-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathembedder.py
54 lines (43 loc) · 1.95 KB
/
embedder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import time
import numpy as np
import torch
from utils import process
import torch.nn as nn
from layers import AvgReadout
class embedder:
def __init__(self, args):
args.batch_size = 1
args.sparse = True
args.metapaths_list = args.metapaths.split(",")
args.gpu_num_ = args.gpu_num
if args.gpu_num_ == 'cpu':
args.device = 'cpu'
else:
args.device = torch.device("cuda:" + str(args.gpu_num_) if torch.cuda.is_available() else "cpu")
adj, features, labels, idx_train, idx_val, idx_test = process.load_data_dblp(args)
features = [process.preprocess_features(feature) for feature in features]
args.nb_nodes = features[0].shape[0]
args.ft_size = features[0].shape[1]
args.nb_classes = labels.shape[1]
args.nb_graphs = len(adj)
args.adj = adj
adj = [process.normalize_adj(adj_) for adj_ in adj]
self.adj = [process.sparse_mx_to_torch_sparse_tensor(adj_) for adj_ in adj]
self.features = [torch.FloatTensor(feature[np.newaxis]) for feature in features]
self.labels = torch.FloatTensor(labels[np.newaxis]).to(args.device)
self.idx_train = torch.LongTensor(idx_train).to(args.device)
self.idx_val = torch.LongTensor(idx_val).to(args.device)
self.idx_test = torch.LongTensor(idx_test).to(args.device)
self.train_lbls = torch.argmax(self.labels[0, self.idx_train], dim=1)
self.val_lbls = torch.argmax(self.labels[0, self.idx_val], dim=1)
self.test_lbls = torch.argmax(self.labels[0, self.idx_test], dim=1)
# How to aggregate
args.readout_func = AvgReadout()
# Summary aggregation
args.readout_act_func = nn.Sigmoid()
self.args = args
def currentTime(self):
now = time.localtime()
s = "%04d-%02d-%02d %02d:%02d:%02d" % (
now.tm_year, now.tm_mon, now.tm_mday, now.tm_hour, now.tm_min, now.tm_sec)
return s