Skip to content

patrick-kidger/diffrax

Folders and files

NameName
Last commit message
Last commit date

Latest commit

dac8620 · Jun 13, 2024
Jan 8, 2024
May 19, 2024
Jun 13, 2024
May 21, 2024
Jan 8, 2024
Feb 20, 2024
Jun 10, 2024
Jan 8, 2024
May 19, 2024
May 19, 2022
Aug 2, 2021
Apr 20, 2024
May 19, 2024
May 19, 2024

Repository files navigation

Diffrax

Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax is a JAX-based library providing numerical differential equation solvers.

Features include:

  • ODE/SDE/CDE (ordinary/stochastic/controlled) solvers;
  • lots of different solvers (including Tsit5, Dopri8, symplectic solvers, implicit solvers);
  • vmappable everything (including the region of integration);
  • using a PyTree as the state;
  • dense solutions;
  • multiple adjoint methods for backpropagation;
  • support for neural differential equations.

From a technical point of view, the internal structure of the library is pretty cool -- all kinds of equations (ODEs, SDEs, CDEs) are solved in a unified way (rather than being treated separately), producing a small tightly-written library.

Installation

pip install diffrax

Requires Python 3.9+, JAX 0.4.13+, and Equinox 0.10.11+.

Documentation

Available at https://docs.kidger.site/diffrax.

Quick example

from diffrax import diffeqsolve, ODETerm, Dopri5
import jax.numpy as jnp

def f(t, y, args):
    return -y

term = ODETerm(f)
solver = Dopri5()
y0 = jnp.array([2., 3.])
solution = diffeqsolve(term, solver, t0=0, t1=1, dt0=0.1, y0=y0)

Here, Dopri5 refers to the Dormand--Prince 5(4) numerical differential equation solver, which is a standard choice for many problems.

Citation

If you found this library useful in academic research, please cite: (arXiv link)

@phdthesis{kidger2021on,
    title={{O}n {N}eural {D}ifferential {E}quations},
    author={Patrick Kidger},
    year={2021},
    school={University of Oxford},
}

(Also consider starring the project on GitHub.)

See also: other libraries in the JAX ecosystem

Always useful
Equinox: neural networks and everything not already in core JAX!
jaxtyping: type annotations for shape/dtype of arrays.

Deep learning
Optax: first-order gradient (SGD, Adam, ...) optimisers.
Orbax: checkpointing (async/multi-host/multi-device).
Levanter: scalable+reliable training of foundation models (e.g. LLMs).

Scientific computing
Optimistix: root finding, minimisation, fixed points, and least squares.
Lineax: linear solvers.
BlackJAX: probabilistic+Bayesian sampling.
sympy2jax: SymPy<->JAX conversion; train symbolic expressions via gradient descent.
PySR: symbolic regression. (Non-JAX honourable mention!)

Awesome JAX
Awesome JAX: a longer list of other JAX projects.