-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathmain.py
60 lines (51 loc) · 2.08 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
np.random.seed(0)
import torch
torch.autograd.set_detect_anomaly(True)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
import argparse
def parse_args():
# input arguments
parser = argparse.ArgumentParser(description='DMGI')
parser.add_argument('--embedder', nargs='?', default='DMGI')
parser.add_argument('--dataset', nargs='?', default='imdb')
parser.add_argument('--metapaths', nargs='?', default='MAM,MDM')
parser.add_argument('--nb_epochs', type=int, default=10000)
parser.add_argument('--hid_units', type=int, default=64)
parser.add_argument('--lr', type = float, default = 0.0005)
parser.add_argument('--l2_coef', type=float, default=0.0001)
parser.add_argument('--drop_prob', type=float, default=0.5)
parser.add_argument('--reg_coef', type=float, default=0.001)
parser.add_argument('--sup_coef', type=float, default=0.1)
parser.add_argument('--sc', type=float, default=3.0, help='GCN self connection')
parser.add_argument('--margin', type=float, default=0.1)
parser.add_argument('--gpu_num', type=int, default=0)
parser.add_argument('--patience', type=int, default=20)
parser.add_argument('--nheads', type=int, default=1)
parser.add_argument('--activation', nargs='?', default='relu')
parser.add_argument('--isSemi', action='store_true', default=False)
parser.add_argument('--isBias', action='store_true', default=False)
parser.add_argument('--isAttn', action='store_true', default=False)
return parser.parse_known_args()
def printConfig(args):
args_names = []
args_vals = []
for arg in vars(args):
args_names.append(arg)
args_vals.append(getattr(args, arg))
print(args_names)
print(args_vals)
def main():
args, unknown = parse_args()
if args.embedder == 'DMGI':
from models import DMGI
embedder = DMGI(args)
elif args.embedder == 'DGI':
from models import DGI
embedder = DGI(args)
embedder.training()
if __name__ == '__main__':
main()