forked from NVIDIA/nvbench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauto_throughput.cu
87 lines (76 loc) · 2.97 KB
/
auto_throughput.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
/*
* Copyright 2021 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 with the LLVM exception
* (the "License"); you may not use this file except in compliance with
* the License.
*
* You may obtain a copy of the License at
*
* http://llvm.org/foundation/relicensing/LICENSE.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <nvbench/nvbench.cuh>
// Thrust vectors simplify memory management:
#include <thrust/device_vector.h>
template <int ItemsPerThread>
__global__ void kernel(std::size_t stride,
std::size_t elements,
const nvbench::int32_t * __restrict__ in,
nvbench::int32_t *__restrict__ out)
{
const std::size_t tid = threadIdx.x + blockIdx.x * blockDim.x;
const std::size_t step = gridDim.x * blockDim.x;
for (std::size_t i = stride * tid;
i < stride * elements;
i += stride * step)
{
for (int j = 0; j < ItemsPerThread; j++)
{
const auto read_id = (ItemsPerThread * i + j) % elements;
const auto write_id = tid + j * elements;
out[write_id] = in[read_id];
}
}
}
// `throughput_bench` copies a 128 MiB buffer of int32_t, and reports throughput
// and cache hit rates.
//
// Calling state.collect_*() enables particular metric collection if nvbench
// was build with CUPTI support (CMake option: -DNVBench_ENABLE_CUPTI=ON).
template <int ItemsPerThread>
void throughput_bench(nvbench::state &state,
nvbench::type_list<nvbench::enum_type<ItemsPerThread>>)
{
// Allocate input data:
const std::size_t stride = static_cast<std::size_t>(state.get_int64("Stride"));
const std::size_t elements = 128 * 1024 * 1024 / sizeof(nvbench::int32_t);
thrust::device_vector<nvbench::int32_t> input(elements);
thrust::device_vector<nvbench::int32_t> output(elements * ItemsPerThread);
// Provide throughput information:
state.add_element_count(elements, "Elements");
state.collect_dram_throughput();
state.collect_l1_hit_rates();
state.collect_l2_hit_rates();
state.collect_loads_efficiency();
state.collect_stores_efficiency();
const auto threads_in_block = 256;
const auto blocks_in_grid =
static_cast<int>((elements + threads_in_block - 1) / threads_in_block);
state.exec([&](nvbench::launch &launch) {
kernel<ItemsPerThread>
<<<blocks_in_grid, threads_in_block, 0, launch.get_stream()>>>(
stride,
elements,
thrust::raw_pointer_cast(input.data()),
thrust::raw_pointer_cast(output.data()));
});
}
using items_per_thread = nvbench::enum_type_list<1, 2>;
NVBENCH_BENCH_TYPES(throughput_bench, NVBENCH_TYPE_AXES(items_per_thread))
.add_int64_axis("Stride", nvbench::range(1, 4, 3));