05 4.198588644770537e-7 +43.1 4.393868359168193e-7 +43.15 4.5950826341904257e-7 +43.2 4.803422810348826e-7 +43.25 5.020080228154869e-7 +43.3 5.24624622812012e-7 +43.35 5.483112150756151e-7 +43.4 5.731869336574427e-7 +43.45 5.993709126086556e-7 +43.5 6.269822859803998e-7 +43.55 6.561401878238322e-7 +43.6 6.869637521901112e-7 +43.65 7.195721131303816e-7 +43.7 7.540844046958056e-7 +43.75 7.906197609375275e-7 +43.8 8.292973159067054e-7 +43.85 8.70236203654499e-7 +43.9 9.135555582320497e-7 +43.95 9.59374513690524e-7 +44.0 1.0078122040810616e-6 +44.05 1.0589877634548231e-6 +44.1 1.1130203258629698e-6 +44.15 1.1700290253566394e-6 +44.2 1.230132995987002e-6 +44.25 1.2934513718051938e-6 +44.3 1.360103286862377e-6 +44.35 1.430207875209715e-6 +44.4 1.5038842708983416e-6 +44.45 1.5812516079794313e-6 +44.5 1.662429020504115e-6 +44.55 1.7454278033768966e-6 +44.6 1.8285439608609973e-6 +44.65 1.9123650296215106e-6 +44.7 1.9974785680304374e-6 +44.75 2.0844721344597293e-6 +44.8 2.1739332872813744e-6 +44.85 2.266449584867362e-6 +44.9 2.3626085855896422e-6 +44.95 2.462997847820218e-6 +45.0 2.5682049299310377e-6 +45.05 2.678817390294091e-6 +45.1 2.7954227872813705e-6 +45.15 2.9186086792648208e-6 +45.2 3.048962624616451e-6 +45.25 3.187072181708202e-6 +45.3 3.333524908912067e-6 +45.35 3.488908364600045e-6 +45.4 3.6538101071440676e-6 +45.45 3.828817694916159e-6 +45.5 4.014518686288244e-6 +45.55 4.211500639632323e-6 +45.6 4.4203511133204055e-6 +45.65 4.641657665724405e-6 +45.7 4.876007855216361e-6 +45.75 5.123989240168185e-6 +45.8 5.386189378951883e-6 +45.85 5.663195829939474e-6 +45.9 5.955596151502852e-6 +45.95 6.26397790201408e-6 +46.0 6.588928639845044e-6 +46.05 6.931035923367765e-6 +46.1 7.290887310954268e-6 +46.15 7.669070360976432e-6 +46.2 8.066172631806335e-6 +46.25 8.482781681815845e-6 +46.3 8.91948506937699e-6 +46.35 9.375968886600003e-6 +46.4 9.847023565583588e-6 +46.45 1.0333786668904147e-5 +46.5 1.0838770265523423e-5 +46.55 1.1364486424403357e-5 +46.6 1.1913447214505912e-5 +46.65 1.2488164704792812e-5 +46.7 1.3091150964226096e-5 +46.75 1.3724918061767474e-5 +46.8 1.439197806637891e-5 +46.85 1.509484304702238e-5 +46.9 1.5836025072659568e-5 +46.95 1.661803621225256e-5 +47.0 1.744338853476302e-5 +47.05 1.8314594109152927e-5 +47.1 1.9234165004384297e-5 +47.15 2.020461328941875e-5 +47.2 2.122845103321844e-5 +47.25 2.230819030474495e-5 +47.3 2.3446343172960313e-5 +47.35 2.464542170682657e-5 +47.4 2.5907937975305263e-5 +47.45 2.7236404047358632e-5 +47.5 2.8633331991948176e-5 +47.55 3.009806972638282e-5 +47.6 3.162218202776161e-5 +47.65 3.321109283517312e-5 +47.7 3.487170254963638e-5 +47.75 3.6610911572169504e-5 +47.8 3.84356203037913e-5 +47.85 4.0352729145520636e-5 +47.9 4.236913849837555e-5 +47.95 4.4491748763375194e-5 +48.0 4.672746034153756e-5 +48.05 4.9083173633881515e-5 +48.1 5.1565789041426e-5 +48.15 5.418220696518889e-5 +48.2 5.6939327806189526e-5 +48.25 5.98440519654457e-5 +48.3 6.290327984397639e-5 +48.35 6.612391184280061e-5 +48.4 6.951284836293609e-5 +48.45 7.306821154518534e-5 +48.5 7.678319205978394e-5 +48.55 8.067208960716033e-5 +48.6 8.474979700493381e-5 +48.65 8.903120707072185e-5 +48.7 9.353121262214436e-5 +48.75 9.826470647681877e-5 +48.8 0.00010324658145236433 +48.85 0.00010849173036640049 +48.9 0.00011401504603654443 +48.95 0.00011983142128041642 +49.0 0.00012595574891563344 +49.05 0.00013240292175981498 +49.1 0.00013918783263058076 +49.15 0.00014631064161143507 +49.2 0.00015376893550346217 +49.25 0.00016158994876125146 +49.3 0.00016980134443617313 +49.35 0.00017843078557959753 +49.4 0.0001875059352428914 +49.45 0.00019705445647742652 +49.5 0.00020710401233456927 +49.55 0.0002176822658656901 +49.6 0.00022881688012215982 +49.65 0.00024053551815534442 +49.7 0.00025286475519168463 +49.75 0.00026581658796611703 +49.8 0.00027942372663386186 +49.85 0.0002937271246721932 +49.9 0.0003087677355583789 +49.95 0.00032458651276969517 +50.0 0.00034122440978340957 diff --git a/test/julia_dde/test_basic_check_6.txt b/test/julia_dde/test_basic_check_6.txt new file mode 100644 index 00000000..eb94fce5 --- /dev/null +++ b/test/julia_dde/test_basic_check_6.txt @@ -0,0 +1,1001 @@ +0.0 1.2 +0.05 1.1880598004963274 +0.1 1.1762384079684047 +0.15 1.1645346400763932 +0.2 1.1529473230412208 +0.25 1.141475299112477 +0.3 1.1301174233925737 +0.35 1.1188725616239938 +0.4 1.1077395901892904 +0.45 1.0967173961110868 +0.5 1.0858048770520767 +0.55 1.075000941315024 +0.6 1.064304507842764 +0.65 1.0537145062182005 +0.7 1.043229876664309 +0.75 1.0328495700441358 +0.8 1.0225725478607945 +0.85 1.012397782257473 +0.9 1.0023242560174284 +0.95 0.9923509625639848 +1.0 0.9824768980307879 +1.05 0.9727010597135578 +1.1 0.9630224771641795 +1.15 0.9534401895136975 +1.2 0.9439532442848286 +1.25 0.9345606973919633 +1.3 0.9252616131411647 +1.35 0.916055064230169 +1.4 0.9069401317483856 +1.45 0.8979159051768966 +1.5 0.888981482388457 +1.55 0.8801359696474954 +1.6 0.8713784816101126 +1.65 0.8627081413240832 +1.7 0.8541240802288541 +1.75 0.8456254381555455 +1.8 0.837211363326951 +1.85 0.8288810123575361 +1.9 0.8206335502534408 +1.95 0.8124681504124766 +2.0 0.80438399462413 +2.05 0.7963802730695569 +2.1 0.7884561843215901 +2.15 0.7806109353447339 +2.2 0.7728437414951651 +2.25 0.765153826520734 +2.3 0.7575404225609632 +2.35 0.7500027701470497 +2.4 0.7425401095139714 +2.45 0.7351516745473683 +2.5 0.7278367335692332 +2.55 0.7205945629397542 +2.6 0.7134244451629572 +2.65 0.7063256688867061 +2.7 0.6992975289027018 +2.75 0.6923393261464837 +2.8 0.6854503676974283 +2.85 0.6786299667787499 +2.9 0.6718774427575008 +2.95 0.6651921211445705 +3.0 0.6585733335946865 +3.05 0.6520204179064143 +3.1 0.6455327180221563 +3.15 0.639109584028153 +3.2 0.6327503721544829 +3.25 0.626454444775062 +3.3 0.6202211704076434 +3.35 0.614049923713819 +3.4 0.6079400854990171 +3.45 0.6018910427125049 +3.5 0.5959021884473867 +3.55 0.589972921940604 +3.6 0.5841026485729373 +3.65 0.5782907798690035 +3.7 0.5725367334972585 +3.75 0.5668399332699937 +3.8 0.5611998091433409 +3.85 0.5556157972172671 +3.9 0.5500873397355796 +3.95 0.5446138850859217 +4.0 0.5391948877998171 +4.05 0.5339894476498435 +4.1 0.5291484887570944 +4.15 0.5246599102269127 +4.2 0.5205124110692027 +4.25 0.5166954624161663 +4.3 0.5131993075223042 +4.35 0.5100148786651322 +4.4 0.507133789063348 +4.45 0.5045484127257454 +4.5 0.5022516488470562 +4.55 0.500236916528291 +4.6 0.4984981547767386 +4.65 0.49702982250596606 +4.7 0.49582689853581874 +4.75 0.49488488159242033 +4.8 0.494199790308173 +4.85 0.4937680930953992 +4.9 0.4935865081959021 +4.95 0.49365234000660846 +5.0 0.4939632697256549 +5.05 0.4945173295813525 +5.1 0.49531290283218715 +5.15 0.49634872376681904 +5.2 0.49762387770408306 +5.25 0.4991378009929886 +5.3 0.5008902810127198 +5.35 0.5028814561726352 +5.4 0.5051118159122677 +5.45 0.5075822007013254 +5.5 0.5102938125293998 +5.55 0.5132481420160805 +5.6 0.5164468664365349 +5.65 0.5198919874314458 +5.7 0.5235858405469669 +5.75 0.5275310952347235 +5.8 0.531730754851812 +5.85 0.5361881566607996 +5.9 0.5409069718297252 +5.95 0.5458912054320991 +6.0 0.5511451964469019 +6.05 0.5566736177585864 +6.1 0.5624814761570759 +6.15 0.5685741123377654 +6.2 0.5749572009015202 +6.25 0.5816367503546787 +6.3 0.5886191031090475 +6.35 0.5959109354819085 +6.4 0.603519763311911 +6.45 0.6114556167254628 +6.5 0.6197256590045511 +6.55 0.6283370718597721 +6.6 0.637297663258921 +6.65 0.6466158674269936 +6.7 0.6563007448461833 +6.75 0.6663619822558845 +6.8 0.6768098926526902 +6.85 0.6876554152903934 +6.9 0.6989101156799858 +6.95 0.7105861855896597 +7.0 0.7226964430448051 +7.05 0.7352543323280116 +7.1 0.7482739239790708 +7.15 0.7617699147949715 +7.2 0.7757576278299017 +7.25 0.7902530123952489 +7.3 0.8052726440596026 +7.35 0.8208337246487463 +7.4 0.8369540822456707 +7.45 0.8536521711905581 +7.5 0.8709470720807941 +7.55 0.888858491770967 +7.6 0.9074067633728512 +7.65 0.926612846255443 +7.7 0.946498326044915 +7.75 0.9670854146246521 +7.8 0.9883986283036008 +7.85 1.0104650299017568 +7.9 1.0333110834586596 +7.95 1.056964355445862 +8.0 1.081453529577144 +8.05 1.1068040247077164 +8.1 1.133031675252411 +8.15 1.160151390386478 +8.2 1.1881777648723224 +8.25 1.217125079059513 +8.3 1.247007298884773 +8.35 1.2778380758719852 +8.4 1.3096307471321937 +8.45 1.3423983353635964 +8.5 1.376153548851558 +8.55 1.4109087814685923 +8.6 1.4466761126743772 +8.65 1.483467307515752 +8.7 1.5212938166267091 +8.75 1.5601667762283993 +8.8 1.6000970081291368 +8.85 1.6410950197243965 +8.9 1.6831710039968013 +8.95 1.72633148245242 +9.0 1.7705794905938943 +9.05 1.8159224788729322 +9.1 1.862365635256938 +9.15 1.9099117265643932 +9.2 1.9585610984648445 +9.25 2.008311675478917 +9.3 2.059158960978304 +9.35 2.111096037185769 +9.4 2.1641135651751533 +9.45 2.2181997848713633 +9.5 2.2733405150503807 +9.55 2.329519153339259 +9.6 2.386716676216126 +9.65 2.4449116390101793 +9.7 2.504080175901684 +9.75 2.564192442298866 +9.8 2.6252063573836484 +9.85 2.6870886538434977 +9.9 2.7498014288308483 +9.95 2.8133006339811084 +10.0 2.877536075412671 +10.05 2.942451413726905 +10.1 3.0079841640081573 +10.15 3.074065695823763 +10.2 3.1406212332240275 +10.25 3.2075698547422418 +10.3 3.2748244933946777 +10.35 3.3422919366805766 +10.4 3.409872826582172 +10.45 3.4774616595646712 +10.5 3.5449467865762605 +10.55 3.612210413048112 +10.6 3.679128598894362 +10.65 3.745571258512154 +10.7 3.811402160781577 +10.75 3.8764789290657355 +10.8 3.9406530412106795 +10.85 4.0037752560274695 +10.9 4.065710361208003 +10.95 4.126263189406429 +11.0 4.185228039219931 +11.05 4.242399038561617 +11.1 4.297570144660533 +11.15 4.350535144061664 +11.2 4.401087652625922 +11.25 4.44902111553016 +11.3 4.4941288072671615 +11.35 4.5362038316456434 +11.4 4.575039121790263 +11.45 4.6104274401416045 +11.5 4.642161378456192 +11.55 4.670033357806482 +11.6 4.6938356285808664 +11.65 4.713360270483668 +11.7 4.728399192535151 +11.75 4.738744133071507 +11.8 4.744186659744865 +11.85 4.744518169523291 +11.9 4.739529888690779 +11.95 4.729012872847263 +12.0 4.712758006908607 +12.05 4.690644772827069 +12.1 4.662607874771771 +12.15 4.628544701418221 +12.2 4.588384372705109 +12.25 4.5420877398343 +12.3 4.489647385270846 +12.35 4.431087622742975 +12.4 4.36646449724209 +12.45 4.295865785022786 +12.5 4.219410993602822 +12.55 4.137251361763148 +12.6 4.0495698595478915 +12.65 3.956581188264356 +12.7 3.8585317804830335 +12.75 3.755699800037576 +12.8 3.6483951420248397 +12.85 3.5369598085500358 +12.9 3.421872986351 +12.95 3.3036137528179275 +13.0 3.1825896906344413 +13.05 3.059219238591574 +13.1 2.9339316915877616 +13.15 2.807167200628823 +13.2 2.679376772828 +13.25 2.55102227140591 +13.3 2.4225764156905853 +13.35 2.2945227811174655 +13.4 2.1673557992293646 +13.45 2.0415807576765275 +13.5 1.9177138002165603 +13.55 1.7962819267145127 +13.6 1.6778229931428135 +13.65 1.5628857115812622 +13.7 1.451775448594975 +13.75 1.3444872104184455 +13.8 1.241323137203346 +13.85 1.142544019405883 +13.9 1.0483619993004278 +13.95 0.958940570979545 +14.0 0.8743945803539613 +14.05 0.7947902251525917 +14.1 0.720145054922527 +14.15 0.6504279710290286 +14.2 0.5855592266555394 +14.25 0.5254104268036786 +14.3 0.46980452829324654 +14.35 0.41854245182074584 +14.4 0.3715213248496608 +14.45 0.3286413774786371 +14.5 0.2897610736192788 +14.55 0.25469718925321655 +14.6 0.2232248124321029 +14.65 0.19507734327761048 +14.7 0.16994649398143608 +14.75 0.14748476071965655 +14.8 0.12747860910971498 +14.85 0.10980739774121695 +14.9 0.09430132081329244 +14.95 0.08077609315674421 +15.0 0.06903295023404325 +15.05 0.058858648139332344 +15.1 0.050025463598425 +15.15 0.0423515352891361 +15.2 0.035748634408577284 +15.25 0.030106283070165652 +15.3 0.025312577530941235 +15.35 0.02125428291269547 +15.4 0.017816833201970878 +15.45 0.014890207823781922 +15.5 0.01241435562312446 +15.55 0.01033522210714558 +15.6 0.008597913655595604 +15.65 0.007150103019257152 +15.7 0.005942029319945532 +15.75 0.004929855341324498 +15.8 0.004086937387096473 +15.85 0.003388335741636043 +15.9 0.00281091700782403 +15.95 0.0023337264921647967 +16.0 0.0019381060012871984 +16.05 0.0016105870898081322 +16.1 0.001340102298681946 +16.15 0.0011167692494021184 +16.2 0.0009323877459983964 +16.25 0.0007801253909870112 +16.3 0.0006543465182712573 +16.35 0.0005503754813700738 +16.4 0.0004643447916936142 +16.45 0.00039309405049839006 +16.5 0.00033400315527697057 +16.55 0.00028491725176067826 +16.6 0.00024408189440663954 +16.65 0.00021005101985087374 +16.7 0.00018162516020069216 +16.75 0.00015783592362906903 +16.8 0.00013788844694569702 +16.85 0.00012112660968516564 +16.9 0.00010700211647825708 +16.95 9.507347081214746e-5 +17.0 8.498512339869922e-5 +17.05 7.643876452321336e-5 +17.1 6.918767485250488e-5 +17.15 6.302051055846575e-5 +17.2 5.776129353098915e-5 +17.25 5.326941137797212e-5 +17.3 4.943961742531317e-5 +17.35 4.619114694863392e-5 +17.4 4.343365485645419e-5 +17.45 4.110144366726172e-5 +17.5 3.913880532586793e-5 +17.55 3.7498404263323886e-5 +17.6 3.614127739692056e-5 +17.65 3.503683413018882e-5 +17.7 3.4158658117854505e-5 +17.75 3.348423836993994e-5 +17.8 3.299722596485071e-5 +17.85 3.2683202960132985e-5 +17.9 3.252967918350988e-5 +17.95 3.252609223288135e-5 +18.0 3.266380747632436e-5 +18.05 3.293611805209274e-5 +18.1 3.3338244868617236e-5 +18.15 3.3867324482219054e-5 +18.2 3.452074947804436e-5 +18.25 3.529683044759008e-5 +18.3 3.6195209108088085e-5 +18.35 3.721598242829983e-5 +18.4 3.835970262851611e-5 +18.45 3.962737718055762e-5 +18.5 4.102046880777432e-5 +18.55 4.254089548504581e-5 +18.6 4.41910304387811e-5 +18.65 4.5973702146918646e-5 +18.7 4.789219433892721e-5 +18.75 4.995024599580391e-5 +18.8 5.215213905850741e-5 +18.85 5.450275727598156e-5 +18.9 5.700644253905166e-5 +18.95 5.9667952253505815e-5 +19.0 6.249261610419027e-5 +19.05 6.54863360550103e-5 +19.1 6.865558634892979e-5 +19.15 7.200741350797115e-5 +19.2 7.554943633321627e-5 +19.25 7.928984590480496e-5 +19.3 8.323740558193607e-5 +19.35 8.740145100286727e-5 +19.4 9.179189008491467e-5 +19.45 9.641920302445356e-5 +19.5 0.0001012944422969172 +19.55 0.00010642923265679917 +19.6 0.00011183577113764963 +19.65 0.00011752682705207853 +19.7 0.0001235157419917554 +19.75 0.00012981642982740708 +19.8 0.00013644337670881972 +19.85 0.00014341238042792347 +19.9 0.0001507419950778271 +19.95 0.00015845037624489302 +20.0 0.00016655656364450173 +20.05 0.0001750807873136931 +20.1 0.00018404401543587213 +20.15 0.0001934681944893066 +20.2 0.00020337666682029103 +20.25 0.0002137941706431422 +20.3 0.00022474684004020258 +20.35 0.00023626220496183865 +20.4 0.00024836919122644117 +20.45 0.0002610981205204284 +20.5 0.00027448071039823944 +20.55 0.00028855007428233895 +20.6 0.00030334074363392726 +20.65 0.00031889009257348225 +20.7 0.00033523692131091513 +20.75 0.0003524216342851605 +20.8 0.0003704871119082912 +20.85 0.0003894787105655175 +20.9 0.00040944426261518504 +20.95 0.00043043407638878114 +21.0 0.00045250093619092653 +21.05 0.00047570010229937927 +21.1 0.0005000893109650367 +21.15 0.0005257287744119279 +21.2 0.0005526824540478568 +21.25 0.0005810188336191905 +21.3 0.0006108070107982503 +21.35 0.0006421205340998608 +21.4 0.0006750375944100534 +21.45 0.0007096410249860753 +21.5 0.0007460183014563766 +21.55 0.000784261541820617 +21.6 0.0008244675064496669 +21.65 0.0008667375980856045 +21.7 0.0009111778618417234 +21.75 0.0009578989852025179 +21.8 0.0010070162980236952 +21.85 0.0010586497725321665 +21.9 0.0011129277097948057 +21.95 0.0011699900591849392 +22.0 0.0012299755817579254 +22.05 0.0012930319611769592 +22.1 0.001359316386819383 +22.15 0.001428995553776683 +22.2 0.0015022456628545052 +22.25 0.0015792524205726272 +22.3 0.0016602110391649818 +22.35 0.0017453262365796482 +22.4 0.0018348122364788412 +22.45 0.0019288927682389522 +22.5 0.0020278010669504873 +22.55 0.0021317798734181216 +22.6 0.0022410814341606625 +22.65 0.002355984639422683 +22.7 0.0024767808780344143 +22.75 0.002603761980892953 +22.8 0.0027372401948221586 +22.85 0.0028775481866526414 +22.9 0.003025039043221745 +22.95 0.0031800862713735876 +23.0 0.0033430837979590115 +23.05 0.003514445969835603 +23.1 0.003694607553867713 +23.15 0.0038840237369264087 +23.2 0.0040831701258895415 +23.25 0.004292542747641672 +23.3 0.004512658049074163 +23.35 0.004744052897085041 +23.4 0.004987284580402943 +23.45 0.005242969271549389 +23.5 0.005511761054674322 +23.55 0.00579432197338657 +23.6 0.006091355491220548 +23.65 0.0064036064916362335 +23.7 0.006731861278019287 +23.75 0.007076947573680842 +23.8 0.00743973452185771 +23.85 0.007821132685712216 +23.9 0.00822209404833235 +23.95 0.008643612012731632 +24.0 0.00908672140184931 +24.05 0.00955254692791327 +24.1 0.010042253834152701 +24.15 0.0105570296819283 +24.2 0.011098143201901847 +24.25 0.011666944294036008 +24.3 0.012264864027594422 +24.35 0.012893414641141748 +24.4 0.013554189542543494 +24.45 0.014248863308966384 +24.5 0.014979191686877847 +24.55 0.015747011592046525 +24.6 0.01655424110954179 +24.65 0.01740287949373414 +24.7 0.018295007168295047 +24.75 0.01923278572619698 +24.8 0.02021853997412642 +24.85 0.021254828633957477 +24.9 0.022344159029441403 +24.95 0.023489200541525417 +25.0 0.02469279655942265 +25.05 0.025957964480612526 +25.1 0.02728789571084064 +25.15 0.02868595566411857 +25.2 0.030155683762724525 +25.25 0.0317007934372025 +25.3 0.03332517212636277 +25.35 0.03503288127728171 +25.4 0.03682815634530202 +25.45 0.03871540679403269 +25.5 0.04069921609534854 +25.55 0.042784373528663246 +25.6 0.0449763279076481 +25.65 0.04728044488017886 +25.7 0.04970227955968355 +25.75 0.052247770966094 +25.8 0.05492324202584642 +25.85 0.05773539957188114 +25.9 0.06069133434364258 +25.95 0.06379852098707998 +26.0 0.06706481805464633 +26.05 0.07049846800529865 +26.1 0.0741080972044986 +26.15 0.07790271592421177 +26.2 0.08189171834290815 +26.25 0.08608488254556189 +26.3 0.09049237052365182 +26.35 0.09512472817515968 +26.4 0.09999314447706532 +26.45 0.10511041700287879 +26.5 0.11048880924430914 +26.55 0.11614123078552946 +26.6 0.12208146938430069 +26.65 0.1283241909719708 +26.7 0.1348849396534774 +26.75 0.14178013770734382 +26.8 0.14902708558568242 +26.85 0.15664396191419241 +26.9 0.16464982349216084 +26.95 0.1730646052924643 +27.0 0.18190912046156457 +27.05 0.1912050603195135 +27.1 0.20097499435994792 +27.15 0.21124237025009449 +27.2 0.22203151383076938 +27.25 0.23336763052011422 +27.3 0.24527919741825396 +27.35 0.25779578606893544 +27.4 0.2709467295786414 +27.45 0.2847633563531029 +27.5 0.2992789900972936 +27.55 0.31452894981543345 +27.6 0.3305505498109882 +27.65 0.34738309968666686 +27.7 0.36506790434442815 +27.75 0.3836482639854726 +27.8 0.40316947411024917 +27.85 0.42367882551844804 +27.9 0.44522560430900615 +27.95 0.46786109188011127 +28.0 0.491638564929192 +28.05 0.5166132954529155 +28.1 0.5428425507472129 +28.15 0.5703855934072375 +28.2 0.5993056758137147 +28.25 0.6296730287713358 +28.3 0.661557134535638 +28.35 0.6950312476576611 +28.4 0.7301727245459128 +28.45 0.767063023466374 +28.5 0.8057877045424929 +28.55 0.8464364297551855 +28.6 0.889102962942839 +28.65 0.9338851698013031 +28.7 0.9808850178839114 +28.75 1.0302085766014537 +28.8 1.0819660172221945 +28.85 1.1362716128718702 +28.9 1.1932437385336734 +28.95 1.2530048710482837 +29.0 1.3156815891138394 +29.05 1.3814045732859581 +29.1 1.4503086059776964 +29.15 1.5225304355713316 +29.2 1.5982148520056785 +29.25 1.6775248621592675 +29.3 1.7606287388881923 +29.35 1.8476994258653576 +29.4 1.9389145375804722 +29.45 2.034456359340072 +29.5 2.1345118472674884 +29.55 2.2392726283028628 +29.6 2.348935000203153 +29.65 2.4636999315421133 +29.7 2.5837730617103425 +29.75 2.709364700915209 +29.8 2.8406898301809043 +29.85 2.9779681013484613 +29.9 3.1214238370756484 +29.95 3.271286030837136 +30.0 3.4277883469243466 +30.05 3.5911691204455147 +30.1 3.7616712492812883 +30.15 3.9394477800127183 +30.2 4.124721521955342 +30.25 4.31780877756426 +30.3 4.519005519333036 +30.35 4.728587389793698 +30.4 4.946809701516717 +30.45 5.173907437111068 +30.5 5.410095249224141 +30.55 5.655567460541805 +30.6 5.91049806378836 +30.65 6.175040721726584 +30.7 6.449328767157758 +30.75 6.733475202921545 +30.8 7.027572701896115 +30.85 7.331693606998084 +30.9 7.645889931182482 +30.95 7.970193357442919 +31.0 8.304615238811323 +31.05 8.649146598358202 +31.1 9.003758129192397 +31.15 9.368301795032494 +31.2 9.742340807509574 +31.25 10.125707606463338 +31.3 10.518149593152962 +31.35 10.919290853552916 +31.4 11.328632158352924 +31.45 11.745550962958097 +31.5 12.16930140748874 +31.55 12.599014316780478 +31.6 13.033697200384234 +31.65 13.472234252566171 +31.7 13.91338635230787 +31.75 14.355791063306063 +31.8 14.797962633972846 +31.85 15.238291997435569 +31.9 15.675046771536875 +31.95 16.106371258834777 +32.0 16.530286446602425 +32.05 16.944690006828345 +32.1 17.347356296216514 +32.15 17.73593635618577 +32.2 18.1079723996273 +32.25 18.460967843671416 +32.3 18.791663532227535 +32.35 19.09670346609908 +32.4 19.372860196652287 +32.45 19.61703482581648 +32.5 19.826257006083754 +32.55 19.997684940509277 +32.6 20.12860538271109 +32.65 20.216433636870143 +32.7 20.258713557730346 +32.75 20.253117550598528 +32.8 20.197446571344457 +32.85 20.089630126400827 +32.9 19.92772627276328 +32.95 19.709921617990318 +33.0 19.434531320203547 +33.05 19.100017086239927 +33.1 18.70717440425866 +33.15 18.257944167333243 +33.2 17.753943711112875 +33.25 17.197386025691845 +33.3 16.59107975560906 +33.35 15.938429199848189 +33.4 15.243434311838062 +33.45 14.510690699451878 +33.5 13.745389625008139 +33.55 12.953318005269765 +33.6 12.140858411444603 +33.65 11.314989069185586 +33.7 10.483283858589981 +33.75 9.653912314200417 +33.8 8.834944747288745 +33.85 8.032595116068496 +33.9 7.252574989480735 +33.95 6.500244894133464 +34.0 5.780611806633342 +34.05 5.098329153584972 +34.1 4.457696811591198 +34.15 3.8626611072533747 +34.2 3.31681481717077 +34.25 2.8227900565193895 +34.3 2.3782600656369945 +34.35 1.9832044136900482 +34.4 1.6370099334569301 +34.45 1.3374100032609235 +34.5 1.0804845469706035 +34.55 0.8613445322670071 +34.6 0.6776876583085046 +34.65 0.5267122520657747 +34.7 0.40441627905775024 +34.75 0.3058944183001442 +34.8 0.22781720254468069 +34.85 0.167362080767307 +34.9 0.12112943508036349 +34.95 0.08606884444489188 +35.0 0.06025894955071106 +35.05 0.041575547523421456 +35.1 0.02807503179683125 +35.15 0.018661435450158345 +35.2 0.012187514371274674 +35.25 0.00778543573291238 +35.3 0.004900744392348273 +35.35 0.0030109136488610075 +35.4 0.001818415564176398 +35.45 0.0010735325005964665 +35.5 0.0006215527791510491 +35.55 0.00035179031575440834 +35.6 0.00019521699086201097 +35.65 0.00010567915314407212 +35.7 5.624620480371376e-5 +35.75 2.9060952855810056e-5 +35.8 1.4872013925480651e-5 +35.85 7.309603619828211e-6 +35.9 3.6172062933089507e-6 +35.95 1.6900745319711885e-6 +36.0 7.99061722219662e-7 +36.05 3.804043291337521e-7 +36.1 1.4637335962133365e-7 +36.15 9.604956964715575e-8 +36.2 3.1204373674468655e-8 +36.25 2.1585977569879193e-9 +36.3 2.1295697894631186e-8 +36.35 3.2435323272394713e-9 +36.4 -2.1120310656368706e-8 +36.45 -3.4820157243245986e-9 +36.5 2.5034223156922792e-8 +36.55 -2.4483048590997665e-8 +36.6 -7.752088542315618e-8 +36.65 -3.2288506757808416e-8 +36.7 6.575294392447037e-8 +36.75 2.0398273024218855e-8 +36.8 -1.885092372732254e-7 +36.85 -1.7935095917065193e-7 +36.9 8.463580903736217e-8 +36.95 2.103667032664853e-7 +37.0 -1.0902159040207543e-7 +37.05 -2.3792501267866805e-7 +37.1 2.949933213772468e-8 +37.15 2.605462472391962e-7 +37.2 3.579643931507328e-8 +37.25 -7.719883832340324e-8 +37.3 1.4474087423205393e-8 +37.35 1.1692222224812147e-7 +37.4 4.542260321956686e-8 +37.45 4.663159569340446e-9 +37.5 3.98437435540024e-9 +37.55 2.1542306063229875e-8 +37.6 1.7081577073831208e-8 +37.65 9.916058553643511e-9 +37.7 6.177405840400442e-9 +37.75 4.036295013754806e-9 +37.8 2.4981203133085326e-9 +37.85 1.4029941386133586e-9 +37.9 9.775671336281986e-10 +37.95 7.13443018982795e-10 +38.0 5.474637691993512e-10 +38.05 4.519928975853745e-10 +38.1 4.0371527249345375e-10 +38.15 3.8363711732123077e-10 +38.2 3.770860105113808e-10 +38.25 3.7371088555161584e-10 +38.3 3.67482030974705e-10 +38.35 3.5669109035838606e-10 +38.4 3.4404046252714365e-10 +38.45 3.351363584149498e-10 +38.5 3.306599912751868e-10 +38.55 3.301494468402913e-10 +38.6 3.331801929177388e-10 +38.65 3.3936507939003944e-10 +38.7 3.4835433821474265e-10 +38.75 3.5983558342442964e-10 +38.8 3.735338111267219e-10 +38.85 3.892113995042786e-10 +38.9 4.0666810881478823e-10 +38.95 4.257410813909854e-10 +39.0 4.4630484164063106e-10 +39.05 4.682712960465296e-10 +39.1 4.91589733166524e-10 +39.15 5.162468236334813e-10 +39.2 5.422666201553219e-10 +39.25 5.697105575149844e-10 +39.3 5.986774525704591e-10 +39.35 6.311202142544551e-10 +39.4 6.698607232832231e-10 +39.45 7.143352357870469e-10 +39.5 7.639584348814852e-10 +39.55 8.181804114395342e-10 +39.6 8.764866640916286e-10 +39.65 9.38398099225592e-10 +39.7 1.003471030986719e-9 +39.75 1.0712971812776804e-9 +39.8 1.1415036797586178e-9 +39.85 1.2137530638470843e-9 +39.9 1.2877432787180312e-9 +39.95 1.3632076773038862e-9 +40.0 1.4399150202944342e-9 +40.05 1.517669476136966e-9 +40.1 1.5963106210361297e-9 +40.15 1.6757134389540376e-9 +40.2 1.7557883216102534e-9 +40.25 1.836481068481641e-9 +40.3 1.917772886802624e-9 +40.35 1.9996803915650825e-9 +40.4 2.0822556055181207e-9 +40.45 2.1655859591684613e-9 +40.5 2.2497942907801726e-9 +40.55 2.335038846374777e-9 +40.6 2.4215132797311464e-9 +40.65 2.509446652385729e-9 +40.7 2.599103433632205e-9 +40.75 2.690783500521884e-9 +40.8 2.7848221378632998e-9 +40.85 2.881590038222633e-9 +40.9 2.981493301923223e-9 +40.95 3.08497343704608e-9 +41.0 3.1925073594295738e-9 +41.05 3.304607392669293e-9 +41.1 3.4218212681186887e-9 +41.15 3.544732124888063e-9 +41.2 3.673958509845681e-9 +41.25 3.8101543776169834e-9 +41.3 3.95400909058484e-9 +41.35 4.106247418889438e-9 +41.4 4.267629540428591e-9 +41.45 4.438951040857695e-9 +41.5 4.6210429135889836e-9 +41.55 4.814771559792631e-9 +41.6 5.0210387883960985e-9 +41.65 5.240781816084172e-9 +41.7 5.47497326729939e-9 +41.75 5.724621174241144e-9 +41.8 5.990768976866703e-9 +41.85 6.274495522890672e-9 +41.9 6.5769150677850095e-9 +41.95 6.899177274779381e-9 +42.0 7.242467214860197e-9 +42.05 7.608005366772091e-9 +42.1 7.997047617016514e-9 +42.15 8.410885259852642e-9 +42.2 8.850844997297112e-9 +42.25 9.318288939123777e-9 +42.3 9.814614602864361e-9 +42.35 1.0341254913807295e-8 +42.4 1.0899678204998906e-8 +42.45 1.1491388217243294e-8 +42.5 1.2117924099100853e-8 +42.55 1.2780860406890458e-8 +42.6 1.3481807104688487e-8 +42.65 1.4222409564327528e-8 +42.7 1.5004348565398855e-8 +42.75 1.5829340295250504e-8 +42.8 1.6699136348988185e-8 +42.85 1.7615523729475743e-8 +42.9 1.85803248473321e-8 +42.95 1.9595397520936415e-8 +43.0 2.066263497642389e-8 +43.05 2.1783965847686735e-8 +43.1 2.296135417637582e-8 +43.15 2.4196799411898173e-8 +43.2 2.5492336411419803e-8 +43.25 2.6850035439861983e-8 +43.3 2.827200216990519e-8 +43.35 2.9760377681986907e-8 +43.4 3.131733846430158e-8 +43.45 3.294509641280208e-8 +43.5 3.464589883119767e-8 +43.55 3.6809923607612946e-8 +43.6 4.154499690698694e-8 +43.65 4.898439529619013e-8 +43.7 5.891486049350068e-8 +43.75 7.11289627430776e-8 +43.8 8.542510081497004e-8 +43.85 1.0160750200511346e-7 +43.9 1.1948622213532442e-7 +43.95 1.3887714555331176e-7 +44.0 1.5960198513266106e-7 +44.05 1.8148828227285304e-7 +44.1 2.0436940689925326e-7 +44.15 2.2808455746310648e-7 +44.2 2.5247876094155054e-7 +44.25 2.774028728376016e-7 +44.3 3.027135771801683e-7 +44.35 3.282733865240484e-7 +44.4 3.539506419499113e-7 +44.45 3.796195130643286e-7 +44.5 4.0515999799974224e-7 +44.55 4.304579234144961e-7 +44.6 4.5540494449280557e-7 +44.65 4.798985449447842e-7 +44.7 5.038420370064247e-7 +44.75 5.27144561439597e-7 +44.8 5.497210875320751e-7 +44.85 5.714924130975111e-7 +44.9 5.923851644754372e-7 +44.95 6.123317965312756e-7 +45.0 6.31270592656341e-7 +45.05 6.491456647678196e-7 +45.1 6.659069533088062e-7 +45.15 6.815102272482466e-7 +45.2 6.959170840810043e-7 +45.25 7.090949498278235e-7 +45.3 7.210170790353243e-7 +45.35 7.31662554776009e-7 +45.4 7.410162886482758e-7 +45.45 7.490690207764042e-7 +45.5 7.558173198105756e-7 +45.55 7.612635829268149e-7 +45.6 7.654160358271001e-7 +45.65 7.682887327392191e-7 +45.7 7.699015564169263e-7 +45.75 7.702802181397586e-7 +45.8 7.694562577132557e-7 +45.85 7.674670434687431e-7 +45.9 7.643557722635116e-7 +45.95 7.601714694806681e-7 +46.0 7.549689890292627e-7 +46.05 7.488090133441886e-7 +46.1 7.417580533862704e-7 +46.15 7.338884486421561e-7 +46.2 7.252783671244582e-7 +46.25 7.160118053715835e-7 +46.3 7.061785884479207e-7 +46.35 6.95874369943652e-7 +46.4 6.852006319749456e-7 +46.45 6.742646851837244e-7 +46.5 6.63179668737944e-7 +46.55 6.520645503313282e-7 +46.6 6.410441261835761e-7 +46.65 6.302490210402114e-7 +46.7 6.198156881726391e-7 +46.75 6.09886409378209e-7 +46.8 6.006092949800714e-7 +46.85 5.921382838273863e-7 +46.9 5.84633143295059e-7 +46.95 5.782594692839692e-7 +47.0 5.73188686220875e-7 +47.05 5.695980470584003e-7 +47.1 5.676706332750411e-7 +47.15 5.675953548752083e-7 +47.2 5.695669503891852e-7 +47.25 5.737859868731545e-7 +47.3 5.804588599091835e-7 +47.35 5.897977936052373e-7 +47.4 6.020208405950911e-7 +47.45 6.173518820384442e-7 +47.5 6.360206276209592e-7 +47.55 6.582626155541462e-7 +47.6 6.843192125752839e-7 +47.65 7.14437613947704e-7 +47.7 7.488708434605792e-7 +47.75 7.878777534288256e-7 +47.8 8.317230246934425e-7 +47.85 8.806771666212422e-7 +47.9 9.350165171049236e-7 +47.95 9.95023242562971e-7 +48.0 1.060985337939922e-6 +48.05 1.1331966267061466e-6 +48.1 1.2119567608577905e-6 +48.15 1.2975712209170121e-6 +48.2 1.3903513159318535e-6 +48.25 1.4906141834762016e-6 +48.3 1.5986827896497617e-6 +48.35 1.714885929078196e-6 +48.4 1.8395582249131437e-6 +48.45 1.973040128832015e-6 +48.5 2.11567792103805e-6 +48.55 2.2678237102605558e-6 +48.6 2.429835433754578e-6 +48.65 2.6020768573010654e-6 +48.7 2.784917575206933e-6 +48.75 2.978733010304936e-6 +48.8 3.18390441395349e-6 +48.85 3.4008188660375673e-6 +48.9 3.6298692749671633e-6 +48.95 3.871454377678801e-6 +49.0 4.1259787396345065e-6 +49.05 4.393852754822395e-6 +49.1 4.67549264575661e-6 +49.15 4.971320463476581e-6 +49.2 5.281764087548395e-6 +49.25 5.607257226063441e-6 +49.3 5.948239415639302e-6 +49.35 6.305156021419535e-6 +49.4 6.678458237073032e-6 +49.45 7.068603084795207e-6 +49.5 7.476053415307059e-6 +49.55 7.901277907855351e-6 +49.6 8.344751070213068e-6 +49.65 8.806953238678842e-6 +49.7 9.288370578077374e-6 +49.75 9.789495081758916e-6 +49.8 1.0310824571599971e-5 +49.85 1.0852862698002855e-5 +49.9 1.1416118939895385e-5 +49.95 1.2002207279899062e-5 +50.0 1.2617573124471475e-5 diff --git a/test/julia_dde/test_basic_check_7.txt b/test/julia_dde/test_basic_check_7.txt new file mode 100644 index 00000000..cb4d1299 --- /dev/null +++ b/test/julia_dde/test_basic_check_7.txt @@ -0,0 +1,1001 @@ +0.0 1.2 +0.05 1.1880597989704629 +0.1 1.1762384068305827 +0.15 1.1645346214892631 +0.2 1.1529468631577875 +0.25 1.1414739115822856 +0.3 1.1301147478486349 +0.35 1.118868353042714 +0.4 1.1077337082504002 +0.45 1.0967097945575714 +0.5 1.0857955930501062 +0.55 1.0749900848138823 +0.6 1.0642922509347774 +0.65 1.0537010724986695 +0.7 1.0432155305914366 +0.75 1.032834606298957 +0.8 1.0225572807071084 +0.85 1.0123825349017685 +0.9 1.0023093499688158 +0.95 0.9923367069941277 +1.0 0.9824635870635824 +1.05 0.9726889712630578 +1.1 0.9630118406784319 +1.15 0.9534311763955828 +1.2 0.9439459595003884 +1.25 0.9345551710787264 +1.3 0.9252577922164751 +1.35 0.916052803999512 +1.4 0.9069391875137156 +1.45 0.8979159238449635 +1.5 0.8889819940791337 +1.55 0.8801351528810064 +1.6 0.8713702819563883 +1.65 0.8626865462276534 +1.7 0.8540835081720922 +1.75 0.8455607302669946 +1.8 0.837117774989651 +1.85 0.8287542048173518 +1.9 0.8204695822273872 +1.95 0.8122634696970475 +2.0 0.804135429703623 +2.05 0.7960850247244037 +2.1 0.7881118172366801 +2.15 0.7802153697177425 +2.2 0.7723952446448812 +2.25 0.7646510044953863 +2.3 0.7569822117465481 +2.35 0.7493884288756572 +2.4 0.7418692183600033 +2.45 0.7344241426768768 +2.5 0.7270527643035685 +2.55 0.7197546457173682 +2.6 0.7125293493955662 +2.65 0.705376437815453 +2.7 0.6982954734543185 +2.75 0.6912860187894534 +2.8 0.6843476362981477 +2.85 0.6774798884576916 +2.9 0.6706823377453756 +2.95 0.6639545466384897 +3.0 0.6572960776143245 +3.05 0.65070649315017 +3.1 0.6441853557233166 +3.15 0.6377322278110547 +3.2 0.6313466718906741 +3.25 0.6250282504394656 +3.3 0.6187765259347192 +3.35 0.6125910608537252 +3.4 0.6064714176737739 +3.45 0.6004171588721555 +3.5 0.5944278469261605 +3.55 0.5885030443130788 +3.6 0.582642313510201 +3.65 0.5768408697967465 +3.7 0.5710794766847663 +3.75 0.5653610009353052 +3.8 0.5596913989056138 +3.85 0.5540766269529438 +3.9 0.5485226414345459 +3.95 0.5430353987076714 +4.0 0.5376208551295714 +4.05 0.5324279779879286 +4.1 0.5275956230773843 +4.15 0.5231145795156263 +4.2 0.5189756364203432 +4.25 0.5151695829092232 +4.3 0.5116872080999545 +4.35 0.5085193011102256 +4.4 0.5056566510577244 +4.45 0.5030900470601397 +4.5 0.5008102782351593 +4.55 0.49880813370047183 +4.6 0.4970748553643428 +4.65 0.49560655605664106 +4.7 0.49440098579159875 +4.75 0.4934557002893139 +4.8 0.4927682552698849 +4.85 0.49233620645340975 +4.9 0.49215710955998665 +4.95 0.49222852030971387 +5.0 0.4925479944226895 +5.05 0.4931130876190118 +5.1 0.49392135561877887 +5.15 0.49497035414208906 +5.2 0.4962576389090403 +5.25 0.49778076563973095 +5.3 0.49953729005425906 +5.35 0.501524941318734 +5.4 0.5037458970491127 +5.45 0.506203842831906 +5.5 0.5089017677147981 +5.55 0.5118426607454732 +5.6 0.515029510971616 +5.65 0.5184653074409105 +5.7 0.5221530392010407 +5.75 0.5260956952996914 +5.8 0.5302962647845464 +5.85 0.5347577367032903 +5.9 0.5394831001036072 +5.95 0.5444753440331814 +6.0 0.5497374575396972 +6.05 0.5552724296708389 +6.1 0.5610832494742907 +6.15 0.5671730058296118 +6.2 0.5735480139444015 +6.25 0.5802171634943021 +6.3 0.5871891995100587 +6.35 0.5944728670224162 +6.4 0.6020769110621197 +6.45 0.6100100766599139 +6.5 0.618281108846544 +6.55 0.6268987526527547 +6.6 0.6358717531092911 +6.65 0.6452088552468984 +6.7 0.6549188040963212 +6.75 0.6650103446883043 +6.8 0.675492222053593 +6.85 0.6863731812229321 +6.9 0.6976619672270669 +6.95 0.7093672886207111 +7.0 0.721498859885574 +7.05 0.7340731174836238 +7.1 0.7471081152386012 +7.15 0.7606219069742478 +7.2 0.7746325465143046 +7.25 0.7891580876825128 +7.3 0.804216584302614 +7.35 0.8198260901983494 +7.4 0.8360046591934602 +7.45 0.8527703451116875 +7.5 0.8701412017767727 +7.55 0.888135283012457 +7.6 0.9067706426424818 +7.65 0.9260653344905886 +7.7 0.9460374123805181 +7.75 0.9667049301360117 +7.8 0.9880875594749563 +7.85 1.0102237295962704 +7.9 1.0331448908278946 +7.95 1.0568783428825315 +8.0 1.0814513854728836 +8.05 1.1068902728897445 +8.1 1.133211944911305 +8.15 1.1604300012191169 +8.2 1.18855804149473 +8.25 1.2176096654196973 +8.3 1.247598472675569 +8.35 1.2785380629438947 +8.4 1.3104420359062283 +8.45 1.3433239912441184 +8.5 1.3771979415201407 +8.55 1.412080842329271 +8.6 1.4479844428163409 +8.65 1.4849191054493085 +8.7 1.5228951926961265 +8.75 1.5619230670247535 +8.8 1.6020130909031434 +8.85 1.6431756267992503 +8.9 1.6854210371810325 +8.95 1.7287596845164428 +9.0 1.77320758665951 +9.05 1.8187801150494953 +9.1 1.8654706014211884 +9.15 1.9132715169522916 +9.2 1.9621753328205 +9.25 2.012174520203516 +9.3 2.063261550279037 +9.35 2.1154288942247583 +9.4 2.1686690232183836 +9.45 2.2229744084376075 +9.5 2.278337521060133 +9.55 2.3347508322636554 +9.6 2.3922068132258727 +9.65 2.450698013919172 +9.7 2.5102301062290664 +9.75 2.570768322579658 +9.8 2.6322517060627697 +9.85 2.694619299770224 +9.9 2.757810146793851 +9.95 2.8217632902254697 +10.0 2.8864177731569103 +10.05 2.9517126386799952 +10.1 3.017586929886546 +10.15 3.083979689868393 +10.2 3.150829961717356 +10.25 3.218076788525264 +10.3 3.2856592133839397 +10.35 3.353516279385206 +10.4 3.421593224048038 +10.45 3.48979601343226 +10.5 3.557969743792511 +10.55 3.6259577332031125 +10.6 3.6936032997383843 +10.65 3.760749761472654 +10.7 3.827240436480242 +10.75 3.892918642835474 +10.8 3.957627698612673 +10.85 4.0212109218861585 +10.9 4.083511630730259 +10.95 4.144373143219292 +11.0 4.203638777427587 +11.05 4.261151851429465 +11.1 4.316755482109749 +11.15 4.370260250551552 +11.2 4.421437319670552 +11.25 4.470060803896637 +11.3 4.51590481765969 +11.35 4.5587434753895915 +11.4 4.59835089151623 +11.45 4.634501180469488 +11.5 4.666968456679249 +11.55 4.695526834575399 +11.6 4.71995042858782 +11.65 4.740013353146399 +11.7 4.755489722681018 +11.75 4.766153651621562 +11.8 4.771779254397915 +11.85 4.77214064543996 +11.9 4.767019317339158 +11.95 4.756319793371234 +12.0 4.739918594440316 +12.05 4.717649596734286 +12.1 4.689408949409466 +12.15 4.655135230673881 +12.2 4.614767018735563 +12.25 4.5682428918025355 +12.3 4.515501428082827 +12.35 4.456503109477955 +12.4 4.391345694980259 +12.45 4.320170073351286 +12.5 4.24311636922747 +12.55 4.16032470724525 +12.6 4.071935212041071 +12.65 3.9780967020752507 +12.7 3.879096453017905 +12.75 3.775302980147889 +12.8 3.66708157895344 +12.85 3.554797544922798 +12.9 3.4388161735441893 +12.95 3.3195027603058573 +13.0 3.1972275910455767 +13.05 3.0725085685956763 +13.1 2.9458780493346794 +13.15 2.817829840620449 +13.2 2.6888577498108677 +13.25 2.559455584263797 +13.3 2.4301171513371154 +13.35 2.3013362583886994 +13.4 2.1736458275079675 +13.45 2.047628348742059 +13.5 1.9236743230534912 +13.55 1.802158771791302 +13.6 1.6834567163045295 +13.65 1.5679431779421988 +13.7 1.4559931780533526 +13.75 1.347981737987016 +13.8 1.2442830365268889 +13.85 1.1451348486975603 +13.9 1.0506150157980325 +13.95 0.96079463250776 +14.0 0.8757447935061845 +14.05 0.7955365934727581 +14.1 0.7202411270869309 +14.15 0.6499294890281462 +14.2 0.5846413868944909 +14.25 0.5242148233560262 +14.3 0.4684608017345736 +14.35 0.41719644937801403 +14.4 0.3702388936342235 +14.45 0.3274052618510851 +14.5 0.28851268137647507 +14.55 0.25337827955827474 +14.6 0.22180905141412283 +14.65 0.19350867526965712 +14.7 0.16823527867063232 +14.75 0.14577140563248472 +14.8 0.12589960017065335 +14.85 0.10840240630057683 +14.9 0.09306236803769201 +14.95 0.07966202939743805 +15.0 0.06798393439525205 +15.05 0.05780832744586894 +15.1 0.04897753895854812 +15.15 0.041368396188088095 +15.2 0.034857728459313314 +15.25 0.029322365097047245 +15.3 0.024639135426114043 +15.35 0.020684868771337753 +15.4 0.017336394457542002 +15.45 0.014474135340200821 +15.5 0.012032821889186085 +15.55 0.009972844893206104 +15.6 0.008252148671182253 +15.65 0.006828677542035726 +15.7 0.005660375824687943 +15.75 0.00470518783806014 +15.8 0.003921057901073675 +15.85 0.0032659303326498866 +15.9 0.002706408787715835 +15.95 0.0022421878225317676 +16.0 0.0018592343012498686 +16.05 0.0015411039192114238 +16.1 0.0012772980130345102 +16.15 0.001060686702426913 +16.2 0.000884140107096374 +16.25 0.0007405283467506819 +16.3 0.0006227215410976081 +16.35 0.0005237670300543738 +16.4 0.00044054154764645257 +16.45 0.00037151598796316283 +16.5 0.0003147536398515534 +16.55 0.0002683177921586665 +16.6 0.00023027173373154434 +16.65 0.00019867875341723128 +16.7 0.0001717211482542478 +16.75 0.00014882785931608067 +16.8 0.0001296151169741785 +16.85 0.00011360376098475126 +16.9 0.00010031463110401002 +16.95 8.926856708816294e-5 +17.0 7.998640869342122e-5 +17.05 7.199146609673012e-5 +17.1 6.505037401007346e-5 +17.15 5.911176459089205e-5 +17.2 5.4070918416871555e-5 +17.25 4.9823116065698875e-5 +17.3 4.626363811506052e-5 +17.35 4.328776514264296e-5 +17.4 4.079077772613283e-5 +17.45 3.866795644321627e-5 +17.5 3.6822689845990906e-5 +17.55 3.524866954756011e-5 +17.6 3.3938708195953574e-5 +17.65 3.2874606120415507e-5 +17.7 3.203816365018986e-5 +17.75 3.1411181114520857e-5 +17.8 3.097545884265261e-5 +17.85 3.0712797163829244e-5 +17.9 3.060499640729489e-5 +17.95 3.0633856902293646e-5 +18.0 3.0781178978069665e-5 +18.05 3.103509304805598e-5 +18.1 3.1406304151324396e-5 +18.15 3.189659161775605e-5 +18.2 3.250657615472168e-5 +18.25 3.3236878469591956e-5 +18.3 3.408811926973756e-5 +18.35 3.506091926252916e-5 +18.4 3.615589915533737e-5 +18.45 3.737367965553303e-5 +18.5 3.871488147048675e-5 +18.55 4.0180125307569196e-5 +18.6 4.1770031874151066e-5 +18.65 4.348522187760291e-5 +18.7 4.532631602529567e-5 +18.75 4.7293935024599884e-5 +18.8 4.938869958288625e-5 +18.85 5.1615427351473687e-5 +18.9 5.3983610978448554e-5 +18.95 5.6500343553329005e-5 +19.0 5.917271560407602e-5 +19.05 6.200781765865075e-5 +19.1 6.501274024501433e-5 +19.15 6.819457389112769e-5 +19.2 7.156040912495243e-5 +19.25 7.511733647444949e-5 +19.3 7.887244646757999e-5 +19.35 8.283282963230508e-5 +19.4 8.700557649658562e-5 +19.45 9.139777758838334e-5 +19.5 9.601761403886084e-5 +19.55 0.00010087832563687495 +19.6 0.00010599456638455815 +19.65 0.00011138098882895671 +19.7 0.0001170522455171181 +19.75 0.00012302298899608856 +19.8 0.00012930787181291483 +19.85 0.00013592154651464355 +19.9 0.0001428786656483209 +19.95 0.00015019388176099456 +20.0 0.00015788184739971067 +20.05 0.00016594355676053039 +20.1 0.00017439137835178976 +20.15 0.00018325759864471072 +20.2 0.00019257450411051715 +20.25 0.00020237438122043113 +20.3 0.00021268951644567522 +20.35 0.00022355219625747212 +20.4 0.0002349947071270435 +20.45 0.00024704933552561375 +20.5 0.0002597483679244046 +20.55 0.0002731240907946388 +20.6 0.0002872087906075389 +20.65 0.00030203475383432647 +20.7 0.0003176342669462262 +20.75 0.0003340396164144598 +20.8 0.00035128308871024984 +20.85 0.00036939697030481883 +20.9 0.0003884135476693882 +20.95 0.00040836510727518315 +21.0 0.0004292711037861321 +21.05 0.00045116093863702047 +21.1 0.0004741187449434656 +21.15 0.0004982304888727387 +21.2 0.0005235821365921165 +21.25 0.0005502596542688701 +21.3 0.0005783490080702727 +21.35 0.0006079361641635971 +21.4 0.0006391070887161142 +21.45 0.0006719477478951015 +21.5 0.0007065441078678298 +21.55 0.0007429821348015722 +21.6 0.0007813477948636015 +21.65 0.0008217270542211883 +21.7 0.0008642058790416108 +21.75 0.0009088702354921396 +21.8 0.0009558060897400474 +21.85 0.0010050994079526076 +21.9 0.0010568361562970892 +21.95 0.0011111023009407728 +22.0 0.0011679092830706055 +22.05 0.0012273558045181427 +22.1 0.0012896840216456182 +22.15 0.0013551362682000785 +22.2 0.0014239548779285845 +22.25 0.0014963821845781823 +22.3 0.0015726605218959232 +22.35 0.001653032223628858 +22.4 0.0017377396235240326 +22.45 0.0018270250553285097 +22.5 0.001921130852789334 +22.55 0.002020299349653557 +22.6 0.0021247728796682307 +22.65 0.0022347937765803973 +22.7 0.0023506043741371233 +22.75 0.0024724470060854533 +22.8 0.002600564006172437 +22.85 0.002735197708145127 +22.9 0.0028765904457505637 +22.95 0.003024984552735818 +23.0 0.003180622362847931 +23.05 0.003343726234633874 +23.1 0.0035144820812906107 +23.15 0.003693488052770074 +23.2 0.003881418770958153 +23.25 0.004078948857740697 +23.3 0.004286752935003569 +23.35 0.00450550562463263 +23.4 0.004735881548513729 +23.45 0.004978555328532758 +23.5 0.005234201586575566 +23.55 0.005503494944528014 +23.6 0.005787110024275965 +23.65 0.00608572144770526 +23.7 0.006400003836701804 +23.75 0.0067306318131514385 +23.8 0.007078279998940026 +23.85 0.0074436230159534295 +23.9 0.007827335486077482 +23.95 0.008230092031198104 +24.0 0.008652567273201128 +24.05 0.009094862549674452 +24.1 0.009557864678319622 +24.15 0.010043428286458735 +24.2 0.010553408001413979 +24.25 0.011089658450507441 +24.3 0.011654034261061243 +24.35 0.012248390060397515 +24.4 0.012874580475838329 +24.45 0.013534460134705896 +24.5 0.014229883664322299 +24.55 0.014962705692009656 +24.6 0.015734780845090095 +24.65 0.016547963750885675 +24.7 0.017404109036718636 +24.75 0.01830507132991105 +24.8 0.019252705257785028 +24.85 0.020248865447662703 +24.9 0.021295406526866123 +24.95 0.022394183122717553 +25.0 0.02354704986253904 +25.05 0.024755861373652717 +25.1 0.026020606014804316 +25.15 0.027343296023248972 +25.2 0.028729465615056828 +25.25 0.030184653662472128 +25.3 0.03171439903773921 +25.35 0.033324240613102435 +25.4 0.035019717260806014 +25.45 0.03680636785309454 +25.5 0.03868973126221223 +25.55 0.04067534636040344 +25.6 0.04276875201991251 +25.65 0.04497548711298361 +25.7 0.047301090511861425 +25.75 0.04975110108879013 +25.8 0.05233105771601409 +25.85 0.05504649926577762 +25.9 0.05790296461032489 +25.95 0.060905992621900606 +26.0 0.06406112217274897 +26.05 0.06737389213511429 +26.1 0.07084984138124091 +26.15 0.07449450878337292 +26.2 0.07831321218376372 +26.25 0.0823016199870987 +26.3 0.0864691673727658 +26.35 0.0908341991822645 +26.4 0.09541506025709397 +26.45 0.10023009543875436 +26.5 0.10529764956874482 +26.55 0.11063606748856489 +26.6 0.116263694039714 +26.65 0.12219887406369125 +26.7 0.128459952401997 +26.75 0.1350652738961303 +26.8 0.1420331833875907 +26.85 0.14938202571787756 +26.9 0.15713014572849 +26.95 0.16529588826092845 +27.0 0.17389759815669195 +27.05 0.18295362025728 +27.1 0.19248229940419204 +27.15 0.2025019804389269 +27.2 0.21303100820298543 +27.25 0.22408772753786652 +27.3 0.23569048328506956 +27.35 0.2478576202860941 +27.4 0.2606074833824388 +27.45 0.2739584174156048 +27.5 0.28791877866299176 +27.55 0.30247293391773145 +27.6 0.3176785915165655 +27.65 0.3336030577799969 +27.7 0.35031363902853185 +27.75 0.3678776415826731 +27.8 0.38636237176292476 +27.85 0.40583513588979075 +27.9 0.42636324028377365 +27.95 0.4480139912653802 +28.0 0.47085469515511325 +28.05 0.4949526582734765 +28.1 0.5203751869409741 +28.15 0.547189587478108 +28.2 0.575463166205386 +28.25 0.6052632294433102 +28.3 0.6366570835123847 +28.35 0.6697120347331132 +28.4 0.7044953894259977 +28.45 0.7410744539115467 +28.5 0.779516534510262 +28.55 0.8198889375426474 +28.6 0.8622589693292068 +28.65 0.9066939361904413 +28.7 0.9532611444468608 +28.75 1.0020279004189667 +28.8 1.0530615104272625 +28.85 1.1064292807922524 +28.9 1.1621985178344363 +28.95 1.220442820838801 +29.0 1.2813105969028458 +29.05 1.344994275368992 +29.1 1.4116863321217337 +29.15 1.4815792430455592 +29.2 1.554865484024973 +29.25 1.6317375309444637 +29.3 1.7123878596885258 +29.35 1.7970089461416523 +29.4 1.8857932661883314 +29.45 1.9789332957130696 +29.5 2.0766215106003543 +29.55 2.17905038673468 +29.6 2.2864124000005392 +29.65 2.3989000262824196 +29.7 2.516705741464829 +29.75 2.6400220214322556 +29.8 2.769041342069192 +29.85 2.903956179260132 +29.9 3.0449590088895606 +29.95 3.1922423068419903 +30.0 3.3459985490019064 +30.05 3.5064202112538014 +30.1 3.67369976948217 +30.15 3.8481258257842943 +30.2 4.030315851668986 +30.25 4.220491831202417 +30.3 4.418821900949248 +30.35 4.62547419747414 +30.4 4.840616857341738 +30.45 5.064418017116733 +30.5 5.29704581336377 +30.55 5.538668382647509 +30.6 5.789453861532612 +30.65 6.049570386583722 +30.7 6.319186094365533 +30.75 6.59846912144269 +30.8 6.887587604379853 +30.85 7.186709679741682 +30.9 7.496003484092816 +30.95 7.815637153997958 +31.0 8.145778826021749 +31.05 8.48659663672885 +31.1 8.838381447172468 +31.15 9.202540719144691 +31.2 9.578657865631007 +31.25 9.965746982683546 +31.3 10.362822166354473 +31.35 10.768897512695936 +31.4 11.182987117760067 +31.45 11.604105077599081 +31.5 12.031265488265106 +31.55 12.4634824458103 +31.6 12.899770046286816 +31.65 13.339142385746783 +31.7 13.78061356024242 +31.75 14.22319766582585 +31.8 14.665908798549234 +31.85 15.107761054464726 +31.9 15.547768529624452 +31.95 15.984945320080634 +32.0 16.418305521885394 +32.05 16.846853130042344 +32.1 17.26790395904011 +32.15 17.67779114457618 +32.2 18.073459942546645 +32.25 18.451855608847392 +32.3 18.80992339937447 +32.35 19.144608570023912 +32.4 19.452856376691617 +32.45 19.731612075273663 +32.5 19.977820921665952 +32.55 20.188428171764528 +32.6 20.3603790814654 +32.65 20.49061890666451 +32.7 20.57609290325788 +32.75 20.613746327141484 +32.8 20.60052443421132 +32.85 20.533372480363372 +32.9 20.40923572149365 +32.95 20.225059413498105 +33.0 19.977788812272784 +33.05 19.66676008778088 +33.1 19.296097281984412 +33.15 18.868237530680005 +33.2 18.38557022157783 +33.25 17.850484742388332 +33.3 17.265370480821748 +33.35 16.63261682458828 +33.4 15.954613161398411 +33.45 15.233748878962253 +33.5 14.472631126227892 +33.55 13.679991845426963 +33.6 12.864348805807072 +33.65 12.032403438973647 +33.7 11.190857176531647 +33.75 10.346411450086508 +33.8 9.505767691243308 +33.85 8.675627331607124 +33.9 7.862691802783389 +33.95 7.073662536377071 +34.0 6.315240963993592 +34.05 5.595309345647246 +34.1 4.921859167529581 +34.15 4.295483750671969 +34.2 3.7162475510341326 +34.25 3.1842150245761363 +34.3 2.699450627257795 +34.35 2.2620188150389513 +34.4 1.8719840438796285 +34.45 1.529410769739616 +34.5 1.2343634485789126 +34.55 0.9869006397989931 +34.6 0.7815809844341698 +34.65 0.6109891743701285 +34.7 0.4712762378333173 +34.75 0.35859320305027276 +34.8 0.26909109824747063 +34.85 0.19873408214310903 +34.9 0.14397332902647025 +34.95 0.10246996892547482 +35.0 0.07192728091301866 +35.05 0.05004854406197936 +35.1 0.03453703744523951 +35.15 0.023182054003042168 +35.2 0.014938404781953317 +35.25 0.009290470880887124 +35.3 0.005678771789230219 +35.35 0.003543826996370389 +35.4 0.0023261559916961877 +35.45 0.0014718069186605 +35.5 0.0008193068414955804 +35.55 0.0004119109807310751 +35.6 0.00019087475332052196 +35.65 9.745357621753578e-5 +35.7 7.290286637563057e-5 +35.75 5.847804074836544e-5 +35.8 2.841247648856679e-5 +35.85 1.0361935180105783e-5 +35.9 1.8160283331824833e-6 +35.95 -3.549595404496574e-7 +36.0 7.192560709664645e-7 +36.05 1.9089596791869836e-6 +36.1 9.923000893459772e-7 +36.15 1.6212626992685651e-7 +36.2 -2.766217959471011e-7 +36.25 -4.181047554768823e-7 +36.3 -3.5648325586367654e-7 +36.35 -1.8591794430855596e-7 +36.4 -5.694680126816988e-10 +36.45 1.0540152582286967e-7 +36.5 5.877327065986533e-8 +36.55 -6.239019919981164e-9 +36.6 -4.9123791863240605e-8 +36.65 -7.319477942358836e-8 +36.7 -8.176571685471941e-8 +36.75 -7.81503384103188e-8 +36.8 -6.566237834407583e-8 +36.85 -4.761557090967482e-8 +36.9 -2.7323650360808442e-8 +36.95 -8.100350951159016e-9 +37.0 6.740593065580493e-9 +37.05 1.3885447435725838e-8 +37.1 1.0067323603178002e-8 +37.15 1.697301468326906e-9 +37.2 -5.00787655272815e-9 +37.25 -1.0185988185352414e-8 +37.3 -1.397481115491411e-8 +37.35 -1.651212318678064e-8 +37.4 -1.7935702006318462e-8 +37.45 -1.8383325338895163e-8 +37.5 -1.7992770909877763e-8 +37.55 -1.6901816444633553e-8 +37.6 -1.52482396685294e-8 +37.65 -1.3169818306932935e-8 +37.7 -1.0804330085210747e-8 +37.75 -8.289552728730676e-9 +37.8 -5.763263962859547e-9 +37.85 -3.363241512964171e-9 +37.9 -1.2272631044124011e-9 +37.95 5.068935374291914e-10 +38.0 1.7014506871929536e-9 +38.05 2.218630619512017e-9 +38.1 1.9716664405816655e-9 +38.15 1.5657788077311757e-9 +38.2 1.2119602340273852e-9 +38.25 9.068606515725605e-10 +38.3 6.471299924688145e-10 +38.35 4.294181888182857e-10 +38.4 2.503751727232019e-10 +38.45 1.0665087628567785e-10 +38.5 -5.1047683920800536e-12 +38.55 -8.824182920792646e-11 +38.6 -1.4611037405970277e-10 +38.65 -1.8206047084522614e-10 +38.7 -1.9944218746234075e-10 +38.75 -2.0160559180887615e-10 +38.8 -1.9190075178266892e-10 +38.85 -1.7367773528154975e-10 +38.9 -1.5028661020335788e-10 +38.95 -1.2507744444592053e-10 +39.0 -1.0140030590707907e-10 +39.05 -8.26052624846633e-11 +39.1 -7.204238207650585e-11 +39.15 -7.30617325804437e-11 +39.2 -8.901338189431143e-11 +39.25 -1.1843887220022445e-10 +39.3 -1.4832320983357539e-10 +39.35 -1.777387661420899e-10 +39.4 -2.0674635271727452e-10 +39.45 -2.354067811506525e-10 +39.5 -2.637808630337305e-10 +39.55 -2.919294099580277e-10 +39.6 -3.1991323351506286e-10 +39.65 -3.4779314529634303e-10 +39.7 -3.756299568933911e-10 +39.75 -4.0348447989771404e-10 +39.8 -4.314175259008308e-10 +39.85 -4.594899064942602e-10 +39.9 -4.877624332695093e-10 +39.95 -5.162959178181008e-10 +40.0 -5.451511717315421e-10 +40.05 -5.743890066013516e-10 +40.1 -6.040702340190488e-10 +40.15 -6.3425566557614e-10 +40.2 -6.650061128641489e-10 +40.25 -6.963823874745815e-10 +40.3 -7.284453009989573e-10 +40.35 -7.612556650287956e-10 +40.4 -7.948742911556024e-10 +40.45 -8.293619909709019e-10 +40.5 -8.647795760661994e-10 +40.55 -9.011878580330148e-10 +40.6 -9.38647648462868e-10 +40.65 -9.772197589472638e-10 +40.7 -1.0169650010777275e-9 +40.75 -1.0579441864457631e-9 +40.8 -1.1002181266428913e-9 +40.85 -1.1438476332606328e-9 +40.9 -1.1888935178904905e-9 +40.95 -1.2354165921239922e-9 +41.0 -1.2834776675526395e-9 +41.05 -1.3331375557679534e-9 +41.1 -1.3854527349412998e-9 +41.15 -1.4424430509508524e-9 +41.2 -1.5045369479863534e-9 +41.25 -1.5721299108955784e-9 +41.3 -1.6456174245263288e-9 +41.35 -1.7253949737264096e-9 +41.4 -1.8118580433435922e-9 +41.45 -1.905402118225693e-9 +41.5 -2.0064226832204798e-9 +41.55 -2.115315223175759e-9 +41.6 -2.23247522293934e-9 +41.65 -2.3582981673589822e-9 +41.7 -2.4931795412825165e-9 +41.75 -2.637514829557696e-9 +41.8 -2.7916995170323346e-9 +41.85 -2.956129088554248e-9 +41.9 -3.131199028971183e-9 +41.95 -3.317304823130983e-9 +42.0 -3.5148419558813874e-9 +42.05 -3.724205912070216e-9 +42.1 -3.945792176545295e-9 +42.15 -4.179996234154352e-9 +42.2 -4.42721356974525e-9 +42.25 -4.6878396681657115e-9 +42.3 -4.962270014263561e-9 +42.35 -5.250900092886636e-9 +42.4 -5.55412538888265e-9 +42.45 -5.872341387099479e-9 +42.5 -6.205943572384828e-9 +42.55 -6.555327429586531e-9 +42.6 -6.920888443552437e-9 +42.65 -7.303022099130237e-9 +42.7 -7.702123881167829e-9 +42.75 -8.118589274512894e-9 +42.8 -8.552813764013282e-9 +42.85 -9.005192834516851e-9 +42.9 -9.476121970871267e-9 +42.95 -9.965996657924456e-9 +43.0 -1.0518853981869387e-8 +43.05 -1.1234800074879036e-8 +43.1 -1.2131045103151822e-8 +43.15 -1.3221917892308879e-8 +43.2 -1.4521747267971889e-8 +43.25 -1.6044862055761884e-8 +43.3 -1.7805591081300405e-8 +43.35 -1.9818263170209163e-8 +43.4 -2.2097207148108987e-8 +43.45 -2.4656751840621858e-8 +43.5 -2.7511226073368482e-8 +43.55 -3.067495867197057e-8 +43.6 -3.416227846205004e-8 +43.65 -3.798751426922728e-8 +43.7 -4.216499491912474e-8 +43.75 -4.67090492373627e-8 +43.8 -5.163400604956304e-8 +43.85 -5.695419418134794e-8 +43.9 -6.268394245833733e-8 +43.95 -6.88375797061541e-8 +44.0 -7.542943475041806e-8 +44.05 -8.247383641675137e-8 +44.1 -8.998511353077642e-8 +44.15 -9.797759491811257e-8 +44.2 -1.0646560940438346e-7 +44.25 -1.1546348581520803e-7 +44.3 -1.24985552976209e-7 +44.35 -1.3504613971300902e-7 +44.4 -1.4565957485122662e-7 +44.45 -1.5684018721648633e-7 +44.5 -1.6860230563440633e-7 +44.55 -1.8096025893060949e-7 +44.6 -1.939283759307191e-7 +44.65 -2.0752098546035293e-7 +44.7 -2.2175241634513624e-7 +44.75 -2.3663699741068627e-7 +44.8 -2.521890574826264e-7 +44.85 -2.684229253865804e-7 +44.9 -2.8535292994816517e-7 +44.95 -3.0299339999300667e-7 +45.0 -3.213586643467214e-7 +45.05 -3.4046305183493326e-7 +45.1 -3.603208912832664e-7 +45.15 -3.8094651151733657e-7 +45.2 -4.023542413627711e-7 +45.25 -4.245584096451854e-7 +45.3 -4.475733451902035e-7 +45.35 -4.7141337682345047e-7 +45.4 -4.960928333705409e-7 +45.45 -5.216315967722299e-7 +45.5 -5.48180386179763e-7 +45.55 -5.759023510773636e-7 +45.6 -6.049319141910751e-7 +45.65 -6.354034982469291e-7 +45.7 -6.674515259709735e-7 +45.75 -7.012104200892394e-7 +45.8 -7.368146033277705e-7 +45.85 -7.743984984126117e-7 +45.9 -8.140965280697923e-7 +45.95 -8.560431150253629e-7 +46.0 -9.003726820053514e-7 +46.05 -9.472196517358032e-7 +46.1 -9.96718446942765e-7 +46.15 -1.0490034903522621e-6 +46.2 -1.1042092046903495e-6 +46.25 -1.1624700126830507e-6 +46.3 -1.2239203370564133e-6 +46.35 -1.288694600536486e-6 +46.4 -1.3569272258492901e-6 +46.45 -1.4287526357208848e-6 +46.5 -1.504305252877289e-6 +46.55 -1.5837195000445524e-6 +46.6 -1.6671297999487263e-6 +46.65 -1.7546705753158275e-6 +46.7 -1.8464762488719199e-6 +46.75 -1.942681243343017e-6 +46.8 -2.0434199814551715e-6 +46.85 -2.1488268859344384e-6 +46.9 -2.25903459843318e-6 +46.95 -2.374282022967995e-6 +47.0 -2.495024163628297e-6 +47.05 -2.62173662456376e-6 +47.1 -2.7548950099240605e-6 +47.15 -2.894974923858819e-6 +47.2 -3.0424519705177325e-6 +47.25 -3.1978017540504166e-6 +47.3 -3.3614998786065494e-6 +47.35 -3.5340219483358142e-6 +47.4 -3.7158435673878194e-6 +47.45 -3.907440339912274e-6 +47.5 -4.10928787005878e-6 +47.55 -4.321861761977024e-6 +47.6 -4.545637619816695e-6 +47.65 -4.781091047727388e-6 +47.7 -5.028697649858826e-6 +47.75 -5.288933030360596e-6 +47.8 -5.562272793382392e-6 +47.85 -5.849192543073912e-6 +47.9 -6.150167883584733e-6 +47.95 -6.465685738400373e-6 +48.0 -6.7968501097875715e-6 +48.05 -7.145681758174973e-6 +48.1 -7.5142753168289336e-6 +48.15 -7.904725419015655e-6 +48.2 -8.319126698001555e-6 +48.25 -8.75957378705282e-6 +48.3 -9.22816131943581e-6 +48.35 -9.726983928416907e-6 +48.4 -1.0258136247262273e-5 +48.45 -1.0823712909238363e-5 +48.5 -1.1425808547611325e-5 +48.55 -1.2066517795647538e-5 +48.6 -1.2747935286613406e-5 +48.65 -1.3472155653775048e-5 +48.7 -1.4241273530398967e-5 +48.75 -1.505738354975125e-5 +48.8 -1.5922580345098313e-5 +48.85 -1.6838958549706593e-5 +48.9 -1.7808612796842136e-5 +48.95 -1.883363771977152e-5 +49.0 -1.991612795176076e-5 +49.05 -2.10581781260763e-5 +49.1 -2.226188287598463e-5 +49.15 -2.35293368347517e-5 +49.2 -2.486263463564419e-5 +49.25 -2.626387091192802e-5 +49.3 -2.773514029686967e-5 +49.35 -2.9278537423735685e-5 +49.4 -3.0896156925791924e-5 +49.45 -3.259009343630514e-5 +49.5 -3.4362441588541186e-5 +49.55 -3.621529601576658e-5 +49.6 -3.815075135124791e-5 +49.65 -4.017090222825095e-5 +49.7 -4.2277843280042545e-5 +49.75 -4.447366913988843e-5 +49.8 -4.676100787079892e-5 +49.85 -4.9158332010406336e-5 +49.9 -5.1678658852762816e-5 +49.95 -5.4328420253736615e-5 +50.0 -5.711404806919452e-5 diff --git a/test/julia_dde/test_basic_check_8.txt b/test/julia_dde/test_basic_check_8.txt new file mode 100644 index 00000000..03be058d --- /dev/null +++ b/test/julia_dde/test_basic_check_8.txt @@ -0,0 +1,101 @@ +0.0 1.2 +0.1 0.9599999999995766 +0.2 0.7199999999999984 +0.3 0.4920000000275244 +0.4 0.29333333335795136 +0.5 0.1409333335308199 +0.6 0.033896296463601816 +0.7 -0.03317518502318162 +0.8 -0.06821925912167397 +0.9 -0.08014353322730915 +1.0 -0.07701983861422906 +1.1 -0.0654722229623731 +1.2 -0.05045085349638549 +1.3 -0.035289552691150715 +1.4 -0.02195877308646844 +1.5 -0.011381793510271429 +1.6 -0.0037517722095308094 +1.7 0.0011898937000099639 +1.8 0.003933781500679573 +1.9 0.005044443226068331 +2.0 0.005058526960046457 +2.1 0.004428643610077466 +2.2 0.003501092643886467 +2.3 0.0025162283890649896 +2.4 0.0016220398912455607 +2.5 0.0008937555703458587 +2.6 0.0003545026061102214 +2.7 -6.021088477003101e-6 +2.8 -0.00021639564671320946 +2.9 -0.00031229906801823225 +3.0 -0.00032906674579850654 +3.1 -0.000297375207694315 +3.2 -0.00024130136430728218 +3.3 -0.00017802281541228886 +3.4 -0.00011850790244016358 +3.5 -6.870395777800505e-5 +3.6 -3.08729627261438e-5 +3.7 -4.8219479059382635e-6 +3.8 1.1040713112133792e-5 +3.9 1.893868175148974e-5 +4.0 2.1183148188046327e-5 +4.1 1.98275447496031e-5 +4.2 1.6521478954025237e-5 +4.3 1.2505551567813808e-5 +4.4 8.575476638211887e-6 +4.5 5.191726552570755e-6 +4.6 2.5552410383856707e-6 +4.7 6.890011193102985e-7 +4.8 -4.90632770177942e-7 +4.9 -1.1199076718777521e-6 +5.0 -1.3467796787535478e-6 +5.1 -1.3094949262271898e-6 +5.2 -1.1233718764641545e-6 +5.3 -8.74180306246676e-7 +5.4 -6.181169983854771e-7 +5.5 -3.883781367637394e-7 +5.6 -2.0528204214353039e-7 +5.7 -7.218293218941051e-8 +5.8 1.495077570387544e-8 +5.9 6.409244617426073e-8 +6.0 8.481977044724017e-8 +6.1 8.636673420998494e-8 +6.2 7.646609915620887e-8 +6.3 6.098239819884763e-8 +6.4 4.425022722636792e-8 +6.5 2.883985554104184e-8 +6.6 1.613411924581046e-8 +6.7 6.637122673450674e-9 +6.8 2.1373987855654678e-10 +6.9 -3.628443633800087e-9 +7.0 -5.521024228007085e-9 +7.1 -6.08050850644319e-9 +7.2 -5.81787672661891e-9 +7.3 -5.111981266902379e-9 +7.4 -4.24678014085044e-9 +7.5 -3.5124055601286853e-9 +7.6 -3.306632059341181e-9 +7.7 -2.9351111500057813e-9 +7.8 -2.2808466389605966e-9 +7.9 -1.5908742427106886e-9 +8.0 -9.981002021452451e-10 +8.1 -5.552644429934129e-10 +8.2 -2.6376382441024117e-10 +8.3 -9.733547567272958e-11 +8.4 -2.0600221028350734e-11 +8.5 -2.4660926630226497e-12 +8.6 -2.4391931740811084e-11 +8.7 -8.351107766773117e-11 +8.8 -1.9061514543636015e-10 +8.9 -3.6299789097840117e-10 +9.0 -6.121591648798676e-10 +9.1 -9.259727156607687e-10 +9.2 -1.0058033091378092e-9 +9.3 -8.732061539788326e-10 +9.4 -7.068814738245494e-10 +9.5 -5.39648760551056e-10 +9.6 -3.608859726598022e-10 +9.7 -1.7608730711911611e-10 +9.8 -2.3539544665121147e-11 +9.9 5.18830314483592e-11 +10.0 6.780514325394838e-11 diff --git a/test/julia_dde/test_basic_check_9.txt b/test/julia_dde/test_basic_check_9.txt new file mode 100644 index 00000000..36c43baf --- /dev/null +++ b/test/julia_dde/test_basic_check_9.txt @@ -0,0 +1,501 @@ +0.0 1.2 +0.1 1.1913803336218909 +0.2 1.1828464342012461 +0.3 1.1743974465820717 +0.4 1.1660325266930673 +0.5 1.1577508392776654 +0.6 1.1495515569159094 +0.7 1.1414338600244531 +0.8 1.1333969368565608 +0.9 1.125439983502108 +1.0 1.11756220388758 +1.1 1.1097628097760737 +1.2 1.1020410207672957 +1.3 1.0943960642975639 +1.4 1.0868271756398067 +1.5 1.079333597903563 +1.6 1.0719145820349825 +1.7 1.0645693851178095 +1.8 1.0572972581510276 +1.9 1.0500974756894166 +2.0 1.042969323512299 +2.1 1.0359120935999364 +2.2 1.0289250841335298 +2.3 1.0220075994952196 +2.4 1.0151589502680851 +2.5 1.0083784532361455 +2.6 1.0016654313843587 +2.7 0.9950192138986226 +2.8 0.9884391361657737 +2.9 0.9819245397735885 +3.0 0.9754747725107822 +3.1 0.9690891883670097 +3.2 0.9627671475328651 +3.3 0.9565080163998818 +3.4 0.9503111675605325 +3.5 0.9441759798082294 +3.6 0.9381018381373233 +3.7 0.9320881337431056 +3.8 0.9261342640218061 +3.9 0.9202396325705939 +4.0 0.9144036491875777 +4.1 0.9086257298718055 +4.2 0.9029052968232649 +4.3 0.8972417784428806 +4.4 0.8916346093325216 +4.5 0.8860832302949908 +4.6 0.8805870872809749 +4.7 0.8751456306653099 +4.8 0.8697583172256367 +4.9 0.8644246088405793 +5.0 0.8591439724658375 +5.1 0.8539158801341864 +5.2 0.8487398089554763 +5.3 0.8436152411166331 +5.4 0.838541663881658 +5.5 0.8335185695916273 +5.6 0.8285454556646932 +5.7 0.8236218245960826 +5.8 0.8187471839580989 +5.9 0.8139210464001188 +6.0 0.8091429296485967 +6.1 0.8045000663328911 +6.2 0.8000856864444652 +6.3 0.7959078461489202 +6.4 0.7919739863961017 +6.5 0.7882909329201001 +6.6 0.7848648962392509 +6.7 0.7817014716561339 +6.8 0.7788056392575742 +6.9 0.7761817639146412 +7.0 0.7738335952826495 +7.1 0.771764267801158 +7.2 0.7699763006939712 +7.3 0.7684715979691374 +7.4 0.7672514484189504 +7.5 0.7663165256199485 +7.6 0.7656668879329147 +7.7 0.765301978502877 +7.8 0.7652206252591082 +7.9 0.7654210409151257 +8.0 0.7659008229686917 +8.1 0.7666569537018133 +8.2 0.7676858001807424 +8.3 0.7689831142559754 +8.4 0.7705440325622539 +8.5 0.7723630765185638 +8.6 0.7744341523281365 +8.7 0.7767505509784474 +8.8 0.7793049482412178 +8.9 0.7820894046724118 +9.0 0.7850953656122401 +9.1 0.7883136611851577 +9.2 0.7917345062998644 +9.3 0.7953475006493039 +9.4 0.7991422217672364 +9.5 0.8031121244753257 +9.6 0.8072463572221119 +9.7 0.8115331047858 +9.8 0.8159608297236955 +9.9 0.8205182723722055 +10.0 0.8251944508468378 +10.1 0.8299786610422017 +10.2 0.8348604766320074 +10.3 0.8398297490690659 +10.4 0.8448766075852897 +10.5 0.8499914591916924 +10.6 0.8551649886783884 +10.7 0.8603881586145933 +10.8 0.8656522093486239 +10.9 0.870948659007898 +11.0 0.8762693034989344 +11.1 0.8816062165073529 +11.2 0.8869517494978751 +11.3 0.8922985317143232 +11.4 0.8976394701796201 +11.5 0.9029677496957899 +11.6 0.9082768328439581 +11.7 0.9135604599843521 +11.8 0.9188126492562988 +11.9 0.9240284001518926 +12.0 0.9292034205027914 +12.1 0.9343321860472654 +12.2 0.9394104742561977 +12.3 0.9444359312455402 +12.4 0.9494065831882625 +12.5 0.9543208363143533 +12.6 0.9591774769108184 +12.7 0.9639756713216824 +12.8 0.9687149659479878 +12.9 0.9733952872477949 +13.0 0.9780169417361826 +13.1 0.9825806159852475 +13.2 0.9870873766241047 +13.3 0.9915386703388873 +13.4 0.995936323872746 +13.5 1.0002825440258503 +13.6 1.0045799176553876 +13.7 1.0088314116755634 +13.8 1.0130402258394566 +13.9 1.0172070501687922 +14.0 1.0213339854530747 +14.1 1.0254238598495375 +14.2 1.0294791499638911 +14.3 1.0335019808503252 +14.4 1.0374941260115065 +14.5 1.0414570073985805 +14.6 1.0453916954111704 +14.7 1.049298908897378 +14.8 1.0531790151537825 +14.9 1.0570320299254414 +15.0 1.0608576174058906 +15.1 1.0646550902371434 +15.2 1.0684234095096918 +15.3 1.072161184762506 +15.4 1.0758666739830334 +15.5 1.0795377836072 +15.6 1.0831720685194102 +15.7 1.086766754596584 +15.8 1.0903207124475685 +15.9 1.0938297506834724 +16.0 1.0972874877497316 +16.1 1.1006875993433998 +16.2 1.1040238184131483 +16.3 1.1072899351592664 +16.4 1.1104797970336613 +16.5 1.1135873087398578 +16.6 1.1166064322329987 +16.7 1.119531186719844 +16.8 1.1223556486587727 +16.9 1.1250739517597803 +17.0 1.1276802869844813 +17.1 1.1301689025461068 +17.2 1.1325341039095067 +17.3 1.1347702537911484 +17.4 1.1368717721591168 +17.5 1.1388331362331152 +17.6 1.1406488804844641 +17.7 1.1423135966361022 +17.8 1.1438219336625859 +17.9 1.1451685977900892 +18.0 1.1463483524964047 +18.1 1.1473572134649492 +18.2 1.1481942735667123 +18.3 1.1488591062777442 +18.4 1.1493514867783459 +18.5 1.1496713919530686 +18.6 1.1498190003907138 +18.7 1.1497946923843334 +18.8 1.1495990499312294 +18.9 1.149232856732955 +19.0 1.1486970981953126 +19.1 1.1479929614283562 +19.2 1.1471218352463888 +19.3 1.1460853101679647 +19.4 1.1448851784158884 +19.5 1.1435234339172147 +19.6 1.1420022723032486 +19.7 1.1403240909095458 +19.8 1.1384914887759119 +19.9 1.1365072666464031 +20.0 1.1343744269693263 +20.1 1.1320961738972384 +20.2 1.129675913286946 +20.3 1.1271172526995077 +20.4 1.1244240014002305 +20.5 1.1216001502040933 +20.6 1.1186480466392204 +20.7 1.1155699713855358 +20.8 1.1123691395004491 +20.9 1.1090488335390565 +21.0 1.10561240355414 +21.1 1.1020632670961685 +21.2 1.0984049092132975 +21.3 1.0946408824513678 +21.4 1.090774806853908 +21.5 1.0868103699621317 +21.6 1.0827513268149398 +21.7 1.0786014999489193 +21.8 1.0743647793983433 +21.9 1.0700451226951717 +22.0 1.0656465548690504 +22.1 1.0611731684473116 +22.2 1.0566291234549747 +22.3 1.0520186474147442 +22.4 1.047346035347012 +22.5 1.0426156497698558 +22.6 1.0378319206990394 +22.7 1.0329993456480147 +22.8 1.028122489627917 +22.9 1.023205985147571 +23.0 1.0182545322134855 +23.1 1.0132728983298565 +23.2 1.0082659184985674 +23.3 1.0032384952191855 +23.4 0.9981955984889676 +23.5 0.9931422658028544 +23.6 0.9880836021534728 +23.7 0.9830247800311392 +23.8 0.9779710394238517 +23.9 0.9729276878172999 +24.0 0.9679000962768328 +24.1 0.9628924611125935 +24.2 0.957908768050749 +24.3 0.9529536831617005 +24.4 0.9480317902552851 +24.5 0.9431475954471874 +24.6 0.9383055271589413 +24.7 0.9335099371954515 +24.8 0.9287651807614069 +24.9 0.9240754814595606 +25.0 0.9194449749786636 +25.1 0.9148777842689583 +25.2 0.910378019542178 +25.3 0.9059497782715468 +25.4 0.90159714519178 +25.5 0.8973241922990837 +25.6 0.8931349788511549 +25.7 0.8890335513671822 +25.8 0.8850239436278442 +25.9 0.8811101766753112 +26.0 0.8772962588132442 +26.1 0.8735861856067951 +26.2 0.8699839398826074 +26.3 0.8664934917288143 +26.4 0.8631187984950413 +26.5 0.8598638047924039 +26.6 0.8567324424935098 +26.7 0.8537283642735556 +26.8 0.8508523315430913 +26.9 0.8481088039119128 +27.0 0.8455033320072018 +27.1 0.8430411823122855 +27.2 0.8407273371666362 +27.3 0.8385664947658713 +27.4 0.8365630691617543 +27.5 0.8347211902621933 +27.6 0.8330447038312422 +27.7 0.8315371714891004 +27.8 0.8302018707121122 +27.9 0.8290417948327675 +28.0 0.8280596530397015 +28.1 0.8272578703776948 +28.2 0.8266385877476735 +28.3 0.8262036619067089 +28.4 0.8259546654680174 +28.5 0.8258928869009613 +28.6 0.8260193305310479 +28.7 0.8263347165399301 +28.8 0.8268394809654055 +28.9 0.8275337757014182 +29.0 0.8284174684980568 +29.1 0.8294901429615552 +29.2 0.8307510985542932 +29.3 0.8321993505947959 +29.4 0.833833630257733 +29.5 0.8356523845739209 +29.6 0.8376537764303199 +29.7 0.8398356844692543 +29.8 0.8421930058904772 +29.9 0.8447191335522195 +30.0 0.8474090406532736 +30.1 0.8502579280959757 +30.2 0.8532600214445994 +30.3 0.8564084516120837 +30.4 0.8596963022925561 +30.5 0.8631166099613334 +30.6 0.8666623638749217 +30.7 0.8703265060710157 +30.8 0.8741019313684997 +30.9 0.8779814873674467 +31.0 0.8819579744491193 +31.1 0.8860241457759687 +31.2 0.8901727072916352 +31.3 0.8943963177209486 +31.4 0.8986875885699275 +31.5 0.9030390841257798 +31.6 0.9074433214569023 +31.7 0.9118929132684104 +31.8 0.9163818251206785 +31.9 0.9209038559739097 +32.0 0.9254528809327589 +32.1 0.9300230686386423 +32.2 0.9346088812697381 +32.3 0.939205074540986 +32.4 0.9438066977040886 +32.5 0.9484090935475091 +32.6 0.9530078983964734 +32.7 0.9575990421129682 +32.8 0.9621787480957427 +32.9 0.9667435332803087 +33.0 0.9712902081389382 +33.1 0.9758158766806666 +33.2 0.9803179364512893 +33.3 0.984794078533365 +33.4 0.9892422875462145 +33.5 0.9936604951529576 +33.6 0.9980450902090258 +33.7 1.0023952171143335 +33.8 1.0067105329541524 +33.9 1.0109906369754293 +34.0 1.0152350705867872 +34.1 1.0194433173585231 +34.2 1.0236148030226107 +34.3 1.0277488954726983 +34.4 1.0318449047641105 +34.5 1.0359020831138466 +34.6 1.0399196249005815 +34.7 1.0438966666646656 +34.8 1.0478322871081245 +34.9 1.05172550709466 +35.0 1.0555752896496482 +35.1 1.0593805399601417 +35.2 1.063140105374868 +35.3 1.0668527754042294 +35.4 1.0705172817203046 +35.5 1.0741322981568484 +35.6 1.0776964407092886 +35.7 1.0812082675347303 +35.8 1.084666278951954 +35.9 1.088068917441416 +36.0 1.0914145676452458 +36.1 1.094701875725707 +36.2 1.097927448184176 +36.3 1.101086590800616 +36.4 1.1041746413655324 +36.5 1.1071869696799714 +36.6 1.1101189775555211 +36.7 1.1129660988143113 +36.8 1.115723799289013 +36.9 1.1183875768228393 +37.0 1.1209529612695446 +37.1 1.1234155144934246 +37.2 1.1257708303693166 +37.3 1.1280145347826 +37.4 1.1301422856291954 +37.5 1.1321497728155647 +37.6 1.134032718258712 +37.7 1.1357868758861822 +37.8 1.1374080316360624 +37.9 1.1388920034569812 +38.0 1.1402346413081081 +38.1 1.141431827159155 +38.2 1.142479474990375 +38.3 1.1433735307925628 +38.4 1.1441099725670543 +38.5 1.1446848103257277 +38.6 1.1450945626546407 +38.7 1.1453381815859058 +38.8 1.1454154230864997 +38.9 1.1453262358394716 +39.0 1.145070766406141 +39.1 1.1446493592260973 +39.2 1.1440625566172 +39.3 1.143311098775579 +39.4 1.1423959237756336 +39.5 1.1413181675700332 +39.6 1.140079163989718 +39.7 1.1386804447438974 +39.8 1.1371237394200515 +39.9 1.1354109754839297 +40.0 1.1335442782795522 +40.1 1.1315259710292085 +40.2 1.1293585748334591 +40.3 1.1270448086711335 +40.4 1.124587589399332 +40.5 1.1219900317534244 +40.6 1.1192554483470514 +40.7 1.1163873496721226 +40.8 1.1133894440988188 +40.9 1.1102656378755893 +41.0 1.1070200351291546 +41.1 1.1036569378645058 +41.2 1.1001808459649032 +41.3 1.0965964571918767 +41.4 1.092908667185227 +41.5 1.0891221654555732 +41.6 1.085238871914666 +41.7 1.081262592540593 +41.8 1.077197701502359 +41.9 1.0730485720762972 +42.0 1.0688195766460709 +42.1 1.064515086702672 +42.2 1.0601394728444222 +42.3 1.0556971047769725 +42.4 1.0511923513133024 +42.5 1.0466295803737211 +42.6 1.042013158985867 +42.7 1.0373474532847085 +42.8 1.032636828512542 +42.9 1.0278856490189936 +43.0 1.0230982782610187 +43.1 1.0182790788029026 +43.2 1.0134324123162584 +43.3 1.0085626395800302 +43.4 1.0036741204804898 +43.5 0.9987712140112388 +43.6 0.9938582782732083 +43.7 0.9889396704746587 +43.8 0.9840197469311793 +43.9 0.9791028630656887 +44.0 0.9741933734084348 +44.1 0.9692956315969946 +44.2 0.9644139903762744 +44.3 0.9595528015985111 +44.4 0.9547164162232679 +44.5 0.94990918431744 +44.6 0.9451354550552505 +44.7 0.9403995767182515 +44.8 0.9357058966953263 +44.9 0.9310587614826841 +45.0 0.9264625166838675 +45.1 0.9219215070097437 +45.2 0.9174400762785138 +45.3 0.9130225674157044 +45.4 0.9086733224541736 +45.5 0.9043966825341077 +45.6 0.9001940922795764 +45.7 0.8960654669696551 +45.8 0.8920165942169074 +45.9 0.8880532253925764 +46.0 0.8841809479279281 +46.1 0.8804051853142504 +46.2 0.876731197102853 +46.3 0.8731640789050679 +46.4 0.8697087623922485 +46.5 0.866370015295771 +46.6 0.8631524414070331 +46.7 0.8600604805774548 +46.8 0.8570984087184782 +46.9 0.8542703378015669 +47.0 0.8515802158582071 +47.1 0.8490318269799068 +47.2 0.8466287913181959 +47.3 0.8443745650846267 +47.4 0.842272440550773 +47.5 0.8403255460482308 +47.6 0.8385368459686185 +47.7 0.8369091407635763 +47.8 0.8354450669447662 +47.9 0.8341470970838722 +48.0 0.833017539812601 +48.1 0.8320585398226801 +48.2 0.8312720778658602 +48.3 0.830659970753914 +48.4 0.8302238713586347 +48.5 0.8299652686118398 +48.6 0.829885487505367 +48.7 0.8299856890910766 +48.8 0.8302668704808515 +48.9 0.8307298648465955 +49.0 0.8313753414202355 +49.1 0.83220380549372 +49.2 0.8332155984190188 +49.3 0.8344108976081249 +49.4 0.8357897165330536 +49.5 0.8373519047258399 +49.6 0.8390971477785436 +49.7 0.8410249673432448 +49.8 0.8431346986042163 +49.9 0.8454183595200698 +50.0 0.84786698489988 diff --git a/test/julia_dde/test_basic_numerical_check_1.txt b/test/julia_dde/test_basic_numerical_check_1.txt new file mode 100644 index 00000000..a0f079db --- /dev/null +++ b/test/julia_dde/test_basic_numerical_check_1.txt @@ -0,0 +1,351 @@ +2.0 1.0 +2.01 1.005 +2.02 1.01 +2.03 1.015 +2.04 1.02 +2.05 1.025 +2.06 1.03 +2.07 1.035 +2.08 1.04 +2.09 1.045 +2.1 1.05 +2.11 1.055 +2.12 1.06 +2.13 1.065 +2.14 1.07 +2.15 1.075 +2.16 1.08 +2.17 1.085 +2.18 1.09 +2.19 1.095 +2.2 1.1 +2.21 1.105 +2.22 1.11 +2.23 1.115 +2.24 1.12 +2.25 1.125 +2.26 1.13 +2.27 1.135 +2.28 1.14 +2.29 1.145 +2.3 1.15 +2.31 1.1550000000000002 +2.32 1.16 +2.33 1.165 +2.34 1.17 +2.35 1.175 +2.36 1.18 +2.37 1.185 +2.38 1.19 +2.39 1.195 +2.4 1.2 +2.41 1.205 +2.42 1.21 +2.43 1.215 +2.44 1.22 +2.45 1.225 +2.46 1.23 +2.47 1.235 +2.48 1.24 +2.49 1.245 +2.5 1.25 +2.51 1.255 +2.52 1.26 +2.53 1.265 +2.54 1.27 +2.55 1.275 +2.56 1.28 +2.57 1.285 +2.58 1.29 +2.59 1.295 +2.6 1.3 +2.61 1.305 +2.62 1.3100000000000003 +2.63 1.3150000000000002 +2.64 1.3200000000000003 +2.65 1.325 +2.66 1.33 +2.67 1.335 +2.68 1.34 +2.69 1.345 +2.7 1.35 +2.71 1.355 +2.72 1.3599999999999999 +2.73 1.3650000000000002 +2.74 1.37 +2.75 1.375 +2.76 1.38 +2.77 1.3850000000000002 +2.78 1.39 +2.79 1.395 +2.8 1.4 +2.81 1.405 +2.82 1.41 +2.83 1.415 +2.84 1.4199999999999997 +2.85 1.425 +2.86 1.43 +2.87 1.435 +2.88 1.44 +2.89 1.445 +2.9 1.45 +2.91 1.455 +2.92 1.46 +2.93 1.4649999999999999 +2.94 1.47 +2.95 1.475 +2.96 1.48 +2.97 1.485 +2.98 1.49 +2.99 1.495 +3.0 1.5 +3.01 1.505 +3.02 1.51 +3.03 1.515 +3.04 1.52 +3.05 1.525 +3.06 1.53 +3.07 1.535 +3.08 1.54 +3.09 1.545 +3.1 1.55 +3.11 1.555 +3.12 1.56 +3.13 1.565 +3.14 1.57 +3.15 1.575 +3.16 1.58 +3.17 1.585 +3.18 1.59 +3.19 1.5949999999999998 +3.2 1.6000000000000003 +3.21 1.605 +3.22 1.61 +3.23 1.6150000000000002 +3.24 1.62 +3.25 1.625 +3.26 1.63 +3.27 1.635 +3.28 1.64 +3.29 1.645 +3.3 1.65 +3.31 1.6550000000000002 +3.32 1.66 +3.33 1.665 +3.34 1.67 +3.35 1.675 +3.36 1.68 +3.37 1.685 +3.38 1.69 +3.39 1.695 +3.4 1.7 +3.41 1.705 +3.42 1.71 +3.43 1.715 +3.44 1.72 +3.45 1.725 +3.46 1.73 +3.47 1.735 +3.48 1.74 +3.49 1.745 +3.5 1.75 +3.51 1.755 +3.52 1.76 +3.53 1.765 +3.54 1.77 +3.55 1.7749999999999997 +3.56 1.78 +3.57 1.785 +3.58 1.7900000000000003 +3.59 1.795 +3.6 1.8 +3.61 1.8049999999999997 +3.62 1.81 +3.63 1.815 +3.64 1.82 +3.65 1.825 +3.66 1.83 +3.67 1.835 +3.68 1.84 +3.69 1.845 +3.7 1.85 +3.71 1.855 +3.72 1.86 +3.73 1.865 +3.74 1.87 +3.75 1.875 +3.76 1.88 +3.77 1.8850000000000002 +3.78 1.89 +3.79 1.895 +3.8 1.9000000000000001 +3.81 1.9050000000000002 +3.82 1.91 +3.83 1.915 +3.84 1.92 +3.85 1.925 +3.86 1.93 +3.87 1.935 +3.88 1.94 +3.89 1.945 +3.9 1.9499999999999997 +3.91 1.955 +3.92 1.9599999999999997 +3.93 1.965 +3.94 1.97 +3.95 1.975 +3.96 1.98 +3.97 1.985 +3.98 1.99 +3.99 1.995 +4.0 2.0 +4.01 2.0100250414697625 +4.02 2.02010033362734 +4.03 2.0302261206108767 +4.04 2.04040265467344 +4.05 2.050630196098499 +4.06 2.060909005169523 +4.07 2.07123934216998 +4.08 2.081621467383338 +4.09 2.092055626503915 +4.1 2.102542060618594 +4.11 2.1130810415242953 +4.12 2.1236728415794506 +4.13 2.134317733142494 +4.14 2.145015988571857 +4.15 2.1557678802259743 +4.16 2.1665736804632765 +4.17 2.1774336616421968 +4.18 2.1883480757652336 +4.19 2.199317136842254 +4.2 2.2103411299215328 +4.21 2.2214203456065267 +4.22 2.2325550745006892 +4.23 2.2437456072074764 +4.24 2.2549922343303406 +4.25 2.266295246472737 +4.26 2.2776549342381207 +4.27 2.2890715882299455 +4.28 2.300545499051667 +4.29 2.3120769573067386 +4.3 2.323666253598615 +4.31 2.335313657991987 +4.32 2.347019339067631 +4.33 2.3587835885299824 +4.34 2.3706067225386542 +4.35 2.382489057253257 +4.36 2.3944309088334017 +4.37 2.4064325934386983 +4.38 2.4184944272287576 +4.39 2.4306167263631906 +4.4 2.44279980700161 +4.41 2.4550439853036226 +4.42 2.467349577428842 +4.43 2.4797168995368777 +4.44 2.492146267787343 +4.45 2.5046379983398452 +4.46 2.517192407353997 +4.47 2.5298098109894083 +4.48 2.5424905070170105 +4.49 2.5552346012827103 +4.5 2.568042377913275 +4.51 2.5809141881657314 +4.52 2.5938503832971085 +4.53 2.6068513145644343 +4.54 2.619917333224734 +4.55 2.633048790535037 +4.56 2.646246037752371 +4.57 2.6595094261337646 +4.58 2.6728393069362437 +4.59 2.6862360314168363 +4.6 2.6996999508325707 +4.61 2.713231416440476 +4.62 2.7268307794975772 +4.63 2.740498391260903 +4.64 2.7542346029874816 +4.65 2.7680397659343416 +4.66 2.7819142313585083 +4.67 2.795858350517011 +4.68 2.809872474666877 +4.69 2.8239569550651353 +4.7 2.83811194357926 +4.71 2.85233754544585 +4.72 2.8666341570171343 +4.73 2.881002176398268 +4.74 2.8954420016944025 +4.75 2.909954031010692 +4.76 2.9245386624522913 +4.77 2.939196294124353 +4.78 2.9539273241320316 +4.79 2.968732150580479 +4.8 2.9836111715748492 +4.81 2.9985647852202963 +4.82 3.013593389621975 +4.83 3.0286973828850363 +4.84 3.043877163114635 +4.85 3.059133128415924 +4.86 3.074465676894059 +4.87 3.0898752066541912 +4.88 3.1053621158014746 +4.89 3.1209268024410632 +4.9 3.1365696646781114 +4.91 3.1522911006177714 +4.92 3.168091508365196 +4.93 3.1839712860255402 +4.94 3.1999308317039588 +4.95 3.2159704686922903 +4.96 3.232090069241931 +4.97 3.248289980212273 +4.98 3.2645706615158128 +4.99 3.280932573065044 +5.0 3.2973761747724644 +5.01 3.31390192655057 +5.02 3.3305102883118582 +5.03 3.3472017199688255 +5.04 3.363976681433966 +5.05 3.3808356326197773 +5.06 3.397779033438756 +5.07 3.4148073438033997 +5.08 3.431921023626201 +5.09 3.4491205328196584 +5.1 3.4664063312962683 +5.11 3.4837788789685287 +5.12 3.5012386357489316 +5.13 3.5187860615499758 +5.14 3.536421616284158 +5.15 3.5541457598639754 +5.16 3.5719589522019217 +5.17 3.5898616532104937 +5.18 3.607854322802189 +5.19 3.6259374208895045 +5.2 3.644111407384934 +5.21 3.6623767422009754 +5.22 3.680733885250124 +5.23 3.699183296444879 +5.24 3.717725069576682 +5.25 3.7363305415419448 +5.26 3.754987432320445 +5.27 3.7737041768170903 +5.28 3.7924892099367904 +5.29 3.811350966584451 +5.3 3.830297881664982 +5.31 3.8493383900832914 +5.32 3.8684809267442897 +5.33 3.887733926552881 +5.34 3.9071058244139762 +5.35 3.9266050552324834 +5.36 3.946240053913313 +5.37 3.9660192553613696 +5.38 3.9859510944815626 +5.39 4.006044006178801 +5.4 4.026306425357996 +5.41 4.04674678692405 +5.42 4.067373525781875 +5.43 4.088195076836379 +5.44 4.109219874992471 +5.45 4.130456355155058 +5.46 4.151912952229049 +5.47 4.173598101119351 +5.48 4.195520236730876 +5.49 4.217687793968527 +5.5 4.240109207737216 diff --git a/test/julia_dde/test_basic_numerical_check_2.txt b/test/julia_dde/test_basic_numerical_check_2.txt new file mode 100644 index 00000000..3cc1ca7b --- /dev/null +++ b/test/julia_dde/test_basic_numerical_check_2.txt @@ -0,0 +1,901 @@ +1.0 1.0 +1.01 1.01 +1.02 1.02 +1.03 1.03 +1.04 1.04 +1.05 1.05 +1.06 1.06 +1.07 1.07 +1.08 1.08 +1.09 1.09 +1.1 1.1 +1.11 1.11 +1.12 1.12 +1.13 1.13 +1.14 1.14 +1.15 1.15 +1.16 1.16 +1.17 1.17 +1.18 1.18 +1.19 1.19 +1.2 1.2 +1.21 1.21 +1.22 1.22 +1.23 1.23 +1.24 1.24 +1.25 1.25 +1.26 1.26 +1.27 1.27 +1.28 1.28 +1.29 1.29 +1.3 1.3 +1.31 1.31 +1.32 1.32 +1.33 1.33 +1.34 1.34 +1.35 1.35 +1.36 1.36 +1.37 1.37 +1.38 1.38 +1.39 1.39 +1.4 1.4 +1.41 1.41 +1.42 1.42 +1.43 1.43 +1.44 1.44 +1.45 1.45 +1.46 1.46 +1.47 1.47 +1.48 1.48 +1.49 1.49 +1.5 1.5 +1.51 1.51 +1.52 1.52 +1.53 1.53 +1.54 1.54 +1.55 1.55 +1.56 1.56 +1.57 1.57 +1.58 1.58 +1.59 1.59 +1.6 1.6 +1.61 1.61 +1.62 1.62 +1.63 1.63 +1.64 1.64 +1.65 1.65 +1.66 1.66 +1.67 1.67 +1.68 1.68 +1.69 1.69 +1.7 1.7 +1.71 1.71 +1.72 1.72 +1.73 1.73 +1.74 1.74 +1.75 1.75 +1.76 1.76 +1.77 1.77 +1.78 1.78 +1.79 1.79 +1.8 1.8 +1.81 1.81 +1.82 1.82 +1.83 1.83 +1.84 1.84 +1.85 1.85 +1.86 1.86 +1.87 1.87 +1.88 1.88 +1.89 1.89 +1.9 1.9 +1.91 1.91 +1.92 1.92 +1.93 1.93 +1.94 1.94 +1.95 1.95 +1.96 1.96 +1.97 1.97 +1.98 1.98 +1.99 1.99 +2.0 2.0 +2.01 2.01 +2.02 2.02 +2.03 2.03 +2.04 2.04 +2.05 2.05 +2.06 2.06 +2.07 2.07 +2.08 2.08 +2.09 2.09 +2.1 2.0999998807417106 +2.11 2.1099990125109187 +2.12 2.119997338303108 +2.13 2.129994899434663 +2.14 2.13999173722197 +2.15 2.1499878929814136 +2.16 2.15998340802938 +2.17 2.1699783236822543 +2.18 2.179972681256422 +2.19 2.1899665220682683 +2.2 2.1999598874341793 +2.21 2.2099528186705397 +2.22 2.2199453570937355 +2.23 2.2299375440201517 +2.24 2.2399294207661744 +2.25 2.2499210286481883 +2.26 2.259912408982579 +2.27 2.2699036030857327 +2.28 2.279894652274034 +2.29 2.2898855978638686 +2.3 2.299876481171622 +2.31 2.30986734351368 +2.32 2.3198582262064273 +2.33 2.32984917056625 +2.34 2.3398402179095323 +2.35 2.3498314095526625 +2.36 2.3598227868120225 +2.37 2.369814391004 +2.38 2.37980626344498 +2.39 2.3897984454513477 +2.4 2.399790978339489 +2.41 2.409783903425789 +2.42 2.4197772620266322 +2.43 2.429771095458406 +2.44 2.439765445037495 +2.45 2.449760352080284 +2.46 2.459755857903159 +2.47 2.469752003822506 +2.48 2.4797488311547093 +2.49 2.4897463812161553 +2.5 2.499744695323229 +2.51 2.5097438147923152 +2.52 2.5197437809398013 +2.53 2.5297446350820705 +2.54 2.53974641853551 +2.55 2.549749172616504 +2.56 2.5597529386414393 +2.57 2.5697577579266997 +2.58 2.579763671788672 +2.59 2.5897707215437404 +2.6 2.599778948508292 +2.61 2.6097883939987105 +2.62 2.6197990993313827 +2.63 2.6298111058226934 +2.64 2.639824454789028 +2.65 2.6498391875467724 +2.66 2.659855345412312 +2.67 2.6698729697020314 +2.68 2.679892101732317 +2.69 2.689912782819554 +2.7 2.6999350542801275 +2.71 2.7099589574304237 +2.72 2.7199845335868273 +2.73 2.7300149666457774 +2.74 2.740076185977242 +2.75 2.7501740836611828 +2.76 2.7603088296354907 +2.77 2.770480593838056 +2.78 2.7806895462067707 +2.79 2.790935856679524 +2.8 2.8012196951942063 +2.81 2.81154123168871 +2.82 2.8219006361009233 +2.83 2.832298078368739 +2.84 2.842733728430047 +2.85 2.853207756222737 +2.86 2.8637203316847 +2.87 2.8742716247538276 +2.88 2.8848618053680095 +2.89 2.8954910434651366 +2.9 2.9061595089830994 +2.91 2.916867371859789 +2.92 2.927614802033095 +2.93 2.9384019694409096 +2.94 2.9492290440211217 +2.95 2.960096195711623 +2.96 2.971003594450303 +2.97 2.981951410175054 +2.98 2.9929398128237654 +2.99 3.0039689723343277 +3.0 3.0150390586446325 +3.01 3.0261502416925694 +3.02 3.0373026914160297 +3.03 3.0484964862986823 +3.04 3.05973087738779 +3.05 3.0710058212414117 +3.06 3.0823215184164074 +3.07 3.0936781694696354 +3.08 3.1050759749579546 +3.09 3.116515135438225 +3.1 3.1279958514673045 +3.11 3.1395183236020525 +3.12 3.1510827523993283 +3.13 3.1626893384159906 +3.14 3.1743382822088986 +3.15 3.1860297843349117 +3.16 3.197764045350888 +3.17 3.209541265813687 +3.18 3.221361646280168 +3.19 3.2332253873071886 +3.2 3.2451326894516104 +3.21 3.2570837532702903 +3.22 3.2690787793200884 +3.23 3.2811179681578624 +3.24 3.2932015203404728 +3.25 3.3053296364247777 +3.26 3.3175025169676364 +3.27 3.329720362525908 +3.28 3.3419833736564515 +3.29 3.354291750916126 +3.3 3.36664569486179 +3.31 3.3790454060503032 +3.32 3.391491085038524 +3.33 3.4039829323833124 +3.34 3.4165211486415257 +3.35 3.4291059343700248 +3.36 3.4417374901256674 +3.37 3.4544160164653133 +3.38 3.4671417139458205 +3.39 3.4799147831240496 +3.4 3.492735424556858 +3.41 3.5056038388011057 +3.42 3.5185202264136515 +3.43 3.5314847879513547 +3.44 3.544497723971073 +3.45 3.557559235029667 +3.46 3.570669497262101 +3.47 3.583827683490499 +3.48 3.597033472871828 +3.49 3.6102870954560555 +3.5 3.623588781293147 +3.51 3.6369387604330705 +3.52 3.6503372629257926 +3.53 3.6637845188212803 +3.54 3.6772807581695015 +3.55 3.6908262110204215 +3.56 3.704421107424008 +3.57 3.7180656774302268 +3.58 3.7317601510890475 +3.59 3.745504758450434 +3.6 3.7592997295643547 +3.61 3.773145294480776 +3.62 3.787041683249666 +3.63 3.80098912592099 +3.64 3.8149878525447165 +3.65 3.8290380931708103 +3.66 3.8431400778492404 +3.67 3.857294036629972 +3.68 3.8715001995629743 +3.69 3.8857587966982114 +3.7 3.900070058085652 +3.71 3.9144342137752624 +3.72 3.9288514938170107 +3.73 3.9433221282608617 +3.74 3.9578463471567837 +3.75 3.972424380554743 +3.76 3.987056458504707 +3.77 4.001742811056642 +3.78 4.016483668260516 +3.79 4.031279260166296 +3.8 4.046129816823948 +3.81 4.0610355682834385 +3.82 4.075996744594735 +3.83 4.091013575807805 +3.84 4.1060862919726135 +3.85 4.12121512313913 +3.86 4.1364002993573195 +3.87 4.151642050677149 +3.88 4.166940607148587 +3.89 4.182295790533781 +3.9 4.197706378888936 +3.91 4.213172511990118 +3.92 4.228694463093983 +3.93 4.24427250545719 +3.94 4.259906912336394 +3.95 4.275597956988256 +3.96 4.29134591266943 +3.97 4.307151052636578 +3.98 4.323013650146354 +3.99 4.338933978455416 +4.0 4.354912310820422 +4.01 4.37094892049803 +4.02 4.387044080744897 +4.03 4.403198064817683 +4.04 4.419411145973042 +4.05 4.435683597467634 +4.06 4.452015692558114 +4.07 4.468407704501144 +4.08 4.4848599065533765 +4.09 4.501372571971471 +4.1 4.517945974012085 +4.11 4.53458038593188 +4.12 4.551276080987509 +4.13 4.56803333243563 +4.14 4.5848524135329 +4.15 4.601733597535981 +4.16 4.618677157701525 +4.17 4.635683367286193 +4.18 4.652752499546642 +4.19 4.669884827739529 +4.2 4.687080625121512 +4.21 4.704340164949247 +4.22 4.721663720479394 +4.23 4.7390515649686105 +4.24 4.756503971673553 +4.25 4.774021213850878 +4.26 4.791603564757244 +4.27 4.809251297649309 +4.28 4.826964685783732 +4.29 4.844744002417169 +4.3 4.862589520806277 +4.31 4.8805015142077135 +4.32 4.898480255878139 +4.33 4.916526019074206 +4.34 4.9346390770525765 +4.35 4.952819703069906 +4.36 4.971068170382854 +4.37 4.9893847522480765 +4.38 5.007769510122513 +4.39 5.026220866411237 +4.4 5.044738705633241 +4.41 5.0633233533753454 +4.42 5.08197513522438 +4.43 5.100694376767169 +4.44 5.119481403590542 +4.45 5.138336541281321 +4.46 5.157260115426332 +4.47 5.1762524516124016 +4.48 5.19531387542636 +4.49 5.214444712455029 +4.5 5.233645288285233 +4.51 5.252915928503802 +4.52 5.272256958697559 +4.53 5.2916687044533335 +4.54 5.311151491357949 +4.55 5.330705644998231 +4.56 5.350331490961006 +4.57 5.370029354833103 +4.58 5.389799562201344 +4.59 5.409642438652556 +4.6 5.429558309773565 +4.61 5.4495475011512005 +4.62 5.4696103383722825 +4.63 5.489747147023642 +4.64 5.509958252692101 +4.65 5.530243980964491 +4.66 5.550604657427632 +4.67 5.571040607668354 +4.68 5.5915521572734805 +4.69 5.612139631829841 +4.7 5.632803356924257 +4.71 5.6535436581435565 +4.72 5.674360861074567 +4.73 5.695255291304114 +4.74 5.716227274419021 +4.75 5.737277136006116 +4.76 5.758405201652225 +4.77 5.779611796944175 +4.78 5.80089724746879 +4.79 5.822261878812898 +4.8 5.843706016563322 +4.81 5.865229986306891 +4.82 5.886834113630431 +4.83 5.908518724120764 +4.84 5.930284143364721 +4.85 5.952130696949125 +4.86 5.974058710460806 +4.87 5.996068509486584 +4.88 6.018160419613288 +4.89 6.040334600260398 +4.9 6.0625891346687535 +4.91 6.084923695666421 +4.92 6.107338677599926 +4.93 6.129834474815789 +4.94 6.152411481660532 +4.95 6.175070092480674 +4.96 6.197810701622736 +4.97 6.220633703433242 +4.98 6.243539492258711 +4.99 6.266528462445665 +5.0 6.289601008340625 +5.01 6.312757524290112 +5.02 6.3359984046406455 +5.03 6.359324043738752 +5.04 6.382734835930947 +5.05 6.406231175563754 +5.06 6.429813456983694 +5.07 6.453482074537289 +5.08 6.477237422571058 +5.09 6.501079895431524 +5.1 6.525009887465207 +5.11 6.549027793018631 +5.12 6.573134006438314 +5.13 6.597328922070776 +5.14 6.621612934262543 +5.15 6.6459864373601345 +5.16 6.670449825710068 +5.17 6.695003493658868 +5.18 6.719647835553055 +5.19 6.744383245739153 +5.2 6.769210118563676 +5.21 6.794128848373153 +5.22 6.8191398295141 +5.23 6.844243456333042 +5.24 6.869440123176496 +5.25 6.894730224390985 +5.26 6.920114154323032 +5.27 6.945592307319155 +5.28 6.971165077725879 +5.29 6.996832859889722 +5.3 7.022596048157205 +5.31 7.048455036874851 +5.32 7.074410220389184 +5.33 7.100461993046717 +5.34 7.126610749193977 +5.35 7.152856883177484 +5.36 7.179200789343762 +5.37 7.205642862039326 +5.38 7.232183495610702 +5.39 7.258823084404409 +5.4 7.28556202276697 +5.41 7.312400705044905 +5.42 7.339339525584734 +5.43 7.36637887873298 +5.44 7.393518738450745 +5.45 7.4207566120939985 +5.46 7.44809241728296 +5.47 7.475526634517007 +5.48 7.503059744295525 +5.49 7.530692227117892 +5.5 7.558424563483486 +5.51 7.5862572338916925 +5.52 7.6141907188418925 +5.53 7.642225498833466 +5.54 7.670362054365791 +5.55 7.698600865938251 +5.56 7.726942414050225 +5.57 7.755387179201102 +5.58 7.783935641890251 +5.59 7.81258828261706 +5.6 7.841345581880909 +5.61 7.870208020181179 +5.62 7.89917607801725 +5.63 7.928250235888502 +5.64 7.957430974294317 +5.65 7.986718773734078 +5.66 8.016114114707165 +5.67 8.045617477712955 +5.68 8.075229343250834 +5.69 8.104950191820182 +5.7 8.134780503920377 +5.71 8.1647207600508 +5.72 8.194771440710834 +5.73 8.224933026399864 +5.74 8.255205997617265 +5.75 8.285590834862417 +5.76 8.316088018634703 +5.77 8.346698029433508 +5.78 8.37742134775821 +5.79 8.408258454108186 +5.8 8.43920982898282 +5.81 8.470275952881495 +5.82 8.501457306303594 +5.83 8.532754369748488 +5.84 8.564167623715566 +5.85 8.595697548704207 +5.86 8.627344625213793 +5.87 8.659109333743702 +5.88 8.690992154793316 +5.89 8.72299356886202 +5.9 8.755114056449191 +5.91 8.787354098054207 +5.92 8.819714174176454 +5.93 8.852194765315314 +5.94 8.884796351970165 +5.95 8.917519414640386 +5.96 8.95036443382536 +5.97 8.98333189002447 +5.98 9.016422263737097 +5.99 9.049636035462617 +6.0 9.082973685700413 +6.01 9.116434969439744 +6.02 9.1500167512682 +6.03 9.183719112838643 +6.04 9.21754264736258 +6.05 9.251487948051537 +6.06 9.285555608117033 +6.07 9.319746220770588 +6.08 9.35406037922372 +6.09 9.388498676687947 +6.1 9.423061706374792 +6.11 9.457750061495775 +6.12 9.492564335262406 +6.13 9.527505120886216 +6.14 9.562573011578714 +6.15 9.597768600551431 +6.16 9.633092481015876 +6.17 9.668545246183573 +6.18 9.70412748926604 +6.19 9.7398398034748 +6.2 9.775682782021368 +6.21 9.811657018117263 +6.22 9.847763104974005 +6.23 9.88400163580312 +6.24 9.920373203816117 +6.25 9.956878402224518 +6.26 9.993517824239847 +6.27 10.03029206307362 +6.28 10.067201711937361 +6.29 10.104247364042582 +6.3 10.141429612600804 +6.31 10.178749050823551 +6.32 10.21620627192234 +6.33 10.253801869108687 +6.34 10.291536435594114 +6.35 10.32941056459014 +6.36 10.367424849308287 +6.37 10.405579882960073 +6.38 10.443876258757014 +6.39 10.48231456991063 +6.4 10.520895409632447 +6.41 10.559619371133975 +6.42 10.598487047626739 +6.43 10.637499032322257 +6.44 10.67665591843205 +6.45 10.715958299167633 +6.46 10.75540676774053 +6.47 10.795001917362256 +6.48 10.834744341244338 +6.49 10.874634632598285 +6.5 10.914673384635622 +6.51 10.954861190567868 +6.52 10.99519864360654 +6.53 11.035686336963167 +6.54 11.076324863849255 +6.55 11.11711481747633 +6.56 11.158056791055907 +6.57 11.199151377799515 +6.58 11.240399170918664 +6.59 11.281800763624878 +6.6 11.323356566310819 +6.61 11.365063021057098 +6.62 11.406919107387543 +6.63 11.448925564848842 +6.64 11.491083132987699 +6.65 11.533392551350804 +6.66 11.575854559484844 +6.67 11.618469896936515 +6.68 11.661239303252511 +6.69 11.704163517979527 +6.7 11.747243280664248 +6.71 11.790479330853373 +6.72 11.833872408093592 +6.73 11.877423251931605 +6.74 11.921132601914092 +6.75 11.965001197587757 +6.76 12.009029778499285 +6.77 12.053219084195373 +6.78 12.097569854222716 +6.79 12.142082828128004 +6.8 12.186758745457928 +6.81 12.231598345759183 +6.82 12.276602368578462 +6.83 12.321771553462456 +6.84 12.367106639957859 +6.85 12.412608367611364 +6.86 12.45827747596967 +6.87 12.504114704579454 +6.88 12.550120792987423 +6.89 12.596296480740264 +6.9 12.642642507384673 +6.91 12.68915961246734 +6.92 12.735848535534956 +6.93 12.782710016134217 +6.94 12.82974479381182 +6.95 12.876953608114448 +6.96 12.924337198588798 +6.97 12.971896304781565 +6.98 13.019631666239444 +6.99 13.067544022509122 +7.0 13.115634113137293 +7.01 13.16390267767065 +7.02 13.212350455655887 +7.03 13.2609781866397 +7.04 13.309786610168775 +7.05 13.358776465789807 +7.06 13.40794849304949 +7.07 13.457303431494523 +7.08 13.506842020671588 +7.09 13.55656500012738 +7.1 13.606473109408597 +7.11 13.65656708806193 +7.12 13.706847675634068 +7.13 13.757315611671709 +7.14 13.80797163572154 +7.15 13.858816487330262 +7.16 13.90985090604456 +7.17 13.961075631411129 +7.18 14.012491402976663 +7.19 14.06409896028786 +7.2 14.115899042891401 +7.21 14.167891946795114 +7.22 14.220071999102633 +7.23 14.272438056698665 +7.24 14.324991146682857 +7.25 14.377732296154873 +7.26 14.430662532214372 +7.27 14.483782881961005 +7.28 14.537094372494439 +7.29 14.590598030914316 +7.3 14.644294884320306 +7.31 14.698185959812058 +7.32 14.752272284489239 +7.33 14.806554885451492 +7.34 14.861034789798483 +7.35 14.915713024629863 +7.36 14.9705906170453 +7.37 15.025668594144438 +7.38 15.080947983026942 +7.39 15.136429810792466 +7.4 15.19211510454067 +7.41 15.248004891371208 +7.42 15.304100198383734 +7.43 15.360402052677909 +7.44 15.416911481353397 +7.45 15.473629511509843 +7.46 15.530557170246906 +7.47 15.587695484664247 +7.48 15.645045481861525 +7.49 15.70260818893839 +7.5 15.7603846329945 +7.51 15.818375841129518 +7.52 15.876582840443094 +7.53 15.935006658034894 +7.54 15.993648321004562 +7.55 16.052508856451766 +7.56 16.111589291476157 +7.57 16.1708906531774 +7.58 16.23041396865514 +7.59 16.29016026500904 +7.6 16.350130569338756 +7.61 16.410325908743953 +7.62 16.470747310324278 +7.63 16.531395801179386 +7.64 16.59227240840894 +7.65 16.653378159112602 +7.66 16.714714080390017 +7.67 16.776281199340847 +7.68 16.838080543064752 +7.69 16.900113138661393 +7.7 16.962380013230412 +7.71 17.024882193871473 +7.72 17.087620707684238 +7.73 17.150596581768365 +7.74 17.2138108432235 +7.75 17.277264519149305 +7.76 17.340958636645443 +7.77 17.404894222811564 +7.78 17.469072304747332 +7.79 17.53349390955239 +7.8 17.59816006432641 +7.81 17.663071796169046 +7.82 17.72823013217995 +7.83 17.793636099458777 +7.84 17.85928695670301 +7.85 17.925178028875727 +7.86 17.99131065735145 +7.87 18.05768625685671 +7.88 18.12430624211806 +7.89 18.191172027862045 +7.9 18.258285028815216 +7.91 18.325646659704105 +7.92 18.393258335255265 +7.93 18.461121470195238 +7.94 18.529237479250586 +7.95 18.59760777714783 +7.96 18.66623377861352 +7.97 18.735116898374212 +7.98 18.804258551156448 +7.99 18.873660151686764 +8.0 18.943323114691715 +8.01 19.01324885489784 +8.02 19.083438787031685 +8.03 19.1538943258198 +8.04 19.224616885988723 +8.05 19.29560788226502 +8.06 19.366868729375206 +8.07 19.43840084204584 +8.08 19.510205635003466 +8.09 19.58228452297463 +8.1 19.654638920685876 +8.11 19.72727024286375 +8.12 19.800179904234795 +8.13 19.873369319525576 +8.14 19.946839903462607 +8.15 20.020593070772442 +8.16 20.09463023618164 +8.17 20.168952814416727 +8.18 20.24356222020426 +8.19 20.318459868270782 +8.2 20.393647173342842 +8.21 20.469125550146995 +8.22 20.544896413409756 +8.23 20.620961177857687 +8.24 20.697321258217332 +8.25 20.773978069215243 +8.26 20.850933025577955 +8.27 20.928187542032017 +8.28 21.005743033303975 +8.29 21.083600914120375 +8.3 21.16176259920777 +8.31 21.24022950329269 +8.32 21.319003041101677 +8.33 21.39808462736129 +8.34 21.47747567679807 +8.35 21.55717760413856 +8.36 21.637191824109305 +8.37 21.717519751436853 +8.38 21.798162800847763 +8.39 21.87912238706855 +8.4 21.960399924825776 +8.41 22.04199682884598 +8.42 22.123914513855713 +8.43 22.20615439458152 +8.44 22.288717885749946 +8.45 22.371606402087533 +8.46 22.45481729706235 +8.47 22.53834326234479 +8.48 22.622185915562632 +8.49 22.70634720663077 +8.5 22.790829085464104 +8.51 22.87563350197752 +8.52 22.960762406085927 +8.53 23.046217747704212 +8.54 23.13200147674727 +8.55 23.21811554313002 +8.56 23.304561896767314 +8.57 23.391342487574068 +8.58 23.478459265465183 +8.59 23.56591418035555 +8.6 23.65370918216006 +8.61 23.74184622079361 +8.62 23.830327246171112 +8.63 23.91915420820745 +8.64 24.008329056817512 +8.65 24.097853741916186 +8.66 24.187730213418394 +8.67 24.27796042123901 +8.68 24.368546315292935 +8.69 24.45948984549507 +8.7 24.550792961760305 +8.71 24.64245761400355 +8.72 24.734485752139676 +8.73 24.826879326083592 +8.74 24.919640285750187 +8.75 25.01277058105436 +8.76 25.10627216191101 +8.77 25.200146978235033 +8.78 25.294396979941318 +8.79 25.389024116944764 +8.8 25.48403033916028 +8.81 25.579417596502733 +8.82 25.675187838887034 +8.83 25.771343016228077 +8.84 25.867885078440757 +8.85 25.96481597543997 +8.86 26.06213765714061 +8.87 26.159852073457575 +8.88 26.25796117430578 +8.89 26.356466909600076 +8.9 26.455371229255388 +8.91 26.554676083186607 +8.92 26.654383421308623 +8.93 26.754495193536336 +8.94 26.855013349784645 +8.95 26.955939839968437 +8.96 27.05727661400263 +8.97 27.159025621802087 +8.98 27.261188813281716 +8.99 27.36376813835641 +9.0 27.466765546941076 +9.01 27.5701829889506 +9.02 27.674022414299873 +9.03 27.778285772903804 +9.04 27.88297501467728 +9.05 27.988092089535215 +9.06 28.09363894739247 +9.07 28.199617538163956 +9.08 28.306025762051267 +9.09 28.41285297194165 +9.1 28.52010091033562 +9.11 28.627772306134688 +9.12 28.73586988824035 +9.13 28.84439638555414 +9.14 28.953354526977527 +9.15 29.062747041412024 +9.16 29.17257665775915 +9.17 29.28284610492041 +9.18 29.3935581117973 +9.19 29.504715407291336 +9.2 29.616320720304017 +9.21 29.728376779736873 +9.22 29.840886314491367 +9.23 29.95385205346903 +9.24 30.067276725571368 +9.25 30.18116305969988 +9.26 30.295513784756075 +9.27 30.41033162964146 +9.28 30.52561932325754 +9.29 30.641379594505825 +9.3 30.757615172287835 +9.31 30.874328785505043 +9.32 30.991523163058968 +9.33 31.109201033851114 +9.34 31.227365126782992 +9.35 31.346018170756114 +9.36 31.465162894671977 +9.37 31.58480202743209 +9.38 31.704938297937975 +9.39 31.825574435091102 +9.4 31.946713167793003 +9.41 32.06835722494517 +9.42 32.190509335449114 +9.43 32.31317222820635 +9.44 32.436348632118374 +9.45 32.56004127608669 +9.46 32.68425288901284 +9.47 32.80898619979828 +9.48 32.93424393734452 +9.49 33.06002883055309 +9.5 33.18634360832549 +9.51 33.31319099956321 +9.52 33.44057373316778 +9.53 33.56849453804069 +9.54 33.696956143083455 +9.55 33.8259612771976 +9.56 33.95551266928458 +9.57 34.08561304824593 +9.58 34.216265142983154 +9.59 34.34747168239776 +9.6 34.47923539539126 +9.61 34.611559010865136 +9.62 34.744445257720926 +9.63 34.87789686486013 +9.64 35.011916561184236 +9.65 35.14650707559475 +9.66 35.28167113699318 +9.67 35.41741147428105 +9.68 35.55373081635985 +9.69 35.69063163117055 +9.7 35.82810999919812 +9.71 35.96616622778142 +9.72 36.10480369622355 +9.73 36.24402578382771 +9.74 36.38383586989705 +9.75 36.524237333734746 +9.76 36.66523355464397 +9.77 36.80682791192787 +9.78 36.94902378488961 +9.79 37.09182455283237 +9.8 37.235233595059334 +9.81 37.37925429087361 +9.82 37.523890019578396 +9.83 37.66914416047685 +9.84 37.81502009287214 +9.85 37.96152119606743 +9.86 38.10865084936588 +9.87 38.25641243207066 +9.88 38.40480932348496 +9.89 38.55384490291189 +9.9 38.70352254965464 +9.91 38.85384564301639 +9.92 39.00481756230029 +9.93 39.156441686809494 +9.94 39.308721395847186 +9.95 39.461660068716526 +9.96 39.6152610847207 +9.97 39.769527823162825 +9.98 39.92446366334608 +9.99 40.08007198457365 +10.0 40.23635616614868 diff --git a/test/test_delays.py b/test/test_delays.py new file mode 100644 index 00000000..2f912886 --- /dev/null +++ b/test/test_delays.py @@ -0,0 +1,1110 @@ +import jax.lax as lax +import jax.numpy as jnp +import jax.random as jrandom +import pytest + +import diffrax +from diffrax._delays import Delays + + +def open_process_file(path): + ts, ys = [], [] + with open(path, "r", encoding="utf-8") as infile: + for line in infile: + data = line.split() + ts.append(float(data[0])), ys.append(float(data[1])) + return jnp.array(ts), jnp.array(ys) + + +def test_dde_solver_with_ode(): + # testing that dde solver solves ode + # when history not specific + key = jrandom.PRNGKey(5678) + akey, ykey = jrandom.split(key, 2) + + A = jrandom.normal(akey, (10, 10), dtype=jnp.float64) * 0.5 + + def dde_f(t, y, args, history): + return A @ y + + def ode_f(t, y, args): + return A @ y + + dde_term = diffrax.ODETerm(dde_f) + ode_term = diffrax.ODETerm(ode_f) + t0 = 0 + t1 = 4 + ts = jnp.linspace(t0, t1, int(10 * (t1 - t0))) + y0 = jrandom.normal(ykey, (10,), dtype=jnp.float64) + delays = diffrax.Delays( + delays=[lambda t, y, args: 0.2], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=100, + recurrent_checking=True, + rtol=10e-3, + atol=10e-6, + ) + + dt0 = 0.1 + dde_sol = diffrax.diffeqsolve( + dde_term, + diffrax.Dopri5(), + t0, + t1, + dt0, + y0=lambda t: y0, + delays=delays, + saveat=diffrax.SaveAt(ts=ts, dense=True), + ) + ode_sol = diffrax.diffeqsolve( + ode_term, + diffrax.Dopri5(), + t0, + t1, + dt0, + y0, + saveat=diffrax.SaveAt(ts=ts, dense=True), + ) + + error = jnp.mean(jnp.abs(dde_sol.ys - ode_sol.ys)) + assert error < 10**-5 + + +def test_jump_ts_dde_solver(): + # test jump ts with dde solver + # when t=2.0 the vf changes + + key = jrandom.PRNGKey(5678) + + def vf(t, y, args, history): + sign = jnp.where(t < 2, 1, -1) + return sign * history[0] + + def first_part_vf(t, y, args, history): + return history[0] + + def second_part_vf(t, y, args, history): + return -history[0] + + t0, t1 = 0.0, 4.0 + dt0 = 0.1 + ts_first = jnp.linspace(0, 2.0, 20) + ts_second = jnp.linspace(2.0, 4.0, 20) + ts = jnp.concatenate([ts_first, ts_second[1:]]) + y0 = jrandom.normal(key, (1,), dtype=jnp.float64) + delays = diffrax.Delays( + delays=[lambda t, y, args: 1.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=10, + recurrent_checking=False, + rtol=10e-3, + atol=10e-6, + ) + + delays2 = diffrax.Delays( + delays=[lambda t, y, args: 1.0], + initial_discontinuities=jnp.array([2.0]), + max_discontinuities=10, + recurrent_checking=False, + rtol=10e-3, + atol=10e-6, + ) + + first_part_dde = diffrax.diffeqsolve( + diffrax.ODETerm(first_part_vf), + diffrax.Dopri5(), + t0, + ts_first[-1], + dt0, + y0=lambda t: y0, + delays=delays, + saveat=diffrax.SaveAt(ts=ts_first, dense=True), + ) + second_part_dde = diffrax.diffeqsolve( + diffrax.ODETerm(second_part_vf), + diffrax.Dopri5(), + ts_first[-1], + t1, + dt0, + y0=lambda t: first_part_dde.interpolation.evaluate(t), + delays=delays2, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-3), + saveat=diffrax.SaveAt(ts=ts_second, dense=True), + ) + complete_dde = diffrax.diffeqsolve( + diffrax.ODETerm(vf), + diffrax.Dopri5(), + t0, + t1, + dt0, + y0=lambda t: y0, + delays=delays, + stepsize_controller=diffrax.PIDController( + rtol=1e-9, atol=1e-6, jump_ts=jnp.array([2.0]) + ), + saveat=diffrax.SaveAt(ts=ts, dense=True), + ) + + error = jnp.mean( + jnp.abs( + complete_dde.ys + - jnp.concatenate([first_part_dde.ys, second_part_dde.ys[1:]]) + ) + ) + assert error < 1**-5 + + +def test_smooth_dde(): + # testing a smooth dde with no initial discontinuities + # y' = y(t-1), phi = t + 1 + # for t in [0,1], y(t) = t**2/2 + 1 + # for t in [1,2], y(t) = (t-1)**3/(2*3) + t + 1/2 + # we compare the values at t=1,2 with their analytical + # solution + def dde_f(t, y, args, history): + return history[0] + + dde_term = diffrax.ODETerm(dde_f) + t0, t1 = 0.0, 2.0 + ts = jnp.linspace(t0, t1, 100) + delays = diffrax.Delays( + delays=[lambda t, y, args: 1.0], + initial_discontinuities=None, + max_discontinuities=10, + recurrent_checking=True, + rtol=10e-3, + atol=10e-6, + ) + + dt0 = 0.1 + dde_sol = diffrax.diffeqsolve( + dde_term, + diffrax.Dopri5(), + t0, + t1, + dt0, + y0=lambda t: t + 1, + delays=delays, + saveat=diffrax.SaveAt(ts=ts, dense=True), + ) + + error1 = jnp.mean(jnp.abs(dde_sol.ys[50] - 3 / 2)) + error2 = jnp.mean(jnp.abs(dde_sol.ys[100] - 8 / 3)) + + assert error1 < 10**-1 + assert error2 < 10**-3 + + +def _test_exceed_max_discontinuities(): + # we recurrent_checking to True and + # integrate a DDE with a delay equal + # to 1 and hence from t > 10.0 we + # should have RunTimeError picked + # up + def dde_f(t, y, args, history): + return -history[0] + + t0, t1 = 0.0, 12.0 + ts = jnp.linspace(t0, t1, 120) + delays = diffrax.Delays( + delays=[lambda t, y, args: 1.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=10, + recurrent_checking=True, + rtol=10e-3, + atol=10e-6, + ) + + dt0 = 0.1 + + return diffrax.diffeqsolve( + diffrax.ODETerm(dde_f), + diffrax.Dopri5(), + t0, + t1, + dt0, + y0=lambda t: 1.0, + delays=delays, + saveat=diffrax.SaveAt(ts=ts, dense=True), + ) + + +def test_exceed_max_discontinuities(): + with pytest.raises(RuntimeError): + _test_exceed_max_discontinuities() + + +def test_only_explicit_stepping(): + # we check that we only do explicit + # stepping here by putting + # dt = 0.9 < delays + def dde_f(t, y, args, history): + return -history[0] + + t0, t1 = 0.0, 12.0 + ts = jnp.linspace(t0, t1, 120) + delays = diffrax.Delays( + delays=[lambda t, y, args: 1.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=10, + recurrent_checking=False, + rtol=10e-3, + atol=10e-6, + ) + + dt0 = 0.1 + sol = diffrax.diffeqsolve( + diffrax.ODETerm(dde_f), + diffrax.Bosh3(), + t0=ts[0], + t1=ts[-1], + dt0=dt0, + y0=lambda t: 1.0, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9, dtmax=0.9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + ) + + assert sol.stats["num_dde_implicit_step"] == 0 + assert sol.stats["num_dde_explicit_step"] > 0 + + +def test_hit_explicit_and_implicit_stepping(): + # we check that we only do implicit + # stepping here by putting + # dt=1.1 > delays + def dde_f(t, y, args, history): + return -history[0] + + t0, t1 = 0.0, 25.0 + ts = jnp.linspace(t0, t1, 120) + delays = diffrax.Delays( + delays=[lambda t, y, args: 1.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=10, + recurrent_checking=False, + rtol=10e-3, + atol=10e-6, + ) + + sol = diffrax.diffeqsolve( + diffrax.ODETerm(dde_f), + diffrax.Dopri5(), + t0=ts[0], + t1=ts[-1], + dt0=0.1, + y0=lambda t: 1.0, + stepsize_controller=diffrax.PIDController(rtol=1e-3, atol=1e-6), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + ) + assert sol.stats["num_dde_implicit_step"] > 0 + assert sol.stats["num_dde_explicit_step"] > 0 + + +def test_basic_check_1(): + def vector_field(t, y, args, *, history): + return y * (1 - history[0]) + + y0_history = lambda t: 1.2 + + delays = Delays( + delays=[lambda t, y, args: 1.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=100, + recurrent_checking=False, + rtol=10e-3, + atol=10e-6, + ) + made_jump = delays.initial_discontinuities is None + t0, t1 = 0.0, 50.0 + ts = jnp.linspace(t0, t1, 1001) + sol = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Tsit5(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + made_jump=made_jump, + ) + + delays = Delays( + delays=[lambda t, y, args: 1.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=100, + recurrent_checking=True, + rtol=10e-3, + atol=10e-6, + ) + sol2 = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Tsit5(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + made_jump=made_jump, + ) + + _, juliays = open_process_file("test/julia_dde/test_basic_check_1.txt") + error1, error2, error3 = ( + jnp.mean(jnp.abs(juliays - sol.ys)), + jnp.mean(jnp.abs(juliays - sol2.ys)), + jnp.mean(jnp.abs(sol.ys - sol2.ys)), + ) + + assert error1 < 1e-4 + assert error2 < 1e-4 + assert error3 < 1e-5 + + +def test_basic_check_2(): + def vector_field(t, y, args, *, history): + return y * (1 - history[0]) + + y0_history = lambda t: 1.2 + + delays = Delays( + delays=[lambda t, y, args: 2.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=100, + recurrent_checking=False, + rtol=10e-3, + atol=10e-6, + ) + made_jump = delays.initial_discontinuities is None + t0, t1 = 0.0, 50.0 + ts = jnp.linspace(t0, t1, 1001) + sol = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Bosh3(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + made_jump=made_jump, + ) + + delays = Delays( + delays=[lambda t, y, args: 2.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=100, + recurrent_checking=True, + rtol=10e-3, + atol=10e-6, + ) + sol2 = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Bosh3(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + made_jump=made_jump, + ) + + _, juliays = open_process_file("test/julia_dde/test_basic_check_2.txt") + error1, error2, error3 = ( + jnp.mean(jnp.abs(juliays - sol.ys)), + jnp.mean(jnp.abs(juliays - sol2.ys)), + jnp.mean(jnp.abs(sol.ys - sol2.ys)), + ) + + assert error1 < 1e-2 + assert error2 < 1e-2 + assert error3 < 1e-5 + + +def test_basic_check_3(): + # same test as test_basic_check_2 but we + # have a larger delay =3 + def vector_field(t, y, args, *, history): + return y * (1 - history[0]) + + y0_history = lambda t: 1.2 + + delays = Delays( + delays=[lambda t, y, args: 3.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=100, + recurrent_checking=False, + rtol=10e-3, + atol=10e-6, + ) + made_jump = delays.initial_discontinuities is None + t0, t1 = 0.0, 50.0 + ts = jnp.linspace(t0, t1, 1001) + sol = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Bosh3(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + made_jump=made_jump, + ) + + delays = Delays( + delays=[lambda t, y, args: 3.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=100, + recurrent_checking=True, + rtol=10e-3, + atol=10e-6, + ) + sol2 = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Bosh3(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + made_jump=made_jump, + ) + + _, juliays = open_process_file("test/julia_dde/test_basic_check_3.txt") + error1, error2, error3 = ( + jnp.mean(jnp.abs(juliays - sol.ys)), + jnp.mean(jnp.abs(juliays - sol2.ys)), + jnp.mean(jnp.abs(sol.ys - sol2.ys)), + ) + + assert error1 < 0.15 + assert error2 < 0.15 + assert error3 < 1e-5 + + +def test_basic_check_4(): + # same experiment as test_basic_check_3 + # but solver is Tsit5 + def vector_field(t, y, args, *, history): + return y * (1 - history[0]) + + y0_history = lambda t: 1.2 + + delays = Delays( + delays=[lambda t, y, args: 3.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=100, + recurrent_checking=False, + rtol=10e-3, + atol=10e-6, + ) + made_jump = delays.initial_discontinuities is None + t0, t1 = 0.0, 50.0 + ts = jnp.linspace(t0, t1, 1001) + sol = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Tsit5(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + made_jump=made_jump, + ) + + delays = Delays( + delays=[lambda t, y, args: 3.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=100, + recurrent_checking=True, + rtol=10e-3, + atol=10e-6, + ) + sol2 = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Tsit5(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + made_jump=made_jump, + ) + + _, juliays = open_process_file("test/julia_dde/test_basic_check_4.txt") + error1, error2, error3 = ( + jnp.mean(jnp.abs(juliays - sol.ys)), + jnp.mean(jnp.abs(juliays - sol2.ys)), + jnp.mean(jnp.abs(sol.ys - sol2.ys)), + ) + + assert error1 < 1e-2 + assert error2 < 1e-2 + assert error3 < 1e-5 + + +def test_basic_check_5(): + # same test as test_basic_check_3 but we + # have a larger delay =4 + def vector_field(t, y, args, *, history): + return y * (1 - history[0]) + + y0_history = lambda t: 1.2 + + delays = Delays( + delays=[lambda t, y, args: 4.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=10, + recurrent_checking=False, + rtol=10e-3, + atol=10e-6, + ) + made_jump = delays.initial_discontinuities is None + t0, t1 = 0.0, 50.0 + ts = jnp.linspace(t0, t1, 1001) + sol = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Bosh3(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + made_jump=made_jump, + ) + + delays = Delays( + delays=[lambda t, y, args: 4.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=100, + recurrent_checking=True, + rtol=10e-3, + atol=10e-6, + ) + sol2 = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Bosh3(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + made_jump=made_jump, + ) + + _, juliays = open_process_file("test/julia_dde/test_basic_check_5.txt") + error1, error2, error3 = ( + jnp.mean(jnp.abs(juliays - sol.ys)), + jnp.mean(jnp.abs(juliays - sol2.ys)), + jnp.mean(jnp.abs(sol.ys - sol2.ys)), + ) + + assert error1 < 0.2 + assert error2 < 0.2 + assert error3 < 1e-5 + + +def test_basic_check_6(): + # same experiment as test_basic_check_5 + # but solver is Tsit5 + def vector_field(t, y, args, *, history): + return y * (1 - history[0]) + + y0_history = lambda t: 1.2 + + delays = Delays( + delays=[lambda t, y, args: 4.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=100, + recurrent_checking=False, + rtol=10e-3, + atol=10e-6, + ) + made_jump = delays.initial_discontinuities is None + t0, t1 = 0.0, 50.0 + ts = jnp.linspace(t0, t1, 1001) + sol = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Tsit5(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + made_jump=made_jump, + ) + + delays = Delays( + delays=[lambda t, y, args: 4.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=100, + recurrent_checking=True, + rtol=10e-3, + atol=10e-6, + ) + sol2 = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Tsit5(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + made_jump=made_jump, + ) + + _, juliays = open_process_file("test/julia_dde/test_basic_check_6.txt") + error1, error2, error3 = ( + jnp.mean(jnp.abs(juliays - sol.ys)), + jnp.mean(jnp.abs(juliays - sol2.ys)), + jnp.mean(jnp.abs(sol.ys - sol2.ys)), + ) + + assert error1 < 1e-2 + assert error2 < 1e-2 + assert error3 < 1e-5 + + +def test_basic_check_7(): + # same experiment as test_basic_check_7 + # but solver is implicit + def vector_field(t, y, args, *, history): + return y * (1 - history[0]) + + y0_history = lambda t: 1.2 + + delays = Delays( + delays=[lambda t, y, args: 4.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=100, + recurrent_checking=False, + rtol=10e-3, + atol=10e-6, + ) + made_jump = delays.initial_discontinuities is None + t0, t1 = 0.0, 50.0 + ts = jnp.linspace(t0, t1, 1001) + sol = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Kvaerno5(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + made_jump=made_jump, + ) + + delays = Delays( + delays=[lambda t, y, args: 4.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=100, + recurrent_checking=True, + rtol=10e-3, + atol=10e-6, + ) + sol2 = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Kvaerno5(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + made_jump=made_jump, + ) + + _, juliays = open_process_file("test/julia_dde/test_basic_check_7.txt") + error1, error2, error3 = ( + jnp.mean(jnp.abs(juliays - sol.ys)), + jnp.mean(jnp.abs(juliays - sol2.ys)), + jnp.mean(jnp.abs(sol.ys - sol2.ys)), + ) + + assert error1 < 1e-1 + assert error2 < 1e-1 + assert error3 < 1e-2 + + +def test_basic_check_8(): + # new system with 2 delays + + def vector_field(t, y, args, *, history): + return -history[0] - history[1] + + y0_history = lambda t: 1.2 + + delays = Delays( + delays=[lambda t, y, args: 1 / 5, lambda t, y, args: 1 / 3], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=100, + recurrent_checking=False, + rtol=10e-3, + atol=10e-6, + ) + made_jump = delays.initial_discontinuities is None + t0, t1 = 0.0, 10.0 + ts = jnp.linspace(t0, t1, 101) + sol = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Tsit5(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + made_jump=made_jump, + ) + + delays = Delays( + delays=[lambda t, y, args: 1 / 5, lambda t, y, args: 1 / 3], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=1000, + recurrent_checking=True, + rtol=10e-3, + atol=10e-6, + ) + sol2 = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Tsit5(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + made_jump=made_jump, + ) + + _, juliays = open_process_file("test/julia_dde/test_basic_check_8.txt") + error1, error2, error3 = ( + jnp.mean(jnp.abs(juliays - sol.ys)), + jnp.mean(jnp.abs(juliays - sol2.ys)), + jnp.mean(jnp.abs(sol.ys - sol2.ys)), + ) + + assert error1 < 1e-6 + assert error2 < 1e-6 + assert error3 < 1e-6 + + +def test_basic_check_9(): + # new system ie Mackey Glass + + def vector_field(t, y, args, *, history): + return 0.2 * (history[0]) / (1 + history[0] ** 10) - 0.1 * y + + y0_history = lambda t: 1.2 + + delays = Delays( + delays=[lambda t, y, args: 6.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=100, + recurrent_checking=False, + rtol=10e-3, + atol=10e-6, + ) + + t0, t1, nb_points = 0.0, 50.0, 501 + ts = jnp.linspace(t0, t1, nb_points) + sol = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Tsit5(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + ) + + delays = Delays( + delays=[lambda t, y, args: 6.0], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=100, + recurrent_checking=True, + rtol=10e-3, + atol=10e-6, + ) + + sol2 = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Tsit5(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + ) + + _, juliays = open_process_file("test/julia_dde/test_basic_check_9.txt") + error1, error2, error3 = ( + jnp.mean(jnp.abs(juliays - sol.ys)), + jnp.mean(jnp.abs(juliays - sol2.ys)), + jnp.mean(jnp.abs(sol.ys - sol2.ys)), + ) + + assert error1 < 1e-4 + assert error2 < 1e-4 + assert error3 < 1e-4 + + +def test_basic_check_10(): + # testing a time dependent equation + + def vector_field(t, y, args, *, history): + return y * (1 - history[0]) + + y0_history = lambda t: 1.2 + + delays = Delays( + delays=[lambda t, y, args: 2 + jnp.sin(t)], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=100, + recurrent_checking=False, + rtol=10e-3, + atol=10e-6, + ) + + t0, t1, nb_points = 0.0, 40.0, 401 + ts = jnp.linspace(t0, t1, nb_points) + sol = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Bosh3(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + ) + + delays = Delays( + delays=[lambda t, y, args: 2 + jnp.sin(t)], + initial_discontinuities=jnp.array([0.0]), + max_discontinuities=100, + recurrent_checking=True, + rtol=10e-3, + atol=10e-6, + ) + + sol2 = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Bosh3(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + ) + + _, juliays = open_process_file("test/julia_dde/test_basic_check_10.txt") + error1, error2, error3 = ( + jnp.mean(jnp.abs(juliays - sol.ys)), + jnp.mean(jnp.abs(juliays - sol2.ys)), + jnp.mean(jnp.abs(sol.ys - sol2.ys)), + ) + + assert error1 < 1e-3 + assert error2 < 1e-3 + assert error3 < 1e-5 + + +def test_basic_numerical_check_1(): + # testing a dde where we know its analytical value + # http://www.cs.toronto.edu/pub/reports/na/hzpEnrightNA09Preprint.pdf + # test problem 1 + + def vector_field(t, y, args, history): + return history[0] + + y0_history = lambda t: lax.cond(t < 2.0, lambda: 0.5, lambda: 1.0) + + delays = Delays( + delays=[lambda t, y, args: t - y], + initial_discontinuities=jnp.array([2.0]), + max_discontinuities=100, + recurrent_checking=False, + rtol=1e-3, + atol=1e-6, + ) + + t0, t1, nb_points = 2.0, 5.5, 350 + ts = jnp.linspace(t0, t1, nb_points) + sol = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Bosh3(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + ) + + delays = Delays( + delays=[lambda t, y, args: t - y], + initial_discontinuities=jnp.array([2.0]), + max_discontinuities=100, + recurrent_checking=True, + rtol=1e-3, + atol=1e-6, + ) + + sol2 = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Bosh3(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + ) + + def f1(t): + return t / 2 + + def f2(t): + return 2 * jnp.exp(t / 2 - 2) + + # y(t) = t/2 for 2 <= t <= 4 + # y(t) = 2 exp(t/2-2) for 4 <= t <= 5.386 + # y(t) = 4 - 2 ln(1+ 5.386 -t )] for 5.386 <= t <= 5.5 + error1 = jnp.sum(jnp.abs(sol.ys[:200] - f1(sol.ts[:200]))) + error2 = jnp.sum(jnp.abs(sol.ys[202:300] - f2(sol.ts[202:300]))) + + error11 = jnp.sum(jnp.abs(sol2.ys[:200] - f1(sol2.ts[:200]))) + error21 = jnp.sum(jnp.abs(sol2.ys[202:300] - f2(sol2.ts[202:300]))) + juliats, juliays = open_process_file( + "test/julia_dde/test_basic_numerical_check_1.txt" + ) + + error3 = jnp.sum(jnp.abs(juliays[:200] - f1(juliats[:200]))) + error4 = jnp.sum(jnp.abs(juliays[200:300] - f2(juliats[200:300]))) + assert error2 < error4 + assert error1 < 1e-5 + assert error2 < 1e-2 + assert error11 < 1e-5 + assert error21 < 1e-2 + assert error3 < 1e-5 + + +def test_basic_numerical_check_2(): + # testing a dde where we know its analytical value + # http://www.cs.toronto.edu/pub/reports/na/hzpEnrightNA09Preprint.pdf + # test problem 3 + + def vector_field(t, y, args, history): + return y * history[0] / t + + y0_history = lambda t: 1.0 + + delays = Delays( + delays=[lambda t, y, args: t - jnp.log(y)], + initial_discontinuities=jnp.array([1.0]), + max_discontinuities=100, + recurrent_checking=False, + rtol=1e-3, + atol=1e-6, + ) + + t0, t1, nb_points = 1.0, 10.0, 901 + ts = jnp.linspace(t0, t1, nb_points) + sol = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Bosh3(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + ) + + delays = Delays( + delays=[lambda t, y, args: t - jnp.log(y)], + initial_discontinuities=jnp.array([1.0]), + max_discontinuities=100, + recurrent_checking=True, + rtol=1e-3, + atol=1e-6, + ) + + sol2 = diffrax.diffeqsolve( + diffrax.ODETerm(vector_field), + diffrax.Bosh3(), + t0=ts[0], + t1=ts[-1], + dt0=ts[1] - ts[0], + y0=y0_history, + stepsize_controller=diffrax.PIDController(rtol=1e-6, atol=1e-9), + saveat=diffrax.SaveAt(ts=ts, dense=True), + delays=delays, + ) + + def f1(t): + return t + + def f2(t): + return jnp.exp(t / jnp.exp(1)) + + # y(t) = t for 1 <= t <= e + # y(t) = exp(t/e) for e <= t <= e^2 + error1 = jnp.sum(jnp.abs(sol.ys[:100] - f1(sol.ts[:100]))) + error2 = jnp.sum(jnp.abs(sol.ys[300:400] - f2(sol.ts[300:400]))) + + error11 = jnp.sum(jnp.abs(sol2.ys[:100] - f1(sol2.ts[:100]))) + error21 = jnp.sum(jnp.abs(sol2.ys[300:400] - f2(sol2.ts[300:400]))) + juliats, juliays = open_process_file( + "test/julia_dde/test_basic_numerical_check_2.txt" + ) + + error3 = jnp.sum(jnp.abs(juliays[:100] - f1(juliats[:100]))) + error4 = jnp.sum(jnp.abs(juliays[300:400] - f2(juliats[300:400]))) + + assert error1 < 1e-6 + assert error11 < 1e-6 + assert error3 < 1e-6 + assert error2 < 1e-2 + assert error21 < 1e-2 + assert error2 < error4