-
Notifications
You must be signed in to change notification settings - Fork 37
/
pred.py
53 lines (36 loc) · 1.19 KB
/
pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# -*- coding: utf-8 -*-
import tensorflow as tf
import argparse
import cv2
import matplotlib.pyplot as plt
from yolo.utils.box import visualize_boxes
from yolo.config import ConfigParser
argparser = argparse.ArgumentParser(
description='test yolov3 network with coco weights')
argparser.add_argument(
'-c',
'--config',
default="configs/predict_coco.json",
help='config file')
argparser.add_argument(
'-i',
'--image',
default="tests/samples/sample.jpeg",
help='path to image file')
if __name__ == '__main__':
args = argparser.parse_args()
image_path = args.image
# 1. create yolo model & load weights
config_parser = ConfigParser(args.config)
model = config_parser.create_model(skip_detect_layer=False)
detector = config_parser.create_detector(model)
# 2. Load image
image = cv2.imread(image_path)
image = image[:,:,::-1]
# 3. Run detection
boxes, labels, probs = detector.detect(image, 0.5)
# 4. draw detected boxes
visualize_boxes(image, boxes, labels, probs, config_parser.get_labels())
# 5. plot
plt.imshow(image)
plt.show()