-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathvocab.py
54 lines (43 loc) · 1.65 KB
/
vocab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import sys, os, argparse, datetime, time, re, collections
import pandas as pd
import csv
import sentencepiece as spm
""" pretrain corpus 생성 """
def build_corpus(infile, outfile):
csv.field_size_limit(sys.maxsize)
SEPARATOR = u"\u241D"
df = pd.read_csv(infile, sep=SEPARATOR, engine="python")
with open(outfile, "w") as f:
for index, row in df.iterrows():
f.write(row["text"].lower())
f.write("\n\n\n\n")
print(f"build corpus ... {index + 1} / {len(df)}", end="\r")
print()
return outfile
""" vocab 생성 """
def build_vocab(args):
spm.SentencePieceTrainer.train(
f"--input={args.corpus} --model_prefix={args.prefix} --vocab_size={args.vocab_size + 7}" +
" --model_type=bpe" +
" --max_sentence_length=999999" +
" --pad_id=0 --pad_piece=[PAD]" +
" --unk_id=1 --unk_piece=[UNK]" +
" --bos_id=2 --bos_piece=[BOS]" +
" --eos_id=3 --eos_piece=[EOS]" +
" --user_defined_symbols=[SEP],[CLS],[MASK]")
""" vocab 로드 """
def load_vocab(file):
vocab = spm.SentencePieceProcessor()
vocab.load(file)
return vocab
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--prefix", default="kowiki", type=str, required=False,
help="vocab prefix 입니다.")
parser.add_argument("--vocab_size", default=8000, type=int, required=False,
help="생성할 vocab 수 입니다.")
args = parser.parse_args()
args.corpus = "data/kowiki.txt"
if not os.path.isfile(args.corpus):
build_corpus("data/kowiki.csv", args.corpus)
build_vocab(args)