forked from Wedge-lab/battenberg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotting.R
607 lines (529 loc) · 31.4 KB
/
plotting.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
#' Function that plots two types of data points against it's chromosomal location.
#' Note: This is a plot PER chromosome.
#' @noRd
create.haplotype.plot = function(chrom.position, points.blue, points.red, x.min, x.max, title, xlab, ylab) {
par(pch=".", cex=1, cex.main=0.8, cex.axis = 0.6, cex.lab=0.7,yaxp=c(-0.05,1.05,6))
plot(c(x.min,x.max), c(0,1), type="n", main=title, xlab=xlab, ylab=ylab)
if (length(chrom.position) > 0) {
points(chrom.position, points.blue, col="blue")
points(chrom.position, points.red, col="red")
}
}
#' Function that plots two types of data points against it's chromosomal location.
#' Note: This is a plot PER chromosome.
#' @noRd
create.segmented.plot = function(chrom.position, points.red, points.green, x.min, x.max, title, xlab, ylab, prior_bkps_pos=NULL) {
par(mar = c(5,5,5,0.5), cex = 0.4, cex.main=3, cex.axis = 2, cex.lab = 2)
plot(c(x.min,x.max), c(0,1), pch=".", type="n", main=title, xlab=xlab, ylab=ylab)
points(chrom.position, points.red, pch=".", col="red", cex=2)
points(chrom.position, points.green, pch=19, cex=0.5, col="green")
if (!is.null(prior_bkps_pos)) {
for (i in 1:length(prior_bkps_pos)) {
abline(v=prior_bkps_pos[i])
}
}
}
#' Function that plots two types of data points against it's chromosomal location.
#' Note: This is a plot PER chromosome.
#' @noRd
create.baf.plot = function(chrom.position, points.red.blue, plot.red, points.darkred, points.darkblue, x.min, x.max, title, xlab, ylab, prior_bkps_pos=NULL) {
par(mar = c(5,5,5,0.5), cex = 0.4, cex.main=3, cex.axis = 2, cex.lab = 2)
plot(c(x.min,x.max), c(0,1), pch=".", type = "n", main=title, xlab=xlab, ylab=ylab)
points(chrom.position, points.red.blue, pch=".", col=ifelse(plot.red, "red", "blue"), cex=2)
points(chrom.position, points.darkred, pch=19, cex=0.5, col="darkred")
points(chrom.position, points.darkblue, pch=19, cex=0.5, col="darkblue")
if (!is.null(prior_bkps_pos)) {
for (i in 1:length(prior_bkps_pos)) {
abline(v=prior_bkps_pos[i])
}
}
}
#' Function that creates the plots for subclonal copy number
#' Note: This is a plot PER chromosome.
#' @noRd
create.subclonal.cn.plot = function(chrom, chrom.position, LogRposke, LogRchr, BAFchr, BAFsegchr, BAFpvalschr, subcloneres, siglevel, x.min, x.max, title, xlab, ylab.logr, ylab.baf, breakpoints_pos=NULL, svs_pos=NULL) {
plot_breakpoints = function(breakpoints, svs_pos) {
# Plot the breakpoints
if (!is.null(breakpoints)) {
for (i in 1:length(breakpoints)) {
abline(v=breakpoints[i], col="darkgrey", lwd=1)
}
}
# Overplot the SV breakpoints, if supplied
if (!is.null(svs_pos)) {
for (i in 1:length(svs_pos)) {
abline(v=svs_pos[i], lty=3, col="lightgreen", lwd=1)
}
}
}
# Plot the logR
par(mar=c(2.5,2.5,2.5,0.25), cex=0.4, cex.main=1.5, cex.axis=1, cex.lab=1, mfrow=c(2,1))
plot(c(x.min, x.max), c(-3,3), pch=".", type="n", main=title, xlab=xlab, ylab=ylab.logr)
points(LogRposke/1000000, LogRchr, pch=".", col="grey")
plot_breakpoints(breakpoints_pos, svs_pos)
# Plot BAF
plot(c(x.min, x.max), c(0,1), pch=".", type="n", main=title, xlab=xlab, ylab=ylab.baf)
points(chrom.position, BAFchr, pch=".", col="grey")
plot_breakpoints(breakpoints_pos, svs_pos)
# Plot segments in top of BAF
points(chrom.position, BAFsegchr, pch=19, cex=0.5, col=ifelse(BAFpvalschr>siglevel, "darkgreen", "red"))
points(chrom.position, 1-BAFsegchr, pch=19, cex=0.5, col=ifelse(BAFpvalschr>siglevel, "darkgreen", "red"))
for (i in 1:dim(subcloneres)[1]) {
if(subcloneres[i,1]==chrom) {
text((as.numeric(subcloneres[i,"startpos"])+as.numeric(subcloneres[i,"endpos"]))/2/1000000,as.numeric(subcloneres[i,"BAF"])-0.04,
paste(subcloneres[i,"nMaj1_A"],"+",subcloneres[i,"nMin1_A"],": ",100*round(as.numeric(subcloneres[i,"frac1_A"]),3),"%",sep=""),cex = 0.8)
if(!is.na(subcloneres[i,"nMaj2_A"])) {
text((as.numeric(subcloneres[i,"startpos"])+as.numeric(subcloneres[i,"endpos"]))/2/1000000,as.numeric(subcloneres[i,"BAF"])-0.08,
paste(subcloneres[i,"nMaj2_A"],"+",subcloneres[i,"nMin2_A"],": ",100*round(as.numeric(subcloneres[i,"frac2_A"]),3),"%",sep=""), cex = 0.8)
}
}
}
}
#' Make GW CN plot where subclonal CN is represented as a mixture of two states
#' NAP - July 2020 - updated main title now replacing 'cellularity' with 'purity' and 'goodness-of-fit' with 'PGAclonal' + adding TUMOURNAME
#' @noRd
create.bb.plot.average = function(bafsegmented, ploidy, rho, goodnessOfFit, pos_min, pos_max, segment_states_min, segment_states_tot, chr.segs, chr.names, tumourname, ylim=5) {
# Plot main frame and title
par(mar = c(0.5,5,5,0.5), cex = 0.4, cex.main=3, cex.axis = 2.5)
maintitle = paste0(substring(tumourname, 40, first = T),", Ploidy: ",sprintf("%1.2f",ploidy),", Purity: ",sprintf("%2.0f",rho*100),"%, PGAclonal: ",sprintf("%2.1f",goodnessOfFit*100),"%")
#maintitle = paste("Ploidy: ",sprintf("%1.2f",ploidy),", aberrant cell fraction: ",sprintf("%2.0f",rho*100),"%, goodness of fit: ",sprintf("%2.1f",goodnessOfFit*100),"%",sep="")
plot(c(1,nrow(bafsegmented)), c(0,ylim), type = "n", xaxt = "n", main = maintitle, xlab = "", ylab = "")
abline(v=0,lty=1,col="lightgrey")
# Horizontal lines for y=0 to y=5
abline(h=c(0:ylim),lty=1,col="lightgrey")
# Minor allele in gray, total CN in orange
segments(x0=pos_min, y0=segment_states_min, x1=pos_max, y1=segment_states_min, col="#2f4f4f", pch="|", lwd=6, lend=1)
segments(x0=pos_min, y0=segment_states_tot, x1=pos_max, y1=segment_states_tot, col="#E69F00", pch="|", lwd=6, lend=1)
# Plot the vertical lines that show start/end of a chromosome
chrk_tot_len = 0
for (i in 1:length(chr.segs)) {
chrk = chr.segs[[i]];
chrk_hetero = names(bafsegmented)[chrk]
chrk_tot_len_prev = chrk_tot_len
chrk_tot_len = chrk_tot_len + length(chrk_hetero)
vpos = chrk_tot_len;
tpos = (chrk_tot_len+chrk_tot_len_prev)/2;
text(tpos,ylim,chr.names[i], pos = 1, cex = 2)
abline(v=vpos,lty=1,col="lightgrey")
}
}
#' Make GW CN plot where subclonal CN is represented by two separate states
#' NAP - July 2020 - updated main title now replacing 'cellularity' with 'purity' and 'goodness-of-fit' with 'PGAclonal' + adding TUMOURNAME
#' @noRd
create.bb.plot.subclones = function(bafsegmented, subclones, ploidy, rho, goodnessOfFit, pos_min, pos_max, subcl_min, subcl_max, is_subclonal, is_subclonal_maj, is_subclonal_min, chr.segs, chr.names, tumourname, ylim=5) {
par(mar = c(0.5,5,5,0.5), cex = 0.4, cex.main=3, cex.axis = 2.5)
maintitle = paste0(substring(tumourname, 40, first = T),", Ploidy: ",sprintf("%1.2f",ploidy),", Purity: ",sprintf("%2.0f",rho*100),"%, PGAclonal: ",sprintf("%2.1f",goodnessOfFit*100),"%")
# maintitle = paste("Ploidy: ",sprintf("%1.2f",ploidy),", aberrant cell fraction: ",sprintf("%2.0f",rho*100),"%, goodness of fit: ",sprintf("%2.1f",goodnessOfFit*100),"%",sep="")
plot(c(1,nrow(bafsegmented)), c(0,ylim), type = "n", xaxt = "n", main = maintitle, xlab = "", ylab = "")
abline(v=0,lty=1,col="lightgrey")
# Minor allele clonal and lowest of the two states when subclonal
segments(x0=pos_min, y0=subclones$nMin1_A-0.1,
x1=pos_max, y1=subclones$nMin1_A-0.1, col="#2f4f4f", pch="|",
lwd=ifelse(is_subclonal_min, 6*subclones$frac1_A, 6), lend=1)
if (sum(is_subclonal) > 0) {
# Minor allele highest of the two states when subclonal
segments(x0=subcl_min, y0=subclones$nMin2_A[is_subclonal]-0.1,
x1=subcl_max, y1=subclones$nMin2_A[is_subclonal]-0.1, col="#2f4f4f", pch="|",
lwd=ifelse(is_subclonal_min[is_subclonal], 6*subclones$frac2_A[is_subclonal], 0), lend=1)
# Total CN, when minor allele subclonal CN (one of the two alleles)
segments(x0=subcl_min, y0=subclones$nMaj1_A[is_subclonal]+subclones$nMin1_A[is_subclonal]+0.1,
x1=subcl_max, y1=subclones$nMaj1_A[is_subclonal]+subclones$nMin1_A[is_subclonal]+0.1, col="#E69F00", pch="|",
lwd=ifelse(is_subclonal_min[is_subclonal], 6*subclones$frac1_A[is_subclonal], 0), lend=1)
# Total CN, when minor allele subclonal CN (the other allele)
segments(x0=subcl_min, y0=subclones$nMaj2_A[is_subclonal]+subclones$nMin2_A[is_subclonal]+0.1,
x1=subcl_max, y1=subclones$nMaj2_A[is_subclonal]+subclones$nMin2_A[is_subclonal]+0.1, col="#E69F00", pch="|",
lwd=ifelse(is_subclonal_min[is_subclonal], 6*subclones$frac2_A[is_subclonal], 0), lend=1)
}
# Total CN, when major allele clonal and subclonal, unless the minor allele is subclonal (then plot nothing, done above)
segments(x0=pos_min, y0=subclones$nMaj1_A+subclones$nMin1_A+0.1,
x1=pos_max, y1=subclones$nMaj1_A+subclones$nMin1_A+0.1, col="#E69F00", pch="|",
lwd=ifelse(is_subclonal_maj & (!is_subclonal_min), 6*subclones$frac1_A, 0), lend=1)
# Total CN, when subclonal major allele and not subclonal minor allele (the other allele)
segments(x0=pos_min, y0=subclones$nMaj2_A+subclones$nMin2_A+0.1,
x1=pos_max, y1=subclones$nMaj2_A+subclones$nMin2_A+0.1, col="#E69F00", pch="|",
lwd=ifelse(is_subclonal_maj & (!is_subclonal_min), 6*subclones$frac2_A, 0), lend=1)
# Total allele when major and minor both non-subclonal
segments(x0=pos_min, y0=subclones$nMaj1_A+subclones$nMin1_A+0.1,
x1=pos_max, y1=subclones$nMaj1_A+subclones$nMin1_A+0.1, col="#E69F00", pch="|",
lwd=ifelse((!is_subclonal_maj) & (!is_subclonal_min), 6, 0), lend=1)
chrk_tot_len = 0
for (i in 1:length(chr.segs)) {
chrk = chr.segs[[i]];
chrk_hetero = names(bafsegmented)[chrk]
chrk_tot_len_prev = chrk_tot_len
chrk_tot_len = chrk_tot_len + length(chrk_hetero)
vpos = chrk_tot_len;
tpos = (chrk_tot_len+chrk_tot_len_prev)/2;
text(tpos,ylim,chr.names[i], pos = 1, cex = 2)
abline(v=vpos,lty=1,col="lightgrey")
}
}
#' Code extracted from the plot in clonal_ascat find_centroid_of_global_minima.
#' Note: This is a temporary function and VERY similar to clonal_runascat.plot1()
#' @noRd
#'
clonal_findcentroid.plot = function(minimise, dist_choice, d, psis, rhos, new_bounds) {
par(mar = c(5,5,0.5,0.5), cex=0.75, cex.lab=2, cex.axis=2)
if(minimise){ #DCW 240314 reverse colour palette, so blue always corresponds to best region
hmcol = rev(colorRampPalette(RColorBrewer::brewer.pal(10, "RdBu"))(256))
} else {
hmcol = colorRampPalette(RColorBrewer::brewer.pal(10, "RdBu"))(256)
}
if ( dist_choice == 4 ) {
image(d, col = hmcol, axes = F, xlab = "Ploidy", ylab = "Aberrant cell fraction")
} else {
image(log(d), col = hmcol, axes = F, xlab = "Ploidy", ylab = "Aberrant cell fraction")
}
psi_min = new_bounds$psi_min
psi_max = new_bounds$psi_max
rho_min = new_bounds$rho_min
rho_max = new_bounds$rho_max
psi_range = psi_max - psi_min
rho_range = rho_max - rho_min
psi_min_label = ceiling( 10 * psi_min )/10
psi_max_label = floor( 10 * psi_max )/10
psi_label_interval = 0.1
psi_min_label_standardised = ( psi_min_label - psi_min ) / psi_range
psi_max_label_standardised = ( psi_max_label - psi_min ) / psi_range
psi_label_interval_standardised = psi_label_interval / psi_range
rho_min_label = ceiling( 100 * rho_min )/100
rho_max_label = floor( 100 * rho_max )/100
rho_label_interval = 0.01
rho_min_label_standardised = ( rho_min_label - rho_min ) / rho_range
rho_max_label_standardised = ( rho_max_label - rho_min ) / rho_range
rho_label_interval_standardised = rho_label_interval / rho_range
axis(1, at = seq(psi_min_label_standardised, psi_max_label_standardised, by = psi_label_interval_standardised), labels = seq(psi_min_label, psi_max_label, by = psi_label_interval))
axis(2, at = seq(rho_min_label_standardised, rho_max_label_standardised, by = rho_label_interval_standardised), labels = seq(rho_min_label, rho_max_label, by = rho_label_interval))
points( ( psis - psi_min ) / psi_range , ( rhos - rho_min ) / rho_range , col=c("green", "darkgreen"), pch="X", cex = 2 )
}
#' Plot Battenberg copy number solutions for a segment
#'
#' \code{squaresplot} plots the different Battenberg copy number solutions for a segment
#'
#' The plot is output to the run directory as "tumourname_squares_chr_position.png/pdf"
#'
#' @param tumourname Sample name
#' @param run_dir Running directory
#' @param segment_chr Chromosome containing the segment to be investigated
#' @param segment_pos Chromosomal position within the segment in Mb (e.g. 90M)
#' @param platform_gamma Platform-specific gamma value (0.55 for SNP6, 1 for NGS), default 1
#' @param pdf Output format: 0 for png (default), 1 for pdf
#' @param binwidth_baf BAF isobafline spacing, default 0.25
#' @param xylimits x/y-axis limits, default c(-0.2,5)
#' @author jd
#' @export
squaresplot <- function(tumourname, run_dir, segment_chr, segment_pos, platform_gamma=1, pdf=0, binwidth_baf=0.25, xylimits=c(-0.2,5)) {
if (pdf)
pdf(file = paste(run_dir,tumourname,"_squares","_chr",segment_chr,"_",segment_pos,".pdf", sep=""), width = 7, height = 7)
else
png(filename = paste(run_dir,tumourname,"_squares","_chr",segment_chr,"_",segment_pos,".png", sep=""), width = 1200, height = 1200, res = 200)
# read in and augment data
segment_pos <- as.numeric(gsub("M", "000000", segment_pos))
subclones <- read.table(paste(run_dir, tumourname, "_subclones.txt", sep=""), header=T, stringsAsFactors=F)
subclone <- subclones[(subclones$chr == segment_chr) & (subclones$startpos <= segment_pos) & (subclones$endpos >= segment_pos),]
rhopsi <- read.table(paste(run_dir, tumourname, "_rho_and_psi.txt", sep=""), header = T, stringsAsFactors=F)
rhopsi <- rhopsi[which(rhopsi$is.best == TRUE), c("rho", "psi")]
nMincalc <- (rhopsi$rho-1-(subclone$BAF-1)*2^(subclone$LogR/platform_gamma)*((1-rhopsi$rho)*2+rhopsi$rho*rhopsi$psi))/rhopsi$rho
nMajcalc <- (rhopsi$rho-1+subclone$BAF*2^(subclone$LogR/platform_gamma)*((1-rhopsi$rho)*2+rhopsi$rho*rhopsi$psi))/rhopsi$rho
subclone <- data.frame(subclone, rhopsi, nMincalc, nMajcalc)
# helper function to calculate isobaflines
isobafline <- function(nB, cstbaf) {
(1-rhopsi$rho+rhopsi$rho*nB-cstbaf*(2-2*rhopsi$rho)-rhopsi$rho*cstbaf*nB)/(rhopsi$rho*cstbaf)
}
# create grid for allelic copynumber
ngrid <- data.frame(nMaj=seq(0,5,1), nMin=seq(0,5,1))
# start plotting - setup
q <- ggplot2::ggplot(data = ngrid, aes(nMaj, nMin)) + ggplot2::scale_x_continuous(breaks=0:max(xylimits), limits=xylimits) + ggplot2::scale_y_continuous(breaks=0:max(xylimits), limits=xylimits) + ggplot2::coord_fixed()
q <- q + ggplot2::theme_bw() + ggplot2::theme(panel.grid.major = ggplot2::element_line(colour="darkgrey", size = 0.5), panel.grid.minor = ggplot2::element_blank())
# add isobaflines
for (bafval in seq(0,1,binwidth_baf)) {
q <- q + ggplot2::stat_function(fun = isobafline, args = list(cstbaf = bafval), colour="blue", alpha=0.6)
}
q <- q + ggplot2::stat_function(fun = isobafline, args = list(cstbaf = subclone$BAF), colour="green")
# add isologrline
df = data.frame(flnMaj = floor(nMajcalc)-0.2, cnMin = ceiling(nMincalc)+0.2, cnMaj = ceiling(nMajcalc)+0.2, flnMin = floor(nMincalc)-0.2)
q <- q + ggplot2::geom_segment(data = df,
aes(x = flnMaj, y = cnMin, xend = cnMaj, yend = flnMin), colour="red", alpha = 0.6)
# if clonal segment, only plot clonal solution
if (subclone$frac1_A == 1) {
q <- q + ggplot2::geom_point(data = subclone, aes(nMaj1_A, nMin1_A), size = 5)
} else { # if subclonal, plot all equivalent solutions
solutions <- matrix(unlist(subclone[,grep("nM.{5}$|^frac.{3}$", colnames(subclone))]), byrow = T, ncol = 3)
solutions <- cbind(solutions, rep(1:6,rep(2,6)))[12:1,]
colnames(solutions) <- c("nMaj", "nMin", "frac", "sol")
solutions <- na.omit(as.data.frame(solutions))
q <- q + ggplot2::geom_point(data = solutions, aes(nMaj, nMin, size=frac, colour=factor(sol)), alpha=0.75, position = ggplot2::position_jitter(width = .05, height = .05), shape = 79) +
ggplot2::scale_size_continuous(guide=F, limits=c(0,1) ,range = c(2,10)) + ggplot2::scale_color_discrete(name="solution")
}
# plot precise values, as calculated by battenberg
q <- q + ggplot2::geom_point(data=subclone, aes(nMajcalc, nMincalc), size=4, shape = 88)
q <- q + ggplot2::labs(title = paste(tumourname," chr",subclone$chr,": ",subclone$startpos,"-",subclone$endpos, sep=""))
print(q)
dev.off()
}
#' Smooth data by running median
#'
#' @param chromosome Denominator on which chromosome each data point belongs. Smoothing is done separately per chromosome
#' @param data The to be smoothed data vector
#' @param k The size of window to be used to take the median over
#' @return A single vector with the smoothed data
#' @author sd11
#' @noRd
runmed_data = function(chromosome, data, k=101) {
data_smoothed = rep(NA, length(data))
for (chrom in unique(chromosome)) {
data_smoothed[chromosome==chrom] = runmed(data[chromosome==chrom], k)
}
return(data_smoothed)
}
#' Plot total copy number split per chromosome
#'
#' This plot contains estimated total copy number from logR, the copy number fit in different colours and a few general stats.
#' It is meant as a single figure replacement for the per chromosome subclones.png figures that can be used for refitting.
#' @param samplename Name of the sample for the plot title
#' @param subclones A subclones.txt file read in as a data.frame
#' @param logr The raw logR read in as a data.frame
#' @param outputfile Full path of file where the figure is to be stored
#' @param purity The samples purity estimate
#' @author sd11
#' @export
totalcn_chrom_plot = function(samplename, subclones, logr, outputfile, purity) {
# Smooth the logR
colnames(logr)[3] = "raw_logr"
logr$logr_smoothed = runmed_data(logr$Chromosome, logr$raw_logr, 101)
# Prepare subclones data
subclones$len = subclones$endpos/1000-subclones$startpos/1000
subclones$total_major = calc_total_cn_major(subclones)
subclones$total_minor = calc_total_cn_minor(subclones)
subclones$total_cn = subclones$total_minor + subclones$total_major
subclones$is_subclonal = subclones$frac1_A < 1
subclones$is_50_50 = subclones$frac1_A >= 0.48 & subclones$frac1_A <= 0.52
# Calculate psi from the data
ploidy = calc_ploidy(subclones)
psi = psit2psi(purity, ploidy)
# Estimate total CN for each segment based on the logR
logr$total_cn = NA
logr$total_cn_psi = NA
for (i in (1:nrow(subclones))) {
print(i)
sel = which(logr$Chromosome == subclones$chr[i] & logr$Position >= subclones$startpos[i] & logr$Position <= subclones$endpos[i])
tumour_cn = calculate_bb_total_cn(subclones[i,,drop=F])
total_cn = purity*tumour_cn + 2*(1-purity)
logr$total_cn[sel] = logr2tumcn(purity, total_cn, logr$logr_smoothed[sel])
logr$total_cn_psi[sel] = logr2tumcn(purity, psi, logr$logr_smoothed[sel])
}
# Plot every 100 data point, there are too many for them all to be seen
logr_plot = logr[seq(1, nrow(logr), 100),]
# Sync the levels for chromosome so that all corresponding data ends up in the same plot
logr_plot$Chromosome = factor(logr_plot$Chromosome, levels=gtools::mixedsort(unique(logr_plot$Chromosome)))
subclones$Chromosome = factor(subclones$chr, levels=levels(logr_plot$Chromosome))
# Set plot boundaries for x and y - take as y value the maximum between the data and the fit
max_cn_plot_data = ceiling(quantile(logr_plot$total_cn_psi, c(.98), na.rm=T))
max_cn_plot_fit = ceiling(quantile(unlist(lapply(1:nrow(subclones), function(i) rep(subclones$total_cn[i], subclones$len[i]))), c(.98), na.rm=T))
max_cn_plot = ifelse(max_cn_plot_fit > max_cn_plot_data, max_cn_plot_fit, max_cn_plot_data)
maxpos = max(logr$Position)
# catch case when there is no clonal CNA called
if (is.na(max_cn_plot) | max_cn_plot < 4) {
max_cn_plot = 4
}
# These are the grey lines in the background
background = data.frame(xmin=rep(0, (max_cn_plot/2)+1),
xmax=rep(max(logr$Position), (max_cn_plot/2)+1),
ymin=seq(0, max_cn_plot, 2)+0.5,
ymax=seq(0, max_cn_plot, 2)+1.5)
# Calc a couple of stats for the plot title
genome_50_50 = sum(subclones$len[subclones$is_50_50]/1000)
prop_subclonal = round(sum(subclones$len[subclones$is_subclonal]) / sum(subclones$len), 2)
homdel = sum(subclones$len[subclones$total_cn == 0]/1000)
plot_title = samplename
plot_subtitle = paste0("Purity: ", round(purity, 2), " - Ploidy: ", round(ploidy, 2), " - Hom del: ", round(homdel, 2), "Mb - Prop. subclonal: ", prop_subclonal, " - Subclonal 50/50: ", round(genome_50_50, 2), "Mb")
rect_height_padding = 0.2
# Build the actual plot - CNA segments are drawn separately depending on their category as categories have different colours
p = ggplot() +
geom_rect(data=background, aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax), fill='gray80', alpha=0.5) +
geom_point(data=logr_plot, mapping=aes(x=Position, y=total_cn_psi), size=0.5) +
ylab("Copy Number") +
scale_y_continuous(breaks=seq(0, max_cn_plot, 2)) + #, limits=c(-rect_height_padding, max_cn_plot+rect_height_padding)
# Axis ticks every 10Mb
scale_x_continuous(breaks=seq(1, max(logr$Position), 10000000)[-1], labels=round(seq(0, maxpos, 10000000) / 1000000)[-1], expand=c(0, 0)) +
# Don't restrict the plotting area, zoom. that way segments that go outside the limits are partially plotted still
coord_cartesian(ylim=c(-rect_height_padding, max_cn_plot+rect_height_padding)) +
facet_wrap(~Chromosome, ncol=2, strip.position="right") +
# ggtitle(plot_title) +
ggtitle(bquote(atop(.(plot_title), atop(.(plot_subtitle), "")))) +
theme_bw() + theme(axis.title.x=element_blank(),
axis.text.x=element_text(colour="black",size=16,face="plain"),
axis.text.y = element_text(colour="black",size=16,face="plain"),
axis.title.y = element_text(colour="black",size=20,face="plain"),
strip.text.y = element_text(colour="black",size=20,face="plain"),
plot.title = element_text(colour="black",size=36,face="plain",hjust = 0.5))
# Plot the copy number segments - some of the data.frames may be empty, so check for that first before adding to the plot
sel = !subclones$is_subclonal
if (any(sel)) {
# Minor allele - Normal clonal copy number
p = p + geom_rect(data=subclones[sel, ], mapping=aes(xmin=startpos, xmax=endpos, ymin=total_minor-rect_height_padding, ymax=total_minor+rect_height_padding), fill="#2f4f4f")
}
sel = subclones$is_subclonal & !subclones$is_50_50
if (any(sel)) {
# Minor allele - Normal subclonal copy number
p = p + geom_rect(data=subclones[sel, ], mapping=aes(xmin=startpos, xmax=endpos, ymin=total_minor-rect_height_padding, ymax=total_minor+rect_height_padding), fill="#2f3f4f")
}
sel = subclones$is_subclonal & subclones$is_50_50
if (any(sel)) {
# Minor allele - Subclonal segments right in between two clonal states
p = p + geom_rect(data=subclones[sel, ], mapping=aes(xmin=startpos, xmax=endpos, ymin=total_minor-rect_height_padding, ymax=total_minor+rect_height_padding), fill="#2f3f4f", colour="red")
}
sel = !subclones$is_subclonal
if (any(sel)) {
# Major allele - clonal copy number
p = p + geom_rect(data=subclones[sel, ], mapping=aes(xmin=startpos, xmax=endpos, ymin=total_cn-rect_height_padding, ymax=total_cn+rect_height_padding), fill="#E69F00")
}
sel = subclones$is_subclonal
if (any(sel)) {
# Major allele - subclonal copy number
p = p + geom_rect(data=subclones[sel, ], mapping=aes(xmin=startpos, xmax=endpos, ymin=total_cn-rect_height_padding, ymax=total_cn+rect_height_padding), fill="#E55300")
}
png(outputfile, width=2000, height=1300)
print(p)
dev.off()
}
#' Plot allele ratios from raw segmented data
#'
#' @param samplename Name of the sample for the plot title
#' @param bafsegmented The BAFsegmented data read in as a data.frame
#' @param logrsegmented The logRsegmented data read in as a data.frame
#' @param outputfile Full path of file where the figure is to be stored
#' @param logr A data.frame with the logr, either logr or allelecounts must be supplied
#' @param max.plot.cn Maximum y-axis value to plot (Default: 5)
#' @author sd11
#' @export
allele_ratio_plot = function(samplename, bafsegmented, logrsegmented, outputfile, logr, max.plot.cn=5) {
if (nrow(logr) < 2000000) {
platform = "SNP6"
} else {
platform = "WGS"
}
bafsegmented$Chromosome = factor(bafsegmented$Chromosome, levels=gtools::mixedsort(unique(bafsegmented$Chromosome)))
colnames(logrsegmented) = c("Chromosome", "Position", "logRseg")
logrsegmented$Chromosome = factor(logrsegmented$Chromosome, levels=levels(bafsegmented$Chromosome))
colnames(logr)[3] = "raw_logr"
logr$copy_ratio_binned = runmed_data(logr$Chromosome, exp(logr$raw_logr))
logr$Chromosome = factor(logr$Chromosome, levels=levels(bafsegmented$Chromosome))
allelecounts = logr
copyratio_binnedLogR = as.data.frame(array(NA, c(nrow(bafsegmented), 8)))
colnames(copyratio_binnedLogR) = c("Chromosome", "Position", "ratioBAF", "ratioBAFphased", "ratioBAF_alt", "ratioBAFphased_alt", "ratioBAFseg", "ratioBAFseg_alt")
copyratio_binnedLogR$Chromosome = bafsegmented$Chromosome
copyratio_binnedLogR$Position = bafsegmented$Position
print("Calculating copy ratios..")
for (chrom in unique(bafsegmented$Chromosome)) {
print(chrom)
baf_chrom = bafsegmented[bafsegmented$Chromosome==chrom,]
logrseg_chrom = logrsegmented[logrsegmented$Chromosome==chrom,]
baf_sel = baf_chrom$Position %in% intersect(baf_chrom$Position, logrseg_chrom$Position)
logrseg_sel = logrseg_chrom$Position %in% intersect(baf_chrom$Position, logrseg_chrom$Position)
ratio_sel = which(copyratio_binnedLogR$Chromosome==chrom)[baf_sel]
copyratio_binnedLogR$ratioBAFseg[ratio_sel] = (baf_chrom$BAFseg[baf_sel]*(2^logrseg_chrom$logRseg[logrseg_sel]))
copyratio_binnedLogR$ratioBAFseg_alt[ratio_sel] = (-(baf_chrom$BAFseg[baf_sel]-1)*(2^logrseg_chrom$logRseg[logrseg_sel]))
}
background = data.frame(y=seq(0,max.plot.cn,0.5))
print("Plotting..")
if (platform == "WGS") {
sel = seq(1, nrow(allelecounts), 100)
} else {
sel = rep(T, nrow(allelecounts))
}
plot_title = samplename
copy_ratio = ggplot(allelecounts[sel,]) +
geom_hline(data=background, mapping=aes(yintercept=y), colour="black", alpha=0.3) +
geom_point(mapping=aes(x=Position, y=copy_ratio_binned), alpha=0.5, size=0.9, colour="darkgreen") +
facet_grid(~Chromosome, scales="free_x", space = "free_x") +
scale_x_continuous(expand=c(0, 0)) +
ylim(0,max.plot.cn) + ylab("Copy Ratio") +
ggtitle(plot_title) +
theme_bw() + theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.text.y = element_text(colour="black",size=18,face="plain"),
axis.title.y = element_text(colour="black",size=20,face="plain"),
strip.text.x = element_text(colour="black",size=16,face="plain"),
plot.title = element_text(colour="black",size=36,face="plain",hjust = 0.5))
if (platform == "WGS") {
sel = seq(1, nrow(copyratio_binnedLogR), 100)
} else {
sel = rep(T, nrow(copyratio_binnedLogR))
}
as_copy_ratio_seg = ggplot(copyratio_binnedLogR[sel,]) +
geom_hline(data=background, mapping=aes(yintercept=y), colour="black", alpha=0.3) +
geom_point(mapping=aes(x=Position, y=ratioBAFseg_alt), alpha=0.5, size=0.9, colour="darkblue") +
geom_point(mapping=aes(x=Position, y=ratioBAFseg), alpha=0.5, size=0.9, colour="purple") +
facet_grid(~Chromosome, scales="free_x", space = "free_x") +
scale_x_continuous(expand=c(0, 0)) +
ylim(0,max.plot.cn) + ylab("AS Copy Ratio - Segm") +
theme_bw() + theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.text.y = element_text(colour="black",size=18,face="plain"),
axis.title.y = element_text(colour="black",size=20,face="plain"),
strip.text.x = element_text(colour="black",size=16,face="plain"),
plot.title = element_text(colour="black",size=36,face="plain"))
png(outputfile, width=2000, height=750)
gridExtra::grid.arrange(gridExtra::arrangeGrob(copy_ratio, as_copy_ratio_seg, ncol=1))
dev.off()
}
#' Plot relative coverage of tumour and normal
#'
#' @param samplename Name of the sample for the plot title
#' @param allelecounts Combined allele counts of tumour and normal, read in as a data.frame
#' @param outputfile Full path of file where the figure is to be stored
#' @param max.y The max Y-axis value to be plotted
#' @author sd11
#' @export
coverage_plot = function(samplename, allelecounts, outputfile, max.y=4) {
print("Normalising allele counts..")
allelecounts$tumour = allelecounts$mutCountT1+allelecounts$mutCountT2
allelecounts$tumour = allelecounts$tumour / median(allelecounts$tumour, na.rm=T)
allelecounts$normal = allelecounts$mutCountN1+allelecounts$mutCountN2
allelecounts$normal = allelecounts$normal / median(allelecounts$normal, na.rm=T)
print("Smoothing data..")
# res = bin_coverage_tumour(allelecounts, binsize=10000)
# allelecounts$tumour_binned = res$tumour_binned
allelecounts$tumour_binned = runmed_data(allelecounts$Chromosome, allelecounts$tumour)
# res = bin_coverage_normal(allelecounts, binsize=10000)
# allelecounts$normal_binned = res$normal_binned
# rm(res)
allelecounts$normal_binned = runmed_data(allelecounts$Chromosome, allelecounts$normal)
allelecounts$Chromosome = factor(allelecounts$Chromosome, levels=gtools::mixedsort(unique(allelecounts$Chromosome)))
background = data.frame(y=seq(0,2,0.5))
plot_title = samplename
p = ggplot(allelecounts[seq(1, nrow(allelecounts), 100),]) +
geom_hline(data=background, mapping=aes(yintercept=y), colour="black", alpha=0.3) +
geom_point(mapping=aes(x=Position, y=normal_binned), alpha=0.5, size=0.5, colour="darkgreen") +
facet_grid(~Chromosome, scales="free_x", space = "free_x") +
scale_x_continuous(expand=c(0, 0)) +
ylab("Normal") + scale_y_continuous(breaks=c(0:2), limits=c(0,2)) +
ggtitle(plot_title) +
theme_bw() + theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.text.y = element_text(colour="black",size=18,face="plain"),
axis.title.y = element_text(colour="black",size=20,face="plain"),
strip.text.x = element_text(colour="black",size=16,face="plain"),
plot.title = element_text(colour="black",size=36,face="plain",hjust = 0.5))
background = data.frame(y=seq(0,max.y,0.5))
p3 = ggplot(allelecounts[seq(1, nrow(allelecounts), 100),]) +
geom_hline(data=background, mapping=aes(yintercept=y), colour="black", alpha=0.3) +
geom_point(mapping=aes(x=Position, y=tumour_binned), alpha=0.5, size=0.5, colour="darkgreen") +
facet_grid(~Chromosome, scales="free_x", space = "free_x") +
scale_x_continuous(expand=c(0, 0)) +
ylim(0,max.y) + ylab("Tumour") +
theme_bw() + theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.text.y = element_text(colour="black",size=18,face="plain"),
axis.title.y = element_text(colour="black",size=20,face="plain"),
strip.text.x = element_text(colour="black",size=16,face="plain"),
plot.title = element_text(colour="black",size=36,face="plain"))
png(outputfile, width=2000, height=750)
gridExtra::grid.arrange(gridExtra::arrangeGrob(p, p3, ncol=1))
dev.off()
}