-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathevaluate.py
128 lines (99 loc) · 4.46 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
from models import LogReg
import torch.nn as nn
import numpy as np
np.random.seed(0)
from sklearn.metrics import f1_score
from sklearn.cluster import KMeans
from sklearn.metrics import normalized_mutual_info_score, pairwise
def evaluate(embeds, idx_train, idx_val, idx_test, labels, device, isTest=True):
hid_units = embeds.shape[2]
nb_classes = labels.shape[2]
xent = nn.CrossEntropyLoss()
train_embs = embeds[0, idx_train]
val_embs = embeds[0, idx_val]
test_embs = embeds[0, idx_test]
train_lbls = torch.argmax(labels[0, idx_train], dim=1)
val_lbls = torch.argmax(labels[0, idx_val], dim=1)
test_lbls = torch.argmax(labels[0, idx_test], dim=1)
accs = []
micro_f1s = []
macro_f1s = []
macro_f1s_val = [] ##
for _ in range(50):
log = LogReg(hid_units, nb_classes)
opt = torch.optim.Adam(log.parameters(), lr=0.01, weight_decay=0.0)
log.to(device)
val_accs = []; test_accs = []
val_micro_f1s = []; test_micro_f1s = []
val_macro_f1s = []; test_macro_f1s = []
for iter_ in range(50):
# train
log.train()
opt.zero_grad()
logits = log(train_embs)
loss = xent(logits, train_lbls)
loss.backward()
opt.step()
# val
logits = log(val_embs)
preds = torch.argmax(logits, dim=1)
val_acc = torch.sum(preds == val_lbls).float() / val_lbls.shape[0]
val_f1_macro = f1_score(val_lbls.cpu(), preds.cpu(), average='macro')
val_f1_micro = f1_score(val_lbls.cpu(), preds.cpu(), average='micro')
val_accs.append(val_acc.item())
val_macro_f1s.append(val_f1_macro)
val_micro_f1s.append(val_f1_micro)
# test
logits = log(test_embs)
preds = torch.argmax(logits, dim=1)
test_acc = torch.sum(preds == test_lbls).float() / test_lbls.shape[0]
test_f1_macro = f1_score(test_lbls.cpu(), preds.cpu(), average='macro')
test_f1_micro = f1_score(test_lbls.cpu(), preds.cpu(), average='micro')
test_accs.append(test_acc.item())
test_macro_f1s.append(test_f1_macro)
test_micro_f1s.append(test_f1_micro)
max_iter = val_accs.index(max(val_accs))
accs.append(test_accs[max_iter])
max_iter = val_macro_f1s.index(max(val_macro_f1s))
macro_f1s.append(test_macro_f1s[max_iter])
macro_f1s_val.append(val_macro_f1s[max_iter]) ###
max_iter = val_micro_f1s.index(max(val_micro_f1s))
micro_f1s.append(test_micro_f1s[max_iter])
if isTest:
print("\t[Classification] Macro-F1: {:.4f} ({:.4f}) | Micro-F1: {:.4f} ({:.4f})".format(np.mean(macro_f1s),
np.std(macro_f1s),
np.mean(micro_f1s),
np.std(micro_f1s)))
else:
return np.mean(macro_f1s_val), np.mean(macro_f1s)
test_embs = np.array(test_embs.cpu())
test_lbls = np.array(test_lbls.cpu())
run_kmeans(test_embs, test_lbls, nb_classes)
run_similarity_search(test_embs, test_lbls)
def run_similarity_search(test_embs, test_lbls):
numRows = test_embs.shape[0]
cos_sim_array = pairwise.cosine_similarity(test_embs) - np.eye(numRows)
st = []
for N in [5, 10, 20, 50, 100]:
indices = np.argsort(cos_sim_array, axis=1)[:, -N:]
tmp = np.tile(test_lbls, (numRows, 1))
selected_label = tmp[np.repeat(np.arange(numRows), N), indices.ravel()].reshape(numRows, N)
original_label = np.repeat(test_lbls, N).reshape(numRows,N)
st.append(str(np.round(np.mean(np.sum((selected_label == original_label), 1) / N),4)))
st = ','.join(st)
print("\t[Similarity] [5,10,20,50,100] : [{}]".format(st))
def run_kmeans(x, y, k):
estimator = KMeans(n_clusters=k)
NMI_list = []
for i in range(10):
estimator.fit(x)
y_pred = estimator.predict(x)
s1 = normalized_mutual_info_score(y, y_pred, average_method='arithmetic')
NMI_list.append(s1)
s1 = sum(NMI_list) / len(NMI_list)
print('\t[Clustering] NMI: {:.4f}'.format(s1))