diff --git a/mlir/test/Dialect/Linalg/td/vectorize-with-patterns.mlir b/mlir/test/Dialect/Linalg/td/vectorize-with-patterns.mlir new file mode 100644 index 00000000000000..f8d1a50d7430df --- /dev/null +++ b/mlir/test/Dialect/Linalg/td/vectorize-with-patterns.mlir @@ -0,0 +1,10 @@ +module @transforms attributes { transform.with_named_sequence } { + transform.named_sequence @vectorize_with_patterns(%module: !transform.any_op {transform.readonly}) { + + %0 = transform.structured.match ops{["linalg.generic"]} in %module : (!transform.any_op) -> !transform.any_op + %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op + %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op + + transform.yield + } +} diff --git a/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir b/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir index aa1e44166ec9d6..25435cf51a6156 100644 --- a/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir +++ b/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir @@ -1,4 +1,6 @@ -// RUN: mlir-opt %s -transform-interpreter -split-input-file | FileCheck %s +// RUN: mlir-opt -split-input-file \ +// RUN: -transform-preload-library='transform-library-paths=%p/td/vectorize-with-patterns.mlir' \ +// RUN: -transform-interpreter=entry-point=vectorize_with_patterns %s | FileCheck %s #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d2)> #map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> @@ -27,15 +29,6 @@ func.func @vectorize_1d_tensor_extract(%arg0: tensor<3xf32>, %arg1: tensor<4x3xi // CHECK: %[[GATHER:.*]] = vector.gather %[[ARG0]][%[[C0]]] [%[[INDICES]]], %[[MASK]], %[[PASSTHRU]] // CHECK: vector.transfer_write %[[GATHER]] -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op - %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op - transform.yield - } -} - // ----- #map = affine_map<() -> ()> @@ -59,15 +52,6 @@ func.func @extract_scalar_from_0d_into_0d(%src: tensor, %init: tensor) // CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]][], %[[PAD]] : tensor, vector // CHECK: vector.transfer_write %[[READ]], %[[INIT]][] : vector, tensor -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op - %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op - transform.yield - } -} - // ----- #map = affine_map<(n) -> (n)> @@ -92,51 +76,35 @@ func.func @extract_scalar_from_0d_into_1d(%src: tensor, %init: tensor<1xf32 // CHECK: %[[READ_BCAST:.*]] = vector.broadcast %[[READ]] : vector to vector<1xf32> // CHECK: vector.transfer_write %[[READ_BCAST]], %[[INIT]][%[[C0]]] {in_bounds = [true]} : vector<1xf32>, tensor<1xf32> -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op - %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op - transform.yield - } -} - // ----- #map = affine_map<(d0, d1, d2) -> (d0, d1, d2)> -func.func @vectorize_nd_tensor_extract_scalar_broadcast(%arg0: tensor<3x3xf32>, %arg2: tensor<1x1x3xf32>) -> tensor<1x1x3xf32> { +func.func @vectorize_nd_tensor_extract_scalar_broadcast(%src: tensor<3x3xf32>, %init: tensor<1x1x3xf32>) -> tensor<1x1x3xf32> { %c0 = arith.constant 1 : index %c1 = arith.constant 2 : index - %2 = linalg.generic { + + %res = linalg.generic { indexing_maps = [#map], iterator_types = ["parallel", "parallel", "parallel"] - } outs(%arg2 : tensor<1x1x3xf32>) { + } outs(%init : tensor<1x1x3xf32>) { ^bb0(%arg4: f32): - %7 = tensor.extract %arg0[%c0, %c1] : tensor<3x3xf32> - linalg.yield %7 : f32 + %1 = tensor.extract %src[%c0, %c1] : tensor<3x3xf32> + linalg.yield %1 : f32 } -> tensor<1x1x3xf32> - return %2 : tensor<1x1x3xf32> + + return %res : tensor<1x1x3xf32> } -// CHECK: #[[$MAP:.+]] = affine_map<(d0, d1) -> (0, 0, 0)> // CHECK-LABEL: func.func @vectorize_nd_tensor_extract_scalar_broadcast( -// CHECK-SAME: %[[ARG_0:.*]]: tensor<3x3xf32>, -// CHECK-SAME: %[[ARG_1:.*]]: tensor<1x1x3xf32>) -> tensor<1x1x3xf32> { +// CHECK-SAME: %[[SRC:.*]]: tensor<3x3xf32>, +// CHECK-SAME: %[[INIT:.*]]: tensor<1x1x3xf32>) -> tensor<1x1x3xf32> { +// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index -// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index -// CHECK: %[[MASK:.*]] = vector.constant_mask [1] : vector<1xi1> -// CHECK: %[[READ:.*]] = vector.mask %[[MASK]] { vector.transfer_read %[[ARG_0]][%[[C1]], %[[C2]]], {{.*}} {in_bounds = [true, true, true], permutation_map = #[[$MAP]]} : tensor<3x3xf32>, vector<1x1x3xf32> } : vector<1xi1> -> vector<1x1x3xf32> -// CHECK: %[[C0_2:.*]] = arith.constant 0 : index -// CHECK: vector.transfer_write %[[READ]], %[[ARG_1]]{{\[}}%[[C0_2]], %[[C0_2]], %[[C0_2]]] : vector<1x1x3xf32>, tensor<1x1x3xf32> - -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op - transform.structured.vectorize %0 { vectorize_nd_extract } : !transform.any_op - transform.yield - } -} +// CHECK-DAG: %[[PAD:.*]] = arith.constant 0.000000e+00 : f32 +// CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]][%[[C1]], %[[C2]]], %[[PAD]] : tensor<3x3xf32>, vector +// CHECK: %[[READ_BCAST:.*]] = vector.broadcast %[[READ]] : vector to vector<1x1x3xf32> +// CHECK: vector.transfer_write %[[READ_BCAST]], %[[INIT]][%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x1x3xf32>, tensor<1x1x3xf32> // ----- @@ -207,15 +175,6 @@ func.func @vectorize_nd_tensor_extract_transfer_read_basic_column( // CHECK: %[[RES:.*]] = vector.transfer_write %[[BCAST]], %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<3x1x1xf32>, tensor<3x1x1xf32> // CHECK: return %[[RES]] : tensor<3x1x1xf32> -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op - %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op - transform.yield - } -} - // ----- func.func @vectorize_nd_tensor_extract_transfer_read_complex(%6: tensor<45x80x16xf32>, %arg0: index, %arg2: index, %arg1: index, %arg4: index, %extracted_slice : tensor<1x4xf32>) -> tensor<1x4xf32> { @@ -259,15 +218,6 @@ func.func @vectorize_nd_tensor_extract_transfer_read_complex(%6: tensor<45x80x16 // CHECK: return %[[VAL_21]] : tensor<1x4xf32> // CHECK: } -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op - %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op - transform.yield - } -} - // ----- #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d2)> @@ -309,15 +259,6 @@ func.func @vectorize_nd_tensor_extract_index_from_tensor(%arg0: tensor<3x3xf32>, // CHECK: %[[GATHER:.*]] = vector.gather %[[ARG0]][%[[C0]], %[[C0]]] [%[[T]]], %[[CST_1]], %[[PASSTHRU]] : tensor<3x3xf32>, vector<4x7x3x2xindex>, vector<4x7x3x2xi1>, vector<4x7x3x2xf32> into vector<4x7x3x2xf32> // CHECK: vector.transfer_write %[[GATHER]], %[[ARG4]][%[[C0]], %[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true, true]} : vector<4x7x3x2xf32>, tensor<4x7x3x2xf32> -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op - %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op - transform.yield - } -} - // ----- #map = affine_map<(d0, d1) -> (d0, d1)> @@ -339,15 +280,6 @@ func.func @vectorize_nd_tensor_extract_load_1d_column_vector_using_gather_load(% return %1 : tensor<8x1xf32> } -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg0 : (!transform.any_op) -> !transform.any_op - %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize_children_and_apply_patterns %1 {vectorize_nd_extract} : (!transform.any_op) -> !transform.any_op - transform.yield - } -} - // CHECK-LABEL: func.func @vectorize_nd_tensor_extract_load_1d_column_vector_using_gather_load // CHECK-SAME: %[[ARG0:.*]]: tensor<8x128x768xf32> // CHECK-SAME: %[[ARG1:.*]]: index @@ -390,15 +322,6 @@ func.func @index_from_output_column_vector_gather_load(%src: tensor<8x128xf32>) return %res : tensor<8x1xf32> } -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg2: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg2 : (!transform.any_op) -> !transform.any_op - %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize_children_and_apply_patterns %1 {vectorize_nd_extract} : (!transform.any_op) -> !transform.any_op - transform.yield - } -} - // CHECK-LABEL: func.func @index_from_output_column_vector_gather_load( // CHECK-SAME: %[[SRC:.*]]: tensor<8x128xf32>) -> tensor<8x1xf32> { // CHECK: %[[C128:.*]] = arith.constant dense<128> : vector<1x8xindex> @@ -437,15 +360,6 @@ func.func @index_from_output_column_vector_contiguous_load(%src: tensor<8x128xf3 return %res : tensor<8x1xf32> } -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg2: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg2 : (!transform.any_op) -> !transform.any_op - %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize_children_and_apply_patterns %1 {vectorize_nd_extract} : (!transform.any_op) -> !transform.any_op - transform.yield - } -} - // CHECK-LABEL: func.func @index_from_output_column_vector_contiguous_load( // CHECK-SAME: %[[SRC:.*]]: tensor<8x128xf32>) -> tensor<8x1xf32> { // CHECK: %[[C0:.*]] = arith.constant 0 : index @@ -497,15 +411,6 @@ func.func @vectorize_nd_tensor_extract_contiguous_and_gather(%arg0: tensor<6xf32 // CHECK: %[[VAL_14:.*]] = vector.transfer_write %[[VAL_13]], %[[VAL_8]]{{\[}}%[[VAL_2]]] {in_bounds = [true]} : vector<5xf32>, tensor<5xf32> // CHECK: return %[[VAL_14]] : tensor<5xf32> -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op - %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op - transform.yield - } -} - // ----- // The vectorizer converts `affine.apply` so that the subsequent Ops can be vectorised based on the converted ops. Contiguous load. @@ -540,15 +445,6 @@ func.func @vectorize_nd_tensor_extract_with_affine_apply_contiguous(%6: tensor<8 // CHECK: return %[[VAL_12]] : tensor<1x4xf32> // CHECK: } -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op - %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op - transform.yield - } -} - // ----- func.func @vectorize_nd_tensor_extract_with_tensor_extract(%input_1: tensor<1x20xi32>, %input_2: tensor<257x24xf32>, %arg0 : index, %arg1 : index, %arg2 : index, %arg3 : index) -> tensor<1x1x4xf32> { @@ -585,16 +481,6 @@ func.func @vectorize_nd_tensor_extract_with_tensor_extract(%input_1: tensor<1x20 // for address calculation also satisfy the required conditions). // CHECK: vector.transfer_read %[[INPUT_2]][%{{.*}}, %{{.*}}, %{{.*}} {in_bounds = [true, true]} : tensor<257x24xf32>, vector<1x4xf32> - -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op - %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op - transform.yield - } -} - // ----- // The vectorizer converts `affine.apply` so that the subsequent Ops can be vectorised based on the converted ops. Gather load. @@ -632,15 +518,6 @@ func.func @vectorize_nd_tensor_extract_with_affine_apply_gather(%6: tensor<80x16 // CHECK: return %[[VAL_14]] : tensor<1x4xf32> // CHECK: } -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op - %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op - transform.yield - } -} - // ----- // Make sure that non-linear arithmetic operations (e.g. arith.maxsi) are allowed when calculating indices for load operations. Gather load. @@ -674,15 +551,6 @@ func.func @vectorize_nd_tensor_extract_with_maxsi_gather(%arg0: tensor<80x16xf32 // CHECK: return %[[VAL_10]] : tensor<1x4xf32> // CHECK: } -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op - %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op - transform.yield - } -} - // ----- // Make sure that non-linear arithmetic operations (e.g. arith.maxsi) are allowed when calculating indices for load operations. Contiguous load. @@ -718,15 +586,6 @@ func.func @vectorize_nd_tensor_extract_with_maxsi_contiguous(%arg0: tensor<80x16 // CHECK: return %[[VAL_9]] : tensor<1x4xf32> // CHECK: } -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op - %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op - transform.yield - } -} - // ----- // The vectorizer assumes it's a gather load whenever using a block argument to calculate an index. @@ -759,15 +618,6 @@ func.func @vectorize_nd_tensor_extract_block_arg(%arg0: tensor<5x6xf32>, %arg1: // CHECK: return %[[VAL_12]] : tensor<5xf32> // CHECK: } -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op - %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op - transform.yield - } -} - // ----- #map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)> @@ -788,15 +638,6 @@ func.func @vectorize_0d_tensor_extract(%arg0: tensor, %arg2: tensor<1x1x3xf // CHECK: %[[EXTRACT:.*]] = vector.transfer_read %[[ARG_0]][], %{{.+}} : tensor // CHECK: vector.broadcast %[[EXTRACT]] : vector to vector<1x1x3xf32> -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op - %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op - transform.yield - } -} - // ----- #map = affine_map<(d0, d1, d2) -> (d0, d1, d2)> @@ -833,16 +674,6 @@ func.func @vectorize_reverse_like_tensor_extract(%arg0: tensor<1x2x3xf32>, %arg1 // CHECK: %[[GATHER:.*]] = vector.gather %[[ARG0]][%[[C0]], %[[C0]], %[[C0]]] [%[[T3]]], %[[MASK]], %[[PASSTHRU]] // CHECK: vector.transfer_write %[[GATHER]] -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op - %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op - transform.yield - } -} - - // ----- func.func @vectorize_scalar_read_with_broadcast_from_column_tensor(%init: tensor<1x1x4xi32>) -> tensor<1x1x4xi32> { @@ -874,12 +705,3 @@ func.func @vectorize_scalar_read_with_broadcast_from_column_tensor(%init: tensor // CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]]{{\[}}%[[IDX_ELT]], %[[C0]]], %[[PAD]] : tensor<15x1xi32>, vector // CHECK: %[[READ_BCAST:.*]] = vector.broadcast %[[READ]] : vector to vector<1x1x4xi32> // CHECK: %[[RES:.*]] = vector.transfer_write %[[READ_BCAST]], %[[INIT]][%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x1x4xi32>, tensor<1x1x4xi32> - -module attributes {transform.with_named_sequence} { - transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { - %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op - %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op - transform.yield - } -}